(19)
(11) EP 3 940 673 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
30.10.2024 Bulletin 2024/44

(21) Application number: 21184121.8

(22) Date of filing: 06.07.2021
(51) International Patent Classification (IPC): 
G08G 5/00(2006.01)
(52) Cooperative Patent Classification (CPC):
G08G 5/0047; G08G 5/0091; G08G 5/0021; G08G 5/0052

(54)

SYSTEMS AND METHODS FOR PRESENTING ENVIRONMENT INFORMATION ON A MISSION TIMELINE

SYSTEME UND VERFAHREN ZUR DARSTELLUNG VON UMGEBUNGSINFORMATIONEN ÜBER EINE MISSIONSZEITACHSE

SYSTÈMES ET PROCÉDÉS DE PRÉSENTATION D'INFORMATIONS D'ENVIRONNEMENT SUR UN CALENDRIER DE MISSION


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 14.07.2020 IN 202011029904
26.08.2020 US 202017002904

(43) Date of publication of application:
19.01.2022 Bulletin 2022/03

(73) Proprietor: Honeywell International Inc.
Charlotte, NC 28202 (US)

(72) Inventors:
  • BILEK, Jan
    Charlotte, 28202 (US)
  • TALLA, Petr
    Charlotte, 28202 (US)
  • HOLDER, Barbara
    Charlotte, 28202 (US)
  • BENAKATTI, Girish
    Charlotte, 28202 (US)
  • TUCKOVA, Martina
    Charlotte, 28202 (US)

(74) Representative: LKGlobal UK Ltd. 
Cambridge House Henry Street
Bath BA1 1BT
Bath BA1 1BT (GB)


(56) References cited: : 
EP-A1- 3 048 424
WO-A1-2016/099619
EP-A1- 3 660 461
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The following disclosure relates generally to aircraft display systems, and, more particularly, to systems and methods for presenting environment information on a mission timeline on an aircraft display system.

    BACKGROUND



    [0002] An integral part of some available aircraft display systems is an interactive map application that offers a means of navigation and provides a possibility to retrieve and review multiple additional information sources, including environment data such as weather, airspace restrictions and notices to airmen (NOTAMs). These available aircraft display systems may present data in the form of one or more interactive map layers that can be overlaid on top of each other. A trend in aircraft display systems is to offer a mission-oriented approach, which provides a timeline and places graphic symbols along the timeline to indicate required activities and situations requiring attention.

    [0003] An important map layer for aircraft display systems provides weather information. Some mission timeline solutions may utilize a graphic symbol alongside the mission timeline to indicate a weather event on the planned flight plan (FP). However, a technical problem is presented in that a pilot or crew may need to know, not only that there is a thunderstorm ahead on the FP, but its significance (e.g., level of severity and additional details that may impact the aircraft).

    [0004] Accordingly, technically improved systems and methods for presenting environment information on a mission timeline on an aircraft display system are desirable. Furthermore, other desirable features and characteristics of the present invention will be apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.

    [0005] Documents WO 2016/099619 A1, EP 3 660 461 A1 and EP 3 048 424 A1, all deal with presenting to the pilot potential hazards on the segments of a route of an aircraft.

    BRIEF SUMMARY



    [0006] This summary is provided to describe select concepts in a simplified form that are further described in the Detailed Description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.

    [0007] Provided is a flight plan (FP) display system on an aircraft for automating processes of receiving, prioritizing, and grouping weather data into a weather event with an associated extent for presentation on a displayed mission timeline, the system including a controller circuit with a processor configured by programming instructions on non-transient computer readable media, the controller circuit configured to: receive weather data from at least one weather source; reference aircraft state data and aircraft system status data; and identify a weather phenomenon that impacts the FP by processing the weather data with the aircraft state data, aircraft system status data, and the FP; create an information structure for the weather phenomenon, the information structure including a type, a subtype, a severity, a start of impact and an end of impact; present a weather event indicator overlaid on the mission timeline to depict the weather phenomenon; present an alphanumeric notice of the weather event next to the weather event indicator; and depict an extent of the weather event with a beginning of the weather event indicator and an end of the weather event indicator; wherein: the beginning of the weather event indicator is aligned with a beginning of a flight segment when the start of impact occurs at or within a first prescribed snap-to start percent of the flight segment; the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment; the beginning of the weather event indicator is placed at a center of the flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment; the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within a final prescribed snap-to end percent of the flight segment; and the end of the weather event indicator is placed at the center of the weather event indicator or before the ending of the flight segment when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment.

