TECHNICAL FIELD
[0001] The present invention relates to a method for controlling a fume cupboard and such
fume cupboard.
BACKGROUND
[0002] A fume cupboard is a ventilated enclosure where harmful materials can be handled
safely. The fume cupboard captures contaminants and prevents them from escaping into
an environment around the fume cupboard by using an exhaust blower to draw air and
contaminants in and around the hood's work area away from the operator so that inhalation
of and contact with the contaminants are minimized. Access to the interior of the
hood is through an opening which can be closed with a sash which typically slides
up and down to vary the opening into the hood.
[0003] Large air volumes are drawn out from a building when a fume cupboard is installed
and activated. This affects the heating or cooling of the building since it is tempered
and treated air that is extracted. This has environmentally and financial effects
due to an increased electrical power consumption for heating/cooling of the supply
air, which leads to increased heating/cooling costs.
[0005] From the above it is understood that there is room for improvements and the invention
aims to solve or at least mitigate the above and other problems.
SUMMARY
[0006] The invention is defined by the appended independent claims. Additional features
and advantages of the concepts disclosed herein are set forth in the description which
follows, and in part will be obvious from the description, or may be learned by practice
of the described technologies. The features and advantages of the concepts may be
realized and obtained by means of the instruments and combinations particularly pointed
out in the appended claims. These and other features of the described technologies
will become more fully apparent from the following description and appended claims,
or may be learned by the practice of the disclosed concepts as set forth herein.
[0007] In a first aspect, a process for deactivating a fume cupboard is provided. The fume
cupboard comprises an open front section which is closable by means of a front sash,
a work chamber enclosed by side sections, a bottom section, a back side section, and
a top section provided with an exhaust opening. The fume cupboard further comprises
an electrical power measuring unit configured to measure electrical power consumption
of the fume cupboard. The process comprises the steps of:
- determining, by means of the electrical power measuring unit, if an electrical power
consumption of the fume cupboard fulfills a predetermined threshold condition; if
so:
- closing the front sash of the fume cupboard,
- switching an electrical power for the fume cupboard off; and
- controlling an air flow through the fume cupboard to a minimum flow.
This method is advantageous in that the air flow through the fume cupboard is lowered,
which results in lowered environmental impact, and reduced costs for a property owner
due to reduced heating/cooling/treating of supply air.
[0008] In one embodiment, the electrical power measuring unit is configured to measure the
electrical power consumption of one or more electrical power outlets of the fume cupboard.
It is advantageous to measure power consumption of electrical power outlets in order
to determine if work is being performed in the fume cupboard.
[0009] In one embodiment, the predetermined threshold condition is zero power consumption.
This indicates that no electrical equipment is connected to the power outlet(s) of
the fume cupboard, and is thus an indication that no work is being performed in the
fume cupboard.
[0010] In one embodiment, the process further comprises measuring a volatile organic compound
(VOC) content in the air flow through the exhaust opening by means of a volatile organic
compound (VOC) sensor. If the measured volatile organic compound (VOC) content is
not equal to zero, the deactivation process is interrupted. If the volatile organic
compound (VOC) content is not equal to zero, it means that a process is going on in
the fume cupboard, and the fume cupboard should thus not be deactivated.
[0011] In one embodiment, the process further comprises measuring an air temperature of
the air flow through the exhaust opening by means of a temperature sensor. If the
temperature value is not equal to a supply air temperature, the deactivation process
is interrupted. If the temperature differs from a supply air temperature, it means
that a process is going on in the fume cupboard, and the fume cupboard should thus
not be deactivated.
[0012] In one embodiment, the process further comprises detecting presence in a gap between
the front sash and the bottom section by means of a first presence detection means.
If presence is detected, the deactivation process is interrupted. If presence is detected,
it means that someone is working in the fume cupboard, and the fume cupboard should
thus not be deactivated.
[0013] In one embodiment, the process further comprises detecting presence in the room where
said fume cupboard is located by means of a second presence detection means. If presence
is detected, the deactivation process is interrupted. If presence is detected in the
room of the fume cupboard, it means that someone may intend to perform work in the
fume cupboard, and the fume cupboard should thus not be deactivated.
[0014] In one embodiment, the process further comprises blocking the front sash in the closed
position. This is advantageous in that the fume cupboard must be unblocked before
any work may start therein.
[0015] In a second aspect, a fume cupboard comprising an open front section which is closable
by means of a front sash, and a work chamber enclosed by side sections, a bottom section,
a back side section, and a top section is provided. The top section is provided with
an exhaust opening. The fume cupboard further comprises an electrical power measuring
unit configured to measure electrical power consumption of the fume cupboard; and
a control unit operatively connected to the electrical power measuring unit for receiving
an input signal indicative of the electrical power consumption. The control unit is
configured to deactivate the fume cupboard into an inactive state when the electrical
power measuring unit measures the electrical power consumption to fulfill a predetermined
threshold condition. The inactive state of the fume cupboard comprises: the front
sash is configured to be closed and blocked; the electrical power supply for electrical
power outlets in the fume cupboard is configured to be turned off; and an air flow
through the fume cupboard is configured to be controlled to a minimum flow.
