(11) EP 3 935 971 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

12.01.2022 Bulletin 2022/02

(51) Int Cl.:

A24F 40/50 (2020.01)

A24F 40/30 (2020.01)

(21) Application number: 21183943.6

(22) Date of filing: 06.07.2021

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

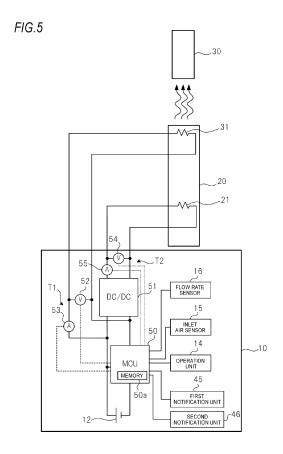
Designated Validation States:

KH MA MD TN

(30) Priority: 08.07.2020 JP 2020118104

(71) Applicant: Japan Tobacco Inc.

Tokyo 105-6927 (JP)


(72) Inventors:

 Nakano, Takuma Tokyo, 130-8603 (JP)

- Kaihatsu, Yutaka Tokyo, 130-8603 (JP)
- Marubashi, Keiji
 Tokyo, 130-8603 (JP)
- Fujinaga, Ikuo Tokyo, 130-8603 (JP)
- Fujita, Hajime Tokyo, 130-8603 (JP)
- (74) Representative: Hoffmann Eitle
 Patent- und Rechtsanwälte PartmbB
 Arabellastraße 30
 81925 München (DE)

(54) CONTROL UNIT OF AEROSOL GENERATION DEVICE

(57)A control unit of an aerosol generation device includes: a flow rate sensor configured to output a flow rate of inhalation by a user; and a processing device configured to acquire an atomization command of an aerosol source by an atomizer. The processing device is configured: to control discharge from a power supply to the atomizer, based on the atomization command; to acquire a flow rate per unit time during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor; to acquire an inhalation time that is a length of the inhalation corresponding to each atomization command; and to acquire at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time.

EP 3 935 971 A2

Description

10

20

30

35

40

50

TECHNICAL FIELD

5 [0001] The present invention relates to a control unit of an aerosol generation device.

BACKGROUND ART

[0002] Patent Literature 1 discloses a non-burning type flavor inhaler including an atomizing unit configured to atomize an aerosol source without burning, a battery configured to accumulate electric power that is supplied to the atomizing unit, and a controller configured to output a predetermined instruction to the battery as an instruction to the battery, the predetermined instruction instructing the battery to make an amount of aerosol atomized by the atomizing unit fall within a desired range, wherein the controller stops supply of electric power from the battery to the atomizing unit when a predetermined time period elapses from start of the supply of electric power to the atomizing unit.

[0003] Patent Literature 2 discloses an inhalation device including an element configured to contribute to generation of aerosol by consuming an accumulated capacity, a sensor configured to detect a predetermined variable, and a notification unit configured to issue a notification to an inhaling person of the aerosol, wherein the notification unit is caused to function when the capacity is smaller than a threshold value and the variable satisfies a predetermined condition for requesting generation of the aerosol.

[0004] Patent Literature 3 discloses an electronic vapor supply device including a vaporizer configured to vaporize liquid for inhalation by a user of the device, a power supply configured to supply electric power to the vaporizer, a sensor configured to measure an airflow rate in the device as a result of inhalation by the user, and a control unit configured to repeatedly control the electric power that is supplied to the vaporizer during inhalation by the user, wherein upon each iteration during the inhalation, the electronic vapor supply device measures the current airflow rate, updates a cumulative air flow rate by summing measured values of the current airflow rate by the sensor so far during the inhalation, and controls the electric power that is supplied to the vaporizer, based on the repeatedly updated cumulative air flow rate.

[Patent Literature1] WO2016/076147 [Patent Literature2] Japanese Patent No. 6,462,965 [Patent Literature3] Japanese Patent No. 6,295,347

[0005] In the aerosol generation device configured to generate aerosol and allow a user to inhale the same, it is preferable to accurately determine a consumed state of the flavor source or the aerosol source so as to stably provide the user with aerosol having flavor added thereto.

SUMMARY OF INVENTION

[0006] An object of the present invention is to correctly acquire a remaining amount or a consumed amount of a flavor source or an aerosol source of an aerosol generation device.

[0007] According to an aspect of the present invention, there is provided a control unit of an aerosol generation device including: a flow rate sensor configured to output a flow rate of inhalation by a user; and a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured to control discharge from a power supply to the atomizer based on the atomization command, to acquire a flow rate per unit time during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor, to acquire an inhalation time, which is a length of the inhalation corresponding to each atomization command, and to acquire at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time. [0008] According to another aspect of the present invention, there is provided a control unit of an aerosol generation device including: a flow rate sensor configured to output a flow rate of inhalation by a user; and a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured to control discharge from a power supply to the atomizer based on the atomization command, to acquire a flow rate per unit time during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor, to acquire an inhalation time, which is a length of the inhalation corresponding to each atomization command, and to acquire at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the flow rate per unit time and the inhalation time.

[0009] According to still another aspect of the present invention, there is provided a control unit of an aerosol generation device including a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured to control discharge from a power supply to the atomizer based on the

atomization command, to acquire, for each atomization command, a remaining amount that is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, and to acquire information about at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the remaining amount.

[0010] According to still another aspect of the present invention, there is provided a control unit of an aerosol generation device including a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured to control discharge from a power supply to the atomizer based on the atomization command, to acquire, for each atomization command, a remaining amount that is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, and to acquire information about at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the remaining amount.

[0011] According to the present invention, it is possible to correctly acquire the remaining amount or the consumed amount of the flavor source or the aerosol source of the aerosol generation device.

15 BRIEF DESCRIPTION OF DRAWINGS

[0012]

10

20

25

30

35

40

- FIG. 1 is a perspective view schematically showing a configuration of an aerosol generation device.
- FIG. 2 is another perspective view of the aerosol generation device shown in FIG. 1.
 - FIG. 3 is a sectional view of the aerosol generation device shown in FIG. 1.
 - FIG. 4 is a perspective view of a power supply unit of the aerosol generation device shown in FIG. 1.
 - FIG. 5 is a schematic view showing a hardware configuration of the aerosol generation device shown in FIG. 1.
 - FIG. 6 is a schematic view showing a modified embodiment of the hardware configuration of the aerosol generation device shown in FIG. 1.
 - FIG. 7 is a flowchart for showing operations of the aerosol generation device shown in FIG. 1.
 - FIG. 8 is a flowchart for showing operations of the aerosol generation device shown in FIG. 1.
 - FIG. 9 is a schematic view showing an example of an electric power threshold value P_{max} and an amount of increase ΔP .
 - FIG. 10 is a schematic view showing atomizing electric power that is supplied to a first load 21 in step S17 of FIG. 8.
 - FIG. 11 is a schematic view showing atomizing electric power that is supplied to the first load 21 in step S19 of FIG. 8.
 - FIG. 12 is a schematic view showing an example of a table showing a relationship between a remaining amount of a flavor component and a remaining amount in a reservoir.
 - FIG. 13 shows a result of verification on a relationship between a cumulative discharge time and a cumulative value of consumed amounts of aerosol.
 - FIG. 14 is a schematic view showing a method of correcting a time for which the atomizing electric power is supplied to the first load.
 - FIG. 15 shows a result of verification on a relationship between the cumulative discharge time after correction and the cumulative value of consumed amounts of aerosol.
 - FIG. 16 is a flowchart for showing operations of the aerosol generation device 1 of a second modified embodiment.
 - FIG. 17 is a flowchart for showing operations of the aerosol generation device 1 of the second modified embodiment.
 - FIG. 18 is a flowchart for showing operations of the aerosol generation device 1 of the second modified embodiment.
 - FIG. 19 is a schematic view for showing a modified embodiment of a method of determining replacement notification of a second cartridge 30.
- FIG. 20 is a schematic view for showing a modified embodiment of a method of determining replacement notification of a first cartridge 20.

DESCRIPTION OF EMBODIMENTS

[0013] Hereinafter, an aerosol generation device 1 that is one embodiment of the aerosol generation device of the present invention will be described with reference to FIGS. 1 to 6.

(Aerosol Generation Device)

⁵⁵ **[0014]** The aerosol generation device 1 is a device configured to generate aerosol having a flavor component added thereto without burning, and to cause the aerosol to be inhaled, and has a rod shape extending in a predetermined direction (hereinafter, referred to as the longitudinal direction X), as shown in FIGS. 1 and 2. The aerosol generation device 1 includes a power supply unit 10, a first cartridge 20, and a second cartridge 30 provided in corresponding order

in the longitudinal direction X. The first cartridge 20 can be attached and detached (in other words, replaced) with respect to the power supply unit 10. The second cartridge 30 can be attached and detached (in other words, replaced) with respect to the first cartridge 20. As shown in FIG. 3, the first cartridge 20 is provided with a first load 21 and a second load 31. An overall shape of the aerosol generation device 1 is not limited to such a shape that the power supply unit 10, the first cartridge 20 and the second cartridge 30 are aligned in line, as shown in FIG. 1. For example, the aerosol generation device 1 may have any shape such as a substantial box shape as long as the first cartridge 20 and the second cartridge 30 can be replaced with respect to the power supply unit 10. Note that, the second cartridge 30 may also be attached and detached (in other words, replaced) with respect to the power supply unit 10.

(Power Supply Unit)

30

35

40

45

50

[0015] As shown in FIGS. 3 to 5, the power supply unit 10 is configured to accommodate, in a cylindrical power supply unit case 11, a power supply 12, a charging IC 55A, an MCU (Micro Controller Unit) 50, a DC/DC converter 51, an inlet air sensor 15, a temperature detection device T1 including a voltage sensor 52 and a current sensor 53, a temperature detection device T2 including a voltage sensor 54 and a current sensor 55, a first notification unit 45 and a second notification unit 46.

[0016] The power supply 12 is a chargeable secondary battery, an electric double layer capacitor or the like, and is preferably a lithium ion secondary battery. An electrolyte of the power supply 12 may be one or a combination of a gellike electrolyte, an electrolytic solution, a solid electrolyte and an ionic liquid.

[0017] As shown in FIG. 5, the MCU 50 is connected to the diverse sensor devices such as the inlet air sensor 15, the voltage sensor 52, the current sensor 53, the voltage sensor 54 and the current sensor 55, the DC/DC converter 51, the operation unit 14, the first notification unit 45, and the second notification unit 46, and is configured to perform a variety of controls of the aerosol generation device 1.

[0018] Specifically, the MCU 50 is mainly constituted by a processor, and further includes a memory 50a constituted by a storage medium such as a RAM (Random Access Memory) necessary for operations of the processor and a ROM (Read Only Memory) in which a variety of information is stored. As used herein, the processor is specifically an electric circuit including circuit devices such as semiconductor devices.

[0019] As shown in FIG. 4, a top portion 11a on one end side (first cartridge 20-side) of the power supply unit case 11 in the longitudinal direction X is provided with discharge terminals 41. The discharge terminals 41 are provided to protrude from an upper surface of the top portion 11a toward the first cartridge 20, and are each configured to be electrically connectable to each of the first load 21 and the second load 31 of the first cartridge 20.

[0020] The upper surface of the top portion 11a is also provided with an air supply part 42 configured to supply air to the first load 21 of the first cartridge 20, in the vicinity of the discharge terminals 41.

[0021] A bottom portion 11b on the other end-side (an opposite side to the first cartridge 20) of the power supply unit case 11 in the longitudinal direction X is provided with a charging terminal 43 that can be electrically connected to an external power supply(not shown). The charging terminal 43 is provided on a side surface of the bottom portion 11b, and is, for example, connected to a USB (Universal Serial Bus) terminal, a micro USB terminal or the like.

[0022] Note that, the charging terminal 43 may also be a power receiving unit that can receive electric power transmitted from the external power supply in a wireless manner. In this case, the charging terminal 43 (power receiving unit) may be constituted by a power receiving coil. The method of wireless power transfer may be an electromagnetic induction method, a magnetic resonance method or a combination of the electromagnetic induction method and the magnetic resonance method. The charging terminal 43 may also be a power receiving unit that can receive electric power transmitted from the external power supply in a contactless manner. As another example, the charging terminal 43 can be connected to a USB terminal or a micro USB terminal and may also have the power receiving unit.

[0023] The power supply unit case 11 is provided with an operation unit 14 that can be operated by a user and is provided on a side surface of the top portion 11a so as to face toward an opposite side to the charging terminal 43. More specifically, the operation unit 14 and the charging terminal 43 are point-symmetrical with respect to an intersection of a straight line connecting the operation unit 14 and the charging terminal 43 and a center line of the power supply unit 10 in the longitudinal direction X. The operation unit 14 is constituted by a button-type switch, a touch panel or the like. When a predetermined activation operation is performed by the operation unit 14 in a state where the power supply unit 10 is off, the operation unit 14 outputs an activation command of the power supply unit 10 to the MCU 50. When the MCU 50 acquires the activation command, the MCU starts the power supply unit 10.

[0024] As shown in FIG. 3, the inlet air sensor 15 configured to detect a puff (inhalation) operation is provided in the vicinity of the operation unit 14. The power supply unit case 11 is provided with an air intake port(not shown) to take external air into an inside. The air intake port may be provided near the operation unit 14 or the charging terminal 43.

[0025] The inlet air sensor 15 is configured to output a value in change of pressure (internal pressure) in the power supply unit 10 generated as a result of user's inhalation through an inhalation port 32 (which will be described later). The inlet air sensor 15 is, for example, a pressure sensor configured to output an output value (for example, a voltage

value or a current value) corresponding to the internal pressure that changes according to a flow rate (i.e., a user's puff operation) of air inhaled from the air intake port toward the inhalation port 32. The inlet air sensor 15 may be configured to output an analog value or a digital value converted from the analog value.

[0026] The inlet air sensor 15 may also have a built-in temperature sensor configured to detect a temperature (external air temperature) of an environment in which the power supply unit 10 is put, so as to compensate for the detected pressure. The inlet air sensor 15 may also be constituted by a capacitor microphone or the like, other than the pressure sensor.

[0027] When the puff operation is performed and the output value of the inlet air sensor 15 is thus equal to or greater than an output threshold value, the MCU 50 determines that a request for aerosol generation (an atomization command of the aerosol source 22, which will be described later) is made, and thereafter, when the output value of the inlet air sensor 15 falls below the output threshold value, the MCU 50 determines that the request for aerosol generation is over. Note that, in the aerosol generation device 1, in order to suppress overheating of the first load 21, for example, when a time period for which the request for aerosol generation is made (specifically, an inhalation time period for which the inhalation operation by the user continues) reaches an upper limit time t_{upper} (for example, 2.4 seconds), the discharge for heating to the first load 21 is stopped. In the below, a length of the inhalation time period is referred to as inhalation time. [0028] Note that, the request for aerosol generation may also be detected based on the operation on the operation unit 14, instead of the inlet air sensor 15. For example, when the user performs a predetermined operation on the operation unit 14 so as to start inhalation of aerosol, the operation unit 14 may output a signal indicative of the request for aerosol generation to the MCU 50.

[0029] A flow rate sensor (not shown) (a flow rate sensor 16, which will be described later) configured to detect a flow rate of fluid that is inhaled from the air intake port toward the inhalation port 32 is provided near the inlet air sensor 15. The information of the flow rate output from the flow rate sensor 16 is input to the MCU 50. As the flow rate sensor 16, either a sensor configured to output information of a flow rate per unit time (for example, 1 second) or a sensor configured to output information of a total amount of a flow rate during a time period is used. In the below, it is described that the flow rate sensor 16 outputs information of a total amount of a flow rate (hereinbelow, referred to as a flow rate per puff) during an inhalation time period for which the request for aerosol generation is performed. However, the present invention is not limited thereto.