    [0008] In an embodiment, a method for automating processes of receiving, prioritizing, and grouping weather data into a weather event with an associated extent for presentation on a displayed mission timeline in an aircraft having a flight plan (FP) is provided. The method including: receiving, by a controller circuit with a processor configured by programming instructions, weather data from at least one weather source; referencing, by the controller circuit, aircraft state data and aircraft system status data; and identifying, by the controller circuit, a weather phenomenon that impacts the FP by processing the weather data with the aircraft state data, the aircraft system status data, and the FP; creating an information structure for the weather phenomenon, the information structure including a type, a subtype, a severity, a start of impact and an end of impact; presenting a weather event indicator overlaid on the mission timeline to depict the weather phenomenon; presenting an alphanumeric notice of the weather event next to the weather event indicator; and depicting an extent of the weather event with a beginning of the weather event indicator and an end of the weather event indicator; wherein: the beginning of the weather event indicator is aligned with a beginning of a flight segment when the start of impact occurs at or within a first prescribed snap-to start percent of the flight segment; the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment; the beginning of the weather event indicator is placed at a center of the flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment; the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within a final prescribed snap-to end percent of the flight segment; and the end of the weather event indicator is placed at the center of the weather event indicator or before the ending of the flight segment when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment.

    [0009] Also provided is a mission timeline display system displaying a mission timeline for a flight plan (FP) of an aircraft. The mission timeline display system including: a significant environment processing module configured to: communicate with aircraft ownship data sources and external data sources using a communications circuit; and identify a weather phenomenon that impacts the FP; a creation of information structure module configured to operate on the weather phenomenon and create an information structure therefrom; and a display processing module configured to operate on the information structure to generate and display on the mission timeline display: a weather event indicator, overlaid on the mission timeline to depict the weather phenomenon; and an alphanumeric notice of the weather event, next to the weather event indicator; and wherein the weather event has an extent indicated with a beginning of the weather event indicator and an end of the weather event indicator; wherein: the beginning of the weather event indicator is aligned with a beginning of a flight segment when the start of impact occurs at or within a first prescribed snap-to start percent of the flight segment; the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment; the beginning of the weather event indicator is placed at a center of the flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment; the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within a final prescribed snap-to end percent of the flight segment; and the end of the weather event indicator is placed at the center of the weather event indicator or before the ending of the flight segment when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment.

    [0010] Furthermore, other desirable features and characteristics of the system and method will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the preceding background.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] At least one example of the present invention will hereinafter be described in conjunction with the following figures, wherein like numerals denote like elements, and:

    FIG. 1 is a block diagram of a system for presenting environment information on a mission timeline on an aircraft display system, as illustrated in accordance with an exemplary embodiment of the present disclosure;

    FIG. 2 is an architectural block diagram of one or more modules operating in a system for presenting environment information on a mission timeline on an aircraft display system, as illustrated in accordance with an exemplary embodiment of the present disclosure;

    FIGS. 3-4 illustrate various embodiments of a weather event indicator presented on a mission timeline, in accordance with an exemplary embodiment of the present disclosure; and

    FIG. 5 is a flow chart of a method for displaying environment information on a mission timeline, as may be implemented by the system of FIG. 1, in accordance with an exemplary embodiment of the present disclosure.


    DETAILED DESCRIPTION



    [0012] The following Detailed Description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. The term "exemplary," as appearing throughout this document, is synonymous with the term "example" and is utilized repeatedly below to emphasize that the description appearing in the following section merely provides multiple non-limiting examples of the invention and should not be construed to restrict the scope of the invention, as set-out in the Claims, in any respect. As further appearing herein, the term "pilot" encompasses all users of the below-described aircraft system.