[0016] This fume cupboard is advantageous in that the air flow through the fume cupboard
is lowered, which results in lowered environmental impact, and reduced costs for a
property owner due to reduced heating/cooling/treating of supply air.
[0017] The actions of the inactive state of the fume cupboard are advantageous in that they
prevent work from being performed in the fume cupboard, or save energy.
[0018] In one embodiment, the minimum flow is approximately 0.1-20 l/s, preferably 5-15
l/s, more preferred 8-12 l/s, and most preferred 10 l/s. This advantageous in that
it is a large reduction compared to the air flow through an active fume cupboard.
[0019] In one embodiment, the control unit is configured to be in operative connection with
an air flow regulation unit configured to adjust the air flow through the fume cupboard.
It is advantageous to operatively connect an air flow regulation unit with the control
unit, in that the air flow through the fume cupboard may be precisely controlled.
[0020] In one embodiment, the fume cupboard further comprises a volatile organic compound
(VOC) sensor in operative communication with the control unit and configured to measure
a volatile organic compound (VOC) content in the exhaust air. The volatile organic
compound (VOC) content in the exhaust air is a favourable variable to measure in order
to be able to determine when the fume cupboard is to be put in an inactive state.
[0021] In one embodiment, the fume cupboard further comprises a first presence detector
in operative communication with the control unit and configured to detect presence
in a gap between the front sash and the bottom section. The presence detector is favourable
in order to be able to determine if a person is performing work in the fume cupboard.
[0022] In one embodiment, the fume cupboard further comprises a second presence detector
in operative communication with the control unit and configured to detect presence
in a room in which the fume cupboard is located. The presence detector is favourable
in order to be able to determine if a person is present in the room, which means that
work may be intended to be performed in the fume cupboard.
[0023] In one embodiment, the fume cupboard further comprises a temperature sensor in operative
communication with the control unit and configured to measure a temperature of the
exhaust air. The temperature of the exhaust air is a favourable variable to measure
in order to be able to determine when the fume cupboard is to be put in an inactive
state.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024] In order to best describe the manner in which the above-described embodiments are
implemented, as well as define other advantages and features of the disclosure, a
more particular description is provided below and is illustrated in the appended drawings.
Understanding that these drawings depict only exemplary embodiments of the invention
and are not therefore to be considered to be limiting in scope, the examples will
be described and explained with additional specificity and detail through the use
of the accompanying drawings in which:
- Fig. 1
- is a schematic side view of a disclosed fume cupboard with an electrically powered-on
heating device,
- Fig. 2
- is a schematic block diagram of a disclosed fume cupboard.
- Fig. 3
- is a partly cut out schematic side view of the fume cupboard shown in Fig. 1,
- Fig. 4
- is a flowchart for a deactivation process for said fume cupboard, and
- Fig. 5
- is a flowchart for a lock-down process for said fume cupboard.
[0025] Further, in the figures like reference characters designate like or corresponding
parts throughout the several figures.
DETAILED DESCRIPTION
[0026] Various embodiments of the disclosed methods and arrangements are discussed in detail
below. While specific implementations are discussed, it should be understood that
this is done for illustration purposes only.
[0027] In the description and claims the word "comprise" and variations of the word, such
as "comprising" and "comprises", does not exclude other elements or steps.
[0028] Hereinafter, certain embodiments will be described more fully with reference to the
accompanying drawings.
[0029] This application relates to a fume cupboard, and how the fume cupboard can be automatically
deactivated in a safe manner. Since fume cupboards are usually used for possibly hazardous
work, comprising fumes, vapors, steams, odours, sprays, splashes, etc., it is important,
and regulated by law and standards, that a minimum airflow must be provided through
the fume cupboard at all times when work is being performed therein. The air flow
through a fume cupboard is approximately 200 l/s in an active work state. Since there
currently is no good way of determining whether work is being performed in a fume
cupboard, a consequence is that most fume cupboards are drawing out 200 liters of
treated (dehumidified, heated, cooled etc.) air every second. In a building housing
several or many fume cupboards, this adds up to huge quantities of air. It would be
beneficial, both in an environmental aspect, and in a financial aspect, to have a
fume cupboard which is configured to determine if work is being performed within the
fume cupboard, and if no work is being performed, the fume cupboard is configured
to enter a passive or inactive state where the ventilation is lowered to a minimum,
e.g. to an air flow of approximately 10 l/s.
[0030] The inventor of the present invention has after insightful reasoning and inventive
thinking designed a fume cupboard that is configured to determine when no work is
going on inside the fume cupboard, and which is then configured to enter a passive/inactive
state. The fume cupboard is further configured to re-enter the active state as soon
as work is being initiated inside the fume cupboard. The fume cupboard comprises a
control unit which is configured to initiate a deactivation process as soon as a first
condition is fulfilled. This condition is that there is an electrical power consumption
of the fume cupboard is below a predetermined threshold value. This fume cupboard
and a method of controlling the fume cupboard will be more thoroughly described below.