[0030] The charging IC 55A is disposed near the charging terminal 43, and is configured to control charging of electric power input from the charging terminal 43 to the power supply 12. Note that, the charging IC 55A may also be disposed near the MCU 50.

(First Cartridge)

30

35

40

45

50

[0031] As shown in FIG. 3, the first cartridge 20 has, in a cylindrical cartridge case 27, a reservoir 23 that constitutes a storage part in which the aerosol source 22 is stored, a first load 21 that constitutes an atomizer configured to generate aerosol by atomizing the aerosol source 22, a wick 24 configured to suck the aerosol source 22 from the reservoir 23 to a position of the first load 21, an aerosol flow path 25 that constitutes a cooling passage for making particle sizes of aerosol generated by atomizing the aerosol source 22 to sizes suitable for inhalation, an end cap 26 configured to accommodate a part of the second cartridge 30, and a second load 31 provided to the end cap 26 and configured to heat the second cartridge 30.

[0032] The reservoir 23 is partitioned to surround the aerosol flow path 25, and is configured to store the aerosol source 22. In the reservoir 23, a porous body such as resin web, cotton or the like may be accommodated, and the aerosol source 22 may be impregnated in the porous body. In the reservoir 23, the porous body such as resin web, cotton or the like may not be accommodated, and only the aerosol source 22 may be stored. The aerosol source 22 includes a liquid such as glycerin, propylene glycol, water or the like.

[0033] The wick 24 is a liquid retaining member for sucking the aerosol source 22 from the reservoir 23 to a position of the first load 21 by using a capillary phenomenon. The wick 24 constitutes a retaining part configured to retain the aerosol source 22 supplied from the reservoir 23 in a position in which the first load 21 can atomize the aerosol source. The wick 24 is constituted, for example, by glass fiber, porous ceramic or the like.

[0034] The aerosol source 22 included in the first cartridge 20 is retained by each in the reservoir 23 and the wick 24. However, in the below, a remaining amount $W_{reservoir}$ in the reservoir, which is a remaining amount of the aerosol source 22 stored in the reservoir 23, is treated as a remaining amount of the aerosol source 22 included in the first cartridge 20. It is assumed that the remaining amount $W_{reservoir}$ in the reservoir is 100% when the first cartridge 20 is in a brandnew state and gradually decreases as aerosol is generated (aerosol source 22 is atomized). The remaining amount $W_{reservoir}$ in the reservoir is calculated by the MCU 50 and is stored in the memory 50a of the MCU 50. In the below, the remaining amount $W_{reservoir}$ in the reservoir is simply described as the remaining amount in the reservoir, in some cases. [0035] The first load 21 is configured to heat the aerosol source 22 without burning by electric power supplied from the power supply 12 via the discharge terminals 41, thereby atomizing the aerosol source 22. In principle, the more the

electric power supplied from the first load 21 to the power supply 12 is, the larger the amount of the aerosol source to be atomized is. The first load 21 is constituted by a heating wire (coil) wound at a predetermined pitch.

[0036] Note that, the first load 21 may be an element that can generate aerosol by heating and atomizing the aerosol source 22. The first load 21 is, for example, a heat generating element. Examples of the heat generating element may include a heat generating resistor, a ceramic heater, an induction heating type heater, and the like.

[0037] As the first load 21, a load whose temperature and electric resistance value have a correlation is used. As the first load 21, for example, a load having a PTC (Positive Temperature Coefficient) characteristic in which the electric resistance value increases as the temperature rises is used.

[0038] The aerosol flow path 25 is provided on a center line L of the power supply unit 10, on a downstream side of the first load 21. The end cap 26 has a cartridge accommodating part 26a configured to accommodate a part of the second cartridge 30 and a communication path 26b configured to communicate the aerosol flow path 25 and the cartridge accommodating part 26a each other.

[0039] The second load 31 is embedded in the cartridge accommodating part 26a. The second load 31 is configured to heat the second cartridge 30 (more specifically, the flavor source 33 included in the second cartridge 30) accommodated in the cartridge accommodating part 26a by electric power supplied from the power supply 12 via the discharge terminals 41. The second load 31 is constituted by a heating wire (coil) wound at a predetermined pitch, for example.

[0040] Note that, the second load 31 may be an element that can heat the second cartridge 30. The second load 31 is, for example, a heat generating element. Examples of the heat generating element may include a heat generating resistor, a ceramic heater, an induction heating type heater, and the like.

[0041] As the second load 31, a load whose temperature and electric resistance value have a correlation is used. As the second load 31, for example, a load having a PTC characteristic is used.

(Second Cartridge)

10

35

50

55

25 [0042] The second cartridge 30 is configured to store the flavor source 33. The second cartridge 30 is heated by the second load 31, so that the flavor source 33 is heated. The second cartridge 30 is detachably accommodated in the cartridge accommodating part 26a provided to the end cap 26 of the first cartridge 20. An end portion of the second cartridge 30 on an opposite side to the first cartridge 20-side is configured as the inhalation port 32 for a user. Note that, the inhalation port 32 is not limited to the configuration where it is integrated with the second cartridge 30, and may be detachably attached to the second cartridge 30. In this way, the inhalation port 32 is configured separately from the power supply unit 10 and the first cartridge 20, so that the inhalation port 32 can be hygienically kept.

[0043] The second cartridge 30 is configured to cause aerosol, which are generated as the aerosol source 22 is atomized by the first load 21, to pass through the flavor source 33, thereby adding a flavor component to the aerosol. As a raw material piece that forms the flavor source 33, chopped tobacco or a molded product obtained by molding a tobacco raw material into granules can be used. The flavor source 33 may also be formed by plants (for example, mint, Chinese herbs, herbs and the like) other than tobacco. A fragrance such as menthol may be added to the flavor source 33. **[0044]** In the aerosol generation device 1, it is possible to generate aerosol having a flavor component added thereto by the aerosol source 22 and the flavor source 33. Specifically, the aerosol source 22 and the flavor source 33 constitute an aerosol generating source that generates aerosol,

[0045] The aerosol generating source of the aerosol generation device 1 is a part that is replaced and used by a user. This part is provided to the user, as a set of one first cartridge 20 and one or more (for example, five) second cartridges 30, for example. Note that, the first cartridge 20 and the second cartridge 30 may be integrated to constitute one cartridge. [0046] In the aerosol generation device 1 configured as described above, as shown with an arrow B in FIG. 3, the air introduced from an intake port(not shown) provided to the power supply unit case 11 passes from the air supply part 42 to the vicinity of the first load 21 of the first cartridge 20. The first load 21 is configured to atomize the aerosol source 22 introduced from the reservoir 23 by the wick 24. Aerosol generated as a result of the atomization flows in the aerosol flow path 25 together with the air introduced from the intake port, and are supplied to the second cartridge 30 via the communication path 26b. The aerosol supplied to the second cartridge 30 is added with the flavor component as the aerosol pass through the flavor source 33, and are then supplied to the inhalation port 32.

[0047] The aerosol generation device 1 is also provided with the first notification unit 45 and the second notification unit 46 for notifying a variety of information to the user (refer to FIG. 5). The first notification unit 45 is to give a notification that acts on a user's tactile sense, and is constituted by a vibration element such as a vibrator. The second notification unit 46 is to give a notification that acts on a user's visual sense, and is constituted by a light emitting element such as an LED (Light Emitting Diode). As the notification unit for notifying a variety of information, a sound output element may be further provided so as to give a notification that acts on a user's auditory sense. The first notification unit 45 and the second notification unit 46 may be provided to any of the power supply unit 10, the first cartridge 20 and the second cartridge 30 but is preferably provided to the power supply unit 10. For example, the periphery of the operation unit 14 is transparent, and is configured to emit light by a light emitting element such as an LED.

(Details of Power Supply Unit)

10

15

20

30

35

45

50

[0048] As shown in FIG. 5, the DC/DC converter 51 is connected between the first load 21 and the power supply 12 in a state where the first cartridge 20 is mounted to the power supply unit 10. The MCU 50 is connected between the DC/DC converter 51 and the power supply 12. The second load 31 is connected between the MCU 50 and the DC/DC converter 51 in the state where the first cartridge 20 is mounted to the power supply unit 10. In this way, in the power supply unit 10, in the state where the first cartridge 20 is mounted, a series circuit of the DC/DC converter 51 and the first load 21 and the second load 31 are connected in parallel to the power supply 12.

[0049] The DC/DC converter 51 is a booster circuit capable of boosting an input voltage, and is configured to be able to supply a voltage obtained by boosting an input voltage or the input voltage to the first load 21. According to the DC/DC converter 51, since it is possible to adjust electric power that is supplied to the first load 21, it is possible to control an amount of the aerosol source 22 that is atomized by the first load 21. As the DC/DC converter 51, for example, a switching regulator configured to convert an input voltage into a desired output voltage by controlling on/off time of a switching element while monitoring an output voltage may be used. In a case where the switching regulator is used as the DC/DC converter 51, it is possible to output an input voltage, as it is, without boosting the input voltage by controlling the switching element.

[0050] The processor of the MCU 50 is configured to be able to acquire temperatures of the flavor source 33 and the second load 31 so as to control the discharge to the second load 31. Further, the processor of the MCU 50 is preferably configured to be able to acquire a temperature of the first load 21. The temperature of the first load 21 can be used to suppress overheating of the first load 21 or the aerosol source 22 and to highly control an amount of the aerosol source 22 that is atomized by the first load 21.

[0051] The voltage sensor 52 is configured to measure and output a voltage value that is applied to the second load 31. The current sensor 53 is configured to measure and output a current value that flows through the second load 31. The output of the voltage sensor 52 and the output of the current sensor 53 are each input to the MCU 50. The processor of the MCU 50 is configured to acquire a resistance value of the second load 31, based on the output of the voltage sensor 52 and the output of the current sensor 53, and to acquire a temperature of the second load 31 corresponding to the resistance value. The temperature of the second load 31 is not strictly matched with the temperature of the flavor source 33 that is heated by the second load 31 but can be regarded as being substantially the same as the temperature of the flavor source 33.

[0052] Note that, in a configuration where constant current is caused to flow through the second load 31 when acquiring the resistance value of the second load 31, the current sensor 53 is not required in the temperature detection device T1. Likewise, in a configuration where a constant voltage is applied to the second load 31 when acquiring the resistance value of the second load 31, the voltage sensor 52 is not required in the temperature detection device T1.

[0053] Further, as shown in FIG. 6, instead of the temperature detection device T1, the first cartridge 20 may be provided with a temperature detection device T3 for detecting a temperature of the second cartridge 30 or the second load 31. The temperature detection device T3 is constituted, for example, by a thermistor disposed near the second cartridge 30 or the second load 31. In the configuration of FIG. 6, the processor of the MCU 50 is configured to acquire the temperature of the second load 31 or the temperature of the second cartridge 30, in other words, the temperature of the flavor source 33, based on an output of the temperature detection device T3.

[0054] As shown in FIG. 6, the temperature of the flavor source 33 is acquired using the temperature detection device T3, so that it is possible to acquire the temperature of the flavor source 33 more precisely, as compared to the configuration where the temperature of the flavor source 33 is acquired using the temperature detection device T1 of FIG. 5. Note that, the temperature detection device T3 may also be mounted to the second cartridge 30. According to the configuration of FIG. 6 where the temperature detection device T3 is mounted to the first cartridge 20, it is possible to reduce the manufacturing cost of the second cartridge 30 that is most frequently replaced in the aerosol generation device 1.

[0055] Note that, as shown in FIG. 5, when acquiring the temperature of the flavor source 33 by using the temperature detection device T1, the temperature detection device T1 may be provided to the power supply unit 10 that is least frequently replaced in the aerosol generation device 1. Therefore, it is possible to reduce the manufacturing costs of the first cartridge 20 and the second cartridge 30.

[0056] The voltage sensor 54 is configured to measure and output a voltage value that is applied to the first load 21. The current sensor 55 is configured to measure and output a current value that flows through the first load 21. The output of the voltage sensor 54 and the output of the current sensor 55 are each input to the MCU 50. The processor of the MCU 50 is configured to acquire a resistance value of the first load 21, based on the output of the voltage sensor 54 and the output of the current sensor 55, and to acquire a temperature of the first load 21 corresponding to the resistance value. Note that, in a configuration where constant current is caused to flow through the first load 21 when acquiring the resistance value of the first load 21, the current sensor 55 is not required in the temperature detection device T2. Likewise, in a configuration where a constant voltage is applied to the first load 21 when acquiring the resistance value of the first load 21, the voltage sensor 54 is not required in the temperature detection device T2.

(MCU)

30

35

40

50

55

[0057] Subsequently, functions of the MCU 50 are described. The MCU 50 has a temperature detection unit, an electric power control unit and a notification control unit, as functional blocks that are implemented as the processor executes programs stored in the ROM.

[0058] The temperature detection unit is configured to acquire a temperature of the flavor source 33, based on an output of the temperature detection device T1 (or the temperature detection device T3). The temperature detection unit is also configured to acquire a temperature of the first load 21, based on an output of the temperature detection device T2. [0059] The notification control unit is configured to control the first notification unit 45 and the second notification unit 46 to notify a variety of information. For example, the notification control unit is configured to control at least one of the first notification unit 45 and the second notification unit 46 to issue a notification for urging replacement of the second cartridge 30, according to detection of a replacement timing of the second cartridge 30. The notification control unit may also be configured to issue a notification for urging replacement of the first cartridge 20, a notification for urging replacement of the power supply 12, and the like, without being limited to the notification for urging replacement of the second cartridge 30.

[0060] The electric power control unit is configured to control discharge (discharge necessary for heating of a load) from the power supply 12 to at least the first load 21 of the first load 21 and the second load 31, according to a signal indicative of a request for aerosol generation output from the inlet air sensor 15. Specifically, the electric power control unit is configured to perform at least first discharge of first discharge from the power supply 12 to the first load 21 for atomizing the aerosol source 22 and second discharge from the power supply 12 to the second load 31 for heating the flavor source 33.

[0061] In this way, in the aerosol generation device 1, the flavor source 33 can be heated by the discharge to the second load 31. It is experimentally known that it is effective to increase an amount of aerosol generated from the aerosol source 22 and to raise a temperature of the flavor source 33 so as to increase an amount of the flavor component to be added to aerosol.

[0062] Therefore, the electric power control unit is configured to control the discharge for heating from the power supply 12 to the first load 21 and the second load 31 so that a unit amount of flavor (an amount W_{flavor} of the flavor component, which will be described later), which is an amount of the flavor component to be added to aerosol generated in response to each request for aerosol generation, is to converge to a target amount, based on information about the temperature of the flavor source 33. The target amount is a value that is determined as appropriate. However, for example, a target range of the unit amount of flavor may be determined as appropriate, and an intermediate value of the target range may be determined as the target amount. In this way, the unit amount of flavor (amount W_{flavor} of the flavor component) can be converged to the target amount, so that the unit amount of flavor and the amount W_{flavor} of the flavor component, and the target amount, a weight may be used.

[0063] Further, the electric power control unit is configured to control the discharge for heating from the power supply 12 to the second load 31 so that the temperature of the flavor source 33 is to converge to a target temperature (a target temperature T_{cap_target} , which will be described later), based on an output of the temperature detection device T1 (or the temperature detection device T3) configured to output information about the temperature of the flavor source 33.

(Diverse Parameters That Are Used For Generation of Aerosol)

[0064] Subsequently, a variety of parameters and the like that are used for discharge control for generation of aerosol are described before describing specific operations of the MCU 50.

