TECHNICAL FIELD
[0001] Various aspects described herein generally relate to wireless communication systems,
and more particularly, to dynamic and semi-persistent scheduling (SPS) mixed multi-panel
uplink (LTL) precoding.
BACKGROUND
[0002] Wireless communication systems have developed through various generations, including
a first-generation analog wireless phone service (1G), a second-generation (2G) digital
wireless phone service (including interim 2.5G and 2.75G networks), a third-generation
(3G) high speed data, Internet-capable wireless service and a fourth-generation (4G)
service (e.g., Long Term Evolution (LTE) or WiMax). There are presently many different
types of wireless communication systems in use, including Cellular and Personal Communications
Service (PCS) systems. Examples of known cellular systems include the cellular Analog
Advanced Mobile Phone System (AMPS), and digital cellular systems based on Code Division
Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple
Access (TDMA), the Global System for Mobile access (GSM) variation of TDMA, etc.
[0003] A fifth generation (5G) mobile standard calls for higher data transfer speeds, greater
numbers of connections, and better coverage, among other improvements. The 5G standard,
according to the Next Generation Mobile Networks Alliance, is designed to provide
data rates of several tens of megabits per second to each of tens of thousands of
users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds
of thousands of simultaneous connections should be supported in order to support large
sensor deployments. Consequently, the spectral efficiency of 5G mobile communications
should be significantly enhanced compared to the current 4G standard. Furthermore,
signaling efficiencies should be enhanced and latency should be substantially reduced
compared to current standards.
[0004] Some wireless communication networks, such as 5G, support operation at very high
and even extremely-high frequency (EHF) bands, such as millimeter wave (mmW) frequency
bands (generally, wavelengths of 1mm to 10mm, or 30 to 300GHz). These extremely high
frequencies may support very high throughput such as up to six gigabits per second
(Gbps).
[0005] Typical multi-panel user equipments (UEs) do not have the capability of coherent
combining between certain panels. Therefore, during sounding reference signal (SRS)
transmission, only a certain part of the panels may be used for a certain SRS resource,
and a configured/indicated transmit precoding matrix indicator (TPMI) with associated
SRS resource indicator (SRI) may only be used by this certain part of the panels.
[0006] In Release 15 of the Third Generation Partnership Project (3GPP) standard, only a
single TPMI with a single associated SRI is configured/activated for configured grant
physical uplink shared channel (PUSCH) transmission. During a PUSCH transmission with
configured grant, the other part of the panels, which is not associated with the configured/indicated
TPMI, will not be used, even if this part would have potential benefits in terms of
diversity.
SUMMARY
[0008] A method performed by a user equipment (UE) is disclosed in claim 1.
[0009] A method performed by a network node is disclosed in claim 7. The method comprises
sending a radio resource control (RRC) configuration to a user equipment (UE). The
RRC configuration comprises configurations of one or more initial resource combinations
supported by a configured grant uplink (LTL) resource for initial transmission of
data from the UE to the network node. The RRC configuration also comprises one or
more interpretation rules to be applied by the UE for retransmission of the data to
the network node. The method also comprises sending a schedule of the configured grant
LTL resource to the UE, and sending, upon an error in receiving the data on the configured
grant UL resource from the UE using the one or more initial resource combinations,
a downlink control information (DCI) to the UE for retransmission of the data, the
DCI including a schedule of a retransmission LTL resource. The method further comprises
receiving the data on the retransmission UL resource from the UE using the one or
more retransmission resource combinations. Each initial resource combination and each
retransmission resource combination includes a combination of resource parameters.
The resource parameters includes any one or more of a sounding reference signal (SRS)
resource indicator (SRI), a transmit precoding matrix indicator (TPMI), and antenna
ports. The DCI indicates a combination of SRI, TPMI, and antenna ports. Further, the
one or more interpretation rules specify to the UE that the one or more retransmission
resource combinations are to be determined based on comparisons of the SRI, TPMI,
and antenna ports indicated in the DCI with the SRI, TPMI, and antenna ports of the
one or more initial resource combinations configured through the RRC configuration.
[0010] A user equipment (UE) is disclosed in claim 12.
[0011] A network node is disclosed in claim 13. The network node comprises means for sending
a radio resource control (RRC) configuration to a user equipment (UE). The RRC configuration
comprises configurations of one or more initial resource combinations supported by
a configured grant uplink (UL) resource for initial transmission of data from the
UE to the network node. The RRC configuration also comprises one or more interpretation
rules to be applied by the UE for retransmission of the data to the network node.
The network node also comprises means for sending a schedule of the configured grant
UL resource to the UE, and means for sending, upon an error in receiving the data
on the configured grant UL resource from the UE using the one or more initial resource
combinations, a downlink control information (DCI) to the UE for retransmission of
the data, the DCI including a schedule of a retransmission UL resource. The network
node further comprises means for receiving the data on the retransmission UL resource
from the UE using the one or more retransmission resource combinations. Each initial
resource combination and each retransmission resource combination includes a combination
of resource parameters. The resource parameters includes any one or more of a sounding
reference signal (SRS) resource indicator (SRI), a transmit precoding matrix indicator
(TPMI), and antenna ports. The DCI indicates a combination of SRI, TPMI, and antenna
ports. Further, the one or more interpretation rules specify to the UE that the one
or more retransmission resource combinations are to be determined based on comparisons
of the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
[0012] A non-transitory computer-readable medium storing computer-executable instructions
for a user equipment (UE) is disclosed in claim 14.
[0013] A non-transitory computer-readable medium storing computer-executable instructions
for a network node is disclosed in claim 15. The executable instructions comprise
one or more instructions causing the network node to send a radio resource control
(RRC) configuration to a user equipment (UE). The RRC configuration comprises configurations
of one or more initial resource combinations supported by a configured grant uplink
(UL) resource for initial transmission of data from the UE to the network node. The
RRC configuration also comprises one or more interpretation rules to be applied by
the UE for retransmission of the data to the network node. The executable instructions
also comprise one or more instructions causing the network node to send a schedule
of the configured grant UL resource to the UE, and send, upon an error in receiving
the data on the configured grant UL resource from the UE using the one or more initial
resource combinations, a downlink control information (DCI) to the UE for retransmission
of the data, the DCI including a schedule of a retransmission UL resource. The executable
instructions further comprise one or more instructions causing the network node to
receive the data on the retransmission UL resource from the UE using the one or more
retransmission resource combinations. Each initial resource combination and each retransmission
resource combination includes a combination of resource parameters. The resource parameters
includes any one or more of a sounding reference signal (SRS) resource indicator (SRI),
a transmit precoding matrix indicator (TPMI), and antenna ports. The DCI indicates
a combination of SRI, TPMI, and antenna ports. Further, the one or more interpretation
rules specify to the UE that the one or more retransmission resource combinations
are to be determined based on comparisons of the SRI, TPMI, and antenna ports indicated
in the DCI with the SRI, TPMI, and antenna ports of the one or more initial resource
combinations configured through the RRC configuration.
[0014] The invention is defined by the appended claims. Other objects and advantages associated
with the aspects disclosed herein will be apparent to those skilled in the art based
on the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] The accompanying drawings are presented to aid in the description of examples of
one or more aspects of the disclosed subject matter and are provided solely for illustration
of the examples and not limitation thereof:
FIG. 1 illustrates an exemplary wireless communications system in accordance with
one or more aspects of the disclosure;
FIG. 2 is a simplified block diagram of several sample aspects of components that
may be employed in wireless communication nodes and configured to support communication
in accordance with one or more aspects of the disclosure;
FIG. 3 illustrates an exemplary method performed by a UE and a network node to communicate
with each other in accordance with one or more aspects of the disclosure; and
FIGS. 4 and 5 illustrate simplified block diagrams of several sample aspects of apparatuses
configured to support RTT positioning.
DETAILED DESCRIPTION
[0016] Aspects of the subject matter are provided in the following description and related
drawings directed to specific examples of the disclosed subject matter. Alternates
may be devised without departing from the scope of the disclosed subject matter. Additionally,
well-known elements will not be described in detail or will be omitted so as not to
obscure the relevant details.
[0017] The word "exemplary" is used herein to mean "serving as an example, instance, or
illustration." Any aspect described herein as "exemplary" is not necessarily to be
construed as preferred or advantageous over other aspects. Likewise, the term "aspects"
does not require that all aspects include the discussed feature, advantage, or mode
of operation.
[0018] The terminology used herein describes particular aspects only and should not be construed
to limit any aspects disclosed herein. As used herein, the singular forms "a," "an,"
and "the" are intended to include the plural forms as well, unless the context clearly
indicates otherwise. Those skilled in the art will further understand that the terms
"comprises," "comprising," "includes," and/or "including," as used herein, specify
the presence of stated features, integers, steps, operations, elements, and/or components,
but do not preclude the presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups thereof.
[0019] Further, various aspects may be described in terms of sequences of actions to be
performed by, for example, elements of a computing device. Those skilled in the art
will recognize that various actions described herein can be performed by specific
circuits (e.g., an application specific integrated circuit (ASIC)), by program instructions
being executed by one or more processors, or by a combination of both. Additionally,
these sequences of actions described herein can be considered to be embodied entirely
within any form of non-transitory computer-readable medium having stored thereon a
corresponding set of computer instructions that upon execution would cause an associated
processor to perform the functionality described herein. Thus, the various aspects
described herein may be embodied in a number of different forms. In addition, for
each of the aspects described herein, the corresponding form of any such aspects may
be described herein as, for example, "logic configured to" and/or other structural
components configured to perform the described action.
[0020] As used herein, the terms "user equipment" (UE) and "base station" are not intended
to be specific or otherwise limited to any particular Radio Access Technology (RAT),
unless otherwise noted. In general, such UEs may be any wireless communication device
(e.g., a mobile phone, router, tablet computer, laptop computer, tracking device,
Internet of Things (loT) device, etc.) used by a user to communicate over a wireless
communications network. A UE may be mobile or may (e.g., at certain times) be stationary,
and may communicate with a Radio Access Network (RAN). As used herein, the term "UE"
may be referred to interchangeably as an "access terminal" or "AT," a "client device,"
a "wireless device," a "subscriber device," a "subscriber terminal," a "subscriber
station," a "user terminal" or UT, a "mobile terminal," a "mobile station," or variations
thereof. Generally, UEs can communicate with a core network via a RAN, and through
the core network the UEs can be connected with external networks such as the Internet
and with other UEs. Of course, other mechanisms of connecting to the core network
and/or the Internet are also possible for the UEs, such as over wired access networks,
WiFi networks (e.g., based on IEEE 802.11, etc.) and so on.
[0021] A base station may operate according to one of several RATs in communication with
UEs depending on the network in which it is deployed, and may be alternatively referred
to as an Access Point (AP), a Network Node, a NodeB, an evolved NodeB (eNB), a general
Node B (gNodeB, gNB), etc. In addition, in some systems a base station may provide
purely edge node signaling functions while in other systems it may provide additional
control and/or network management functions.
[0022] UEs can be embodied by any of a number of types of devices including but not limited
to printed circuit (PC) cards, compact flash devices, external or internal modems,
wireless or wireline phones, smartphones, tablets, tracking devices, asset tags, and
so on. A communication link through which UEs can send signals to a RAN is called
an uplink channel (e.g., a reverse traffic channel, a reverse control channel, an
access channel, etc.). A communication link through which the RAN can send signals
to UEs is called a downlink or forward link channel (e.g., a paging channel, a control
channel, a broadcast channel, a forward traffic channel, etc.). As used herein the
term traffic channel (TCH) can refer to either an uplink / reverse or downlink ! forward
traffic channel.
[0023] FIG. 1 illustrates an exemplary wireless communications system 100 according to one or more
aspects. The wireless communications system 100, which may also be referred to as
a wireless wide area network (WWAN), may include various base stations 102 and various
UEs 104. The base stations 102 may include macro cells (high power cellular base stations)
and/or small cells (low power cellular base stations). The macro cells may include
Evolved NodeBs (eNBs) where the wireless communications system 100 corresponds to
an LTE network, gNodeBs (gNBs) where the wireless communications system 100 corresponds
to a 5G network, and/or a combination thereof, and the small cells may include femtocells,
picocells, microcells, etc.
[0024] The base stations 102 may collectively form a Radio Access Network (RAN) and interface
with an Evolved Packet Core (EPC) or Next Generation Core (NGC) through backhaul links.