[0031] Figs 1 and 3 disclose a fume cupboard 10 which basically is a cabinet having a work
chamber 13 enclosed by a housing with a front section 15 which is openable for letting
air flow from the outside of the fume cupboard 10 into and through the work chamber
13. The front section 15 is openable by means of a front sash 17 which is configured
to be movable between a raised and a lowered position. When the front sash is in the
raised position an opening is formed between the front sash 17 and the bottom section
18. The front sash 17 is configured to be operable both manually and automatically
by means of a motor (not shown) controlled by a control unit 40. The front sash 17
further comprises a lock or blocking device (not shown) configured to be operated
by the control unit 40. The blocking device is e.g. an electromagnetic lock configured
to act upon suspension shafts of the front sash 17.
[0032] The housing comprises a closed back side 14, closed side sections 16, a closed bottom
section 18 and a top section 20 provided with an exhaust opening 22. Normally, an
external exhaust fan or similar device (not shown) is arranged to provide the air
flow through the fume cupboard 10.
[0033] A motorized damper unit 30 in operative connection with the control unit 40 of the
fume cupboard 10 is arranged in a duct 23 connected to the exhaust opening 22 of the
fume cupboard 10. The damper unit 30 may be any kind of suitable damper unit, e.g.
a throttle damper, iris damper, or any other kind of suitable damper. In various embodiments,
the damper unit 30 comprises position detectors providing a feedback signal indicative
of the position of the damper 30.
[0034] In Fig. 1, the fume cupboard 10 in use, i.e. in the active state, is disclosed. This
means that activity is going on/work is being performed inside the fume cupboard 10.
All work in the fume cupboards 10 require some kind of electrical equipment 12 to
be connected to an electrical power outlet 46 of the fume cupboard 10 and consuming
electrical power. In Fig. 1 this is represented by a sample container 28 arranged
on a heater 12, which in turn is arranged on a work chamber floor plate 24. The heating
plate 12 is used to heat up the sample container 28 and any samples or objects located
therein. The heater 12 is connected to the electrical power outlet 46. Further, the
fume cupboard 10 is provided with other electrically powered units, such as lamps
27, electrical motors for the front sash 17, and for adjustment of working height.
[0035] The control unit 40 of the fume cupboard 10 is provided in a control device 42, as
shown in Fig. 2. The control unit 40 is operatively connected to an electrical power
measuring unit 44. The electrical power measuring unit 44 is arranged to measure the
electrical power supplied to the fume cupboard 10 at regular time intervals. The electrical
power measuring unit may in some embodiments be exchanged for an electrical current
measuring unit. The electrical power feeds e.g. the lamps 27 or other lighting in
the hood 10, the heating device 12, and/or any other equipment that may be used in
the fume cupboard 10, such as automatic stirrers etc. When no electrical equipment
is connected to the electrical power outlet(s) 46 and being active, the electrical
power measuring unit 44 is configured to provide a signal corresponding to a zero
supply level to the control unit 40. As soon as any electrical equipment is switched
on, the electrical power measuring unit 44 is configured to provide an electrical
power supply signal corresponding to the present electrical power supply level to
the control unit 40.
[0036] The fume cupboard 10 is provided with at least one temperature sensor 47, arranged
in the upper portion of the work chamber 13, preferably in the vicinity of the exhaust
opening 22. The fume cupboard 10 is also provided with a volatile organic compound
(VOC) sensor 48, arranged in the exhaust opening 22, configured to detect any volatile
organic compounds present in the exhaust air.
[0037] The front sash 17 is provided with a first presence detector 50, which preferably
is an active presence detector. The active presence detector 50 is arranged as an
IR curtain extending along the length of the front sash 17. The active presence detector
50 IR curtain is directed downwards, towards the bottom section 18 of the fume cupboard
10. It is configured to detect if any part of a person, e.g. a hand, is present in
the opening formed between the front sash 17 and the bottom section 18.
[0038] The front sash 17 is also provided with a second presence detector 49, which preferably
is a passive presence detector, e.g. a passive IR detector. The passive presence detector
49 is configured to detected if a person is present in front of the fume cupboard
10. The range of the passive presence detector 49 is approximately 1-3 meters, preferably
2 meters, from the front section 15 of the fume cupboard 10.
[0039] Presence in relation to the fume cupboard 10 may also be detected indirectly by means
of sensors detecting operator performed movement of the front sash 17, utilization
of the electrical power outlets etc.
[0040] When work is taking place in the fume cupboard 10, air is flowing in the direction
of arrow A into the work chamber 13 through the opening formed by the raised front
sash 17. The flow of air is directed towards the exhaust opening 22 provided in the
upper portion of the fume cupboard 10. The air flowing through the work chamber 13
brings fumes, vapours etc towards along the dashed arrows, and out through the exhaust
outlet 22, along arrow B.