[0065] A weight[mg] of aerosol that are generated in the first cartridge 20 by one inhalation operation by a user is denoted as the aerosol weight $W_{aerosol}$. The electric power that should be supplied to the first load 21 so as to generate the aerosol is denoted as the atomizing electric power P_{liquid} . Assuming that the aerosol source 22 is sufficiently present, the aerosol weight $W_{aerosol}$ is proportional to the atomizing electric power P_{liquid} , and a supply time t_{sense} of the atomizing electric power P_{liquid} to the first load 21 (in other words, an energization time or an discharge time to the first load 21). For this reason, the aerosol weight $W_{aerosol}$ can be modeled by a following equation (1). In the equation (1), α is a coefficient that is experimentally obtained. Note that, the upper limit value of the supply time t_{sense} is the above-described upper limit time t_{upper} . The equation (1) may be replaced with an equation (1A). In the equation (1A), an intercept b having a positive value is introduced into the equation (1). The intercept is a term that can be arbitrarily introduced, considering a fact that a part of the atomizing electric power P_{liquid} is used for temperature rising of the aerosol source 22 that occurs before atomization of the aerosol source 22. The intercept b can also be experimentally obtained. [formula 1]

$$W_{aerosol} \equiv \alpha \times P_{liquid} \times t_{sense} \cdots (1)$$

$$W_{aerosol} \equiv \alpha \times P_{liquid} \times t_{sense} - b \cdots (1A)$$

[0066] A weight[mg] of the flavor component included in the flavor source 33 in a state where inhalation is performed n_{puff} times (n_{puff} : natural number greater than 0) is denoted as the remaining amount $W_{capsule}(n_{puff})$ of the flavor component. Note that, the remaining amount ($W_{capsule}(n_{puff}=0)$) of the flavor component included in the flavor source 33 of the second cartridge 30 in a brand-new state is denoted as $W_{initial}$. The information about the temperature of the flavor source 33 is denoted as a capsule temperature parameter $T_{capsule}$. A weight[mg] of the flavor component that is added to aerosol passing through the flavor source 33 by one inhalation operation by a user is denoted as the amount W_{flavor} of the flavor component. The information about the temperature of the flavor source 33 indicates, for example, a temperature of the flavor source 33 or the second load 31 that is acquired based on the output of the temperature detection device T1 (or the temperature detection device T3). In the below, the remaining amount $W_{capsule}(n_{puff})$ of the flavor component may be simply denoted as the remaining amount of the flavor component, in some cases. In addition, the remaining amount $W_{capsule}(n_{puff})$ of the flavor component may also be referred to as the remaining amount of the flavor source 33.

[0067] It is experimentally known that the amount W_{flavor} of the flavor component depends on the remaining amount $W_{capsule}(n_{puff})$ of the flavor component, the capsule temperature parameter $T_{capsule}$ and the aerosol weight $W_{aerosol}$. Therefore, the amount W_{flavor} of the flavor component can be modeled by a following equation (2). [formula 2]

$$W_{flavor} = \beta \times \{W_{capsule}(n_{puff}) \times T_{capsule}\} \times \gamma \times W_{aerosol} \cdots (2)$$

[0068] The remaining amount $W_{capsule}(n_{puff})$ of the flavor component is reduced by the amount W_{flavor} of the flavor component each time inhalation is performed. For this reason, the remaining amount $W_{capsule}(n_{puff})$ of the flavor component when n_{puff} is set to 1 or greater, specifically, the remaining amount of the flavor component after inhalation is performed one or more times can be modeled by a following equation (3). [formula 3]

$$W_{capsule}(n_{puff}) = W_{initial} - \delta \cdot \sum_{i=1}^{n_{puff}} W_{flavor}(i) \dots (3)$$

[0069] In the equation (2), β is a coefficient indicating a ratio of how much of the flavor component included in the flavor source 33 is added to aerosol in one inhalation, and is experimentally obtained. γ in the equation (2) and δ in the equation (3) are coefficients that are each experimentally obtained. During a time period for which one inhalation is performed, the capsule temperature parameter T_{capsule} and the remaining amount $W_{\text{capsule}}(n_{\text{puff}})$ of the flavor component may each vary. However, in this model, γ and δ are introduced so as to treat the corresponding parameters as constant values.

(Operations of Aerosol Generation Device)

5

10

25

30

35

40

45

50

55

[0070] FIGS. 7 and 8 are flowcharts for describing operations of the aerosol generation device 1 shown in FIG. 1. When the aerosol generation device 1 is activated (power supply ON) by an operation on the operation unit 14 or the like (step S0: YES), the MCU 50 determines whether aerosol have been generated (whether inhalation by the user has been performed even once) after the power supply ON or replacement of the second cartridge 30 (step S1).

[0071] For example, the MCU 50 has a built-in puff-number counter configured to count up n_{puff} from an initial value (for example, 0) each time inhalation (request for aerosol generation) is performed. A count value of the puff-number counter is stored in the memory 50a. The MCU 50 refers to the count value to determine whether it is a state after inhalation has been performed even once.

[0072] When it is first inhalation after the power supply ON or when it is a timing before first inhalation after the second cartridge 30 is replaced (step S1: NO), the heating of the flavor source 33 is not performed yet or is not performed for a while, so that the temperature of the flavor source 33 is highly likely to depend on external environments. Therefore, in this case, the MCU 50 acquires, as the capsule temperature parameter $T_{capsule}$, the temperature of the flavor source 33 acquired based on the output of the temperature detection device T1 (or the temperature detection device T3), sets the acquired temperature of the flavor source 33 as the target temperature T_{cap} target of the flavor source 33, and stores

the same in the memory 50a (step S2).

10

30

35

40

50

55

[0073] Note that, in the state where the determination in step S1 is NO, there is a high possibility that the temperature of the flavor source 33 is close to the outside air temperature or the temperature of the power supply unit 10. For this reason, in step S2, as a modified embodiment, the outside air temperature or the temperature of the power supply unit 10 may be acquired as the capsule temperature parameter T_{capsule}, and may be set as the target temperature T_{cap_target}. [0074] The outside air temperature is preferably acquired from a temperature sensor embedded in the inlet air sensor 15, for example. The temperature of the power supply unit 10 is preferably acquired from a temperature sensor embedded in the MCU 50 so as to manage an inside temperature of the MCU 50, for example. In this case, both the temperature sensor embedded in the inlet air sensor 15 and the temperature sensor embedded in the MCU 50 function as elements configured to output the information about the temperature of the flavor source 33.

[0075] As described above, in the aerosol generation device 1, the discharge from the power supply 12 to the second load 31 is controlled so that the temperature of the flavor source 33 is to converge to the target temperature T_{cap_target} . Therefore, after inhalation is performed even once after the power supply ON or the replacement of the second cartridge 30, there is a high possibility that the temperature of the flavor source 33 is close to the target temperature T_{cap_target} . Therefore, in this case (step S1: YES), the MCU 50 acquires the target temperature T_{cap_target} used for previous generation of aerosol and stored in the memory 50a, as the capsule temperature parameter T_{cap_target} , and sets the same as the target temperature T_{cap_target} , as it is (step S3). In this case, the memory 50a functions as a device configured to output the information about the temperature of the flavor source 33.

[0076] Note that, in step S3, the MCU 50 may acquire, as the capsule temperature parameter $T_{capsule}$, the temperature of the flavor source 33 acquired based on the output of the temperature detection device T1 (or the temperature detection device T3), and set the acquired temperature of the flavor source 33 as the target temperature T_{cap_target} of the flavor source 33. In this way, the capsule temperature parameter $T_{capsule}$ can be acquired more accurately.

[0077] After step S2 or step S3, the MCU 50 determines the aerosol weight $W_{aerosol}$ necessary to achieve the target amount W_{flavor} of the flavor component by an equation (4), based on the set target temperature T_{cap_target} , and the remaining amount $W_{capsule}(n_{puff})$ of the flavor component of the flavor source 33 at the present moment (step S4). The equation (4) is a modification of the equation (2), in which $T_{capsule}$ is changed to T_{cap_target} . [formula 4]

$$W_{aerosol} = \frac{W_{flavor}}{\beta \times W_{capsule}(n_{puff}) \times T_{cap_target} \times \gamma} \cdots (4)$$

[0078] Then, the MCU 50 determines the atomizing electric power P_{liquid} necessary to realize the aerosol weight $W_{aerosol}$ determined in step S4 by the equation (1) where t_{sense} is set as the upper limit time t_{upper} (step S5).

[0079] Note that, a table where a combination of the target temperature T_{cap_target} and the remaining amount $W_{capsule}(n_{puff})$ of the flavor component and the atomizing electric power P_{liquid} are associated with each other may be stored in the memory 50a of the MCU 50, and the MCU 50 may determine the atomizing electric power P_{liquid} by using the table. Thereby, the atomizing electric power P_{liquid} can be determined at high speed and low power consumption.

[0080] In the aerosol generation device 1, as described later, when the temperature of the flavor source 33 does not reach the target temperature at the time of detection of the request for aerosol generation, the deficiency in the amount W_{flavor} of the flavor component is supplemented by an increase in the aerosol weight $W_{aerosol}$ (an increase in the atomizing electric power). In order to secure the increase in the atomizing electric power, it is necessary to make the atomizing electric power determined in step S5 lower than an upper limit value P_{upper} of electric power that can be supplied to the first load 21 determined by the hardware configuration.

[0081] Specifically, after step S5, the MCU 50 sets an electric power threshold value P_{max} lower than the upper limit value P_{upper} (step S6a). When the atomizing electric power P_{liquid} determined in step S5 exceeds the electric power threshold value P_{max} (step S6: NO), the MCU 50 increases the target temperature T_{cap_target} of the flavor source 33 (step S7), and returns the processing to step S4. As can be seen from the equation (4), the aerosol weight $W_{aerosol}$ necessary to achieve the target amount W_{flavor} of the flavor component can be reduced by increasing the target temperature T_{cap_target} . As a result, the atomizing electric power P_{liquid} that is determined in step S5 can be reduced. The MCU 50 can set the determination in step S6, which was originally determined NO, to YES and shift the processing to step S8 by repeating steps S4 to S7.

[0082] The electric power threshold value P_{max} is a single fixed value, but is preferably a variable value. Any one of multiple values is set for the electric power threshold value P_{max} As described above, the atomizing electric power that is determined in step S5 is determined on the premise that the aerosol source 22 (remaining amount $W_{reservoir}$ in the reservoir) is sufficiently large. However, in a case where the remaining amount $W_{reservoir}$ in the reservoir is large and in a case where the remaining amount $W_{reservoir}$ in the reservoir is small, even if the atomizing electric power is the same,

when the remaining amount $W_{reservoir}$ in the reservoir is small, an amount of the aerosol source 22 that is supplied to the wick 24 is smaller and it takes more time for the wick 24 to retain a sufficient amount of the aerosol source 22, so that the desired aerosol weight may not be realized. Specifically, when the remaining amount $W_{reservoir}$ in the reservoir is small, the necessary aerosol weight may not be realized. Therefore, it is preferably to reduce the necessary aerosol weight by increasing the target temperature of the flavor source 33 as much as that.

[0083] From such standpoint, in step S6a, the MCU 50 acquires the remaining amount $W_{reservoir}$ in the reservoir, and sets the electric power threshold value P_{max} , based on the remaining amount $W_{reservoir}$ in the reservoir. Specifically, the MCU 50 sets the electric power threshold value P_{max} to a large value so that the larger the remaining amount $W_{reservoir}$ in the reservoir is, the greater the aerosol weight is. In other words, when the remaining amount $W_{reservoir}$ in the reservoir is a first remaining amount, the MCU 50 sets the electric power threshold value P_{max} to a smaller value than when the remaining amount $W_{reservoir}$ in the reservoir is a second remaining amount different from the first remaining amount (for example, a remaining amount larger than the first remaining amount). In this way, the atomizing electric power that is supplied to the first load 21 can be adjusted based on the remaining amount $W_{reservoir}$ in the reservoir. Therefore, it is possible to realize the target amount of the flavor component, irrespective of the remaining amount $W_{reservoir}$ in the reservoir.

[0084] The upper limit value P_{upper} is described. During the discharge from the power supply 12 to the first load 21, the current flowing through the first load 21 and the voltage of the power supply 12 are each denoted as I and V_{LIB} , an upper limit value of a boost rate of the DC/DC converter 51 is denoted as η_{upper} , an upper limit value of an output voltage of the DC/DC converter 51 is denoted as P_{DC/DC_upper} , and an electric resistance value of the first load 21 in a state where the temperature of the first load 21 reaches a boiling point temperature of the aerosol source 22 is denoted as $R_{HTR}(T_{HTR}=T_{B.P.})$. Hence, the upper limit value P_{upper} can be expressed by a following equation (5). [formula 5]

$$P_{upper} = I \cdot V_{LIB} = MIN \left(\frac{\left(\eta_{upper} \cdot V_{LIB} \right)^2}{R_{HTR} (T_{HTR} = T_{B.P.})} \quad P_{DC/DC_upper} \right) - \Delta \quad \cdots (5)$$

25

30

35

40

50

[0085] In the equation (5), when Δ is set to 0, an ideal value of the upper limit value P_{upper} is obtained. However, in a real circuit, it is necessary to take into consideration a resistance component of a wire connected to the first load 21, a resistance component other than the resistance component connected to the first load 21, and the like. For this reason, Δ that is an adjustment value is introduced in the equation (5) so as to provide a certain margin.

[0086] Note that, in the aerosol generation device 1, the DC/DC converter 51 is not necessarily required, and may be omitted. When the DC/DC converter 51 is omitted, the upper limit value P_{upper} can be expressed by a following equation (6). [formula 6]

$$P_{upper} = I \cdot V_{LIB} = \frac{V_{LIB}^2}{R_{HTR}(T_{HTR} = T_{B.P.})} - \Delta \cdots (6)$$

[0087] When the atomizing electric power P_{liquid} determined in step S5 is equal to or less than the electric power threshold value P_{max} (step S6: YES), the MCU 50 acquires the temperature T_{cap_sense} of the flavor source 33 at the present moment, based on the output of the temperature detection device T1 (or the temperature detection device T3) (step S8).

[0088] Then, the MCU 50 controls the discharge to the second load 31 for heating of the second load 31, based on the temperature T_{cap_sense} and the target temperature T_{cap_target} (step S9). Specifically, the MCU 50 supplies electric power to the second load 31 by PID (Proportional-Integral-Differential) control or ON/OFF control so that the temperature T_{cap_sense} is to converge to the target temperature T_{cap_target} .

[0089] In the PID control, a difference between the temperature T_{cap_sense} and the target temperature T_{cap_target} is fed back and electric power control is performed based on a result of the feedback so that the temperature T_{cap_sense} is to converge to the target temperature T_{cap_target} . According to the PID control, the temperature T_{cap_sense} can be converged to the target temperature T_{cap_target} with high accuracy. Note that, the MCU 50 may also use P (Proportional) control or PI (Proportional-Integral) control, instead of the PID control.

[0090] In the ON/OFF control, in a state where the temperature T_{cap_sense} is lower than the target temperature T_{cap_target} , electric power is supplied to the second load 31, and in a state where the temperature T_{cap_sense} is equal to or higher than the target temperature T_{cap_target} , the supply of electric power to the second load 31 is stopped until the temperature T_{cap_sense} falls below the target temperature T_{cap_target} . According to the ON/OFF control, the temperature of the flavor source 33 can be raised more rapidly than the PID control. For this reason, it is possible to increase a possibility that

the temperature T_{cap_sense} will reach the target temperature T_{cap_target} , before the request for aerosol generation is detected. Note that, the target temperature T_{cap_target} may have a hysteresis.

[0091] After step S9, the MCU 50 determines whether there is a request for aerosol generation (step S10). When a request for aerosol generation is not detected (step S10: NO), the MCU 50 determines a length of a time (hereinafter, referred to as the non-operation time) during which the request for aerosol generation is not performed, in step S11. When the non-operation time has reached a predetermined time (step S11: YES), the MCU 50 ends the discharge to the second load 31 (step S12), and shifts to a sleep mode in which the power consumption is reduced (step S13). When the non-operation time is less than the predetermined time (step S11: NO), the MCU 50 shifts the processing to step S8. [0092] When a request for aerosol generation is detected (step S10: YES), the MCU 50 ends the discharge to the second load 31, and acquires a temperature T_{cap_sense} of the flavor source 33 at that time, based on the output of the temperature detection device T1 (or the temperature detection device T3) (step S14). Then, the MCU 50 determines whether the temperature T_{cap_sense} acquired in step S14 is equal to or higher than the target temperature T_{cap_target} (step S15).