In addition to other functions, the base stations 102 may perform functions that relate
to one or more of transferring user data, radio channel ciphering and deciphering,
integrity protection, header compression, mobility control functions (e.g., handover,
dual connectivity), inter-cell interference coordination, connection setup and release,
load balancing, distribution for non-access stratum (NAS) messages, NAS node selection,
synchronization, RAN sharing, multimedia broadcast multicast service (MBMS), subscriber
and equipment trace, RAN information management (RIM), paging, positioning, and delivery
of warning messages. The base stations 102 may communicate with each other directly
or indirectly (e.g., through the EPC / NGC) over backhaul links 134, which may be
wired or wireless.
[0025] The base stations 102 may wirelessly communicate with the UEs 104. Each of the base
stations 102 may provide communication coverage for a respective geographic coverage
area 110. In an aspect, although not shown in FIG. 1, coverage areas 110 may be subdivided
into a plurality of cells (e.g., three), or sectors, each cell corresponding to a
single antenna or array of antennas of a base station 102. As used herein, the term
"cell" or "sector" may correspond to one of a plurality of cells of a base station
102, or to the base station 102 itself, depending on the context.
[0026] While neighboring macro cell geographic coverage areas 110 may partially overlap
(e.g., in a handover region), some of the geographic coverage areas 110 may be substantially
overlapped by a larger geographic coverage area 110. For example, a small cell base
station 102' may have a coverage area 110' that substantially overlaps with the coverage
area 110 of one or more macro cell base stations 102. A network that includes both
small cell and macro cells may be known as a heterogeneous network. A heterogeneous
network may also include Home eNBs (HeNBs) and/or Home gNodeBs, which may provide
service to a restricted group known as a closed subscriber group (CSG). The communication
links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also
referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or
downlink (DL) (also referred to as forward link) transmissions from a base station
102 to a UE 104. The communication links 120 may use MIMO antenna technology, including
spatial multiplexing, beamforming, and/or transmit diversity. The communication links
may be through one or more carriers. Allocation of carriers may be asymmetric with
respect to DL and UL (e.g., more or less carriers may be allocated for DL than for
UL).
[0027] The wireless communications system 100 may further include a wireless local area
network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152
via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz). When
communicating in an unlicensed frequency spectrum, the WLAN STAs 152 and/or the WLAN
AP 150 may perform a clear channel assessment (CCA) prior to communicating in order
to determine whether the channel is available.
[0028] The small cell base station 102' may operate in a licensed and/or an unlicensed frequency
spectrum. When operating in an unlicensed frequency spectrum, the small cell base
station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency
spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE
! 5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity
of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed
(LTE-U), licensed assisted access (LAA), or MulteFire.
[0029] The wireless communications system 100 may further include a mmW base station 180
that may operate in mmW frequencies and/or near mmW frequencies in communication with
a UE 182. Extremely high frequency (EHF) is part of the RF in the electromagnetic
spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter
and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave.
Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred
to as centimeter wave. Communications using the mmW/near mmW radio frequency band
have high path loss and a relatively short range. The mmW base station 180 may utilize
beamforming 184 with the UE 182 to compensate for the extremely high path loss and
short range. Further, it will be appreciated that in alternative configurations, one
or more base stations 102 may also transmit using mmW or near mmW and beamforming.
Accordingly, it will be appreciated that the foregoing illustrations are merely examples
and should not be construed to limit the various aspects disclosed herein.
[0030] The wireless communications system 100 may further include one or more UEs, such
as UE 190, that connects indirectly to one or more communication networks via one
or more device-to-device (D2D) peer-to-peer (P2P) links. In the embodiment of FIG.
1, UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base
stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity)
and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which
UE 190 may indirectly obtain WLAN-based Internet connectivity). In an example, the
D2D P2P links 192-194 may be supported with any well-known D2D radio access technology
(RAT), such as LTE Direct (LTE-D), WiFi Direct (WiFi-D), Bluetooth, and so on.
[0031] FIG. 2 illustrates several sample components (represented by corresponding blocks) that
may be incorporated into an apparatus 202 and an apparatus 204 (corresponding to,
a UE and a base station (e.g., eNB, gNB), respectively, to support the operations
as disclosed herein. As an example, the apparatus 202 corresponds to a UE, and the
apparatus 204 corresponds to a network node such as a gNB 222 and/or an eNB 224. It
will be appreciated that the components may be implemented in different types of apparatuses
in different implementations (e.g., in an ASIC, in a System-on-Chip (SoC), etc.).
The illustrated components may also be incorporated into other apparatuses in a communication
system. For example, other apparatuses in a system may include components similar
to those described to provide similar functionality. Also, a given apparatus may contain
one or more of the components. For example, an apparatus may include multiple transceiver
components that enable the apparatus to operate on multiple carriers and/or communicate
via different technologies.
[0032] The apparatus 202 and the apparatus 204 each may include at least one wireless communication
device (represented by the communication devices 208 and 214) for communicating with
other nodes via at least one designated RAT (e.g., LTE, 5G NR). Each communication
device 208 may include at least one transmitter (represented by the transmitter 210)
for transmitting and encoding signals (e.g., messages, indications, information, and
so on) and at least one receiver (represented by the receiver 212) for receiving and
decoding signals (e.g., messages, indications, information, pilots, and so on). Each
communication device 214 may include at least one transmitter (represented by the
transmitter 216) for transmitting signals (e.g., messages, indications, information,
pilots, and so on) and at least one receiver (represented by the receiver 218) for
receiving signals (e.g., messages, indications, information, and so on).
[0033] A transmitter and a receiver may comprise an integrated device (e.g., embodied as
a transmitter circuit and a receiver circuit of a single communication device) in
some implementations, may comprise a separate transmitter device and a separate receiver
device in some implementations, or may be embodied in other ways in other implementations.
In an aspect, a transmitter may include a plurality of antennas, such as an antenna
array, that permits the respective apparatus to perform transmit "beamfonning," as
described further herein. Similarly, a receiver may include a plurality of antennas,
such as an antenna array, that permits the respective apparatus to perform receive
beamforming, as described further herein. In an aspect, the transmitter and receiver
may share the same plurality of antennas, such that the respective apparatus can only
receive or transmit at a given time, not both at the same time. A wireless communication
device (e.g., one of multiple wireless communication devices) of the apparatus 204
may also comprise a Network Listen Module (NLM) or the like for performing various
measurements.
[0034] The apparatus 204 may include at least one communication device (represented by the
communication device 220) for communicating with other nodes. For example, the communication
device 220 may comprise a network interface (e.g., one or more network access ports)
configured to communicate with one or more network entities via a wire-based or wireless
backhaul connection. In some aspects, the communication device 220 may be implemented
as a transceiver configured to support wire-based or wireless signal communication.
This communication may involve, for example, sending and receiving messages, parameters,
or other types of information. Accordingly, in the example of FIG. 2, the communication
device 220 is shown as comprising a transmitter 222 and a receiver 224 (e.g., network
access ports for transmitting and receiving).
[0035] The apparatuses 202 and 204 may also include other components used in conjunction
with the operations as disclosed herein. The apparatus 202 may include a processing
system 232 for providing functionality relating to, for example, communication with
the network. The apparatus 204 may include a processing system 234 for providing functionality
relating to, for example, communication with the UEs. In an aspect, the processing
systems 232 and 234 may include, for example, one or more general purpose processors,
multi-core processors, ASICs, digital signal processors (DSPs), field programmable
gate arrays (FPGA), or other programmable logic devices or processing circuitry.
[0036] The apparatuses 202 and 204 may include memory components 238 and 240 (e.g., each
including a memory device), respectively, for maintaining information (e.g., information
indicative of reserved resources, thresholds, parameters, and so on). In addition,
the apparatuses 202 and 204 may include user interface devices 244 and 246, respectively,
for providing indications (e.g., audible and/or visual indications) to a user and/or
for receiving user input (e.g., upon user actuation of a sensing device such a keypad,
a touch screen, a microphone, and so on).
[0037] For convenience, the apparatuses 202 and 204 are shown in FIG. 2 as including various
components that may be configured according to the various examples described herein.
It will be appreciated, however, that the illustrated blocks may have different functionality
in different designs.
[0038] The components of FIG. 2 may be implemented in various ways. In some implementations,
the components of FIG. 2 may be implemented in one or more circuits such as, for example,
one or more processors and/or one or more ASICs (which may include one or more processors).
Here, each circuit may use and/or incorporate at least one memory component for storing
information or executable code used by the circuit to provide this functionality.
For example, some or all of the functionality represented by blocks 208, 232, 238,
and 244 may be implemented by processor and memory component(s) of the apparatus 202
(e.g., by execution of appropriate code and/or by appropriate configuration of processor
components). Similarly, some or all of the functionality represented by blocks 214,
220, 234, 240, and 246 may be implemented by processor and memory component(s) of
the apparatus 204 (e.g., by execution of appropriate code and/or by appropriate configuration
of processor components).
[0039] In an aspect, the apparatus 204 may correspond to a "small cell" or a Home gNodeB.
The apparatus 202 may transmit and receive messages via a wireless link 260 with the
apparatus 204, the messages including information related to various types of communication
(e.g., voice, data, multimedia services, associated control signaling, etc.). The
wireless link 260 may operate over a communication medium of interest, shown by way
of example in FIG. 2 as the medium 262, which may be shared with other communications
as well as other RATs. A medium of this type may be composed of one or more frequency,
time, and/or space communication resources (e.g., encompassing one or more channels
across one or more carriers) associated with communication between one or more transmitter
/ receiver pairs, such as the apparatus 204 and the apparatus 202 for the medium 262.
[0040] In general, the apparatus 202 and the apparatus 204 may operate via the wireless
link 260 according to one or more radio access types, such as LTE, LTE-U, or 5G NR,
depending on the network in which they are deployed. These networks may include, for
example, different variants of CDMA networks (e.g., LTE networks, 5G NR networks,
etc.), TDMA networks, FDMA networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier
FDMA (SC-FDMA) networks, and so on.
[0041] As mentioned above, conventionally, only a single TPMI with a single associated SRI
is configured/activated for configured grant PUSCH transmission. During a PUSCH transmission
with configured grant, the other part of the panels, which is not associated with
the configured/indicated TPMI, will not be used.
[0042] To address this issue, Applicant has proposed solutions to enhance multi-panel UL
multiple input multiple output (MIMO) transmission with configured grant filed as
application
PCT/CN2019/074829 entitled "DYNAMIC PHIYSICAL UPLINK SHARED CHANNEL CONFIGURATION". For example, the
network (NW) can configure multiple SRIs and associated TPMIs and antenna ports to
the UE during the configured grant configuration/activation. The network can also
configure multiple redundancy version (RV) indices, where each RV index corresponds
to a configured TPMI and its associated SRI, and antenna ports. The UE may use each
of the configured RV+TPMI+SRI+antenna-ports to transmit PUSCH using a certain part
of the panels non-coherently, such that spatial diversity can be improved. In short,
for a configured grant based PUSCH transmission, the network may enable the UE to
do UL precoding using SPS-configured R V + TPMI+SRI+antenna port combinations.
[0043] The configured grant is used for initial UL transmission. For example, the network
may schedule the configured grant for the UE and the UE may use the scheduled PUSCH
resources in the configured grant to transmit data to the network. However, in some
instances, an error may occur during this initial UL transmission process (e.g., HARQ
process may be invoked). For example, the network (e.g., base station, gNB, gNodeB,
etc.) may not be able to fully decode the data transmitted by the UE. As another example,
the UE may not have heard the network's request for data, and thus does not transmit
data as the network expects. In such instances, the network schedules UL resources
(PUSCH) for retransmission for the UE and notifies the UE through the DCI.
[0044] There are at least two cases to consider for retransmission. In a first case (case-A),
the condition for retransmission may be worse than the condition for initial transmission.
In case-A, if retransmission is scheduled by the network, the scheduled UL resource
for the retransmission may not be suitable for the RV+TPMI+SRI+antenna-port combinations
that have been SPS -configured for initial transmission:
- Example A1: The configured grant PUSCH resources may be used only by the UEs carrying
out UL transmissions, while the PUSCH resource for retransmission may also be used
by both the retransmission UE and other UEs carrying out DL reception in a full-duplex
system (due to the reason of resource limitation). In this instance, a certain part
of the SPS-configured multiple SRI+TPMI+antenna-port combinations may cause spatial
jamming towards the UEs carrying out DL reception.