[0041] In order to save energy, and thus costs, the fume cupboard 10 is configured to enter
an inactive state when no work is being performed in the work chamber 13. In order
to determine if work is being performed or not, the control unit 40 is configured
to perform a deactivation process 100, comprising monitoring the activities taking
place in and around the fume cupboard 10. This process 100 is shown in the flowchart
of Fig. 4. If the deactivation process 100 indicates that no work is being performed
in the fume cupboard 10, the control unit 40 is configured to follow a lock-down process
200, shown in the flowchart in Fig. 5.
[0042] The control unit 40 is configured to monitor the following variables in order to
determine if certain conditions are fulfilled. The variables are monitored continuously
and not in any certain order. Different variables may be monitored at different time
intervals, but all variables are monitored regularly and not in dependence of each
other. The conditions need not be fulfilled in any certain order, but when all conditions
are fulfilled, the lock-down process 200 is configured to be initiated.
- 1) The electrical power measuring unit 44 is configured to measure 101 the electrical
power consumption of the fume cupboard 10 . When the electrical power consumption
in the fume cupboard 10 is below a threshold value 102, the electrical power measuring
unit 44 is configured to transmit a signal to the control unit 40. A power consumption
below a certain predetermined threshold value indicates that no electrical activity
is taking place in the fume cupboard 10. That is, no heating plate is active, no stirring
equipment is active etc. This is an indication that no work is taking place in the
fume cupboard 10. The electrical power consumption being below the predetermined threshold
value is a prerequisite for the lock-down or deactivation process to begin. If the
electrical power consumption is not below the predetermined threshold value, the lock-down
process will not commence, even if all other below mentioned conditions are fulfilled.
The electrical power consumption may be determined in two ways. A first method comprises
measuring the power consumption of the electrical power outlet(s) 46 of the fume cupboard
10. In this case, the threshold value is zero, which means that no active electrical
equipment 12 is connected to the electrical power outlets 46. Another method for determining
if the electrical power consumption indicates that no work is being performed comprises
measuring the total power consumption of the fume cupboard 10. That is, the electrical
power consumption of the electrical power outlet(s), motor driving the front sash
17, lamps/lighting 27, sensors etc. In this case, the threshold value is not equal
to zero, since the fume cupboard 10 is always consuming electrical power due to the
sensors checking for presence, volatile organic compounds (VOC's), the control unit
40 requires electrical power etc. The electrical power consumption of these devices/units
are known and provided to the control unit 40. By adding these known parts of the
electrical power consumption, a threshold value is obtainable. Thus, the control unit
40 is configured to initiate the lock-down process 20 when the measured electrical
power consumption originates only from the fume cupboard 10 itself.
- 2) The control unit 40 is configured to analyze a volatile organic compound (VOC)
content in the exhaust air 103, measured by means of the volatile organic compound
(VOC) sensor 48. The control unit 40 is configured to analyze the change of the volatile
organic compound (VOC) content in order to determine if the content is decreasing
104, compared to an earlier measurement value. A decreasing value indicates that the
work process is slowing down or ending. When the value equals zero, it is an indication
that no process is taking place in the fume cupboard 10, and that the lock-down process
200 is configured to continue.
- 3) The control unit 40 is further configured to analyze a temperature value in the
exhaust air 105, as measured by means of the temperature sensor 47. The control unit
40 is configured to analyze the change of the temperature value in order to determine
if the temperature is decreasing, compared to an earlier measurement value 106. A
decreasing temperature value indicates that the work process in the work chamber 13
is slowing down or ending. The temperature of the supply air A into the fume cupboard
10 is also measured, by a second temperature sensor (not shown). When the extract
air has the same temperature as the supply air, it is an indication that no heat generating
process is taking place in the fume cupboard 10, and thus the lock-down 200 process
is configured to continue.
- 4) The control unit 40 is configured to analyze 107 data transmitted from the active
presence detector 50 arranged on the front sash 17. Since the active presence detector
50 is configured to detect the presence of e.g. hands in the opening below the front
sash 17, it is an indication that no one is working at the fume cupboard 10 when the
active presence detector 50 has not registered any signal for a predetermined time
period. The predetermined period of time is 5-15 minutes, preferably 7-10 minutes
and most preferred 8 minutes. When no presence detection has been made during this
time period, the lock-down process 200 is configured to continue.
Further, the active presence detector 50 registers the level of light in the room
where the fume cupboard 10 is arranged. If the registered light level is below a certain
boundary value, it is an indication that no one is working in the room.
- 5) The control unit is configured to analyze 107 data transmitted from the passive
presence detector 49. If the passive presence detector has not registered any presence
for a predetermined period of time, this is an indication that no person is present
in the room, and thus that no work is being performed in the fume cupboard 10. The
predetermined period of time is preferably 5-15 minutes, preferably 7-10 minutes and
most preferred 8 minutes. When no presence detection has been made during this time
period, the lock-down process 200 is configured to continue.