[0093] When the temperature T_{cap_sense} is lower than the target temperature T_{cap_target} (step S15: NO), the MCU 50 increases the atomizing electric power P_{liquid} determined in step S5 so as to supplement a decrease in the amount of the flavor component due to the insufficient temperature of the flavor source 33. Specifically, the MCU 50 first determines an amount of increase ΔP of the atomizing electric power, based on the remaining amount $W_{reservoir}$ in the reservoir (step S19a), and supplies, to the first load 21, atomizing electric power P_{liquid} obtained by adding the amount of increase ΔP to the atomizing electric power P_{liquid} determined in step S5, thereby starting heating of the first load 21 (step S19). [0094] The amount of increase ΔP is a variable value corresponding to the remaining amount $W_{reservoir}$ in the reservoir but may also be a single fixed value. FIG. 9 is a schematic view showing an example of a combination of the electric power threshold value P_{max} and the amount of increase ΔP .

[0095] In the example of FIG. 9, the amount of increase ΔP is a constant value P1 when the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than a threshold value TH1, and is a value smaller than the value P1 when the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than a threshold value TH2 and smaller than the threshold value TH1. Specifically, in a range where the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than the threshold value TH2 and smaller than the threshold value TH1, the smaller the remaining amount $W_{reservoir}$ in the reservoir is, the smaller the amount of increase ΔP is. In the example of FIG. 9, the electric power threshold value P_{max} is a constant value P2 when the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than the threshold value Smaller than the value P2 when the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than the threshold value TH2 and smaller than the threshold value TH1. Specifically, in the range where the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than the threshold value TH2 and smaller than the threshold value TH1, the smaller the remaining amount $W_{reservoir}$ in the reservoir is, the smaller the electric power threshold value P_{max} is. A sum of the electric power threshold value P_{max} and the amount of increase ΔP corresponding to each remaining amount $W_{reservoir}$ in the reservoir is equal to or smaller than the upper limit value P_{upper} . In addition, a summed value of the value P1 and the value P2 is the same as the upper limit value P_{upper} . Note that, the summed value of the value P1 and the value P2 may be smaller than the upper limit value P_{upper} .

30

35

50

[0096] The threshold value TH2 shown in FIG. 9 is a value smaller than the threshold value TH1, and is used to perform a determination to suppress the discharge for heating to the first load 21. The description "suppress the discharge for heating to the first load 21" means prohibiting the discharge to the first load 21 or setting electric power that can be electrically discharged to the first load 21 to be lower than a minimum value of electric power that is supplied to the first load 21 for heating of the first load 21 according to a request for aerosol generation.

[0097] When the remaining amount $W_{reservoir}$ in the reservoir acquired in step S6a is smaller than the threshold value TH2, for example, the MCU 50 performs control of prohibiting the discharge from the power supply 12 to the first load 21, in other words, control of further suppressing the discharge from the power supply 12 to the first load 21 than when the remaining amount $W_{reservoir}$ in the reservoir is equal to or greater than the threshold value TH2, and further performs control of issuing a replacement notification of the first cartridge 20.

[0098] Alternatively, when the remaining amount $W_{reservoir}$ in the reservoir updated in step S24a (which will be described later) is smaller than the threshold value TH2, for example, the MCU 50 may perform control of prohibiting the discharge from the power supply 12 to the first load 21, and further perform control of issuing a replacement notification of the first cartridge 20. When a replacement notification of the first cartridge 20 is issued, the MCU 50 resets the remaining amount $W_{reservoir}$ in the reservoir stored in the memory 50a to 100%.

[0099] In step S15, when the temperature T_{cap_sense} is equal to or higher than the target temperature T_{cap_target} (step S15: YES), the MCU 50 supplies the atomizing electric power P_{liquid} determined in step S5 to the first load 21 to start heating of the first load 21, thereby generating aerosol (step S17).

[0100] After starting heating of the first load 21 in step S19 or step S17, when the request for aerosol generation is not over (step S18: NO) and the duration of the request for aerosol generation is less than the upper limit time t_{upper} (step S18a: YES), the MCU 50 continues to heat the first load 21. When the duration of the request for aerosol generation

reaches the upper limit time t_{upper} (step S18a: NO) or when the request for aerosol generation is over (step S18: YES), the MCU 50 stops the supply of electric power to the first load 21 (step S21).

[0101] The MCU 50 may control the heating of the first load 21 in step S17 or step S19, based on the output of the temperature detection device T2. For example, when the MCU 50 executes the PID control or the ON/OFF control, in which the boiling point of the aerosol source 22 is set as the target temperature, based on the output of the temperature detection device T2, it is possible to suppress overheating of the first load 21 and the aerosol source 22, and to accurately control the amount of the aerosol source 22 that is atomized by the first load 21.

[0102] FIG. 10 is a schematic view showing the atomizing electric power that is supplied to the first load 21 in step S17 of FIG. 8. FIG. 11 is a schematic view showing the atomizing electric power that is supplied to the first load 21 in step S19 of FIG. 8. As shown in FIG. 11, when the temperature T_{cap_sense} does not reach the target temperature T_{cap_target} at the time of detection of the request for aerosol generation, the atomizing electric power P_{liquid} is increased, which is then supplied to the first load 21.

[0103] In this way, even though the temperature of the flavor source 33 does not reach the target temperature at the time when the request for aerosol generation is performed, the processing of step S19 is performed, so that the amount of aerosol to be generated can be increased. As a result, the decrease in the amount of the flavor component to be added to aerosol, which is caused due to the temperature of the flavor source 33 being lower than the target temperature, can be supplemented by the increase in the amount of aerosol. Therefore, the amount of the flavor component to be added to aerosol can be caused to converge to the target amount. In addition, the amount of increase ΔP of the atomizing electric power to be increased in step S19 is a value based on the remaining amount $W_{reservoir}$ in the reservoir is, the amount of increase ΔP is set to be smaller, so that an appropriate amount of aerosol corresponding to the remaining amount $W_{reservoir}$ in the reservoir can be generated. As a result, it is possible to suppress aerosol having unintended flavor and taste from being generated, which is caused when electric power more than necessity is supplied to the remaining amount $W_{reservoir}$ in the reservoir.

[0104] On the other hand, when the temperature of the flavor source 33 has reached the target temperature at the time when the request for aerosol generation is made, a desired amount of aerosol necessary to achieve the target amount of the flavor component is generated by the atomizing electric power determined in step S5. For this reason, the amount of the flavor component to be added to aerosol can be caused to converge to the target amount.

[0105] After step S21, when the request for aerosol generation continues, the MCU 50 waits for the end of the request for aerosol generation, and performs processing of step S22. In step S22, the MCU 50 acquires a supply time t_{sense} to the first load 21 of the atomizing electric power supplied to the first load 21 in step S17 or step S19. Note that, it should be noted that when the MCU 50 detects the request for aerosol generation beyond the upper limit time t_{upper} , the supply time t_{sense} is the same as the upper limit time t_{upper} . Further, the MCU 50 increases the puff-number counter by "1" (step S23).

[0106] The MCU 50 updates the remaining amount W_{capsule}(n_{puff}) of the flavor component of the flavor source 33, based on the supply time t_{sense} acquired in step S22, the atomizing electric power supplied to the first load 21 according to the received request for aerosol generation, and the target temperature T_{cap_target} at the time of detection of the request for aerosol generation (step S24).

[0107] When the control shown in FIG. 10 is performed, the amount of the flavor component that is added to aerosol generated from start to end of the request for aerosol generation can be obtained by a following equation (7). (tend-tstart) in the equation (7) indicates the supply time t_{sense} . The remaining amount $W_{capsule}(n_{puff})$ of the flavor component in the equation (7) is a value at a point of time immediately before the request for aerosol generation is performed. [formula 7]

 W_{flavor}

25

30

45

50

55

 $= \beta \times \{W_{capsule}(n_{puff}) \times T_{cap_target}\} \times \gamma \times \alpha \times P_{liquid} \times (t_{end} - t_{start}) \quad \cdots (7)$

[0108] When the control shown in FIG. 11 is performed, the amount of the flavor component that is added to aerosol generated from start to end of the request for aerosol generation can be obtained by a following equation (7A). (tend-tstart) in the equation (7A) indicates the supply time t_{sense} . The remaining amount $W_{capsule}(n_{puff})$ of the flavor component in the equation (7A) is a value at a point of time immediately before the request for aerosol generation is performed. [formula 8]

 W_{flavor}

5

30

35

40

50

55

$$= \beta \times \{W_{capsule}(n_{puff}) \times T_{cap_target}\} \times \gamma \times \alpha \times P_{liquid}' \times (t_{end} - t_{start}) \quad \cdots (7A)$$

[0109] W_{flavor} for each request for aerosol generation obtained in this way is stored in the memory 50a, and values of past W_{flavor} including W_{flavor} at the time of current aerosol generation and W_{flavor} at the time of aerosol generation before the previous time are substituted into the equation (3) (specifically, a value obtained by multiplying the coefficient δ by an integral value of the values of past W_{flavor} is subtracted from W_{initial}), so that the remaining amount W_{capsule}(n_{puff}) of the flavor component after generation of aerosol can be derived with high accuracy and updated.

[0110] After step S24, the MCU 50 updates the remaining amount W_{reservoir} in the reservoir stored in the memory 50a (step S24a).

[0111] In step S24a, the MCU 50 derives the remaining amount $W_{reservoir}$ in the reservoir, based on the remaining amount $W_{capsule}(n_{puff})$ of the flavor component of the second cartridge 30 updated in step S24. In the present embodiment, the five second cartridges 30 can be used for one first cartridge 20. For example, data indicating a relationship between the change in the remaining amount $W_{reservoir}$ in the reservoir at the time when one second cartridge 30 is used and the change in the remaining amount $W_{capsule}(n_{puff})$ of the flavor component of the second cartridge 30 is experimentally obtained. In addition, the remaining amount $W_{reservoir}$ in the reservoir of the brand-new first cartridge 20 is equally divided for the five second cartridges 30, and a table shown in FIG. 12 in which the data is associated with each of the equally divided remaining amounts is prepared and stored in the memory 50a. In step S24a, the MCU 50 reads out, from the table, the remaining amount $W_{reservoir}$ in the reservoir corresponding to the current number of the used second cartridges 30 and remaining amount $W_{capsule}(n_{puff})$ of the flavor component, based on the cumulative number of the used second cartridges 30 after the first cartridge 20 is replaced with a brand-new cartridge, the remaining amount $W_{capsule}(n_{puff})$ of the flavor component acquired in step S24, and the table shown in FIG. 12, and stores the read remaining amount $W_{reservoir}$ in the reservoir in the memory 50a, as the latest information.

[0112] Subsequently, the MCU 50 determines whether the updated remaining amount $W_{capsule}(n_{puff})$ of the flavor component is smaller than the threshold value of the remaining amount (step S25). When the updated remaining amount $W_{capsule}(n_{puff})$ of the flavor component is equal to or greater than the threshold value of the remaining amount (step S25: NO), the MCU 50 shifts the processing to step S28. When the updated remaining amount $W_{capsule}(n_{puff})$ of the flavor component is smaller than the threshold value of the remaining amount (step S25: YES), the MCU 50 causes at least one of the first notification unit 45 and the second notification unit 46 to issue a notification for urging replacement of the second cartridge 30 (step S26). Then, the MCU 50 resets the puff-number counter to an initial value (=0), deletes the value of the past W_{flavor} , and further initializes the target temperature T_{cap_target} (step S27).

[0113] The initialization of the target temperature T_{cap_target} means excluding, from the setting values, the target temperature T_{cap_target} at that time stored in the memory 50a. Note that, as another example, when step S3 is always executed with step S1 and step S2 being omitted, the initialization of the target temperature T_{cap_target} means setting the target temperature T_{cap_target} at that time stored in the memory 50a to a room temperature.

[0114] After step S27, when the power supply is not turned off (step S28: NO), the MCU 50 returns the processing to step S1, and when the power supply is turned off (step S28: YES), the MCU 50 ends the processing.

(Effects of Embodiment)

[0115] As described above, according to the aerosol generation device 1, the discharge from the power supply 12 to the first load 21 and the second load 31 is controlled so that the amount of the flavor component included in aerosol each time the user inhales the aerosol is to converge to the target amount. For this reason, the amount of the flavor component that is provided for the user can be stabilized every inhalation, so that the commercial value of the aerosol generation device 1 can be increased. In addition, as compared to a configuration where the discharge is performed only for the first load 21, the amount of the flavor component that is provided for the user can be stabilized every inhalation, so that the commercial value of the aerosol generation device 1 can be further increased.

[0116] Further, according to the aerosol generation device 1, when the atomizing electric power determined in step S5 exceeds the electric power threshold value P_{max} , and hence, generation of aerosol necessary to achieve the target amount of the flavor component cannot be performed, the control of discharge from the power supply 12 to the second load 31 is performed. In this way, since the discharge to the second load 31 is performed as necessary, the amount of the flavor component that is provided for the user can be stabilized every inhalation, and the amount of electric power for achieving the same can be reduced.

[0117] Further, according to the aerosol generation device 1, the remaining amount of the flavor component is updated in step S24, based on the discharge time (t_{sense}) to the first load 21 corresponding to the request for aerosol generation,

 T_{cap_target} at the time of receiving the request for aerosol generation, and the electric power (the atomizing electric power P_{liquid}) electrically discharged to the first load according to the request for aerosol generation or an amount of the electric power (electric power $\times t_{sense}$), and the electric power that is electrically discharged to the first load 21 is determined based on the remaining amount of the flavor component, in step S4 and step S5. For this reason, after appropriately considering the electric power or amount of electric power electrically discharged to the first load 21 that highly influences the amount of the flavor component that can be added to aerosol and also appropriately considering the temperature of the flavor source 33 at the time of the discharge to the first load 21 that highly influences the amount of the flavor component that can be added to aerosol, the discharge to the first load 21 can be controlled. In this way, the discharge to the first load 21 is controlled after appropriately considering the state of the aerosol generation device 1, so that the amount of the flavor component can be stabilized with high accuracy every inhalation and the commercial value of the aerosol generation device 1 can be thus increased.

[0118] Further, according to the aerosol generation device 1, the flavor source 33 is heated before the request for aerosol generation is detected. For this reason, the flavor source 33 can be warmed before the generation of aerosol, so that it is possible to shorten a necessary time after the request for aerosol generation is received until aerosol to which a desired amount of the flavor component is added are generated.

[0119] Further, according to the aerosol generation device 1, after the request for aerosol generation is received, the discharge to the second load 31 is stopped. For this reason, it is not necessary to perform the discharge to the first load 21 and the second load 31 at the same time, so that it is possible to suppress deficiency in electric power that is electrically discharged to the second load 31. In addition to this, the large current is suppressed from being electrically discharged from the power supply 12. Therefore, the deterioration in the power supply 12 can be suppressed.

[0120] Further, according to the aerosol generation device 1, after aerosol is generated, the discharge to the second load 31 is resumed, so that even when aerosol is continuously generated, the flavor source 33 can be kept warmed. For this reason, it is possible to provide the user with the stable amount of the flavor component over a plurality of continuous inhalations.

[0121] Further, according to the aerosol generation device 1, since the electric power threshold value P_{max} is changed based on the remaining amount W_{reservoir} in the reservoir, the atomizing electric power is controlled based on the remaining amount W_{reservoir} in the reservoir. For this reason, it is possible to supply the appropriate electric power based on the remaining amount of the aerosol source 22 to the first load 21. Therefore, it is possible to provide the user with aerosol having appropriate flavor and taste, which can improve the commercial value.