- Example A2: In the PUSCH resource for retransmission, a certain part of the SPS-configured
multiple SRI+TPMI+antenna-port combinations may cause spatial interference to other
UEs also carrying out UL transmissions, in a UL MU-MIMO scenario. In the configured
grant PUSCH resource, such interference may not exist.
[0045] Alternatively, in a second case (case-B), the condition for retransmission may be
better than the condition for initial transmission). In case-B, the configured grant
PUSCH resources may only be suitable for less SRI+TPMI+antenna-port combinations (i.e.,
less panels transmitting simultaneously) due to interference/jamming limitations,
while retransmission PUSCH resources may be suitable for more SRI+TPMI+antenna-port
combinations (i.e., more panels transmitting simultaneously). In this case, the SPS-configured
SRI+TPMI+antenna-port combinations for initial transmission may not be best in terms
of performance for retransmission.
- Example B1: The resource use may be reverted in comparison to Example A1.
- Example B2: The resource use may be reverted in comparison to Example A2.
[0046] To address such issues, it is proposed to enable dynamic turn on/off/switch of panels
(i.e., combinations of resource parameters) for retransmissions based on the multiple-SRI
solutions. The resource parameters may be any one or more of resource related parameters
such as RV, SRI, TPMI, antenna ports, bandwidth part (BWP), etc. The following solutions
are proposed:
[0047] In a first solution (solution 1), it is proposed to reuse the existing downlink control
information (DCI) for retransmission scheduling. In the existing DCI (e.g., Rel. 15
DCI), a DCI scheduling of a PUSCH retransmission only supports an indication of one
SRI and one associated TPMI. To overcome this limitation of the existing DCI, new
interpretation rules are proposed to enable dynamic indication of different SRI+TPMI+antenna-port
switches. The interpretation rules are provided from the network to the UE during
radio resource configuration (RRC).
[0048] In the existing DCI, there is a limitation of SRI+TPMI+antenna-port numbers. As a
result, case-A may be supported or case-B may be supported, but not both simultaneously
with solution-1. This means that under solution-1, a fixed cased-A or case-B may be
configured. However, this limitation can be overcome as explained further below
[0049] In a second solution (solution 2), it is also proposed to reuse the existing downlink
control information (DCI). However, the combination of RV+SRI+TPMI+antenna-port indicated
in the DCI may be translated into a choice of RRC configured RV+SRI+TPMI+antenna-port
combinations. In solution-2, the network may RRC configure multiple choices of RV+SRI+TPMI+antenna-port
combinations, and activate one of them for the configured grant PUSCH transmission.
For retransmission, an alternative choice index may be indicated via DCI, by jointly
using the bits originally used for RV+SRI+TPMI+antenna-port indication. With solution-2,
both case-A and case-B can be simultaneously supported.
[0050] In a third solution (solution 3), a new DCI format is proposed. If new DCI bits are
allowed, both case-A and case-B can be simultaneously supported in a single DCI format
without the fixed case-A or case-B SPS configuration.
[0051] In a fourth solution (solution 4), multiple bandwidth parts (BWPs) may be incorporated.
The network may configure different panels to transmit PUSCH in different BWPs. This
naturally leads to the extension of adding BWP in the configured combinations. As
a result, dynamic switching of the BWP+RV+SRI+TPMI+antenna-port combinations can be
carried out based on solutions-1, 2, and 3.
[0052] Each of the solutions are described in more detail. In discussing each of the solutions
in detail, phrase "resource combination" will be used to refer to a combination of
the resource parameters. That is, each resource combination may be a particular combination
of resource-related parameters such as RV, SRI, TPMI, antenna ports, BWP, and so on.
[0053] Regarding solution 1, as mentioned above, it is proposed to reuse the existing DCI
- e.g.., Rel. 15 DCI (Format 0_1) - for retransmission. Solution 1 may be subdivided
to solutions 1A and 1B (to address case-A and case-B, respectively). In solution 1A,
the UL resource (i.e., configured grant) may support same or more SRIs than the retransmission
resource. During RRC configuration, the network configures the UE to transmit using
UL resource that allows multiple resource combinations (e.g., multiple SRI+TPMI+antenna-port
combinations) for initial transmission. The configured UL resource is referred to
as configured grant UL resource.
[0054] In other words, the network (e.g., network node such as a base station) sends an
RRC configuration to the UE. The RRC configuration comprises configurations of one
or more resource combinations supported by the configured grant UL resource (e.g.,
PUSCH) for initial transmission of data from the UE to the network node. The configured
grant UL resource may be semi-persistently scheduled. That is, the configured grant
UL resource for initial transmission may be an SPS UL resource. The configured grant
UL resource may support same or more resource combinations (e.g., same or more SRI+TPMI+antenna-port
combinations) than the retransmission UL resource scheduled in the DCI for retransmission.
[0055] Also during RRC configuration, the network configures interpretation rules to enable
the UE to interpret the resource combination indication in the DCI. The following
is a list of possible rules:
- Rule 1A-1: If the resource combination SRI+TPMI+antenna-port indicated in the DCI
is one of the existing SPS-configured resource combinations SRI+TPMI+antenna-port,
the UE should: (1) mute the DCI indicated resource combination in the retransmission,
and (2) use some or all other (i.e., at least one) SPS-configured resource combinations
in the retransmission including transmitting the RV indicated in the DCI.
- Rule 1A-2: If the resource combination SRI+TPMI+antenna-port indicated in the DCI
is one of the existing SPS-configured resource combinations SRI+TPMI+antenna-port
or is new (not any of the existing SPS-configured resource combinations SRI+TPMI+antenna-port),
the UE should: (1) use the DCI indicated resource combination in the retransmission
including transmitting the RV indicated in the DCI, and (2) ignore, for retransmission,
all other SPS-configured resource combinations not indicated in the DCI.
- Rule 1A-3: If the TPMI and/or the antenna port indicated in the DCI use reserved bit
points, the UE should use the SPS-configured resource combination SRI+TPMI+antenna-port
for in the retransmission including transmitting the RV indicated in the DCI. If there
are multiple SPS-configured resource combinations SRI+TPMI+antenna-port, one or more
SPS-configured resource combinations may be used in the retransmission.
[0056] In solution 1B, the SPS UL resource may support same or less SRIs than the retransmission
resources. During RRC configuration, the network may configure the UE to transmit
using UL resource that allows one or more resource combinations (e.g., one or more
SRI+TPMI+antenna-port combinations) for initial transmissions. Again, the configured
UL resource may be SPS UL resource. The configured UL resource may support same or
less resource combinations (e.g., same or less SRI+TPMI+antenna-port combinations)
than the UL resources scheduled in DCI for retransmission.
[0057] Also during RRC configuration, the network may configure interpretation rules to
interpret the resource combination indication in the DCI. The following is a list
of possible rules:
- Rule 1B-1: If the resource combination SRI+TPMI+antenna-port indicated in the DCI
is new (not any of the existing SPS-configured resource combinations SRI+TPMI+antenna-port),
the UE should: (1) use the DCI indicated resource combination in the retransmission
including transmitting the RV indicated in the DCI, and (2) use some or all (i.e.,
at least one) other SPS-configured resource combinations in the retransmission including
transmitting the RV indicated in the DCI.
- Rule 1B-2: If the resource combination SRI+TPMI+antenna-port indicated in the DCI
is one of the existing SPS-configured resource combinations SRI+TPMI+antenna-port,
the UE should: (1) use the DCI indicated resource combination in the retransmission
including transmitting the R_V indicated in the DCI, and (2) also use some or all
(i.e., at least one) other SPS-configured resource combinations in the retransmission
including transmitting the RV indicated in the DCI.
- Rule 1B-3: If the TPMI and/or the antenna ports indicated in the DCI use reserved
bit points, the UE should use the SPS-configured resource combination SRI+TPMI+antenna-port
for in the retransmission including transmitting the RV indicated in the DCI. If there
are multiple SPS-configured resource combinations SRI+TPMI+antenna-ports, one or more
SPS-configured resource combinations may be used in the retransmission.
[0058] In solution 1A, a number of resource combinations for retransmission may be less
than or equal to a number resource combination for original transmission. On the other
hand, in solution 1B, the number of resource combinations for retransmission may be
greater than or equal to the number resource combination for original transmission.
[0059] Solution 2 is similar to solution 1 in that the existing DCI - e.g.., Rel. 15 DCI
(Format 0_1) - is reused for retransmission. The two solutions differ in how the resource
combination indicated in the DCI is interpreted. In solution-1, the manner of interpreting
the parameters of the resource combination is not changed from the existing interpretation
rules. That is, RV is still interpreted as RV, SRI is still interpreted as SRI, TMPI
is still interpreted as TMPI, and so on.
[0060] But in solution 2, the DCI indicated resource combination may be interpreted to be
an index. During RRC configuration, the network may configure the UE with multiple
choices of resource combinations (e.g., multiple choices of RV+SRI+TPMI+antenna-port
combinations), and each choice may include one or multiple resource combinations.
It should be noted that some choices may include more SRIs than other choices. As
such, both case-A and case-B may be simultaneously supported.
[0061] Also during RRC configuration, the network may configure interpretation rules to
interpret the resource combination indication in the DCI. The following is a list
of possible rules:
- Rule 2-1: Interpret bits of any combination of SRI, TPMI, and antenna-ports indicated
in the DCI as a choice index choosing one of the RRC configured choices of SRI+TMPI+antenna-port
combinations. The UE should use some or all SPS-configured resource combinations corresponding
to the choice index in the retransmission including transmitting the RV indicated
in the DCI.
- Rule 2-2: Interpret bits of RV and any combination of SRI, TPMI, and antenna-ports
indicated in the DCI as a choice index choosing one of the RRC configured choices
of RV+SRI+TMPI+antenna-port combinations. The UE should use some or all SPS-configured
resource combinations corresponding to the choice index in the retransmission.
- Rule 2-3: If any of the parameters of the resource combination (e.g., RV, SRI, TMPI,
antenna ports, BWP, etc.) indicated in the DCI use reserved bit points, the UE should
interpret the resource combination indicated in the DCI under solution 1A and/or solution
1B. Different reserved bits may be used to specify between solution 1A and solution
1B.
It should be noted that any of the RV, SRI, TMPI, antenna ports, etc. may be excluded
if the bits of the other parameters are sufficient.
[0062] Solution 3 is unlike solutions 1 and 2 in that a DCI with alternative format is proposed.
During RRC configuration, the network may configure the UE with any number of resource
combinations (e.g., one or more RV+SRI+TPMI+antenna-port combinations). But in solution
3, the DCI may also indicate any number of resource combinations. That is, the DCI
may indicate one or a plurality of resource combinations (e.g., one or more RV+SRI+TPMI+antenna-port
combinations). The configured UL resource (e.g., configured SPS UL resource) may support
less, more, or same number of SRIs than the UL resources scheduled in DCI for retransmission.
[0063] Solution 3 may be subdivided into solutions 3A and 3B. In solution 3A, if any of
the indicated resource combination use reserved bits of the parameters (e.g., reserved
bits of TPMI and/or antenna ports), that resource combination may be ignored for retransmission.
The UE may use some or all other resource combinations in the retransmission.
[0064] In solution 3B, a number of resource combinations (e.g., number of RV+SRI+TPMI+antenna-port
combinations) supported in the UL retransmission resource - denoted by
N - may be indicated in the DCI and/or configured during the RRC configuration and/or
preconfigured in the UE. In this instance, if the number of resource combinations
indicated in the DCI is
N or greater, the UE may use
N of the indicated combinations (e.g., first
N) for retransmission, and the remaining combinations may be ignored. If the number
of resource combinations indicated in the DCI is less than
N, the UE may use all of the indicated resource combinations.
[0065] Solution 4 may be viewed as an option extension to any of solutions 1, 2, and 3.
In solution 4, during RRC configuration, the network may configure each resource combinations
to include a bandwidth part (BWP) indicator. That is, one or more resource combinations
(e.g., one or more RV+SRI+TPMI+antenna-ports+BWP combinations) may be configured.
[0066] For retransmission scheduling, interpretation rules of solutions 1, 2, and 3 may
be modified to account for the BWP indicated in the DCI. For example, in solution
1 based approaches (reuse of existing DCI), the BWP indicated in the DCI may be considered
in addition to SRI+TPMI+antenna-ports in determining which resource combination or
combinations will be used in retransmission. In solution 2 based approaches (reuse
of existing DCI), the BWP may be included in the consideration of determining the
choice index. In solution 3 based approaches (define new DCI format), multiple combinations
of RV+SRI+TPMI+antenna-ports+BWP may be indicated in the DCI.