    [0013] As mentioned, a mission-oriented approach in aircraft display systems generally provides a mission timeline and places graphic symbols along the timeline at locations that indicate when required activities should be performed and when situations requiring attention may occur. Some mission timeline solutions may place a graphic symbol alongside the mission timeline of the planned flight plan (FP) to indicate a weather event. However, a technical problem is presented in that a pilot or crew may need to know more than simply that there is a weather event ahead on the FP, such as, its significance (e.g., level of severity, extent/duration, and potential impact to the aircraft).

    [0014] The present disclosure provides a technical solution to the limitations of available solutions, in the form of systems and methods for providing environment information on a mission timeline. The provided systems and methods automate the processes of receiving, prioritizing, and grouping weather data into a weather event and event extent with an associated duration for presentation on a displayed mission timeline on an aircraft flight plan (FP) display system. The provided systems and methods generate a weather event indicator that, by its size and placement on the mission timeline, visually communicates a start, and end, and an extent/duration of the weather event.

    [0015] FIG. 1 is a block diagram of a system 102 for automating the process of receiving, prioritizing, and grouping weather data into a weather event with an event extent an associated duration for presentation on a displayed mission timeline (shortened hereinafter to "system 102"), as illustrated in accordance with an exemplary and non-limiting embodiment of the present disclosure. The system 102 may be utilized onboard a mobile platform 100 to provide enhanced weather alerting, as described herein. In various embodiments, the mobile platform is an aircraft 100, which carries or is equipped with the system 102. As schematically depicted in FIG. 1, system 102 may include the following components or subsystems, each of which may assume the form of a single device, system on chip (SOC), or multiple interconnected devices: a controller circuit 104 operationally coupled to: at least one display unit 110; computer-readable storage media or memory 132; a user input interface 114, and ownship data sources 106 including one or more flight management system computers (FMS computers 116), aircraft system status sensors and geospatial sensors. In various embodiments, the system 102 may be separate from or integrated within: a FMS computer 116 and/or a flight control system (FCS). The system 102 may also contain a communications circuit 140 and an antenna 142, which may wirelessly transmit data to and receive real-time data and signals from various external sources 144, including, each of: weather source(s) 146, air traffic control (ATC 148), and the like.

    [0016] Although schematically illustrated in FIG. 1 as a single unit, the individual elements and components of the system 102 can be implemented in a distributed manner utilizing any practical number of physically distinct and operatively interconnected pieces of hardware or equipment. When the system 102 is utilized as described herein, the various components of the system 102 will typically all be located onboard the Aircraft 100.

    [0017] The term "controller circuit," as appearing herein, broadly encompasses those components utilized to carry-out or otherwise perform the processes and/or support the processing functionalities of the system 102. Accordingly, controller circuit 104 can encompass or may be associated with a programmable logic array, and an application specific integrated circuit or other similar firmware, as well as any number of individual processors, flight control computers, navigational equipment pieces, computer-readable memories (including or in addition to memory 132), power supplies, storage devices, interface cards, and other standardized components. In various embodiments, controller circuit 104 embodies one or more processors operationally coupled to data storage having stored therein at least one firmware or software program (generally, a program product or program of computer-readable instructions that embody an algorithm) for carrying-out the various process tasks, calculations, and control/display functions described herein. During operation, the controller circuit 104 may execute an algorithm for automating the process of receiving, prioritizing, and grouping weather data into a weather event with an associated duration for presentation on a displayed mission timeline for an aircraft 100, to thereby perform the various process steps, tasks, calculations, and control/display functions described herein. In various embodiments, the algorithm is embodied as at least one firmware or software program (e.g., program 134).

