

(11) **EP 3 919 153 A8**

(12) CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 1 (W1 A1) Corrections, see Bibliography INID code(s) 71

- (48) Corrigendum issued on: **16.03.2022 Bulletin 2022/11**
- (43) Date of publication: **08.12.2021 Bulletin 2021/49**
- (21) Application number: 20783826.9
- (22) Date of filing: 18.02.2020

- (51) International Patent Classification (IPC):

 801D 39/20 (2006.01) 801D 46/00 (2022.01)

 801J 35/04 (2006.01) F01N 3/022 (2006.01)
- (52) Cooperative Patent Classification (CPC):
 F01N 3/0222; B01D 39/20; B01D 46/2429;
 B01D 46/24492; B01D 46/2498; B01D 53/94;
 B01J 35/04; F01N 3/022; F01N 3/24; F01N 3/28
- (86) International application number: **PCT/JP2020/006216**
- (87) International publication number: WO 2020/202851 (08.10.2020 Gazette 2020/41)

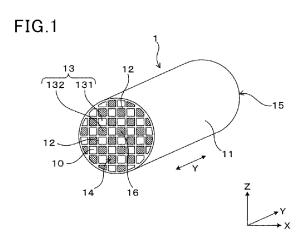
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:


KH MA MD TN

- (30) Priority: 29.03.2019 JP 2019068771
- (71) Applicant: DENSO CORPORATION Kariya-shi,
 Aichi 448-8661 (JP)

- (72) Inventors:
 - KOIKE Kazuhiko Nisshin-city, Aichi 470-0111 (JP)
 - MIZUTANI Keisuke Nisshin-city, Aichi 470-0111 (JP)
 - ASAOKU Kana Kariya-city, Aichi 448-8661 (JP)
- (74) Representative: Kuhnen & Wacker
 Patent- und Rechtsanwaltsbüro PartG mbB
 Prinz-Ludwig-Straße 40A
 85354 Freising (DE)

(54) **EXHAUST GAS PURIFICATION FILTER**

An exhaust gas purification filter includes a honeycomb structure part (10) and sealing parts (16). The honeycomb structure part (10) has a porous partition wall (12) and a plurality of cells (13) defined by the partition wall (12) to form exhaust gas flow paths. The sealing parts (16) seal alternately a gas inflow-side end face (14) or a gas outflow-side end face (15) of the cells (13). The exhaust gas purification filter includes fine pores (124) with diameters of 10 μm or less measured by the mercury intrusion method that account for 5% or more of all pores by volume in the honeycomb structure part (10). The partition wall (12) has a plurality of communication pores (122) communicating between the cells (13) adjacent to the partition wall (12) and has constricted communication pore (125) of which a largest diameter Φ_{1} (μm) and a smallest diameter Φ_2 (μ m) satisfy relationships $\Phi_1 \ge 50$, $100 \times \Phi_2/\Phi_1 \leq 20$.

EP 3 919 153 A8