[0067] The following should be noted. If the existing DCI is reused, then for both solutions
1 and 2, it may be assumed that the resource allocation in the DCI scheduling the
retransmission can be applied to all scheduled BWPs. If a new DCI format is allowed,
then for solution 3, different resource allocations can be indicated for different
BWPs in the DCI scheduling the retransmission.
[0068] FIG. 3 illustrates an exemplary method 300 performed by a UE and a network node (e.g., base
station such as gNB, eNB) to communicate with each other. The UE may be a multi-panel
UE. At block 305, the network node sends an RRC configuration to the UE, and at block
310, the UE receives the RRC configuration (denoted by dashed arrow from block 305
to block 310).
[0069] Recall from above that during the RRC configuration, the network configures one or
more resource combinations supported by the UL resource for initial transmission of
data from the UE to the network. That is, one or more of the panels of the UE may
be configured for uplink transmission. For ease of reference, the resource combinations
configured in the UE according to the RRC configuration will be referred to as "initial"
resource combinations and the UL resource (e.g., PUSCH) for the initial transmission
will be referred to as the "configured grant" UL resource. It can then be said that
the RRC configuration comprises configurations of one or more resource combinations
supported by the configured grant UL resource for initial transmission of data from
the UE to the network node. In an aspect, each initial resource combination may correspond
to one of the panels of the UE.
[0070] Each initial resource combination includes any combination of resource parameters
such as any combination of SRI, TPMI, and antenna ports. RV and/or BWP may also be
included. In the RRC configuration, each initial resource combination may be different
from each of the other initial resource combinations. In an aspect, first and second
resource combination may be considered to be different when a value of at least one
resource parameter of the first resource combination is different from a value of
the same at least one resource parameter of the second resource combination.
[0071] At block 315, the network node sends a schedule of the configured grant UL resource
(e.g., PUSCH) to the UE, and at block 320, the UE receives the schedule (denoted by
dashed arrow from block 315 to block 320).
[0072] At block 330, the UE sends data on the configured grant UL resource to the network
node using the one or more initial resource combinations. To state it another way,
the UE may send the data on the configured grant UL resource via one or more panels
corresponding to the one or more initial resource combinations.
[0073] However, in this instance, it is assumed that an error occurs for the initial UL
transmission (denoted by X through dashed arrow from block 330 to block 335). For
example, the network may receive the data at block 335 but is unable to decode, or
the network node may not receive the data at all due to severe interference.
[0074] Upon the error in receiving the data from the UE, at block 345, the network node
sends send the DCI to the UE for retransmission of the data. At block 350, the UE
receives the DCI (denoted by a dashed arrow from block 345 to 350. The DCI includes
a schedule of a UL resource for retransmission. For ease of reference, the UL resource
(e.g., PUSCH) for the retransmission will be referred to as "retransmission" UL resource.
It can then be said that the DCI includes a schedule of the retransmission UL resource.
[0075] At block 360, the UE determines one or more resource combinations for retransmission
based on the interpretation rules and the DCI. For ease of reference, the resource
combinations determined by the UE for retransmission will be referred to as "retransmission"
resource combinations. In an aspect, each retransmission resource combination may
correspond to one of the panels of the UE.
[0076] At block 370, the UE retransmits the data, and at block 375, the network receives
the retransmitted data (denoted by dashed arrow from block 370 to block 375). That
is, the UE transmits the data on the retransmission UL resource using the one or more
retransmission resource combinations, and the network node receives the data on the
retransmission UL.
[0077] As noted, the UE in block 360 determines the retransmission resource combinations
used to retransmit the data. It can be desirable to reuse the existing DCI (e.g.,
reuse the Rel. 15 DCI) to maximize compatibility with existing techniques. To optimize
uplink precoding, it is proposed to enhance how the information contained in the DCI
is interpreted to determine the retransmission resource combinations.
[0078] Thus, in an aspect, the RRC configuration received from the network also includes
one or more interpretation rules to be applied by the UE for retransmission of the
data to the network (e.g., any of the rules of solutions 1, 2, 3 and/or 4 described
above). The interpretation rules specify that the UE determine the retransmission
resource combinations based on a comparison between information included in the DCI
and the initial resource combinations configured through the RRC configuration. This
corresponds to solution 1 described above.
[0079] For example, the DCI indicates a combination of the SRI, TPMI, and antenna ports.
The interpretation rules specify that the retransmission resource combinations be
determined based on a comparison of the indicated SRI, TPMI, and antenna ports parameters
with the same parameters of the initial resource combinations.
[0080] Unlike the conventional technique which completely ignores the initial resource combinations,
the proposed technique allows the possibility of having the retransmission resource
combinations include at least some of the initial resource combinations. In other
words, the initial resource combinations may be reused. Another advantage is that
unlike the conventional technique uses only one panel for retransmission, the proposed
technique allows the possibility of multiple panels being used for the retransmission.
This in turn enhances the likelihood that the retransmission will be successful.
[0081] In an aspect, the RV provided in the DCI may be included in the retransmission. That
is, in an aspect, the chosen panels (the determined retransmission resource combinations)
all may transmit the same RV included in the DCI.
[0082] When case-A applies (i.e., when the configured grant UL resource supports same or
more SRIs than the retransmission UL resource), the interpretation rules may specify
any one or more of the rules 1A-1, 1A-2, and 1A-3 described above. Rule 1A-1 may be
rephrased to indicate that when the combination of the SRI, TPMI, and antenna ports
parameters indicated in the DCI matches a combination of SRI, TPMI, and antenna ports
of one of the initial resource combinations, the matching initial resource combination
may be muted (i.e., not used), and all other initial resource combinations may be
included in the retransmission resource combinations. Again, matching indicates that
the values of the parameters SRI, TPMI, and antenna ports of the DCI match the values
of the same parameters of the initial resource combination.
[0083] Rule 1A-2 may be rephrased to indicate that when the combination of SRI, TPMI, and
antenna ports indicated in the DCI does not match the combination of SRI, TPMI, and
antenna ports of any of the initial resource combinations, all of the initial resource
combinations may be excluded from being included in the retransmission resource combinations.
Rule 1A-3 may be rephrased to indicate that when one or more reserved bits of any
of the SRI, TPMI, and antenna ports indicated in the DCI are used, all of the initial
resource combinations may be included in the retransmission resource combinations.
[0084] When case-B applies (i.e., when the configured grant UL resource supports same or
less SRIs than the retransmission UL resource), the interpretation rules may specify
any one or more of the rules 1B-1, 1B-2, and 1B-3 described above. Rule 1B-1 may be
rephrased to indicate that when the combination of SRI, TPMI, and antenna ports indicated
in the DCI does not match a combination of SRI, TPMI, and antenna ports of any of
the initial resource combination, the combination of SRI, TPMI, and antenna ports
indicated in the DCI and at least one of the initial resource combination may be included
in the retransmission resource combinations.
[0085] Rule 1B-2 may be rephrased to indicate that when the combination of SRI, TPMI, and
antenna ports indicated in the DCI does match the combination of SRI, TPMI, and antenna
ports of any of the initial resource combination, the matching initial resource combination
may be included in the one or more retransmission resource combinations. If there
are multiple initial resource combinations, at least one of the other initial resource
combination may also be included in the retransmission resource combinations. Rule
1B-3 may be rephrased to indicate that when one or more reserved bits of any of SRI,
TPMI, and antenna ports indicated in the DCI are used, all of the initial resource
combinations may be included in the retransmission resource combinations. IF the RV
and/or BWP are included as parameters of the resource combinations, then each of the
rules 1A-1, 1A-2, 1A-3, 1B-1, 1B-2, and 1B-3 may be modified accordingly to account
for the RV and/or the BWP.
[0086] In another aspect, the RRC configuration received from the network may comprise configuration
of multiple choices of initial resource combinations in which each choice includes
one or more initial resource combinations supported by the configured grant UL resource
(
see solution 2 above). In this instance, the interpretation rules may specify that any one or more of
the SRI, TPMI, and antenna ports indicated in the DCI be interpreted as a choice index
choosing one of the multiple choices of the initial resource combinations such that
the initial resource combinations corresponding to the choice index are included in
the retransmission resource combinations. Any of the bits of any of these parameters
may be excluded if the remaining bits are sufficient to serve as the choice index.
The RV indicated in the DCI may be included in the retransmission using the chosen
retransmission resource combinations.
[0087] Alternatively or in addition thereto, RV may also be used in interpreting the choice
index. That is, the rules may specify that a combination of the RV and any one or
more of the SRI, TPMI, and antenna ports be interpreted as the choice index. IF the
BWP is included, then the interpreting the choice index may be modified accordingly
to account for the BWP.
[0088] In another alternative or in addition thereto, is any of the reserved bits of the
resource parameters are used, then the parameters indicated in the DCI may be interpreted
according to any of the rules 1A-1, 1A-2, 1A-3, 1B-1, 1B-2, and 113-3. Indeed, some
of the reserved bits may be used to indicate whether case-A or case-B applies, and
the UE may apply the interpretation rules accordingly. For example, a group of one
more reserved bits of the resource parameters (any one or more of SRI, TMPI, antenna
ports, RV, BWP, etc.) - referred to as the "reserved big group" may be used to indicate
whether a first retransmission condition (e.g., case-A) or a second retransmission
condition (e.g., case-B) applies.
[0089] For both transmission conditions, the interpretation rules 1A-1, 1A-2, 1A-3, 1B-1,
1B-2, and 1B-3 may be modified to exclude the reserved bit group from comparison.
For example, the modified rule 1A-1 may be phrased to indicate that when the combination
of the SRI, TPMI, and antenna ports parameters indicated in the DCI
other than the reserved bit group matches a combination of SRI, TPMI, and antenna ports of one of the initial resource
combinations, the matching initial resource combination may be muted, and all other
initial resource combinations may be included in the retransmission resource combinations.
As another example, the modified rule 1B-3 may be phrased to indicate that when one
or more reserved bits of any of SRI, TPMI, and antenna ports indicated in the DCI
other than the reserved bit group are used, all of the initial resource combinations
may be included in the retransmission resource combinations. IF the RV and/or BWP
are included as parameters of the resource combinations, then each of the rules IA-1,
1A-2, 1A-3, 1B-1, 1B-2, and 1B-3 may be further modified accordingly.
[0090] While using the existing DCI is beneficial, the limitations of the existing DCI are
still recognized. Therefore, in another aspect, a new DCI format is proposed (
see solution 3 above). In the new DCI format, multiple resource combinations may be included. Then with
the new DCI, block 360 becomes relatively simple to implement. For example, the DCI
from the network may indicate a plurality of resource combinations. Then in block
360, the UE may include one or more of the plurality of resource combinations indicated
in the DCI as the retransmission resource combinations.
[0091] If any of the resource combinations indicated in the DCI use any reserved bits of
any of the resource parameters (e.g., reserved bits of TPMI and/or antenna ports),
that resource combination may be ignored for retransmission. The UE may use some or
all other resource combinations in the retransmission. Also if the retransmission
UL resource supports a limited number N of resource combinations (
N ≥ 1), that number of resource combinations indicated in the DCI may be included in
the retransmission resource combinations.
[0092] FIG. 4 illustrates an example user equipment apparatus 400 represented as a series of interrelated
functional modules connected by a common bus. Each of the modules may be implemented
in hardware or as a combination of hardware and software. For example, the modules
may be implemented as any combination of the modules of the apparatus 202 of FIG.
2. A module for receiving RRC configuration 410 may correspond at least in some aspects
to a communication device, such as the communication device 208 and/or a processing
system, such as processing system 232. A module for receiving scheduled grant of the
configured grant UL resource 420 may correspond at least in some aspects to a communication
device, such as the communication device 208 and/or a processing system, such as processing
system 232. A module for transmitting data on configured grant UL resource 430 may
correspond at least in some aspects to a communication device, such as the communication
device 208 and/or a processing system, such as processing system 232. A module for
receiving DCI 440 may correspond at least in some aspects to a communication device,
such as the communication device 208 and/or a processing system, such as processing
system 232. A module for determining transmission resource combinations 450 may correspond
at least in some aspects to a processing system, such as processing system 232. A
module for retransmitting data on retransmission UL resource 460 may correspond at
least in some aspects to a communication device, such as the communication device
208 and/or a processing system, such as processing system 232.
[0093] FIG. 5 illustrates an example network node apparatus 500 represented as a series of interrelated
functional modules connected by a common bus. Each of the modules may be implemented
in hardware or as a combination of hardware and software. For example, the modules
may be implemented as any combination of the modules of the apparatus 204 of FIG.