    [0018] Communications circuit 140 is configured to provide a real-time bidirectional wired and/or wireless data exchange for the processor 130 with the ownship data sources 106, the user input device 108, the display unit 110, and the external sources 144 to support operation of the system 102 in embodiments. In various embodiments, the communications circuit 140 may include a public or private network implemented in accordance with Transmission Control Protocol/Internet Protocol architectures and/or other conventional protocol standards. Encryption and mutual authentication techniques may be applied, as appropriate, to ensure data security. In some embodiments, the communications circuit 140 is integrated within the controller circuit 104 as shown in FIG. 1, and in other embodiments, the communications circuit 140 is external to the controller circuit 104.

    [0019] A variety of ownship data sources 106 may be operationally coupled to the controller circuit 104. For example, one or more flight management system (FMS) 116 computers may bidirectionally communicate with the controller circuit 104. In various embodiments, the FMS 116 may provide a flight plan (FP). Flight parameter sensors and geospatial sensors 118 supply various types of aircraft state data or measurements to controller circuit 104 during aircraft flight. In various embodiments, the aircraft state data supplied by the geospatial sensors 118 include, without limitation, one or more of: inertial reference system measurements providing a location, Flight Path Angle (FPA) measurements, airspeed data, groundspeed data (including groundspeed direction), vertical speed data, vertical acceleration data, altitude data, attitude data including pitch data and roll measurements, yaw data, heading information, sensed atmospheric conditions data (including wind speed and direction data), flight path data, flight track data, radar altitude data, and geometric altitude data. Aircraft system status sensors 120 may provide aircraft system status data, such as, engine status, fuel status, a current aircraft configuration (e.g., spoiler/speed brake configuration), and the like. On-board weather radar sensors 122 can provide weather data associated with the immediate surroundings of the aircraft 100. Often, the FMS 116 and onboard sensor systems provide data and information on a communication bus 125 and the controller circuit 104 receives the sensor data and information therefrom.

    [0020] External sources 144 may communicate with the controller circuit 104, for example, wirelessly, and via antenna 142. External sources include external weather sources 146, air traffic control (ATC) 148, and traffic data sources. With respect to the present invention, external weather sources 146 may be any combination of one or more of meteorological weather information, such as, uplink weather (XM/SXM, GDC/GoDirect Weather), NOTAM/D-NOTAM, TAF, D-ATIS.

    [0021] A display unit 110 can include any number and type of image generating devices on which one or more avionic displays 112 may be produced. When the system 102 is utilized for a manned Aircraft, display unit 110 may be affixed to the static structure of the Aircraft cockpit as, for example, a Head Down Display (HDD) or Head Up Display (HUD) unit. Alternatively, display unit 110 may assume the form of a movable display device (e.g., a pilot-worn display device) or a portable display device, such as an Electronic Flight Bag (EFB), a laptop, or a tablet computer carried into the Aircraft cockpit by a pilot.

    [0022] At least one avionic display 112 is generated on display unit 110 during operation of the system 102; the term "avionic display" defined as synonymous with the term "aircraft-related display" and "cockpit display" and encompasses displays generated in textual, graphical, cartographical, and other formats. The system 102 can generate various types of lateral and vertical avionic displays on which map views and symbology, text annunciations, and other graphics pertaining to flight planning are presented for a pilotto view. In various embodiments, the display unit 110 is configured to continuously render at least a lateral display showing the Aircraft 100 at its current location within the map data. The avionic display 112 generated and controlled by the system 102 can include a user input interface 114, including graphical user interface (GUI) objects and alphanumerical displays of the type commonly presented on the screens of MCDUs, as well as Control Display Units (CDUs) generally. Specifically, embodiments of avionic displays 112 include one or more two dimensional (2D) avionic displays, such as a horizontal (i.e., lateral) navigation display or vertical navigation display; and/or on one or more three dimensional (3D) avionic displays, such as a Primary Flight Display (PFD) or an exocentric 3D avionic display.