[0122] Further, according to the aerosol generation device 1, when the temperature of the flavor source 33 is lower than the target temperature, the electric power that is supplied to the first load 21 is controlled according to the remaining amount W_{reservoir} in the reservoir. For this reason, it is possible to provide the user with aerosol having appropriate flavor and taste, which can improve the commercial value.

[0123] Further, according to the aerosol generation device 1, since the electric power threshold value P_{max} is determined based on the remaining amount $W_{reservoir}$ in the reservoir, the electric power that is electrically discharged from the power supply 12 to the second load 31 is controlled based on the remaining amount $W_{reservoir}$ in the reservoir. For this reason, it is possible to supply the appropriate electric power based on the remaining amount of the aerosol source 22 to the second load 31. Therefore, it is possible to provide the user with aerosol having appropriate flavor and taste, which can improve the commercial value.

[0124] Further, according to the aerosol generation device 1, in step S24, the remaining amount of the flavor component is updated based on the discharge time (t_{sense}) to the first load 21 according to the request for aerosol generation, and the remaining amount $W_{reservoir}$ in the reservoir can be derived based on the remaining amount of the flavor component. As a result, it is not necessary to provide a dedicated sensor so as to measure the remaining amount $W_{reservoir}$ in the reservoir. For this reason, it is possible to suppress the increase in cost of the aerosol generation device 1.

(First Modified Embodiment of Aerosol Generation Device)

10

30

35

45

50

[0125] In the above, it is premised that almost all of the aerosol weight $W_{aerosol}$ generated in response to one inhalation operation by the user is inhaled by the user. However, strictly speaking, an amount of aerosol (hereinafter, referred to as 'consumed amount of aerosol'), which reach a user-side end portion of the inhalation port 32, of the aerosol weight $W_{aerosol}$ generated in response to one inhalation operation by the user can be changed depending on inhalation conditions. The consumed amount of aerosol is an amount of aerosol, which could be actually inhaled by the user, of a total amount of aerosol generated in response to one inhalation operation by the user.

[0126] The reason is that aerosol, which are generated near the first load 21 and do not reach the user-side end portion of the inhalation port 32, are reaggregated in a more inner space (a space ranging from the user-side end portion of the inhalation port 32 to a space in which the wick 24 and the first load 21 are accommodated) than the inhalation port 32, and remain as a liquid aerosol source, and a remaining amount thereof is varied depending on the inhalation conditions. Note that, since a part of the remaining aerosol source finally returns to the wick 24 or the aerosol source 22, it is reused

for generation of aerosol during next inhalation. The remaining of the aerosol source is not a phenomenon that always occurs. That is, depending on the inhalation conditions, almost all of the aerosol weight $W_{aerosol}$ generated in response to one inhalation operation by the user reaches the user-side end portion of the inhalation port 32. In other words, it should be noted that the aerosol weight $W_{aerosol}$ generated in response to one inhalation operation by the user and the consumed amount of aerosol are substantially the same, depending on the inhalation conditions.

[0127] FIG. 13 shows a result of verification on a relationship between a cumulative value of the supply time t_{sense} (cumulative discharge time $\sum t_{sense}$) and a cumulative value of consumed amounts of aerosol for each of different inhalation conditions.

[0128] An inhalation condition C1 is that the duration (above-described inhalation time) of one inhalation is 3.0 seconds and a total amount (flow rate per puff) of flow rates of fluid passing through the insides of the first cartridge 20 and the second cartridge 30 during the inhalation time is 55[mL]. An inhalation condition C2 is that the inhalation time is 2.2 seconds and the flow rate per puff is 75[mL]. An inhalation condition C3 is that the inhalation time is 3.7 seconds and the flow rate per puff is 35[mL]. In any of the inhalation conditions, the upper limit value of the supply time t_{sense} per one inhalation time coincide with each other, and when the inhalation time exceeds the upper limit value, the supply time t_{sense} and the upper limit value coincide with each other.

[0129] As can be seen from the result of verification shown in FIG. 13, the slope of the straight line indicative of a change in the cumulative value of consumed amounts of aerosol corresponding to the cumulative discharge time is different depending on the inhalation conditions. Note that, the cumulative value of consumed amounts of aerosol and the cumulative value of the amounts of the flavor component generated during the inhalation operation and inhaled by the user have a strong correlation. For this reason, the vertical axis of FIG. 13 can also be referred to as the cumulative value of the amounts of the flavor component actually inhaled by the user. In this way, strictly speaking, a decreasing tendency of the remaining amount in the reservoir and a decreasing tendency of the remaining amount of the flavor component change depending on the inhalation conditions.

[0130] Therefore, when the supply time t_{sense} that is used in calculating the remaining amount of the flavor component in step S24 of FIG. 8 is corrected, considering the difference in the remaining amount of the aerosol source due to the difference in the inhalation condition, the remaining amount of the flavor component can be acquired more correctly. In other words, the supply time t_{sense} is a value having a strong correlation with a theoretical value of the aerosol weight generated by this inhalation operation, which is necessary to calculate the amount of the flavor component consumed by the user during this inhalation operation. In addition, the above correction is correction of the theoretical value of the aerosol weight into the consumed amount of aerosol actually consumed by the user. By using the correct remaining amount of the flavor component, it is possible to improve the acquisition accuracy of the remaining amount in the reservoir. **[0131]** Specifically, the MCU 50 corrects the supply time t_{sense} , which is used for calculation of the aerosol weight $W_{aerosol}$ of the equation (2) that is used for calculation of the amount W_{flavor} of the flavor component of the equation (3) every inhalation, based on the inhalation condition. Then, the MCU 50 calculates the remaining amount of the flavor component by using the aerosol weight $W_{aerosol}$ (=the aerosol weight actually inhaled by the user).

30

35

50

[0132] The present inventors studied a method of correcting the supply time t_{sense} based on the inhalation condition, and found out that the remaining amount of the flavor component can be more correctly calculated by correcting the supply time t_{sense} in correction processing, which will be described later. FIG. 14 is a schematic view for showing the correction processing of the supply time t_{sense} .

[0133] The inhalation time is denoted as "d[second]", the flow rate per puff (a total amount of flow rates per d seconds) is denoted as "F [millimeter]", a volume (hereinafter, referred to as 'flow path volume') of internal spaces of the first cartridge 20 and the second cartridge 30 in which aerosol generated from the aerosol source 22 can move is denoted as "Cv[millimeter]", and $\{Cv/(F/d)\}$ is denoted as spatial time τ [second]. The flow path volume "Cv" is stored in advance in the memory 50a. (F/d) indicates a flow rate per unit time (1 second).

[0134] Note that, in a case where a sensor configured to output information about a flow rate per unit time (1 second), not the flow rate per puff, is used as the flow rate sensor 16, when the flow rate per unit time is denoted as Fa[millimeter/second], the spatial time τ may be replaced with time obtained by calculation of Cv/Fa.

[0135] When a condition of (d-t_{sense}) $<\tau$ is satisfied, the MCU 50 corrects the supply time t_{sense} to (d- τ), and when a condition of (d-t_{sense}) $\ge \tau$ is satisfied, the MCU 50 does not correct the supply time t_{sense}.

[0136] Referring to FIG. 14, when the condition of (d-t_{sense}) $<\tau$ is satisfied, an output of an operational amplifier in FIG. 14 becomes a high level, so that the upper switch in FIG. 14 becomes on, the lower switch in FIG. 14 becomes off and (d- τ) is obtained as a supply time La after the correction processing. On the other hand, when the condition of (d-t_{sense}) $\ge \tau$ is satisfied, the output of the operational amplifier in FIG. 14 becomes a low level, so that the upper switch in FIG. 14 becomes off, the lower switch in FIG. 14 becomes on and the supply time t_{sense} is obtained as the supply time La after the correction processing, as it is.

[0137] The operations of the aerosol generation device 1 according to the first modified embodiment are different with respect to the processing of step S22 and step S24 of the flowcharts shown in FIGS. 7 and 8. Therefore, the corresponding

steps are described in the below.

30

35

40

[0138] In step S22 of FIG. 8, the MCU 50 acquires the inhalation time "d" during this inhalation operation, the flow rate per puff "F" during this inhalation operation, and the flow path volume "Cv" stored in the memory 50a, in addition to the supply time t_{sense} , calculates the spatial time τ based on these information, and further calculates (d- t_{sense}).

[0139] In step S24 of FIG. 8, the MCU 50 compares (d-t_{sense}) and the spatial time τ , and corrects the supply time t_{sense} acquired in step S22 to (d- τ) to acquire the supply time La if (d-t_{sense}) < τ . The MCU 50 calculates the amount W_{flavor} of the flavor component inhaled by the user during this inhalation operation, based on the supply time La, the atomizing electric power supplied to the first load 21 in response to the request for aerosol generation, the target temperature set before the request for aerosol generation is performed, the remaining amount of the flavor component immediately before the request for aerosol generation is performed, and the equations (1) and (2), and calculates the remaining amount of the flavor component based on the calculated amount W_{flavor} of the flavor component, the past amount W_{flavor} of the flavor component and the equation (3).

[0140] In step S24 of FIG. 8, the MCU 50 sets the supply time t_{sense} acquired in step S22 as the supply time La after the correction processing, as it is, if $(d-t_{sense}) \ge \tau$. The MCU 50 calculates the amount W_{flavor} of the flavor component inhaled by the user during this inhalation operation, based on the supply time La, the atomizing electric power supplied to the first load 21 in response to the request for aerosol generation, the target temperature set before the request for aerosol generation is performed, the remaining amount of the flavor component immediately before the request for aerosol generation is performed, and the equations (1) and (2), and calculates the remaining amount of the flavor component based on the calculated amount W_{flavor} of the flavor component, the past amount W_{flavor} of the flavor component and the equation (3).

[0141] The spatial time τ has a positive value larger than 0 (zero). Therefore, in a case where the inhalation time d and the supply time t_{sense} are the same, the condition of (d- t_{sense}) < τ is always satisfied. Specifically, in the case where the inhalation time d and the supply time t_{sense} are the same, first acquisition processing of acquiring the remaining amount of the flavor component based on the inhalation time d and the spatial time τ is executed.

[0142] In a case where the inhalation time d is longer than the supply time t_{sense} , the smaller the value of the spatial time τ is, the higher a possibility is that the condition of $(d-t_{sense}) \ge \tau$ is satisfied. The small value of the spatial time τ means that the flow rate per unit time is large. Specifically, in a case where the inhalation time d is longer than the supply time t_{sense} , the larger the flow rate per unit time is, the higher the possibility is that the condition of $(d-t_{sense}) \ge \tau$ is satisfied. As a result, second acquisition processing of acquiring the remaining amount of the flavor component based on the supply time t_{sense} is more executed than the first acquisition processing.

[0143] FIG. 15 shows a result of correcting the cumulative discharge time Σt_{sense} for each of the inhalation conditions shown in FIG. 13 according to the correction processing. As shown in FIG. 15, it can be seen that when the supply time t_{sense} for each inhalation is corrected as necessary by the correction processing, the relationship between the cumulative discharge time Σt_{sense} after the correction processing and the cumulative value of consumed amounts of aerosol becomes substantially constant and the remaining amount of the flavor component can be more correctly calculated.

[0144] As described above, according to the aerosol generation device 1 of the first modified embodiment, the amount W_{flavor} of the flavor component every inhalation and the remaining amount of the flavor component after each inhalation is over are calculated, considering the inhalation conditions (the inhalation time and the flow rate per unit time). For this reason, the amount W_{flavor} of the flavor component and the remaining amount of the flavor component can be correctly acquired. Further, the acquisition accuracy of the remaining amount in the reservoir can be improved based on the remaining amount of the flavor component.

(Second Modified Embodiment of Aerosol Generation Device)

In the aerosol generation device 1 of the first modified embodiment, the remaining amount of the flavor component is derived, and the atomizing electric power P_{liquid} and the target temperature T_{cap_target} necessary to achieve the target amount W_{flavor} of the flavor component are determined based on the remaining amount of the flavor component, before the request for aerosol generation is performed. In this modified embodiment, the atomizing electric power P_{liquid} that is determined before the request for aerosol generation is performed is set to a constant value, and instead, based on a total consumed amount of the flavor component included in the flavor source 33 (hereinafter, referred to as 'consumed amount of the flavor source 33'), the target temperature T_{cap_target} is variably controlled (specifically, the larger the consumed amount of the flavor source 33 is, the higher the target temperature is) to achieve the target amount W_{flavor} of the flavor component.

[0146] Also in the aerosol generation device 1 of the second modified embodiment, when the temperature of the flavor source 33 is lower than the target temperature at the time of detection of the request for aerosol generation, the deficiency in the amount W_{flavor} of the flavor component is supplemented by the increase in the aerosol weight $W_{aerosol}$ (increase in the atomizing electric power). In order to secure the amount of increase in the atomizing electric power, the atomizing electric power P_{liquid} that is determined before detecting the request for aerosol generation is set lower than the upper

limit value P_{upper}.

10

30

35

40

50

[0147] The consumed amount of the flavor source 33 has a strong correlation with a cumulative value of aerosol weight (consumed amount of aerosol) inhaled by the user. For this reason, the cumulative value of the supply time La every inhalation (hereinafter, referred to as 'cumulative discharge time Σ La') described in the first modified embodiment can also be used as information indicative of the consumed amount of the flavor source 33. Specifically, the MCU 50 obtains the cumulative discharge time Σ La to acquire the consumed amount of the flavor source 33.

[0148] As can be seen from the model of the equation (2), assuming that the aerosol weight $W_{aerosol}$ every inhalation is controlled to be substantially constant (the atomizing electric power P_{liquid} is controlled to be constant), in order to stabilize the amount W_{flavor} of the flavor component, it is necessary to raise the temperature of the flavor source 33 according to the decrease in the remaining amount of the flavor component (specifically, the increase in the consumed amount of the flavor source 33 (the cumulative discharge time Σ La)). In the second modified embodiment, the electric power control unit of the MCU 50 manages the target temperature according to a table stored in advance in the memory 50a, in which the cumulative discharge time Σ La and the target temperature of the flavor source 33 are stored in association with each other.

[0149] FIGS. 16 to 18 are flowcharts for describing operations of the aerosol generation device 1 according to the second modified embodiment. When the power supply of the aerosol generation device 1 is turned on as a result of the operation on the operation unit 14, or the like (step S30: YES), the MCU 50 determines (sets) the target temperature T_{cap_target} of the flavor source 33, based on the current cumulative discharge time Σ La stored in the memory 50a (step S31).

[0150] Subsequently, the MCU 50 acquires the temperature T_{cap_sense} of the flavor source 33 at the present moment, based on the output of the temperature detection device T1 (or the temperature detection device T3) (step S32).

[0151] Then, the MCU 50 controls the discharge for heating of the flavor source 33 to the second load 31, based on the temperature T_{cap_sense} and the target temperature T_{cap_target} (step S33). Specifically, the MCU 50 supplies the electric power to the second load 31 by the PID control or the ON/OFF control so that the temperature T_{cap_sense} is to converge to the target temperature T_{cap_target} .

[0152] After step S33, the MCU 50 determines whether there is a request for aerosol generation (step S34). When a request for aerosol generation is not detected (step S34: NO), the MCU 50 determines a length of the non-operation time during which the request for aerosol generation is not performed, in step S35. When the non-operation time has reached a predetermined time (step S35: YES), the MCU 50 ends the discharge to the second load 31 (step S36), and shifts to a sleep mode in which the power consumption is reduced (step S37). When the non-operation time has not reached the predetermined time (step S35: NO), the MCU 50 shifts the processing to step S32.

[0153] When a request for aerosol generation is detected (step S34: YES), the MCU 50 ends the discharge for heating of the flavor source 33 to the second load 31, and acquires the temperature T_{cap_sense} of the flavor source 33 at that time, based on the output of the temperature detection device T1 (or the temperature detection device T3) (step S41). Then, the MCU 50 determines whether the temperature T_{cap_sense} acquired in step S41 is equal to or higher than the target temperature T_{cap_target} (step S42). Note that, the MCU 50 may continue the discharge for heating of the flavor source 33 to the second load 31 even after step S34.