2. A module for sending RRC configuration 510 may correspond at least in some aspects
to a communication device, such as the communication device 214 and/or a processing
system, such as processing system 234. A module for sending scheduled grant of the
configured grant UL resource 520 may correspond at least in some aspects to a communication
device, such as the communication device 214 and/or a processing system, such as processing
system 234. A module for receiving data on the configured grant UL resource 530 may
correspond at least in some aspects to a communication device, such as the communication
device 214 and/or a processing system, such as processing system 234. A module for
sending DCI 540 may correspond at least in some aspects to a communication device,
such as the communication device 214 and/or a processing system, such as processing
system 234. A module for receiving data on the retransmission UL resource 550 may
correspond at least in some aspects to a communication device, such as the communication
device 214 and/or a processing system, such as processing system 234.
[0094] The functionality of the modules of FIGS. 4 and 5 may be implemented in various ways
consistent with the teachings herein. In some designs, the functionality of these
modules may be implemented as one or more electrical components. In some designs,
the functionality of these blocks may be implemented as a processing system including
one or more processor components. In some designs, the functionality of these modules
may be implemented using, for example, at least a portion of one or more integrated
circuits (e.g., an ASIC). As discussed herein, an integrated circuit may include a
processor, software, other related components, or some combination thereof. Thus,
the functionality of different modules may be implemented, for example, as different
subsets of an integrated circuit, as different subsets of a set of software modules,
or a combination thereof. Also, it will be appreciated that a given subset (e.g.,
of an integrated circuit and/or of a set of software modules) may provide at least
a portion of the functionality for more than one module.
[0095] In addition, the components and functions represented by FIGs. 4 and 5, as well as
other components and functions described herein, may be implemented using any suitable
means. Such means also may be implemented, at least in part, using corresponding structure
as taught herein. For example, the components described above in conjunction with
the "module for" components of FIGs. 4 and 5 also may correspond to similarly designated
"means for" functionality. Thus, in some aspects one or more of such means may be
implemented using one or more of processor components, integrated circuits, or other
suitable structure as taught herein.
[0096] Those of skill in the art will appreciate that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles,
or any combination thereof.
[0097] Further, those of skill in the art will appreciate that the various illustrative
logical blocks, modules, circuits, and algorithm steps described in connection with
the aspects disclosed herein may be implemented as electronic hardware, computer software,
or combinations of both. To clearly illustrate this interchangeability of hardware
and software, various illustrative components, blocks, modules, circuits, and steps
have been described above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software depends upon the particular application
and design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the
scope of the present disclosure.
[0098] The various illustrative logical blocks, modules, and circuits described in connection
with the aspects disclosed herein may be implemented or performed with a general purpose
processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate
or transistor logic, discrete hardware components, or any combination thereof designed
to perform the functions described herein. A general purpose processor may be a microprocessor,
but in the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a combination
of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality
of microprocessors, one or more microprocessors in conjunction with a DSP core, or
any other such configuration.
[0099] The methods, sequences and/or algorithms described in connection with the aspects
disclosed herein may be embodied directly in hardware, in a software module executed
by a processor, or in a combination of the two. A software module may reside in random
access memory (RAM), flash memory, read-only memory (ROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EEPROM), registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage medium known in the art. An
exemplary storage medium is coupled to the processor such that the processor can read
information from, and write information to, the storage medium. In the alternative,
the storage medium may be integral to the processor. The processor and the storage
medium may reside in an ASIC. The ASIC may reside in a user terminal (e.g., UE). In
the alternative, the processor and the storage medium may reside as discrete components
in a user terminal.
[0100] In one or more exemplary aspects, the functions described may be implemented in hardware,
software, firmware, or any combination thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more instructions or code on a computer-readable
medium. Computer-readable media includes both computer storage media and communication
media including any medium that facilitates transfer of a computer program from one
place to another. A storage media may be any available media that can be accessed
by a computer. By way of example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk
storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition
of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within the scope of computer-readable
media.
[0101] While the foregoing disclosure shows illustrative aspects of the disclosure, it should
be noted that various changes and modifications could be made herein without departing
from the scope of the disclosure as defined by the appended claims. The functions,
steps and/or actions of the method claims in accordance with the aspects of the disclosure
described herein need not be performed in any particular order. Furthermore, although
elements of the disclosure may be described or claimed in the singular, the plural
is contemplated unless limitation to the singular is explicitly stated.
1. A method (300) performed by a user equipment, UE (104), the method comprising:
receiving (310) a radio resource control, RRC, configuration from a network, the RRC
configuration comprising configurations of one or more initial resource combinations
supported by a configured grant uplink, UL, resource for initial transmission of data
to the network, and one or more interpretation rules to be applied by the UE for retransmission
of the data to the network;
receiving (320) a schedule of the configured grant UL resource from the network;
transmitting (330) the data on the configured grant UL resource to the network using
the one or more initial resource combinations;
receiving (350) a downlink control information, DCI, from the network for retransmission
of the data, the DCI including a schedule of a retransmission UL resource;
determining (360) one or more retransmission resource combinations based on the one
or more interpretation rules and the DCI; and
retransmitting (370) the data on the retransmission UL resource using the one or more
retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports, wherein the DCI indicates a combination of SRI, TPMI, and
antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
2. The method of claim 1, wherein the DCI is a DCI according to a Release 15 standard
of a 3rd Generation Partnership Project, 3GPP.
3. The method of claim 2,
wherein a redundancy version, RV, indicated in the DCI is included in the retransmission.
4. The method of claim 3,
wherein the configured grant UL resource is configured to support same or more SRIs
than the retransmission UL resource, and
wherein the one or more interpretation rules specify that
when the combination of SRI, TPMI, and antenna ports indicated in the DCI matches
a combination of SRI, TPMI, and antenna ports of one of the initial resource combinations
configured through the RRC configuration, the matching initial resource combination
is muted, and all other initial resource combinations are included in the one or more
retransmission resource combinations,
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does not
match the combination of SRI, TPMI, and antenna ports of any of the initial resource
combinations configured through the RRC configuration, all of the initial resource
combinations are excluded from the one or more retransmission resource combinations,
and
when one or more reserved bits of any of SRI, TPMI, and antenna ports indicated in
the DCI are used, all of the initial resource combinations are included in the one
or more retransmission resource combinations.
5. The method of claim 3,
wherein the configured grant UL resource is configured to support same or less SRIs
than the retransmission UL resource, and
wherein the one or more interpretation rules specify that
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does not
match a combination of SRI, TPMI, and antenna ports of any of the one or more initial
resource combination configured through the RRC configuration, the combination of
SRI, TPMI, and antenna ports indicated in the DCI and at least one of the initial
resource combination are included in the one or more retransmission resource combinations,
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does match
the combination of SRI, TPMI, and antenna ports of any of the initial resource combination
configured through the RRC configuration, the matching initial resource combination
is included in the one or more retransmission resource combinations, and
when one or more reserved bits of any of SRI, TPMI, and antenna ports indicated in
the DCI are used, all of the initial resource combinations are included in the one
or more retransmission resource combinations.
6. The method of claim 2,
wherein the RRC configuration comprises configuration of multiple choices of initial
resource combinations with each choice including one or more initial resource combinations
supported by the configured grant UL resource, and
wherein the one or more interpretation rules specify that a combination of any one
or more of the SRI, TPMI, and antenna ports indicated in the DCI be interpreted as
a choice index choosing one of the multiple choices of the initial resource combinations
such that the initial resource combinations corresponding to the choice index are
included in the one or more retransmission resource combinations.
7. A method (300) performed by a network node (102), the method comprising:
sending (305) a radio resource control, RRC, configuration to a user equipment, UE
(104), the RRC configuration comprising configurations of one or more initial resource
combinations supported by a configured grant uplink, UL, resource for initial transmission
of data from the UE to the network node, and one or more interpretation rules to be
applied by the UE for retransmission of the data to the network node;
sending (315) a schedule of the configured grant UL resource to the UE;
sending (345), upon an error in receiving the data on the configured grant UL resource
from the UE using the one or more initial resource combinations, a downlink control
information, DCI, to the UE for retransmission of the data, the DCI including a schedule
of a retransmission UL resource; and
receiving (375) the data on the retransmission UL resource from the UE using the one
or more retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports,
wherein the DCI indicates a combination of SRI, TPMI, and antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
8. The method of claim 5, wherein the DCI is a DCI according to a Release 15 standard
of a 3rd Generation Partnership Project, 3GPP.
9. The method of claim 8,
wherein the DCI includes a redundancy version, RV,
wherein the configured grant UL resource is configured to support same or more SRIs
than the retransmission UL resource, and
wherein the one or more interpretation rules specify that
when the combination of SRI, TPMI, and antenna ports indicated in the DCI matches
a combination of SRI, TPMI, and antenna ports of one of the initial resource combination
configured through the RRC configuration, the matching initial resource combination
is muted, and all other initial resource combinations are included in the one or more
retransmission resource combinations,
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does not
match the combination of SRI, TPMI, and antenna ports of any of the initial resource
combination configured through the RRC configuration, all of the initial resource
combinations are excluded from the one or more retransmission resource combinations,
and
when one or more reserved bits of any of SRI, TPMI, and antenna ports indicated in
the DCI are used, all of the initial resource combinations are included in the one
or more retransmission resource combinations.
10. The method of claim 8,
wherein the DCI includes a redundancy version, RV,
wherein the configured grant UL resource is configured to support same or less SRIs
than the retransmission UL resource, and
wherein the one or more interpretation rules specify that
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does not
match a combination of SRI, TPMI, and antenna ports of any of the one or more initial
resource combination configured through the RRC configuration, the combination of
SRI, TPMI, and antenna ports indicated in the DCI and at least one of the initial
resource combination are included in the one or more retransmission resource combinations,
when the combination of SRI, TPMI, and antenna ports indicated in the DCI does match
the combination of SRI, TPMI, and antenna ports of any of the initial resource combination
configured through the RRC configuration, the matching initial resource combination
is included in the one or more retransmission resource combinations, and
when one or more reserved bits of any of SRI, TPMI, and antenna ports indicated in
the DCI are used, all of the initial resource combinations are included in the one
or more retransmission resource combinations.
11. The method of claim 8,
wherein the RRC configuration comprises configuration of multiple choices of initial
resource combinations with each choice including one or more initial resource combinations
supported by the configured grant UL resource, and
wherein the one or more interpretation rules specify that a combination of any one
or more of the SRI, TPMI, and antenna ports indicated in the DCI be interpreted as
a choice index choosing one of the multiple choices of the initial resource combinations
such that the initial resource combinations corresponding to the choice index are
included in the one or more retransmission resource combinations.