    [0023] In various embodiments, a human-machine interface is implemented as an integration of a user input interface 114 and a display unit 110. In various embodiments, the display unit 110 is a touch screen display. In various embodiments, the human-machine interface also includes a separate user input device 108 (such as a keyboard, cursor control device, voice input device, or the like), generally operationally coupled to the display unit 110. Via various display and graphics systems processes, the controller circuit 104 may command and control a touch screen display unit 110 to generate a variety of graphical user interface (GUI) objects or elements described herein, including, for example, buttons, sliders, and the like, which are used to prompt a user to interact with the human-machine interface to provide user input; and for the controller circuit 104 to activate respective functions and provide user feedback, responsive to received user input at the GUI element.

    [0024] With continued reference to FIG. 1, in various embodiments, the controller circuit 104 may include a processor 130 and a memory 132. Memory 132 is a data storage that can encompass any number and type of storage media suitable for storing computer-readable code or instructions, such as the aforementioned software program 134, as well as other data generally supporting the operation of the system 102. Memory 132 may also store one or more preprogrammed variables 136 and thresholds, for use by an algorithm embodied in the software program 134. Examples of preprogrammed variables 136 include the "snap-to start" and "snap-to end" percentages described below. One or more database(s) 138 are another form of storage media that the system 102 may employ; they may be integrated with memory 132 or separate from it.

    [0025] In various embodiments, aircraft-specific parameters and information for aircraft 100 may be stored in the memory 132 or in a database 138 and referenced by the program 134. Non-limiting examples of aircraft-specific information includes an aircraft weight and dimensions, performance capabilities, configuration options, and the like.

    [0026] In various embodiments, two- or three-dimensional map data may be stored in a database 138, including airport features data, geographical (terrain), buildings, bridges, and other structures, street maps, and navigational databases, which may be updated on a periodic or iterative basis to ensure data timeliness. This map data may be uploaded into the database 138 at an initialization step and then periodically updated, as directed by either a program 134 update or by an externally triggered update.

    [0027] We turn now to processes performed by the system 102. With reference to FIG. 2, the system 102 may be described in terms of an architecture with one or more processing modules. A significant environment processing module 402 may be configured to perform a process of determining or identifying a weather phenomenon that is relevant to the flight plan (FP) of the aircraft 100. The significant environment processing module 402 may be configured to identify the weather phenomenon that impacts the FP by processing weather data received from at least one weather source, referencing the flight plan (FP) of the aircraft, and referencing/receiving real-time aircraft state data, aircraft system status data, and an aircraft configuration. In this processing step, the significant environment processing module 402 may apply rules embodied in the program 134 to assess the significance of weather data based on the aircraft state data (static and dynamic), current FP, and system statuses, as well as configured preferences.

    [0028] In various embodiments, the output of significant environment processing module 402 may be a data set of occurrences of environmental events with significant impact on the FP. This data set is generated to be universally useful to aircraft applications and does not need to be further altered for a specific use of any application, but contains the detailed data on the occurrence, its type, its extent/duration and location.

    [0029] A creation of information structure module 404 may be configured to organize and store the output from module 402 into an information structure. The creation of information structure module 404 may perform a process of creating an information structure for the identified weather phenomenon that impacts the flight plan (FP) of the aircraft, the information structure is constructed using predefined rules, thresholds and variables in the program 134. Table 1, below, provides an exemplary embodiment of an information structure created by system 102, although placing information into a table is not a necessary step in the generation of the information structure.
    Table 1, Information Structure
      Name Description
    1 ID Unique Identification number of the occurrence providing the means of cross-application referencing and linking
    2 Title Title providing high-level description of the occurrence (e.g. Icing)
    3 Description Additional detail of the occurrence (e.g. Forecast of extreme icing, 6:00Z-9:00Z)
    4 Type Enumeration (e.g. weather, airspace, traffic)
    5 Subtype Enumeration (e.g. Turbulence, Icing, Lightning)
    6 Severity Severity of the subtype (e.g. light/moderate/Severe)
    7 Impact distance start Start of the impacted trajectory segment, measured in nautical miles from the trajectory destination.
    8 Impact distance finish Finish of the impacted trajectory segment measured in nautical miles from the trajectory destination.
    9 Impact top Highest impacted flight level
    10 Impact bottom Lowest impacted flight level
    11 Valid from Date/time beginning of the occurrence validity
    12 Valid to Date/time end of the occurrence validity
    13 Source Identification of the data source (multiple sources can provide the same information)