[0154] When the temperature T_{cap_sense} is equal to or higher than the target temperature T_{cap_target} (step S42: YES), the MCU 50 supplies the predetermined atomizing electric power P_{liquid} to the first load 21, thereby starting heating of the first load 21 (heating for atomizing the aerosol source 22) (step S43).

[0155] When the temperature T_{cap_sense} is lower than the target temperature T_{cap_target} (step S42: NO), the MCU 50 increases the predetermined atomizing electric power P_{liquid} so as to supplement the decrease in the amount of the flavor component due to the insufficient temperature of the flavor source 33. Specifically, the MCU 50 first acquires the current remaining amount $W_{reservoir}$ in the reservoir stored in the memory 50a, and determines an amount of increase ΔPa of the atomizing electric power P_{liquid} , based on the acquired remaining amount $W_{reservoir}$ in the reservoir (step S45). Then, the MCU 50 supplies, to the first load 21, the atomizing electric power P_{liquid} obtained by adding the amount of increase ΔPa to the atomizing electric power P_{liquid} , thereby starting heating of the first load 21 (step S46). As the amount of increase ΔPa , for example, a variable value that is the same as the amount of increase ΔP shown in FIG. 9 is used. The method of calculating the remaining amount $W_{reservoir}$ in the reservoir will be described later. Note that, the amount of increase ΔPa may be a fixed value, not the variable value.

[0156] After starting the heating of the first load 21 in step S43 or step S46, when the request for aerosol generation is not over yet (step S44: NO) and the duration (i.e., inhalation time) of the request for aerosol generation is shorter than the upper limit time t_{upper} (step S44a: YES), the MCU 50 continues to heat the first load 21. When the duration of the request for aerosol generation reaches the upper limit time t_{upper} (step S44a: NO) or when the request for aerosol generation is over (step S44: YES), the MCU 50 stops the supply of electric power to the first load 21 (step S21).

[0157] In this way, even when the atomizing electric power is increased in step S46, the smaller the remaining amount $W_{reservoir}$ in the reservoir is, the amount of increase ΔPa is set to be smaller, so that the appropriate electric power corresponding to the remaining amount $W_{reservoir}$ in the reservoir can be supplied to the first load 21. As a result, it is

possible to suppress aerosol having unintended flavor and taste from being generated, which is caused when electric power more than necessity is supplied to the remaining amount $W_{\text{reservoir}}$ in the reservoir.

[0158] After step S48, when the request for aerosol generation continues (in other words, the inhalation continues), the MCU 50 waits for end of the request for aerosol generation and then performs processing of step S49. In step S49, the MCU 50 acquires the supply time t_{sense} to the first load 21 of the atomizing electric power supplied to the first load 21 in step S43 or step S46, the inhalation time d of this inhalation, the flow path volume Cv, and the flow rate per puff F, and calculates the spatial time τ and (d- t_{sense}), based on these information, as described in the first modified embodiment (step S49).

[0159] Then, the MCU 50 compares the spatial time τ and (d-t_{sense}) calculated in step S49. When the condition of (d-tsense) $<\tau$ is satisfied, the MCU 50 acquires (d- τ), as the supply time La after the correction processing, and when the condition of (d-t_{sense}) $\ge \tau$ is satisfied, the MCU 50 acquires the supply time t_{sense}, as the supply time La. The MCU 50 obtains the cumulative discharge time Σ La by adding the supply time La acquired in this way to a cumulative value of the supply time La after the second cartridge 30 is replaced with a brand-new cartridge, and updates the cumulative discharge time Σ La stored in the memory 50a (step S50).

[0160] The cumulative discharge time Σ La indicates the consumed amount of the flavor source 33 after the second cartridge 30 is replaced with a brand-new cartridge, as a time. Therefore, by comparing the cumulative discharge time Σ La and the threshold value TH3 indicative of the upper limit value of the cumulative discharge time Σ La per one second cartridge 30, the consumed amount of the flavor source 33 or the remaining amount of the flavor source 33 can be acquired. [0161] For example, it is possible to acquire the remaining[%] of the flavor source 33 by a calculation of {(TH3- Σ L)/TH3} \times 100. Further, it is possible to acquire the consumed amount[%] of the flavor source 33 by a calculation of (Σ L/TH3) \times 100. [0162] After step S50, the MCU 50 updates the remaining amount $W_{reservoir}$ in the reservoir (step S51). The cumulative discharge time Σ La indicates the cumulative value of consumed amounts of aerosol inhaled by the user, as a unit of time. For this reason, by comparing the cumulative discharge time Σ La and the threshold value TH2 indicative of the upper limit value of the cumulative discharge time Σ La per one first cartridge 20, the consumed amount of the aerosol source 22 or the remaining amount of the aerosol source 22 (i.e., the remaining amount in the reservoir) can be acquired with improved accuracy. Note that, instead of the cumulative discharge time Σ La, by comparing the cumulative discharge time Σ La sense and the threshold value TH2, the consumed amount of the aerosol source 22 or the remaining amount of the aerosol source 22 may also be acquired.

[0163] As described above, a part the remaining amount, which is obtained by subtracting the consumed amount of aerosol actually inhaled by the user from the total amount of aerosol generated by the inhalation operation, is reused during next inhalation. For this reason, in step S51, the consumed amount of the aerosol source 22 or the remaining of the aerosol source 22 is acquired, considering the part of the remaining amount to be reused. Note that, as described above, when the condition of $(d-t_{sense}) \ge \tau$ is satisfied, the supply time t_{sense} is not corrected. This means that, when the condition of $(d-t_{sense}) \ge \tau$ is satisfied, the remaining amount becomes 0 (zero).

30

35

50

[0164] In step S51, the MCU 50 obtains a time difference ΔL by subtracting the supply time La acquired in step S50 from the supply time t_{sense} acquired in step S49. The time difference ΔL indicates the remaining amount, which remains without being inhaled by the user, of the total amount of aerosol generated by the inhalation operation, as a unit of time. When the condition of $(d-t_{sense}) \ge \tau$ is satisfied, the time difference ΔL becomes 0 (zero). By multiplying the time difference ΔL by a coefficient A experimentally obtained and larger than 0 and smaller than 1, an amount of the aerosol source to be reused can be obtained. The coefficient A means that all the remaining amount does not return to the reservoir 23 or the wick 24. Note that, the coefficient A may have such a property that it becomes larger as the flow rate of (d- t_{sense}) becomes smaller during the inhalation after the supply of the atomizing electric power P_{liquid} to the first load 21 is over. [0165] In step S51, the MCU 50 obtains a supply time Lb, which corresponds to an amount of the aerosol source 22 consumed from the reservoir 23 and the wick 24 by this inhalation operation by the user, by subtracting ($\Delta L \times A$) from the supply time La obtained in step S50. By adding the supply time Lb to the cumulative value of the supply time Lb after the first cartridge 20 is replaced with a brand-new cartridge, a cumulative discharge time ΣLb is obtained. By comparing the cumulative discharge time ΣLb and the threshold value TH2, the consumed amount of the aerosol source 22 or the remaining amount of the aerosol source 22 can be acquired more correctly.

[0166] For example, the remaining amount[%] of the aerosol source 22 can be acquired by a calculation of {(TH2- Σ Lb)/TH2} \times 100. In addition, the consumed amount[%] of the aerosol source 22 can be acquired by a calculation of (Σ Lb/TH2) \times 100.

[0167] In the above descriptions, the MCU 50 acquires the supply time Lb by subtracting ($\Delta L \times A$) from the supply time La. However, the present invention is not limited thereto. For example, when the condition of (d-t_{sense}) < τ is satisfied, the MCU 50 may acquire the supply time Lb by multiplying the supply time La by an experimentally obtained coefficient C, and when the condition of (d-t_{sense}) $\geq \tau$ is satisfied, the supply time La may be acquired as the supply time Lb. The coefficient C is a value larger than 0 and smaller than 1.

[0168] Then, the MCU 50 determines whether the cumulative discharge time Σ Lb updated in step S51 is equal to or greater than the threshold value TH2 (step S52). The processing of step S52 is the same as the processing of determining

whether the consumed amount of the aerosol source 22 is 100% or the remaining amount of the aerosol source 22 is 0%. When the updated cumulative discharge time Σ Lb is smaller than the threshold value TH2 (step S52: NO), the MCU 50 shifts the processing to step S56. When the updated cumulative discharge time Σ Lb is equal to or greater than the threshold value TH2 (step S52: YES), the MCU 50 causes at least one of the first notification unit 45 and the second notification unit 46 to issue a notification for urging replacement of the first cartridge 20 and the second cartridge 30 (step S53). Then, the MCU 50 resets each of the cumulative discharge time Σ La and the cumulative discharge time Σ Lb to the initial value (=0), and initializes the target temperature T_{cap_target} (step S54). The initialization of the target temperature T_{cap_target} means excluding, from the setting values, the target temperature T_{cap_target} at that time stored in the memory 50a.

[0169] In step S56, the MCU 50 determines whether the cumulative discharge time Σ La updated in step S50 is equal to or greater than the threshold value TH3. The processing of step S56 is the same as the processing of determining whether the consumed amount of the flavor source 33 is 100% or the remaining amount of the flavor source 33 is 0%. When the updated cumulative discharge time Σ La is smaller than the threshold value TH3 (step S56: NO), the MCU 50 shifts the processing to step S55. When the updated cumulative discharge time Σ La is equal to or greater than the threshold value TH3 (step S56: YES), the MCU 50 causes at least one of the first notification unit 45 and the second notification unit 46 to issue a notification for urging replacement of the second cartridge 30 (step S57). Then, the MCU 50 resets the cumulative discharge time Σ La to the initial value (=0), and initializes the target temperature T_{cap_target} (step S58).

10

30

35

40

50

[0170] Instead of the above-described operations, when the cumulative discharge time Σ Lb updated in step S51 is equal to or greater than the threshold value TH2 (step S52: YES), the MCU may determine whether the cumulative discharge time Σ 1a updated in step S50 is equal to or greater than the threshold value TH3. Only when the updated cumulative discharge time Σ La is equal to or greater than the threshold value TH3, the MCU 50 may cause at least one of the first notification unit 45 and the second notification unit 46 to issue a notification for urging replacement of the first cartridge 20, in step S53. In addition, only when the updated cumulative discharge time Σ La is equal to or greater than the threshold value TH3, the MCU 50 may reset the cumulative discharge time Σ La to the initial value (=0) and initialize the target temperature T_{cap target}, in step S54.

[0171] After step S54 or step S58, when the power supply is not turned off (step S55: NO), the MCU 50 returns the processing to step S31, and when the power supply is turned off (step S55: YES), the MCU 50 ends the processing.

[0172] According to the aerosol generation device 1 of the second modified embodiment, it is possible to provide the user with aerosol having stable flavor and taste by the simpler control than the aerosol generation device 1 of the first modified embodiment. In addition, similar to the first modified embodiment, it is possible to acquire at least one of the remaining amount and the consumed amount of the flavor source 33 more correctly. Further, it is possible to acquire at least one of the remaining amount and the consumed amount of the aerosol source 22 more correctly.

[0173] Note that, the MCU 50 may use a cumulative value of the supply time Lb, instead of the cumulative discharge time Σ La corresponding to the consumed amount of the flavor source 33. The supply time Lb is information indicative of the amount of the aerosol source 22 consumed from the reservoir 23 and the wick 24 by one inhalation operation by the user, and has a strong correlation with the amount of the flavor component. For this reason, the cumulative value of the supply time Lb can be treated as the consumed amount of the flavor source 33. In addition, the remaining amount of the flavor source 33 can be obtained from the cumulative value of the supply time Lb.

[0174] In the second modified embodiment, the threshold value TH3 is fixed and the cumulative discharge time Σ La is updated, so that the replacement notification of the second cartridge 30 is issued, and the threshold value TH2 is fixed and the cumulative discharge time Σ Lb is updated, so that the replacement notification of the first cartridge 20 and the second cartridge 30 is issued. As a modified embodiment, the threshold value TH3 may be corrected by a cumulative value of difference between the supply time La and the supply time t_{sense} , and the corrected threshold value TH3 and the cumulative value of the supply time t_{sense} may be compared to determine a replacement timing of the supply time Lb and the supply time t_{sense} , and the corrected threshold value TH2 and the cumulative value of the supply time t_{sense} may be compared to determine a replacement timing of the first cartridge 20.

[0175] FIG. 19 is a schematic view for showing operations of the MCU 50 when correcting the threshold value TH3. In the example shown in FIG. 19, the MCU 50 adds, to the threshold value TH3, an integral value of an absolute value (corresponding to the remaining amount of the aerosol source) of a difference obtained by subtracting the supply time t_{sense} from the supply time La after the correction processing, and controls to issue a replacement notification of the second cartridge 30 when the cumulative value of the supply time t_{sense} reaches the threshold value TH3 after the addition. By comparing the threshold value TH3 after the addition and the cumulative value of the supply time t_{sense} , the remaining amount or the consumed amount of the flavor source 33 can be acquired.

[0176] FIG. 20 is a schematic view for showing operations of the MCU 50 when correcting the threshold value TH2. In the example shown in FIG. 20, the MCU 50 adds, to the threshold value TH2, an integral value of an absolute value (corresponding to the remaining amount returning to the aerosol source 22) of a difference obtained by subtracting the

supply time t_{sense} from the supply time Lb after the correction processing, and controls to issue a replacement notification of the first cartridge 20 and the second cartridge 30 when the cumulative value of the supply time t_{sense} reaches the threshold value TH2 after the addition. By comparing the threshold value TH2 after the addition and the cumulative value of the supply time t_{sense} , the remaining amount or the consumed amount of the aerosol source 22 can be acquired.

[0177] Also in this configuration, it is possible to correctly determine the replacement timing of the first cartridge 20 and the second cartridge 30.

[0178] The aerosol generation device 1 described above is configured to be able to heat the flavor source 33. However, this configuration is not necessarily required. Even when the heating of the flavor source 33 is not performed, it is possible to accurately acquire at least one of the remaining amount and the consumed amount of the flavor source 33 and at least one of the remaining amount and the consumed amount of the aerosol source 22, based on the inhalation time and the flow rate per unit time.

[0179] In the aerosol generation device 1 described above, the first cartridge 20 is detachably mounted to the power supply unit 10. However, the first cartridge 20 may also be integrated with the power supply unit 10.

[0180] In the aerosol generation device 1 described above, the first load 21 and the second load 31 are each configured as a heater that generates heat by electric power electrically discharged from the power supply 12. However, the first load 21 and the second load 31 may also be each configured as a Peltier device that can generate heat and cool by electric power electrically discharged from the power supply 12. When the first load 21 and the second load 31 are each configured in this way, the degrees of control freedom on the temperature of the aerosol source 22 and the temperature of the flavor source 33 are increased, so that it is possible to control the unit amount of flavor more highly.

[0181] In addition, the first load 21 may also be configured by a device that can atomize the aerosol source 22 without heating the aerosol source 22 by ultrasonic waves or the like. Further, the second load 31 may also be configured by a device that can change the amount of the flavor component to be added to aerosol by the flavor source 33 without heating the flavor source 33 by ultrasonic waves or the like.

[0182] In a case where an ultrasonic device is used for the second load 31, for example, the MCU 50 may control the discharge to the first load 21 and the second load 31, based on a wavelength of ultrasonic waves applied to the flavor source 33, for example, not the temperature of the flavor source 33, as the parameter that influences the amount of the flavor component to be added to aerosol passing through the flavor source 33.

[0183] The device that can be used for the first load 21 is not limited to a heater, a Peltier device and an ultrasonic device described above, and a variety of devices or a combination thereof can be used as long as it can atomize the aerosol source 22 by consuming the electric power supplied from the power supply 12. Likewise, the device that can be used for the second load 31 is not limited to a heater, a Peltier device and an ultrasonic device as described above, and a variety of devices or a combination thereof can be used as long as it can change the amount of the flavor component to be added to aerosol by consuming the electric power supplied from the power supply 12.