12. A user equipment, UE (104, 400), comprising:
means for receiving (410) a radio resource control, RRC, configuration from a network,
the RRC configuration comprising:
configurations of one or more initial resource combinations supported by a configured
grant uplink, UL, resource for initial transmission of data to the network, and
one or more interpretation rules to be applied by the UE for retransmission of the
data to the network;
means for receiving (420) a schedule of the configured grant UL resource from the
network;
means for transmitting (430) the data on the configured grant UL resource to the network
using the one or more initial resource combinations;
means for receiving (440) a downlink control information, DCI, from the network for
retransmission of the data, the DCI including a schedule of a retransmission UL resource;
means for determining (450) one or more retransmission resource combinations based
on the one or more interpretation rules and the DCI; and
means for retransmitting (460) the data on the retransmission UL resource using the
one or more retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports wherein the DCI indicates a combination of SRI, TPMI, and
antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
13. A network node (102, 500), comprising:
means for sending (510) a radio resource control, RRC, configuration to a user equipment,
UE (104), the RRC configuration comprising
configurations of one or more initial resource combinations supported by a configured
grant uplink, UL, resource for initial transmission of data from the UE to the network
node, and
one or more interpretation rules to be applied by the UE for retransmission of the
data to the network node;
means for sending (520) a schedule of the configured grant UL resource to the UE,
means for sending (540), upon an error in receiving the data on the configured grant
UL resource from the UE using the one or more initial resource combinations, a downlink
control information, DCI, to the UE for retransmission of the data, the DCI including
a schedule of a retransmission UL resource; and
means for receiving (550) the data on the retransmission UL resource from the UE using
the one or more retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports,
wherein the DCI indicates a combination of SRI, TPMI, and antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
14. A non-transitory computer-readable medium storing computer-executable instructions
for a user equipment, UE (104, 400), the computer-executable instructions comprising:
one or more instructions causing the UE to receive a radio resource control, RRC,
configuration from a network, the RRC configuration comprising
configurations of one or more initial resource combinations supported by a configured
grant uplink, UL, resource for initial transmission of data to the network, and
one or more interpretation rules to be applied by the UE for retransmission of the
data to the network;
one or more instructions causing the UE to receive a schedule of the configured grant
UL resource from the network;
one or more instructions causing the UE to transmit the data on the configured grant
UL resource to the network using the one or more initial resource combinations;
one or more instructions causing the UE to receive a downlink control information,
DCI, from the network for retransmission of the data, the DCI including a schedule
of a retransmission UL resource;
one or more instructions causing the UE to determine one or more retransmission resource
combinations based on the one or more interpretation rules and the DCI; and
one or more instructions causing the UE to retransmit the data on the retransmission
UL resource using the one or more retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports wherein the DCI indicates a combination of SRI, TPMI, and
antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
15. A non-transitory computer-readable medium storing computer-executable instructions
for network node (102, 500), the computer-executable instructions comprising:
one or more instructions causing the network node to send a radio resource control,
RRC, configuration to a user equipment, UE (104, 400), the RRC configuration comprising
configurations of one or more initial resource combinations supported by a configured
grant uplink, UL, resource for initial transmission of data from the UE to the network
node, and
one or more interpretation rules to be applied by the UE for retransmission of the
data to the network node;
one or more instructions causing the network node to send a schedule of the configured
grant UL resource to the UE;
one or more instructions causing the network node to send, upon an error in receiving
the data on the configured grant UL resource from the UE using the one or more initial
resource combinations, a downlink control information, DCI, to the UE for retransmission
of the data, the DCI including a schedule of a retransmission UL resource; and
one or more instructions causing the network node to receive the data on the retransmission
UL resource from the UE using the one or more retransmission resource combinations,
wherein each initial resource combination and each retransmission resource combination
includes a combination of resource parameters including any one or more of a sounding
reference signal, SRS, resource indicator, SRI, a transmit precoding matrix indicator,
TPMI, and antenna ports,
wherein the DCI indicates a combination of SRI, TPMI, and antenna ports, and
wherein the one or more interpretation rules specify to the UE that the one or more
retransmission resource combinations are to be determined based on comparisons of
the SRI, TPMI, and antenna ports indicated in the DCI with the SRI, TPMI, and antenna
ports of the one or more initial resource combinations configured through the RRC
configuration.
1. Ein Verfahren (300), das durch ein Benutzergerät (User Equipment bzw. UE) (104) durchgeführt
wird, wobei das Verfahren aufweist:
Empfangen (310) einer Funkressourcensteuerung (Radio Resource Control bzw. RRC)-Konfiguration
von einem Netz, wobei die RRC-Konfiguration Konfigurationen einer oder mehrerer anfänglicher
Ressourcenkombinationen, die durch eine Konfigurierte-Gewährung-Aufwärtsstrecke (Uplink
bzw. UL)-Ressource für eine anfängliche Sendung von Daten an das Netz unterstützt
werden, und eine oder mehrere durch das UE für eine erneute Sendung der Daten an das
Netz anzuwendende Interpretationsregeln aufweist,
Empfangen (320) eines Plans der Konfigurierte-Gewährung-UL-Ressource von dem Netz,
Senden (330) der Daten auf der Konfigurierte-Gewährung-UL-Ressource an das Netz unter
Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
Empfangen (350) von Abwärtsstrecke-Steuerinformationen (Downlink Control Information
bzw. DCI) von dem Netz für die erneute Sendung der Daten, wobei die DCI einen Plan
einer Neusendung-UL-Ressource enthalten,
Bestimmen (360) einer oder mehrerer Neusendung-Ressourcenkombinationen basierend auf
der einen oder den mehreren Interpretationsregeln und den DCI, und
erneutes Senden (370) der Daten auf der Neusendung-UL-Ressource unter Verwendung der
einen oder der mehreren Neusendungs-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination des SRI, des TPMI und der Antennenanschlüsse angeben,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
2. Verfahren nach Anspruch 1, wobei die DCI der Version 15 des 3GPP (3rd Generation Partnership Project)-Standards entsprechen.
3. Verfahren nach Anspruch 2, wobei eine in den DCI angegebene Redundanzversion (RV)
in der erneuten Sendung enthalten ist.
4. Verfahren nach Anspruch 3, wobei:
die Konfigurierte-Gewährung-UL-Ressource konfiguriert ist zum Unterstützen der gleichen
oder von mehr SRIs als die Neusendung-UL-Ressource, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass:
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
übereinstimmen, die übereinstimmende anfängliche Ressourcenkombination ausgenommen
wird und alle anderen anfänglichen Ressourcenkombinationen in die eine oder die mehreren
Neusendung-Ressourcenkombinationen eingefügt werden,
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
nicht übereinstimmen, alle anfänglichen Ressourcenkombinationen aus der einen oder
den mehreren Neusendung-Ressourcenkombinationen ausgeschlossen werden, und
wenn ein oder mehrere reservierte Bits des SRI, des TPMI und der Antennenanschlüsse,
die in den DCI angegeben werden, verwendet werden, alle anfänglichen Ressourcenkombinationen
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
5. Verfahren nach Anspruch 3, wobei:
die Konfigurierte-Gewährung-UL-Ressource konfiguriert ist zum Unterstützen der gleichen
oder von weniger SRIs als die Neusendung-UL-Ressource, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass:
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der einen oder der mehreren über die RRC-Konfiguration konfigurierten anfänglichen
Ressourcenkombinationen nicht übereinstimmen, die Kombination aus dem SRI, dem TPMI
und den Antennenanschlüssen, die in den DCI angegeben werden, und wenigstens eine
der anfänglichen Ressourcenkombinationen in die eine oder die mehreren Neusendung-Ressourcenkombinationen
eingefügt werden,
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
übereinstimmen, die übereinstimmende anfänglichen Ressourcenkombination in die eine
oder die mehreren Neusendung-Ressourcenkombinationen eingefügt wird, und
wenn ein oder mehrere reservierte Bits des SRI, des TPMI und der Antennenanschlüsse,
die in den DCI angegeben werden, verwendet werden, alle anfänglichen Ressourcenkombinationen
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
6. Verfahren nach Anspruch 2, wobei:
die RRC-Konfiguration eine Konfiguration von mehreren Wahlmöglichkeiten von anfänglichen
Ressourcenkombinationen aufweist, wobei jede Wahlmöglichkeit eine oder mehrere anfängliche
Ressourcenkombinationen, die durch die Konfigurierte-Gewährung-UL-Ressource unterstützt
werden, enthält, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass eine Kombination
aus einem oder mehreren des SRI, des TPMI und der Antennenanschlüsse, die in den DCI
angegeben werden, als ein Wahlmöglichkeitsindex interpretiert werden, um eine der
mehreren Wahlmöglichkeiten der anfänglichen Ressourcenkombinationen auszuwählen, sodass
die anfänglichen Ressourcenkombinationen in Entsprechung zu dem Wahlmöglichkeitsindex
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
7. Ein Verfahren (300), das durch einen Netzknoten (102) durchgeführt wird, wobei das
Verfahren aufweist:
Senden (305) einer Funkressourcensteuerung (Radio Resource Control bzw. RRC)-Konfiguration
an ein Benutzergerät (User Equipment bzw. UE) (104), wobei die RRC-Konfiguration Konfigurationen
einer oder mehrerer anfänglicher Ressourcenkombinationen, die durch eine Konfigurierte-Gewährung-Aufwärtsstrecke
(Uplink bzw. UL)-Ressource für eine anfängliche Sendung von Daten von dem UE an das
Netz unterstützt werden, und eine oder mehrere durch das UE für eine erneute Sendung
der Daten an das Netz anzuwendende Interpretationsregeln aufweist,
Senden (315) eines Plans der Konfigurierte-Gewährung-UL-Ressource an das UE,
Senden (345), nach einem Fehler beim Empfangen der Daten auf der Konfigurierte-Gewährung-UL-Ressource
von dem UE unter Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
von Abwärtsstrecke-Steuerinformationen (Downlink Control Information bzw. DCI) an
das UE für eine erneute Sendung der Daten, wobei die DCI einen Plan einer Neusendung-UL-Ressource
enthalten, und
Empfangen (375) der Daten auf der Neusendung-UL-Ressource von dem UE unter Verwendung
der einen oder der mehreren Neusendung-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination eines SRI, eines TPMI und von Antennenanschlüssen angibt,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
8. Verfahren nach Anspruch 5, wobei die DCI der Version 15 des 3GPP (3rd Generation Partnership Project)-Standards entsprechen.
9. Verfahren nach Anspruch 8, wobei:
die DCI eine Redundanzversion (RV) enthalten,
wobei die Konfigurierte-Gewährung-UL-Ressource konfiguriert ist zum Unterstützen der
gleichen oder von mehr SRIs als die Neusendung-UL-Ressource, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass:
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
übereinstimmen, die übereinstimmende anfängliche Ressourcenkombination ausgenommen
wird und alle anderen anfänglichen Ressourcenkombinationen in die eine oder die mehreren
Neusendung-Ressourcenkombinationen eingefügt werden,
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
nicht übereinstimmen, alle anfänglichen Ressourcenkombinationen aus der einen oder
den mehreren Neusendung-Ressourcenkombinationen ausgeschlossen werden, und
wenn ein oder mehrere reservierte Bits des SRI, des TPMI und der Antennenanschlüsse,
die in den DCI angegeben werden, verwendet werden, alle anfänglichen Ressourcenkombinationen
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
10. Verfahren nach Anspruch 8, wobei:
die DCI eine Redundanzversion (RV) enthalten,
die Konfigurierte-Gewährung-UL-Ressource konfiguriert ist zum Unterstützen der gleichen
oder von weniger SRIs als die Neusendung-UL-Ressource, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass:
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der einen oder der mehreren über die RRC-Konfiguration konfigurierten anfänglichen
Ressourcenkombinationen nicht übereinstimmen, die Kombination aus dem SRI, dem TPMI
und den Antennenanschlüssen, die in den DCI angegeben werden, und wenigstens eine
der anfänglichen Ressourcenkombinationen in die eine oder die mehreren Neusendung-Ressourcenkombinationen
eingefügt werden,
wenn die Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen, die in den
DCI angegeben werden, und eine Kombination aus dem SRI, dem TPMI und den Antennenanschlüssen
einer der über die RRC-Konfiguration konfigurierten anfänglichen Ressourcenkombinationen
übereinstimmen, die übereinstimmende anfängliche Ressourcenkombination in die eine
oder die mehreren Neusendung-Ressourcenkombinationen eingefügt wird, und
wenn ein oder mehrere reservierte Bits des SRI, des TPMI und der Antennenanschlüsse,
die in den DCI angegeben werden, verwendet werden, alle anfänglichen Ressourcenkombinationen
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
11. Verfahren nach Anspruch 8, wobei:
die RRC-Konfiguration eine Konfiguration von mehreren Wahlmöglichkeiten von anfänglichen
Ressourcenkombinationen aufweist, wobei jede Wahlmöglichkeit eine oder mehrere anfängliche
Ressourcenkombinationen, die durch die Konfigurierte-Gewährung-UL-Ressource unterstützt
werden, enthält, und
die eine oder die mehreren Interpretationsregeln spezifizieren, dass eine Kombination
aus einem oder mehreren des SRI, des TPMI und der Antennenanschlüsse, die in den DCI
angegeben werden, als ein Wahlmöglichkeitsindex interpretiert werden, um eine der
mehreren Wahlmöglichkeiten der anfänglichen Ressourcenkombinationen auszuwählen, sodass
die anfängliche Ressourcenkombinationen in Entsprechung zu dem Wahlmöglichkeitsindex
in die eine oder die mehreren Neusendung-Ressourcenkombinationen eingefügt werden.