[0043] When the above conditions (electrical power consumption below a predetermined threshold
value, volatile organic compound (VOC) content below a certain threshold value, a
temperature value being consistent with an external temperature, no presence detected
in the opening of the front sash 17, and no presence detected in the room) are fulfilled,
the control unit 40 is configured to initiate the lock-down process 200 in order for
the fume cupboard 10 to enter the inactive state. Fig. 3 shows the fume cupboard 10
in the inactive state.
[0044] The first step of the lock-down process 200 is that the control unit 40 controls
201 the motor coupled to the front sash 17 such that the sash 17 enters a lowered
position. In the lowered position, a few centimeters gap is left between the work
chamber floor plate 24 and the front sash 17. This is due to safety regulation stating
that a certain air flow through the fume cupboard 10 must be maintained at all times.
The gap is however small enough such that no person can reach into and perform any
work within the fume cupboard 10.
[0045] When the front sash 17 is operated to the lowered position, the control unit 40 is
configured to block 202 the front sash 17. The front sash 17 may thus not easily be
opened by a user. Preferably, the front sash 17 is unblocked only if a user maneuvers
a control panel provided on the fume cupboard 10.
[0046] Thereafter, the control unit 40 is configured to switch off 203 the electrical power
to the electrical power outlet(s) 46 of the fume cupboard 10 such that no electrical
equipment 12 can be active inside the fume cupboard 10. The electrical power may also
be switched off for the lamp 27 or other lighting present in the cupboard 10. The
control unit 40, the sensors and detectors, the damper unit 30 etc. are however still
provided with electrical power.
[0047] Thereafter, the air flow through the fume cupboard 10 is controlled 204 to a lower
flow rate, as shown in Fig. 3. The air flow is controlled by means of the motorized
damper unit 30 in operative connection with the control unit 40.
[0048] The flow rate of the inactive state is approximately 0.1-20 l/s, preferably 5-15
l/s, more preferred 8-12 l/s, and most preferred 10 l/s.
[0049] If any of the above mentioned condition ceases to be fulfilled at any time of the
deactivation process 100, the process will be interrupted, and the control unit 40
is configured to return the fume cupboard 10 into the active state again.
[0050] If a person passes the deactivated fume cupboard 10, the passive presence detector
49 will register this, and transmit a signal to the control unit 40. The control unit
40 is configured to show a message on a display (not shown) arranged on the front
of the fume cupboard 10. The displayed message comprises information regarding the
fume cupboard 10 being in an inactive state, and possibly also a question if the fume
cupboard should enter the active state. The display may be any kind of suitable display.
In one embodiment, the display is a touch-screen which the person may press on in
order to re-enter the fume cupboard 10 into the active state.
[0051] If the active presence detector 50 registers presence in the gap below the front
sash 17 when the fume cupboard 10 is deactivated, it transmits a signal to the control
unit 40 which in turn is configured to re-activate the fume cupboard 10. The same
happens if a person grabs the front sash 17 and tries to open it.
[0052] If a presence is detected in the gap below the front sash 17, or the front sash 17
is being forced open, it is likely that it is a person who intends to perform work
in the fume cupboard 10. It is thus beneficial that the fume cupboard 10 enters the
active state immediately, without any further interaction with the person. However,
if presence is only detected in the room, it is not as likely that it is a person
intending to perform work in the fume cupboard 10, as a person may have many other
reasons for entering the room where the fume cupboard 10 is located. It is thus beneficial
that the fume cupboard 10 is not configured to automatically re-enter the active state
solely based on detected presence in the room. This saves heating/cooling/treating
of air, and thus costs and the environment.
[0053] The various embodiments described above are provided by way of illustration only
and should not be construed to limit the invention. For example, the principles herein
may be applied to any kind of fume cupboard, or fume hood.
1. A process (100) for deactivating a fume cupboard (10) comprising an open front section
(15) which is closable by means of a front sash (17), a work chamber (13) enclosed
by side sections (16), a bottom section (18), a back side section (14), and a top
section (20) provided with an exhaust opening (22), the fume cupboard (10) further
comprising an electrical power measuring unit (44) configured to measure electrical
power consumption of the fume cupboard (10); the process comprising the steps of:
- determining (102), by means of the electrical power measuring unit (44), if an electrical
power consumption of the fume cupboard (10) fulfills a predetermined threshold condition;
if so:
- closing (201) the front sash (17) of the fume cupboard (10),
- switching (203) an electrical power for the fume cupboard (10) off; and
- controlling (204) an air flow through the fume cupboard (10) to a minimum flow.
2. The process according to claim 1, wherein the electrical power measuring unit (44)
is configured to measure the electrical power consumption of one or more electrical
power outlets (46) of the fume cupboard (10).
3. The process according to claim 2, wherein the predetermined threshold condition is
zero power consumption.
4. The process according to any one of the preceding claims, further comprising measuring
a volatile organic compound (VOC) content in the air flow through the exhaust opening
(22) by means of a volatile organic compound (VOC) sensor (48), and if the measured
volatile organic compound (VOC) content is not equal to zero, interrupting the deactivation
process (100).