[0184] The present specification discloses at least following matters. Note that, the constitutional elements corresponding to the embodiments are shown in parentheses. However, the present invention is not limited thereto.

(1) A control unit (power supply unit 10) of an aerosol generation device including a flow rate sensor (flow rate sensor 16) configured to output a flow rate of inhalation by a user and a processing device (MCU 50) configured to acquire an atomization command (request for aerosol generation) of an aerosol source (aerosol source 22) by an atomizer (first load 21),

wherein the processing device is configured:

10

15

20

30

35

40

45

50

55

to control discharge from a power supply (power supply 12) to the atomizer, based on the atomization command, to acquire a flow rate per unit time ((F/d) or Fa) during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor,

to acquire an inhalation time (inhalation time d) that is a length of the inhalation corresponding to each atomization command, and

to acquire at least one of a remaining amount of a flavor source (flavor source 33) configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time.

According to the above (1), at least one of the remaining amount the consumed amount of the flavor source is acquired, considering the flow rate per unit time and the inhalation time during the inhalation. For this reason, at least one of the remaining amount and the consumed amount of the flavor source can be correctly acquired.

(2) The control unit of an aerosol generation device according to the above (1), wherein the processing device is configured to acquire at least one of the remaining amount of the flavor source and the consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time acquired after discharge to the atomizer based on the atomization command is over.

According to the above (2), since the flow rate and the inhalation time during the inhalation can be correctly acquired, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.

(3) The control unit of an aerosol generation device according to the above (1) or (2), wherein the remaining amount of the flavor source that is acquired by the processing device is smaller as the flow rate per unit time is larger (the spatial time τ is shorter), and/or

5

10

15

20

25

30

35

40

45

50

55

- wherein the consumed amount of the flavor source that is acquired by the processing device is larger as the flow rate per unit time is larger (the spatial time τ is shorter).
- According to the above (3), as the flow rate per unit time during the inhalation increases, the smaller remaining amount and/or the larger consumed amount is acquired. Therefore, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.
- (4) The control unit of an aerosol generation device according to the above (1), wherein the processing device is configured:

to acquire a remaining amount (|the supply time La-the supply time t_{sense} |), which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, based on the flow rate per unit time and the inhalation time, for each atomization command, and

to acquire at least one of the remaining amount of the flavor source and the consumed amount of the flavor source, based on the remaining amount.

According to the above (4), at least one of the remaining amount of the flavor source and the consumed amount of the flavor source is acquired, considering an amount of the aerosol source remaining in the flow path. Therefore, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly. (5) The control unit of an aerosol generation device according to the above (1), wherein the processing device is

(5) The control unit of an aerosol generation device according to the above (1), wherein the processing device is configured:

to acquire an discharge time (supply time t_{sense}), which is a length of discharge to the atomizer corresponding to each atomization command, and

to selectively perform first processing of acquiring at least one of the remaining amount of the flavor source and the consumed amount of the flavor source based on the flow rate per unit time and the inhalation time, and second processing of acquiring at least one of the remaining amount of the flavor source and the consumed amount of the flavor source based on the discharge time.

According to the above (5), the first processing and the second processing are selectively performed according to a method of the inhalation, so that at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.

- (6) The control unit of an aerosol generation device according to the above (5), wherein the processing device is configured to select and perform any one of the first processing and the second processing, based on the flow rate per unit time, the inhalation time and the discharge time.
- According to the above (6), since any one of the first processing and the second processing is selected based on the inhalation condition and the discharge time, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.
- (7) The control unit of an aerosol generation device according to the above (5) or (6), wherein the processing device selects and performs the first processing when the inhalation time and the discharge time are the same.
- According to the above (7), when the first processing is determined as appropriate based on the inhalation condition and the discharge time, the first processing is selected. Therefore, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.
 - (8) The control unit of an aerosol generation device according to the above (5) or (6), wherein when the inhalation time is longer than the discharge time, the processing device more selects and performs the second processing as the flow rate per unit time increases (the spatial time τ becomes shorter).
 - According to the above (8), when the second processing is determined as appropriate based on the inhalation condition and the discharge time, the second processing is selected. Therefore, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.
 - (9) The control unit of an aerosol generation device according to any one of the above (1) to (8), wherein the processing device is configured to acquire at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the flow rate per unit time and the inhalation time.

According to the above (9), at least one of the remaining amount and the consumed amount of the aerosol source is acquired, considering the flow rate per unit time and the inhalation time during the inhalation. Therefore, at least

one of the remaining amount and the consumed amount of the aerosol source can be acquired more correctly. (10) A control unit of an aerosol generation device including a flow rate sensor (flow rate sensor 16) configured to output a flow rate of inhalation by a user and a processing device (MCU 50) configured to acquire an atomization command (request for aerosol generation) of an aerosol source (aerosol source 22) by an atomizer (first load 21), wherein the processing device is configured:

to control discharge from a power supply (power supply 12) to the atomizer, based on the atomization command, to acquire a flow rate per unit time ((F/d) or Fa) during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor,

to acquire an inhalation time (inhalation time d) that is a length of the inhalation corresponding to each atomization command, and

to acquire at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the flow rate per unit time and the inhalation time.

According to the above (10), at least one of the remaining amount the consumed amount of the aerosol source is acquired, considering the flow rate per unit time and the inhalation time during the inhalation. For this reason, at least one of the remaining amount and the consumed amount of the aerosol source can be correctly acquired. (11) A control unit of an aerosol generation device including a processing device (MCU 50) configured to acquire an atomization command (request for aerosol generation) of an aerosol source (aerosol source 22) by an atomizer (first load 21),

wherein the processing device is configured:

to control discharge from a power supply (power supply 12) to the atomizer, based on the atomization command, to acquire a remaining amount (|the supply time La-the supply time $t_{sense}|$), which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, for each atomization command, and

to acquire information about at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the remaining amount.

According to the above (11), at least one of the remaining amount and the consumed amount of the flavor source is acquired, considering an amount of the aerosol source remaining in the flow path. Therefore, at least one of the remaining amount and the consumed amount of the flavor source can be acquired more correctly.

(12) A control unit of an aerosol generation device including a processing device (MCU 50) configured to acquire an atomization command (request for aerosol generation) of an aerosol source (aerosol source 22) by an atomizer (first load 21),

wherein the processing device is configured:

to control discharge from a power supply (power supply 12) to the atomizer, based on the atomization command, to acquire a remaining amount (time difference ΔL), which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, for each atomization command, and

to acquire information about at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the remaining amount.

[0185] According to the above (12), at least one of the remaining amount and the consumed amount of the aerosol source is acquired, considering an amount of the aerosol source remaining in the flow path. Therefore, at least one of the remaining amount and the consumed amount of the aerosol source can be acquired more correctly.

Claims

5

10

15

20

25

30

35

40

45

50

1. A control unit of an aerosol generation device comprising:

a flow rate sensor configured to output a flow rate of inhalation by a user; and a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured:

to control discharge from a power supply to the atomizer, based on the atomization command; to acquire a flow rate per unit time during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor;

to acquire an inhalation time that is a length of the inhalation corresponding to each atomization command; and

to acquire at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time.

2. The control unit of an aerosol generation device according to claim 1, wherein the processing device is configured to acquire at least one of the remaining amount of the flavor source and the consumed amount of the flavor source, based on the flow rate per unit time and the inhalation time acquired after discharge to the atomizer based on the atomization command is over.

5

30

35

40

45

55

- 3. The control unit of an aerosol generation device according to claim 1 or 2, wherein the remaining amount of the flavor source that is acquired by the processing device is smaller as the flow rate per unit time is larger, and wherein the consumed amount of the flavor source that is acquired by the processing device is larger as the flow rate per unit time is larger.
- 4. The control unit of an aerosol generation device according to claim 1 or 2, wherein the remaining amount of the flavor source that is acquired by the processing device is smaller as the flow rate per unit time is larger, or wherein the consumed amount of the flavor source that is acquired by the processing device is larger as the flow rate per unit time is larger.
- 5. The control unit of an aerosol generation device according to claim 1, wherein the processing device is configured:

to acquire a remaining amount, which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, based on the flow rate per unit time and the inhalation time, for each atomization command; and

- to acquire at least one of the remaining amount of the flavor source and the consumed amount of the flavor source, based on the remaining amount.
- 6. The control unit of an aerosol generation device according to claim 1, wherein the processing device is configured:

to acquire an discharge time, which is a length of discharge to the atomizer corresponding to each atomization command; and

to selectively perform first processing of acquiring at least one of the remaining amount of the flavor source and the consumed amount of the flavor source based on the flow rate per unit time and the inhalation time, and second processing of acquiring at least one of the remaining amount of the flavor source and the consumed amount of the flavor source based on the discharge time.

- 7. The control unit of an aerosol generation device according to claim 6, wherein the processing device is configured to select and perform any one of the first processing and the second processing, based on the flow rate per unit time, the inhalation time and the discharge time.
- **8.** The control unit of an aerosol generation device according to claim 6 or 7, wherein the processing device selects and performs the first processing when the inhalation time and the discharge time are the same.
- 9. The control unit of an aerosol generation device according to claim 6 or 7, wherein when the inhalation time is longer than the discharge time, the processing device more selects and performs the second processing as the flow rate per unit time increases.
 - **10.** The control unit of an aerosol generation device according to any one of claims 1 to 9, wherein the processing device is configured to acquire at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the flow rate per unit time and the inhalation time.
 - **11.** A control unit of an aerosol generation device comprising:

a flow rate sensor configured to output a flow rate of inhalation by a user; and a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured:

5

to control discharge from a power supply to the atomizer, based on the atomization command; to acquire a flow rate per unit time during the inhalation corresponding to each atomization command, based on an output of the flow rate sensor;

to acquire an inhalation time that is a length of the inhalation corresponding to each atomization command;

to acquire at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol

10

12. A control unit of an aerosol generation device comprising:

source, based on the flow rate per unit time and the inhalation time.

15

a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured:

to control discharge from a power supply to the atomizer, based on the atomization command;

20

to acquire a remaining amount, which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, for each atomization

command; and

to acquire information about at least one of a remaining amount of a flavor source configured to add flavor to aerosol generated from the aerosol source and a consumed amount of the flavor source, based on the

remaining amount.

25

13. A control unit of an aerosol generation device comprising:

a processing device configured to acquire an atomization command of an aerosol source by an atomizer, wherein the processing device is configured:

30

to control discharge from a power supply to the atomizer, based on the atomization command;

to acquire a remaining amount, which is an amount of the aerosol source remaining in a flow path through which aerosol atomized by the atomizer and generated from the aerosol source flow, for each atomization

35

to acquire information about at least one of a remaining amount of the aerosol source and a consumed amount of the aerosol source, based on the remaining amount.

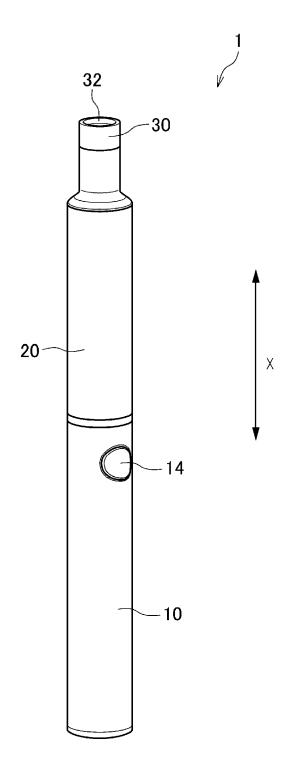
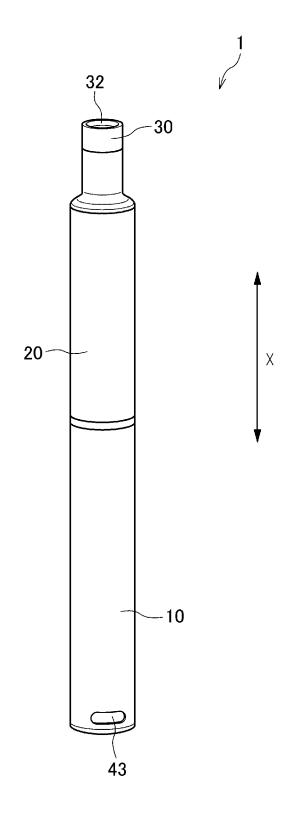
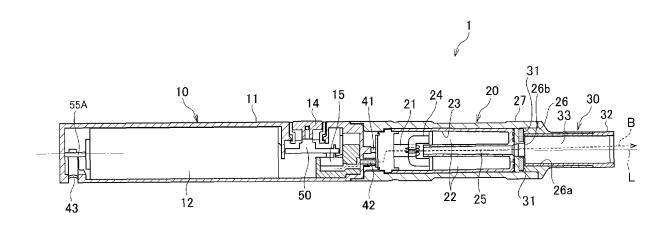
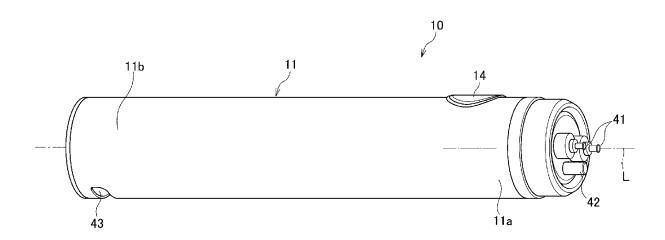
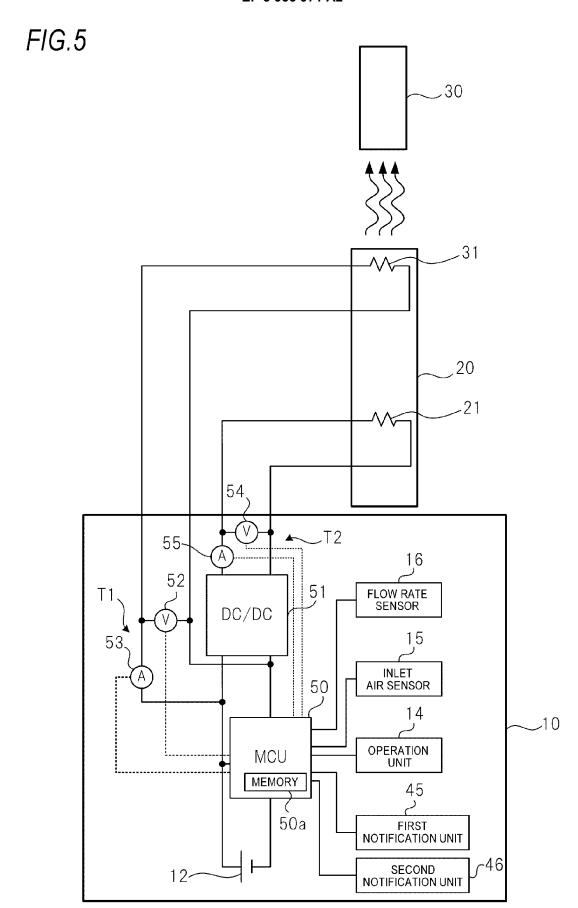
40