12. Ein Benutzergerät (User Equipment bzw. UE) (104, 400), aufweisend:
Mittel zum Empfangen (410), einer Funkressourcensteuerung (Radio Resource Control
bzw. RRC)-Konfiguration von einem Netz, wobei die RRC-Konfiguration aufweist:
Konfigurationen einer oder mehrerer anfänglicher Ressourcenkombinationen, die durch
eine Konfigurierte-Gewährung-Aufwärtsstrecke (Uplink bzw. UL)-Ressource für eine anfängliche
Sendung von Daten an das Netz unterstützt werden, und
eine oder mehrere durch das UE für eine erneute Sendung der Daten an das Netz anzuwendende
Interpretationsregeln,
Mittel zum Empfangen (420) eines Plans der Konfigurierte-Gewährung-UL-Ressource von
dem Netz,
Mittel zum Senden (430) der Daten auf der Konfigurierte-Gewährung-UL-Ressource an
das Netz unter Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
Mittel zum Empfangen (440) von Abwärtsstrecke-Steuerinformationen (Downlink Control
Information bzw. DCI) von dem Netz für die erneute Sendung der Daten, wobei die DCI
einen Plan einer Neusendung-UL-Ressource enthalten,
Mittel zum Bestimmen (450) einer oder mehrerer Neusendung-Ressourcenkombinationen
basierend auf der einen oder den mehreren Interpretationsregeln und den DCI, und
Mittel zum erneuten Senden (460) der Daten auf der Neusendung-UL-Ressource unter Verwendung
der einen oder der mehreren Neusendungs-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination des SRI, des TPMI und der Antennenanschlüsse angeben,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
13. Netzknoten (102, 500), aufweisend:
Mittel zum Senden (510) einer Funkressourcensteuerung (Radio Resource Control bzw.
RRC)-Konfiguration an ein Benutzergerät (User Equipment bzw. UE) (104), wobei die
RRC-Konfiguration aufweist:
Konfigurationen einer oder mehrerer anfänglicher Ressourcenkombinationen, die durch
eine Konfigurierte-Gewährung-Aufwärtsstrecke (Uplink bzw. UL)-Ressource für eine anfängliche
Sendung von Daten von dem UE an das Netz unterstützt werden, und
eine oder mehrere durch das UE für eine erneute Sendung der Daten an das Netz anzuwendende
Interpretationsregeln,
Mittel zum Senden (520) eines Plans der Konfigurierte-Gewährung-UL-Ressource an das
UE,
Mittel zum Senden (540), nach einem Fehler beim Empfangen der Daten auf der Konfigurierte-Gewährung-UL-Ressource
von dem UE unter Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
von Abwärtsstrecke-Steuerinformationen (Downlink Control Information bzw. DCI) an
das UE für eine erneute Sendung der Daten, wobei die DCI einen Plan einer Neusendung-UL-Ressource
enthalten, und
Mittel zum Empfangen (550) der Daten auf der Neusendung-UL-Ressource von dem UE unter
Verwendung der einen oder der mehreren Neusendung-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination eines SRI, eines TPMI und von Antennenanschlüssen angibt,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
14. Ein nicht-transitorisches, computerlesbares Medium, das computerausführbare Befehle
für ein Benutzergerät (User Equipment bzw. UE) (104, 400) speichert, wobei die computerausführbaren
Befehle aufweisen:
einen oder mehrere Befehle, die das UE veranlassen zum Empfangen einer Funkressourcensteuerung
(Radio Resource Control bzw. RRC)-Konfiguration von einem Netz, wobei die RRC-Konfiguration
aufweist:
Konfigurationen einer oder mehrerer anfänglicher Ressourcenkombinationen, die durch
eine Konfigurierte-Gewährung-Aufwärtsstrecke (Uplink bzw. UL)-Ressource für eine anfängliche
Sendung von Daten an das Netz unterstützt werden, und
eine oder mehrere durch das UE für eine erneute Sendung der Daten an das Netz anzuwendende
Interpretationsregeln,
einen oder mehrere Befehle, die das UE veranlassen zum Empfangen eines Plans der Konfigurierte-Gewährung-UL-Ressource
von dem Netz,
einen oder mehrere Befehle, die das UE veranlassen zum Senden der Daten auf der Konfigurierte-Gewährung-UL-Ressource
an das Netz unter Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
einen oder mehrere Befehle, die das UE veranlassen zum Empfangen von Abwärtsstrecke-Steuerinformationen
(Downlink Control Information bzw. DCI) von dem Netz für die erneute Sendung der Daten,
wobei die DCI einen Plan einer Neusendung-UL-Ressource enthalten,
einen oder mehrere Befehle, die das UE veranlassen zum Bestimmen einer oder mehrerer
Neusendung-Ressourcenkombinationen basierend auf der einen oder den mehreren Interpretationsregeln
und den DCI, und
einen oder mehrere Befehle, die das UE veranlassen zum erneuten Senden der Daten auf
der Neusendung-UL-Ressource unter Verwendung der einen oder der mehreren Neusendungs-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination des SRI, des TPMI und der Antennenanschlüsse angeben,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
15. Ein nicht-transitorisches, computerlesbares Medium, das computerausführbare Befehle
für einen Netzknoten (102, 500) speichert, wobei die computerausführbaren Befehle
aufweisen:
einen oder mehrere Befehle, die den Netzknoten veranlassen zum Senden einer Funkressourcensteuerung
(Radio Resource Control bzw. RRC)-Konfiguration an ein Benutzergerät (User Equipment
bzw. UE) (104, 400), wobei die RRC-Konfiguration aufweist:
Konfigurationen einer oder mehrerer anfänglicher Ressourcenkombinationen, die durch
eine Konfigurierte-Gewährung-Aufwärtsstrecke (Uplink bzw. UL)-Ressource für eine anfängliche
Sendung von Daten von dem UE an das Netz unterstützt werden, und
eine oder mehrere durch das UE für eine erneute Sendung der Daten an das Netz anzuwendende
Interpretationsregeln,
einen oder mehrere Befehle, die den Netzknoten veranlassen zum Senden eines Plans
der Konfigurierte-Gewährung-UL-Ressource an das UE,
einen oder mehrere Befehle, die den Netzknoten veranlassen zum Senden, nach einem
Fehler beim Empfangen der Daten auf der Konfigurierte-Gewährung-UL-Ressource von dem
UE unter Verwendung der einen oder der mehreren anfänglichen Ressourcenkombinationen,
von Abwärtsstrecke-Steuerinformationen (Downlink Control Information bzw. DCI) an
das UE für eine erneute Sendung der Daten, wobei die DCI einen Plan einer Neusendung-UL-Ressource
enthalten, und
einen oder mehrere Befehle, die den Netzknoten veranlassen zum Empfangen der Daten
auf der Neusendung-UL-Ressource von dem UE unter Verwendung der einen oder der mehreren
Neusendung-Ressourcenkombinationen,
wobei jede anfängliche Ressourcenkombination und jede Neusendung-Ressourcenkombination
eine Kombination von Ressourcenparametern einschließlich eines oder mehrerer eines
Sondierungsreferenzsignal (SRS)-Ressourcenindikators (SRI), eines Sendevorcodierungsmatrix-Indikators
(Transmit Precoding Matrix Indicator bzw. TPMI) und von Antennenanschlüssen enthält,
wobei die DCI eine Kombination eines SRI, eines TPMI und von Antennenanschlüssen angibt,
und
wobei die eine oder die mehreren Interpretationsregeln für das UE spezifizieren, dass
die eine oder die mehreren Neusendung-Ressourcenkombinationen basierend auf Vergleichen
des SRI, des TPMI und der Antennenanschlüsse, die in den DCI angegeben werden, mit
dem SRI, dem TPMI und den Antennenanschlüssen der einen oder der mehreren anfänglichen
Ressourcenkombinationen, die über die RRC-Konfiguration konfiguriert werden, zu bestimmen
sind.
1. Procédé (300) exécuté par un équipement utilisateur, UE (104), le procédé comprenant
les étapes consistant à :
recevoir (310) une configuration de commande de ressource radio, RRC, à partir d'un
réseau, la configuration RRC comprenant des configurations d'une ou plusieurs combinaisons
de ressources initiales prises en charge par une ressource de liaison montante, UL,
à attribution configurée pour la transmission initiale de données au réseau, et une
ou plusieurs règles d'interprétation à appliquer par l'UE pour la retransmission des
données au réseau,
recevoir (320) une planification de la ressource de l'UL à attribution configurée
depuis le réseau,
transmettre (330) les données sur la ressource de l'UL à attribution configurée au
réseau en utilisant la ou les combinaisons de ressources initiales ;
recevoir (350) une information de commande de liaison descendante, DCI, du réseau
pour la retransmission des données, la DCI comprenant une planification d'une ressource
de l'UL de retransmission ;
déterminer (360) une ou plusieurs combinaisons de ressources de retransmission sur
la base de la ou des règles d'interprétation et de la DCI ; et
retransmettre (370) les données sur la ressource de l'UL de retransmission en utilisant
la ou les combinaisons de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage de transmission, TPMI, et des
ports d'antenne, dans lequel la DCI indique une combinaison de SRI, TPMI et des ports
d'antenne, et
dans lequel la ou les règles d'interprétation spécifient à l'UE que la ou les combinaisons
de ressources de retransmission doivent être déterminées sur la base de comparaisons
de SRI, TPMI et des ports d'antenne indiqués dans la DCI avec le SRI, TPMI et les
ports d'antenne d'une ou plusieurs combinaisons de ressources initiales configurées
via la configuration RRC.
2. Procédé selon la revendication 1, dans lequel la DCI est une DCI selon une norme Release
15 d'un projet de partenariat de 3ème génération, 3GPP.
3. Procédé selon la revendication 2, dans lequel une version de redondance, RV, indiquée
dans la DCI est incluse dans la retransmission.
4. Procédé selon la revendication 3,
dans lequel la ressource de l'UL à attribution configurée est configurée pour prendre
en charge le même nombre ou plus de SRI que la ressource de l'UL de retransmission,
et
dans lequel la ou les règles d'interprétation spécifient que
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI correspond
à une combinaison de SRI, TPMI et des ports d'antenne de l'une des combinaisons de
ressources initiales configurées via la configuration RRC, la combinaison de ressources
initiale correspondante est mise en sourdine, et toutes les autres combinaisons de
ressources initiales sont incluses dans la ou les ressources de combinaisons de retransmission,
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI ne
correspond pas à la combinaison de SRI, TPMI et des ports d'antenne de l'une des combinaisons
de ressources initiales configurées via la configuration RRC, toutes les combinaisons
de ressources initiales sont exclus de la ou des combinaisons de ressources de retransmission,
et
lorsqu'un ou plusieurs bits réservés de l'un quelconque de SRI, TPMI et des ports
d'antenne indiqués dans la DCI sont utilisés, toutes les combinaisons de ressources
initiales sont incluses dans la ou les combinaisons de ressources de retransmission
.
5. Procédé selon la revendication 3,
dans lequel la ressource de l'UL à attribution configurée est configurée pour prendre
en charge le même nombre de SRI ou moins que la ressource de l'UL de retransmission,
et
dans lequel la ou les règles d'interprétation spécifient que
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI ne
correspond pas à une combinaison de SRI, TPMI et des ports d'antenne d'une ou plusieurs
combinaisons de ressources initiales configurées via la configuration RRC, la combinaison
de SRI, TPMI et des ports d'antenne indiquée dans la DCI et au moins une de la combinaison
de ressources initiale sont incluse dans la ou les combinaisons de ressources de retransmission,
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI ne
correspond pas à la combinaison de SRI, TPMI et des ports d'antenne de l'une quelconque
des combinaisons de ressources initiales configuré via la configuration RRC, la combinaison
de ressources initiale correspondante est incluse dans la ou les combinaisons de ressources
de retransmission, et
lorsqu'un ou plusieurs bits réservés de l'un quelconque de SRI, TPMI et des ports
d'antenne indiqués dans la DCI sont utilisés, toutes les combinaisons de ressources
initiales sont incluses dans la ou les combinaisons de ressources de retransmission.
6. Procédé selon la revendication 2,
dans lequel la configuration RRC comprend la configuration de multiples choix de combinaisons
de ressources initiales, chaque choix comprenant une ou plusieurs combinaisons de
ressources initiales prises en charge par la ressource de l'UL à attribution configurée,
et
dans lequel la ou les règles d'interprétation spécifient qu'une combinaison d'un quelconque
ou plusieurs parmi SRI, TPMI et des ports d'antenne indiqués dans la DCI soit interprétée
comme un indice de choix choisissant l'un des choix multiples des combinaisons de
ressources initiales de telle sorte que les combinaisons de ressources initiales correspondant
à l'indice de choix soient incluses dans la ou les combinaisons de ressources de retransmission.