5. The process according to any one of the preceding claims, further comprising measuring
an air temperature of the air flow through the exhaust opening (22) by means of a
temperature sensor (47), and if the temperature value is not equal to a supply air
temperature, interrupting the deactivation process (100).
6. The process according to any one of the preceding claims, further comprising detecting
presence in a gap between the front sash (17) and the bottom section (18) by means
of a first presence detection means (50), and if presence is detected, interrupting
the deactivation process (100).
7. The process according to any one of the preceding claims, further comprising detecting
presence in the room where said fume cupboard (10) is located by means of a second
presence detection means (49), and if presence is detected, interrupting the deactivation
process (100).
8. The process according to any one of the preceding claims, further comprising blocking
the front sash (17) in the closed position.
9. A fume cupboard (10) comprising an open front section (15) which is closable by means
of a front sash (17), and a work chamber (13) enclosed by side sections (16), a bottom
section (18), a back side section (14), and a top section (20), wherein the top section
(20) is provided with an exhaust opening (22), the fume cupboard (10) further comprising
an electrical power measuring unit (44) configured to measure electrical power consumption
of the fume cupboard (10);
a control unit (40) operatively connected to the electrical power measuring unit (44)
for receiving an input signal indicative of the electrical power consumption;
wherein the control unit (40) is configured to deactivate the fume cupboard (10) into
an inactive state when the electrical power measuring unit (44) measures the electrical
power consumption to fulfill a predetermined threshold condition, and
wherein the inactive state comprises: the front sash (17) is configured to be closed
and blocked, the electrical power supply for electrical power outlets (46) in the
fume cupboard (10) is configured to be turned off, and an air flow through the fume
cupboard (10) is configured to be controlled to a minimum flow.
10. The fume cupboard (10) according to claim 9, wherein the minimum flow is approximately
0.1-20 l/s, preferably 5-15 l/s, more preferred 8-12 l/s, and most preferred 10 l/s.
11. The fume cupboard (10) according to any one of claims 9-10, wherein the control unit
(40) is configured to be in operative connection with an air flow regulation unit
(30) configured to adjust the air flow through the fume cupboard (10).
12. The fume cupboard (10) according to any one of claims 9-11, further comprising a volatile
organic compound (VOC) sensor (48) in operative communication with the control unit
(40) and configured to measure a volatile organic compound (VOC) content in the exhaust
air.
13. The fume cupboard (10) according to any one of claims 9-12, further comprising a first
presence detector (50) in operative communication with the control unit (40) and configured
to detect presence in a gap between the front sash (17) and the bottom section (18).
14. The fume cupboard (10) according to any one of claims 9-13, further comprising a second
presence detector (49) in operative communication with the control unit (40) and configured
to detect presence in a room in which the fume cupboard (10) is located.
15. The fume cupboard (10) according to any one of claims 9-14, further comprising a temperature
sensor (47) in operative communication with the control unit (40) and configured to
measure a temperature of the exhaust air.
1. Verfahren (100) zum Deaktivieren eines Abzugs (10), umfassend einen offenen Frontabschnitt
(15), der mittels eines Frontschiebers (17) verschließbar ist, eine Arbeitskammer
(13), die von Seitenabschnitten (16) umschlossen ist, einen Bodenabschnitt (18), einen
hinteren Seitenabschnitt (14) und einen oberen Abschnitt (20), der mit einer Abluftöffnung
(22) versehen ist, wobei der Abzug (10) ferner eine elektrische Leistungsmesseinheit
(44) umfasst, die konfiguriert ist, um den elektrischen Leistungsverbrauch des Abzugs
(10) zu messen; das Verfahren umfassend die Schritte:
- Bestimmen (102), mittels der elektrischen Leistungsmesseinheit (44), ob ein elektrischer
Leistungsverbrauch des Abzugs (10) eine vorbestimmte Schwellenbedingung erfüllt; und
wenn dies der Fall ist:
- Schließen (201) des Frontschiebers (17) des Abzugs (10),
- Abschalten (203) einer elektrischen Leistung für den Abzug (10); und
- Steuern (204) eines Luftstroms durch den Abzug (10) auf einen minimalen Strom.
2. Verfahren nach Anspruch 1, wobei die elektrische Leistungsmesseinheit (44) ausgelegt
ist, um den elektrische Leistungsverbrauch einer oder mehrerer elektrischer Leistungsausgänge
(46) des Abzugs (10) zu messen.
3. Verfahren nach Anspruch 2, wobei die vorbestimmte Schwellenwertbedingung ein Nullleistungsverbrauch
ist.
4. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Messen eines
Gehalts an flüchtigen organischen Verbindungen (VOC) in dem Luftstrom durch die Abluftöffnung
(22) mittels eines Sensors (48) für flüchtige organische Verbindungen (VOC), und wenn
der gemessene Gehalt an flüchtigen organischen Verbindungen (VOC) nicht gleich Null
ist, Unterbrechen des Deaktivierungsverfahrens (100).
5. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Messen einer
Lufttemperatur des Luftstroms durch die Abluftöffnung (22) mittels eines Temperatursensors
(47), und wenn der Temperaturwert nicht gleich einer Zulufttemperatur ist, Unterbrechen
des Deaktivierungsverfahrens (100).
6. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Erfassen von
Vorhandensein in einem Spalt zwischen dem Frontschieber (17) und dem Bodenabschnitt
(18) mittels eines ersten Anwesenheitserfassungsmittels (50) und falls das Vorhandensein
erfasst wird, Unterbrechen des Deaktivierungsverfahrens (100).
7. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Erfassen der
Anwesenheit in dem Raum, in dem sich der Abzug (10) befindet, mittels eines zweiten
Anwesenheitserfassungsmittels (49) und, wenn die Anwesenheit erfasst wird, das Unterbrechen
des Deaktivierungsverfahrens (100).
8. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Blockieren des
vorderen Frontschiebers (17) in der geschlossenen Position.
9. Abzug (10), umfassend einen offenen Frontabschnitt (15), der mittels eines Frontschiebers
(17) verschließbar ist, und eine Arbeitskammer (13), die von Seitenabschnitten (16),
einem Bodenabschnitt (18), einem hinteren Seitenabschnitt (14) und einem oberen Abschnitt
(20) umschlossen ist, wobei der obere Abschnitt (20) mit einer Abluftöffnung (22)
versehen ist, wobei der Abzug (10) ferner umfasst:
eine elektrische Leistungsmesseinheit (44), die konfiguriert ist, um den elektrischen
Leistungsverbrauch des Abzugs (10) zu messen;
eine Steuereinheit (40), die mit der elektrischen Leistungsmesseinheit (44) operativ
verbunden ist, um ein Eingangssignal zu empfangen, das den elektrischen Leistungsverbrauch
angibt;
wobei die Steuereinheit (40) konfiguriert ist, um den Abzug (10) in einen inaktiven
Zustand zu deaktivieren, wenn die elektrische Leistungsmesseinheit (44) den elektrischen
Leistungsverbrauch misst, um eine vorbestimmte Schwellenbedingung zu erfüllen, und
wobei der inaktive Zustand umfasst: den Frontschieber (17) der konfiguriert ist, um
geschlossen und blockiert zu werden, wobei die elektrische Leistungsversorgung für
elektrische Leistungsausgänge (46) in dem Abzug (10) konfiguriert ist, um abschaltbar
zu sein, und ein Luftstrom durch den Abzug (10) konfiguriert ist, um auf einen minimalen
Durchfluss gesteuert zu werden.
10. Abzug (10) nach Anspruch 9, wobei der Mindestfluss etwa 0,1-20 l/s, vorzugsweise 5-15
l/s, mehr bevorzugt 8-12 l/s und am meisten bevorzugt 10 l/s beträgt.
11. Abzug (10) nach einem der Ansprüche 9 bis 10, wobei die Steuereinheit (40) konfiguriert
ist, um mit einer Luftstromregelungseinheit (30) in operativer Verbindung zu stehen,
die konfiguriert ist, um den Luftstrom durch den Abzug (10) anzupassen.
12. Abzug (10) nach einem der Ansprüche 9 bis 11, ferner umfassend einen Sensor (48) für
flüchtige organische Verbindungen (VOC), der in operativer Verbindung mit der Steuereinheit
(40) steht und konfiguriert ist, um einen Gehalt an flüchtigen organischen Verbindungen
(VOC) in der Abluft zu messen.
13. Abzug (10) nach einem der Ansprüche 9 bis 12, ferner umfassend einen ersten Anwesenheitsdetektor
(50), der in operativer Verbindung mit der Steuereinheit (40) steht und konfiguriert
ist, um das Vorhandensein in einem Spalt zwischen dem Frontschieber (17) und dem Bodenabschnitt
(18) zu erfassen.
14. Abzug (10) nach einem der Ansprüche 9 bis 13, ferner umfassend einen zweiten Anwesenheitsdetektor
(49), der in operativer Verbindung mit der Steuereinheit (40) seht und konfiguriert
ist, um das Vorhandensein in einem Raum zu erfassen, in dem sich der Abzug (10) befindet.
15. Abzug (10) nach einem der Ansprüche 9 bis 14, ferner umfassend einen Temperatursensor
(47), der in operativer Verbindung mit der Steuereinheit (40) steht und konfiguriert
ist, um eine Temperatur der Abluft zu messen.