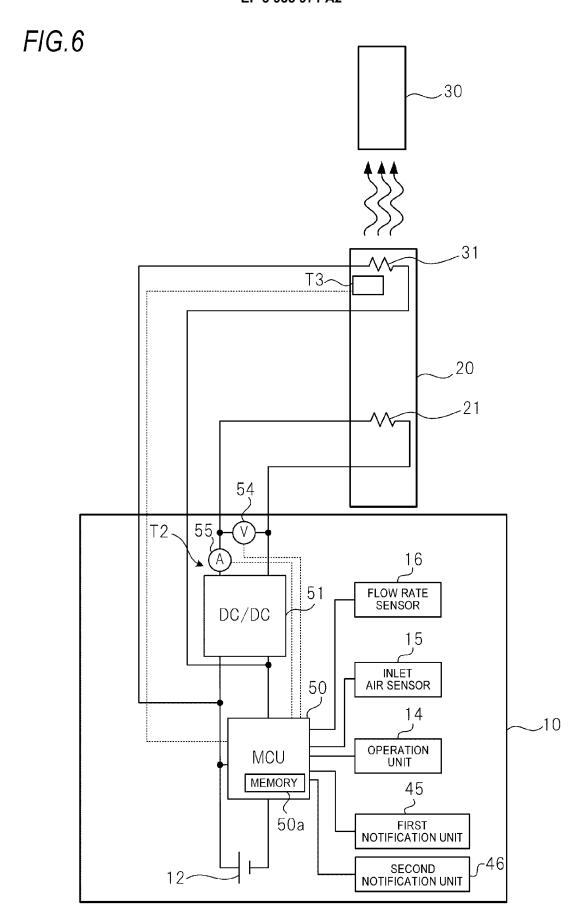
45

50

55

FIG.1


FIG.2

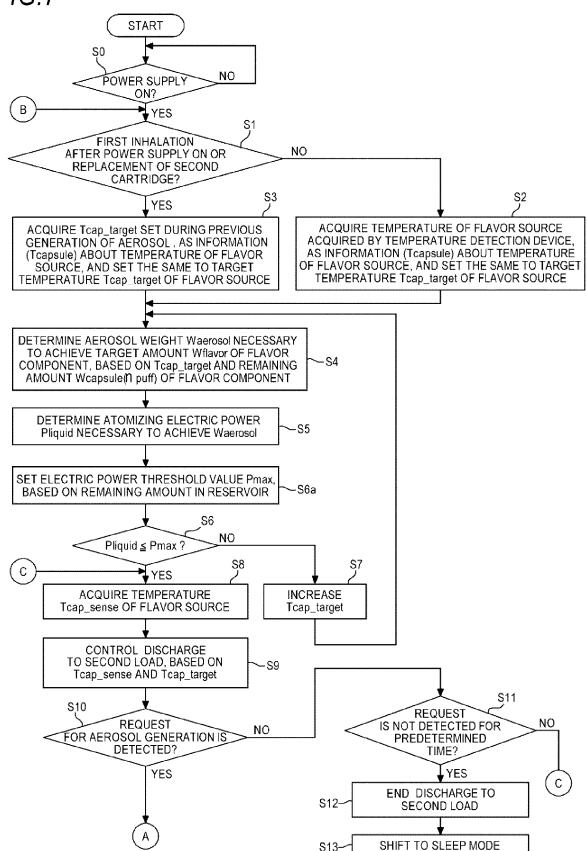
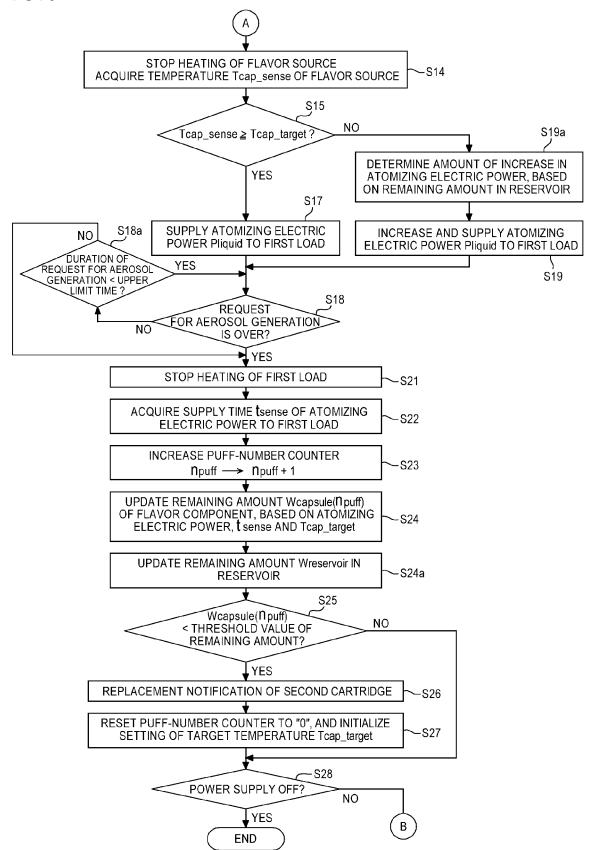



FIG.8

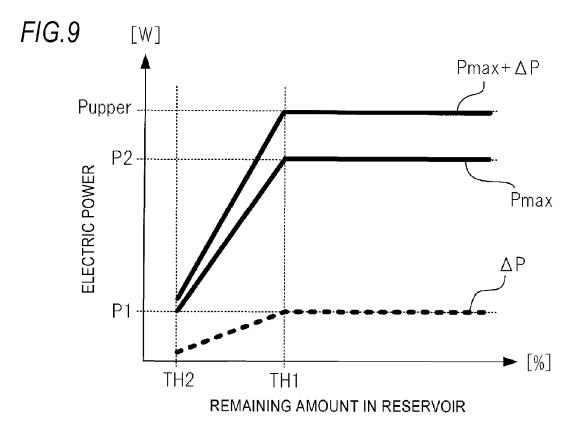
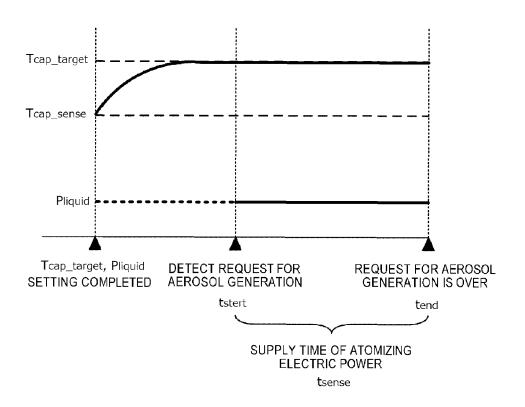



FIG.10

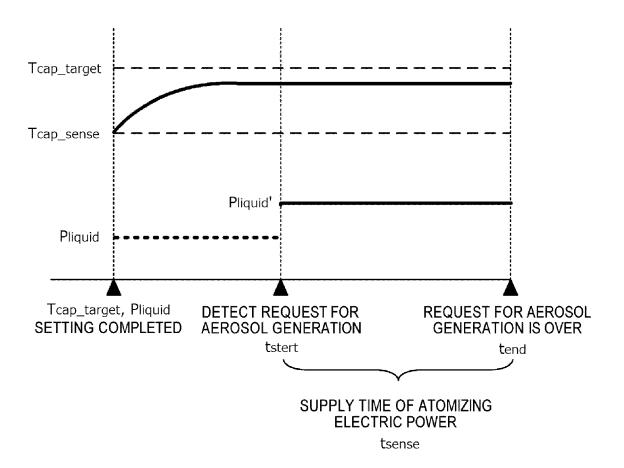
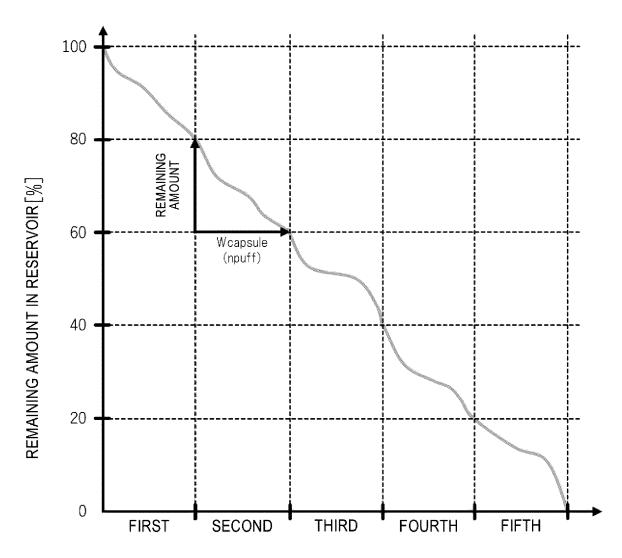



FIG.12

NUMBER OF USED SECOND CARTRIDGES

FIG.13

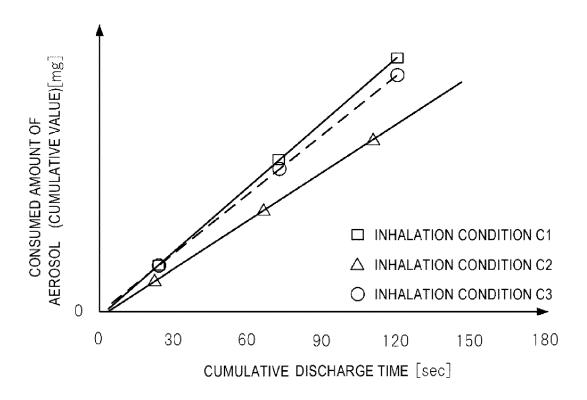
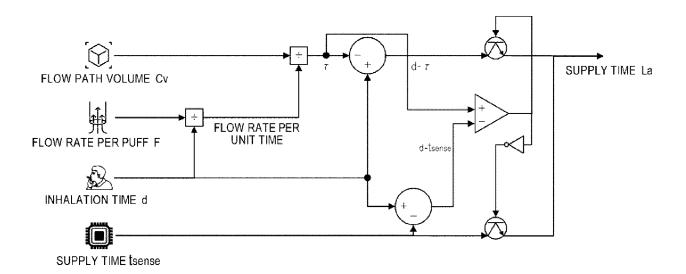
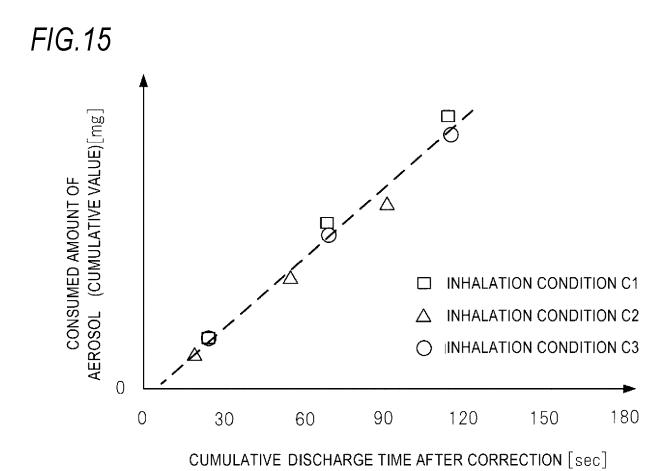




FIG.14

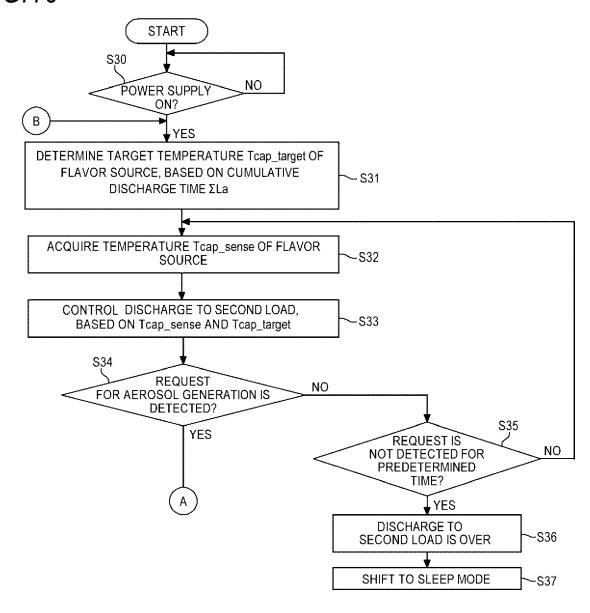


FIG.17

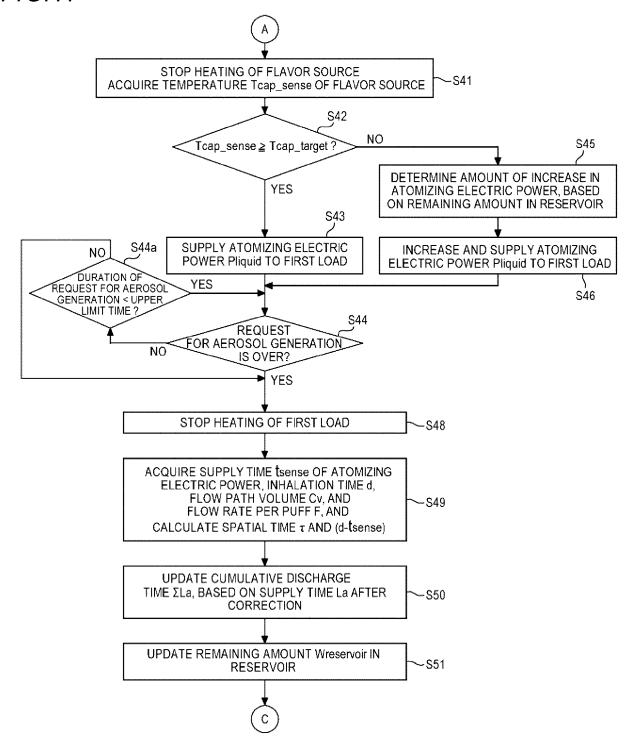
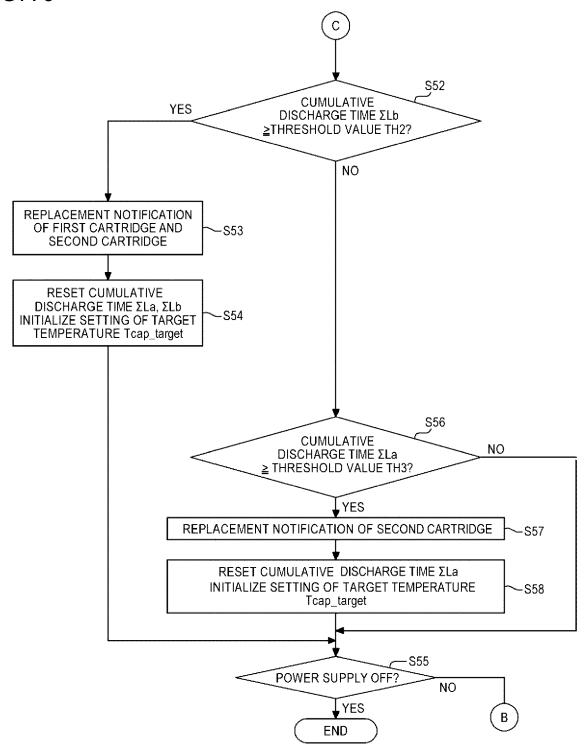
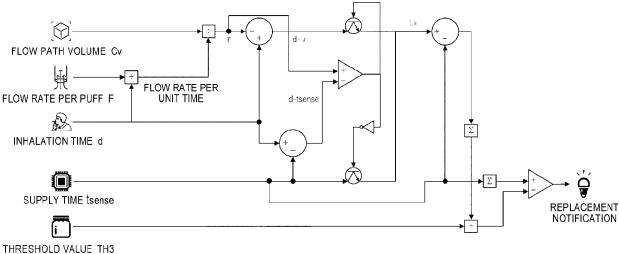
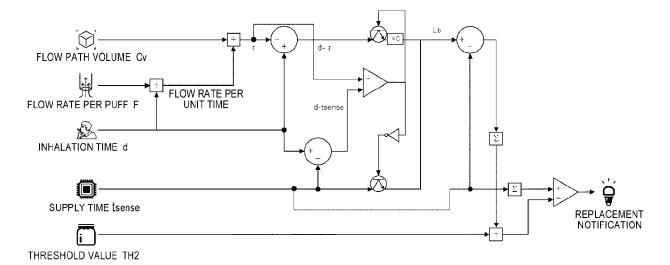





FIG.18

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2016076147 A **[0004]**
- JP 6462965 B **[0004]**

• JP 6295347 B [0004]