7. Procédé (300) exécuté par un noeud de réseau (102), le procédé comprenant les étapes
consistant à :
envoyer (305) une configuration de commande de ressources radio, RRC, à un équipement
utilisateur, UE (104), la configuration RRC comprenant des configurations d'une ou
plusieurs combinaisons de ressources initiales prises en charge par une ressource
de liaison montante, UL, à attribution configurée pour la transmission initiale de
données depuis l'UE au noeud de réseau, et une ou plusieurs règles d'interprétation
à appliquer par l'UE pour la retransmission des données au noeud de réseau ;
envoyer (315) une planification de la ressource de l'UL à attribution configurée à
l'UE ;
envoyer (345), lors d'une erreur de réception des données sur la ressource de l'UL
à attribution configurée de l'UE en utilisant la ou les combinaisons de ressources
initiales, une information de commande de liaison descendante, DCI, à l'UE pour la
retransmission des données, la DCI comprenant une planification d'une ressource de
l'UL de retransmission ; et
recevoir (375) les données sur la ressource de l'UL de retransmission depuis l'UE
en utilisant la ou les combinaisons de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage de transmission, TPMI, et des
ports d'antenne,
dans lequel la DCI indique une combinaison de SRI TPMI et de ports d'antenne, et
dans lequel la ou les règles d'interprétation spécifient à l'UE que l'une ou plusieurs
combinaisons de ressources de retransmission doivent être déterminées sur la base
de comparaisons de SRI, TPMI et des ports d'antenne indiqués dans la DCI avec le SRI,
TPMI et les ports d'antenne d'une ou plusieurs combinaisons de ressources initiales
configurées via la configuration RRC.
8. Procédé selon la revendication 5, dans lequel la DCI est une DCI selon une norme Release
15 d'un projet de partenariat de 3ème génération, 3GPP.
9. Procédé selon la revendication 8,
dans lequel la DCI comprend une version de redondance, RV,
dans lequel la ressource de l'UL à attribution configurée est configurée pour prendre
en charge le même nombre ou plus de SRI que la ressource de l'UL de retransmission,
et
dans lequel la ou les règles d'interprétation spécifient que
lorsque le combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI correspond
à une combinaison de SRI, TPMI et des ports d'antenne de l'une des combinaisons de
ressources initiales configurées via la configuration RRC, la combinaison de ressources
initiale correspondante est mise en sourdine, et toutes les autres ressources initiales
combinaisons sont incluses dans la ou les combinaisons de ressources de retransmission,
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI ne
correspond pas à la combinaison de SRI, TPMI et des ports d'antenne de l'une des combinaisons
de ressources initiales configurées via le configuration RRC, toutes les combinaisons
de ressources initiales sont exclues de la ou des combinaisons de ressources de retransmission,
et
lorsqu'un ou plusieurs bits réservés de l'un de SRI, TPMI et des ports d'antenne indiqués
dans la DCI sont utilisés, toutes les combinaisons de ressources initiales sont inclus
dans la ou les combinaisons de ressources de retransmission.
10. Procédé selon la revendication 8,
dans lequel la DCI comprend une version de redondance, RV,
dans lequel la ressource de l'UL à attribution configurée est configurée pour prendre
en charge le même nombre ou moins de SRI que la ressource de l'UL de retransmission,
et
dans lequel la ou les règles d'interprétation spécifient que
lorsque le la combinaison de SRI, TPMI et des ports d'antenne indiquée dans la DCI
ne correspond pas à une combinaison de SRI, TPMI et des ports d'antenne de l'une ou
plusieurs des combinaisons de ressources initiales configurées via la configuration
RRC, la combinaison de SRI, TPMI et les ports d'antenne indiqués dans la DCI et au
moins une des combinaisons de ressources initiales sont inclus dans la ou les combinaisons
de ressources de retransmission,
lorsque la combinaison de SRI, TPMI et des ports d'antenne indiqués dans la DCI correspond
à la combinaison de SRI, TPMI et des ports d'antenne de l'une quelconque des combinaisons
de ressources initiales configurées via la configuration RRC, la combinaison de ressources
initiale correspondante est incluse dans la ou les combinaisons de ressources de retransmission,
et
lorsqu'un ou plusieurs bits réservés de l'un quelconque de SRI, TPMI et des ports
d'antenne indiqués dans la DCI sont utilisées, toutes les combinaisons de ressources
initiales sont incluses dans la ou les combinaisons de ressources de retransmission.
11. Procédé selon la revendication 8,
dans lequel la configuration RRC comprend la configuration de plusieurs choix de combinaisons
de ressources initiales, chaque choix comprenant une ou plusieurs combinaisons de
ressources initiales prises en charge par la ressource de l'UL à attribution configurée,
et
dans lequel la ou les règles d'interprétation spécifient qu'un combinaison d'un quelconque
ou plusieurs parmi SRI, TPMI et des ports d'antenne indiqués dans la DCI soit interprétée
comme un indice de choix choisissant l'un des choix multiples des combinaisons de
ressources initiales de telle sorte que les combinaisons de ressources initiales correspondant
à l'indice de choix soient incluses dans la ou les combinaisons de ressources de retransmission.
12. Un équipement utilisateur, UE (104, 400), comprenant :
des moyens pour recevoir (410) une configuration de commande de ressource radio, RRC,
d'un réseau, la configuration RRC comprenant :
des configurations d'une ou plusieurs combinaisons de ressources initiales prises
en charge par une ressource de liaison montante, UL, à attribution configurée pour
la transmission initiale de données au réseau, et
une ou plusieurs règles d'interprétation à appliquer par l'UE pour la retransmission
des données au réseau ;
des moyens pour recevoir (420) une planification de la ressource de l'UL à attribution
configurée depuis le réseau ;
des moyens pour transmettre (430) les données sur la ressource de l'UL à attribution
configurée au réseau en utilisant la ou les combinaisons de ressources initiales ;
des moyens pour recevoir (440) une information de commande de liaison descendante,
DCI, du réseau pour la retransmission des données, la DCI comprenant une planification
d'une ressource de l'UL de retransmission ;
des moyens pour déterminer (450) une ou plusieurs combinaisons de ressources de retransmission
sur la base de la ou des règles d'interprétation et de la DCI ; et
des moyens pour retransmettre (460) les données sur la ressource de l'UL de retransmission
en utilisant la ou les combinaisons de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage de transmission, TPMI, et des
ports d'antenne où la DCI indique une combinaison de SRI, TPMI et des ports d'antenne,
et
où la ou les règles d'interprétation spécifient à l'UE que la ou les les combinaisons
de ressources de retransmission doivent être déterminées sur la base de comparaisons
du SRI, du TPMI et des ponts d'antenne indiqués dans la DCI avec le SRI, le TPMI et
les ponts d'antenne d'une ou plusieurs combinaisons de ressources initiales configurées
via la configuration RRC.
13. Un noeud de réseau (102, 500), comprenant :
des moyens (510) pour envoyer une configuration de commande de ressources radio, RRC,
à un équipement utilisateur, UE (104), la configuration RRC comprenant
des configurations d'une ou plusieurs combinaisons de ressources initiales prises
en charge par une ressource de liaison montante, UL, à attribution configurée pour
la transmission initiale de données depuis l'UE au noeud de réseau, et
une ou plusieurs règles d'interprétation à appliquer par l'UE pour la
retransmission des données au noeud de réseau ;
des moyens (520) pour envoyer une planification de la ressource de l'UL à attribution
configurée à l'UE ;
des moyens (540) pour envoyer, lors d'une erreur de réception des données sur la ressource
de l'UL à attribution configurée de l'UE en utilisant la ou les combinaisons de ressources
initiales, une information de commande de liaison descendante, DCI, à l'UE pour la
retransmission des données, la DCI comprenant une planification d'une ressource de
l'UL de retransmission ; et
des moyens (550) pour recevoir les données sur la ressource de l'UL de retransmission
depuis l'UE en utilisant la ou les combinaisons de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage de transmission, TPMI, et des
ports d'antenne,
dans lequel la DCI indique une combinaison de SRI TPMI et de ports d'antenne, et
dans lequel la ou les règles d'interprétation spécifient à l'UE que l'une ou plusieurs
combinaisons de ressources de retransmission doivent être déterminées sur la base
de comparaisons de SRI, TPMI et des ports d'antenne indiqués dans la DCI avec le SRI,
TPMI et les ports d'antenne d'une ou plusieurs combinaisons de ressources initiales
configurées via la configuration RRC.
14. Support non transitoire lisible par ordinateur stockant des instructions exécutables
par ordinateur pour un équipement utilisateur, UE (104, 400), les instructions exécutables
par ordinateur comprenant :
une ou plusieurs instructions amenant l'UE à recevoir une configuration de commande
de ressource radio, RRC d'un réseau, la configuration RRC comprenant
des configurations d'une ou plusieurs combinaisons de ressources initiales prises
en charge par une ressource de liaison montante, UL, à attribution configurée pour
la transmission initiale de données au réseau , et
une ou plusieurs règles d'interprétation à appliquer par l'UE pour retransmettre les
données au réseau ;
une ou plusieurs instructions amenant l'UE à recevoir une planification de la ressource
de l'UL à attribution configurée depuis le réseau ;
une ou plusieurs instructions amenant l'UE à transmettre les données sur la ressource
de l'UL à attribution configurée au réseau en utilisant la ou les combinaisons de
ressources initiales ;
une ou plusieurs instructions amenant l'UE à recevoir une information de commande
de liaison descendante, DCI, du réseau pour la retransmission des données, la DCI
comprenant une planification d'une ressource de l'UL de retransmission ;
une ou plusieurs instructions amenant l'UE à déterminer une ou plusieurs combinaisons
de ressources de retransmission sur la base de la ou des règles d'interprétation et
de la DCI ; et
une ou plusieurs instructions amenant l'UE à retransmettre les données sur la ressource
de l'UL de retransmission en utilisant la ou les combinaisons de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage d'émission, TPMI, et des ports
d'antenne dans lequel la DCI indique une combinaison de SRI, TPMI et des ports d'antenne,
et
dans lequel la ou les règles d'interprétation spécifient à l'UE que la ou les combinaisons
de ressources de retransmission doivent être déterminées sur la base de comparaisons
de SRI, TPMI et des ports d'antenne indiqués dans la DCI avec le SRI, TPMI et les
ports d'antenne de la ou des combinaisons de ressources initiales configurées via
la configuration RRC.
15. Support non transitoire lisible par ordinateur stockant des instructions exécutables
par ordinateur pour un noeud de réseau (102, 500), les instructions exécutables par
ordinateur comprenant :
une ou plusieurs instructions amenant le noeud de réseau à envoyer une configuration
de commande de ressources radio, RRC, à un équipement utilisateur, UE (104, 400),
la configuration RRC comprenant
des configurations d'une ou plusieurs combinaisons de ressources initiales prises
en charge par une ressource de liaison montante, UL, à attribution configurée pour
la transmission initiale des données de l'UE au noeud de réseau, et
une ou plusieurs règles d'interprétation à appliquer par l'UE pour la retransmission
des données au noeud de réseau ;
une ou plusieurs instructions amenant le noeud de réseau à envoyer une planification
de la ressource de l'UL à attribution configurée à l'UE ;
une ou plusieurs instructions amenant le noeud de réseau à envoyer, lors d'une erreur
de réception des données sur la ressource de l'UL à attribution configurée de l'UE
en utilisant la ou les combinaisons de ressources initiales, une information de commande
de liaison descendante, DCI, à l'UE pour la retransmission des données, la DCI comprenant
une planification d'une ressource de l'UL de retransmission ; et
une ou plusieurs instructions amenant le noeud de réseau à recevoir les données sur
la ressource de l'UL de retransmission depuis l'UE en utilisant la ou les combinaisons
de ressources de retransmission,
dans lequel chaque combinaison de ressources initiale et chaque combinaison de ressources
de retransmission comprend une combinaison de paramètres de ressource comprenant un
quelconque ou plusieurs parmi un indicateur de ressource, SRI, de signal de référence
de sondage, SRS, un indicateur de matrice de précodage de transmission, TPMI et des
ports d'antenne,
dans lequel la DCI indique une combinaison de SRI, TPMI et des ports d'antenne, et
dans lequel la ou les règles d'interprétation spécifient à l'UE que la ou les combinaisons
de ressources de retransmission doivent être déterminées sur la base de comparaisons
du SRI, du TPMI et du port l'antenne indiqué dans la DCI avec le SRI, TPMI et les
ports d'antenne d'une ou plusieurs combinaisons de ressources initiales configurées
via la configuration RRC.