1. Procédé (100) permettant de désactiver une sorbonne (10) comprenant une section avant
ouverte (15) qui peut se fermer au moyen d'un volet frontal (17), une chambre de travail
(13) enfermée par des sections latérales (16), une section inférieure (18), une section
côté arrière (14), et une section supérieure (20) pourvue d'une ouverture d'évacuation
(22), la sorbonne (10) comprenant en outre une unité de mesure d'alimentation électrique
(44) configurée pour mesurer la consommation d'alimentation électrique de la sorbonne
(10) ; le procédé comprenant les étapes consistant à :
- déterminer (102), au moyen de l'unité de mesure d'alimentation électrique (44),
si une consommation d'alimentation électrique de la sorbonne (10) remplit une condition
seuil prédéterminée ; dans l'affirmative :
- la fermeture (201) du volet frontal (17) de la sorbonne (10),
- la commutation (203) d'une alimentation électrique pour la sorbonne (10) sur arrêt
; et
- la commande (204) d'un débit d'air à travers la sorbonne (10) sur un débit minimal.
2. Procédé selon la revendication 1, dans lequel l'unité de mesure d'alimentation électrique
(44) est configurée pour mesurer la consommation d'alimentation électrique d'une ou
plusieurs prises d'alimentation électrique (46) de la sorbonne (10).
3. Procédé selon la revendication 2, dans lequel la condition seuil prédéterminée est
une consommation d'alimentation nulle.
4. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
la mesure d'une teneur en composés organiques volatils (COV) dans le débit d'air à
travers l'ouverture d'évacuation (22) au moyen d'un capteur à composés organiques
volatils (COV) (48), et si la teneur en composés organiques volatils (COV) n'est pas
égale à zéro, l'interruption du procédé de désactivation (100).
5. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
la mesure d'une température d'air du débit d'air à travers l'ouverture d'évacuation
(22) au moyen d'un capteur de température (47), et si la valeur de température n'est
pas égale à une température d'air d'alimentation, l'interruption du procédé de désactivation
(100).
6. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
une détection de présence dans un espace entre le volet frontal (17) et la section
inférieure (18) au moyen d'un premier moyen de détection de présence (50), et si une
présence est détectée, l'interruption du procédé de désactivation (100).
7. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
une détection de présence dans la pièce où ladite sorbonne (10) est localisée au moyen
d'un second moyen de détection de présence (49), et si une présence est détectée,
l'interruption du procédé de désactivation (100).
8. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
un blocage du volet frontal (17) dans la position fermée.
9. Sorbonne (10) comprenant une section avant ouverte (15) qui peut se fermer au moyen
d'un volet frontal (17), et une chambre de travail (13) enfermée par des sections
latérales (16), une section inférieure (18), une section côté arrière (14) et une
section supérieure (20), la section supérieure (20) étant pourvue d'une ouverture
d'évacuation (22), la sorbonne (10) comprenant en outre
une unité de mesure d'alimentation électrique (44) configurée pour mesurer la consommation
d'alimentation électrique de la sorbonne (10) ;
une unité de commande (40) connectée de façon opérationnelle à l'unité de mesure d'alimentation
électrique (44) destinée à recevoir un signal d'entrée indiquant la consommation d'alimentation
électrique ;
dans laquelle l'unité de commande (40) est configurée pour désactiver la sorbonne
(10) dans un état inactif lorsque l'unité de mesure d'alimentation électrique (44)
mesure que la consommation d'alimentation électrique remplit une condition seuil prédéterminée,
et
dans laquelle l'état inactif comprend : le volet frontal (17) est configuré pour être
fermé et bloqué, l'alimentation électrique pour les prises d'alimentation électrique
(46) dans la sorbonne (10) est configurée pour être mise à l'arrêt, et un débit d'air
à travers la sorbonne (10) est configuré pour être commandé à un débit minimal.
10. Sorbonne (10) selon la revendication 9, dans laquelle le débit minimal est d'approximativement
0,1 à 20 l/s, de préférence 5 à 15 l/s, plus préférablement 8 à 12 l/s, et le plus
préférablement 10 Ils.
11. Sorbonne (10) selon l'une quelconque des revendications 9 à 10, dans laquelle l'unité
de commande (40) est configurée pour être en connexion opérationnelle avec une unité
de régulation de débit d'air (30) configurée pour ajuster le débit d'air à travers
la sorbonne (10).
12. Sorbonne (10) selon l'une quelconque des revendications 9 à 11, comprenant en outre
un capteur à composés organiques volatils (COV) (48) en communication opérationnelle
avec l'unité de commande (40) et configuré pour mesurer une teneur en composés organiques
volatils (COV) dans l'air d'évacuation.
13. Sorbonne (10) selon l'une quelconque des revendications 9 à 12, comprenant en outre
un premier détecteur de présence (50) en communication opérationnelle avec l'unité
de commande (40) et configuré pour détecter une présence dans un espace entre le volet
frontal (17) et la section inférieure (18).
14. Sorbonne (10) selon l'une quelconque des revendications 9 à 13, comprenant en outre
un second détecteur de présence (49) en communication opérationnelle avec l'unité
de commande (40) et configuré pour détecter une présence dans une pièce dans laquelle
la sorbonne (10) est localisée.
15. Sorbonne (10) selon l'une quelconque des revendications 9 à 14, comprenant en outre
un capteur de température (47) en communication opérationnelle avec l'unité de commande
(40) et configuré pour mesurer une température de l'air d'évacuation.