    [0030] As mentioned, the information structure output of the system 102 may be automatically and without further user input produced as a single source to be consumed by all aircraft applications/functions providing significant environment information to the pilot or performing calculations based on the significant environment information data. The system 102 may regenerate the information structure output, or have a refresh interval, responsive to an update in received data from any one of the data sources feeding into the system 102. As used herein, an update in received data implies a change in at least one item of the received data (e.g., a change in weather information, or a change in a system status). In various embodiments, the information structure includes at least a type (Row 4), a subtype (Row 5), a severity (Row 6), a start of impact (Row 7) and an end of impact (Row 8).

    [0031] In various embodiments, the system 102 may perform a process of change assessment, responsive to receipt of an update to received data. One kind of change assessment that the system 102 may perform includes new occurrence alerting, which means alerting to a new occurrence when a weather event occurrence is present in the new (i.e., regenerated) data set at a location that does not have any overlap with an occurrence of the same type (Row 4) from the previous data set. Another kind of change assessment that the system 102 may perform includes a severity escalation, meaning, alerting to an occurrence of an increased severity (row 6) when a new data set that has a partial or complete overlap with the previous data set, has an increased severity. The change assessment may take the form of an alphanumeric notice rendered on the mission timeline at a location that is representative of the data change.

    [0032] As mentioned, the system 102 may have a display processing module configured to determine how to present the information embodied in the information structure, generally, using display techniques and indicators (e.g., a weather event indicator described below), alphanumeric notices, color rendering, and the like. A display processing module 406 may be configured to operate on the information structure and parse/filter/conform relevant information therefrom to a mission timeline displayed on a specific display unit 110, as described herein.

    [0033] An aspect of determining how to present this information includes referencing a mission timeline that is currently displayed, and further identifying which flight segments and how many flight segments currently displayed on the mission timeline display are affected by a weather event in terms of its extent and predicted duration on a flight plan. An aspect of presenting the information includes scaling the display techniques and indicators, alphanumeric notices, color rendering, and the like, to conform to the currently displayed mission timeline, as described in more detail below.

    [0034] Turning now to FIG. 3, an example of a weather event with its extent and associated duration displayed on a mission timeline is illustrated. The image 200 may be presented on a display 112. A mission timeline is depicted extending vertically from 202 at the bottom of the image to 204 at the top of the image; the aircraft 100 generally has a current position at about 202. Waypoint 1 (WPT1), Waypoint 2 (WPT2) and Waypoint 3 (WPT3) are shown, dividing up the displayed mission timeline into a first flight segment 206 (prior to WPT1), a second flight segment 208 (between WPT1 and WPT2) and a third flight segment 210 (from WPT2 to WPT3). In some available systems, a weather event symbol (such as symbol 212) may be placed alongside the mission timeline in a time-relevant segment. In FIG. 3, symbol 212 is shown placed within the second segment 208; as can be observed, the symbol 212 does not convey relevant details, such as severity, start of impact or end of impact.

    [0035] The system 102 improves upon existing mission timeline displays by presenting a weather event indicator 214, overlaid on the mission timeline, to depict the weather phenomenon. A length of the weather event indicator 214, and its start and end, are dynamic and designed to visually convey on the mission timeline the start, the extent/duration, and end time of the respective weather phenomenon. In the example embodiment of FIG. 3, the weather event indicator 214 is a thickened line overlaid on the mission timeline, the thickened line is rendered in a first color (or first shade, when using gray scale) that is different from a second color (or second shade, when using grey scale) that the mission timeline is rendered in, and the first color is lighter than the second color, such that the mission timeline is viewable through the weather event indicator 214. The system also presents an alphanumeric notice 220 of the weather event next to the weather event indicator. In FIG. 3, the alphanumeric notice 220 is placed on the right side of the mission timeline, in the second flight segment 208, which is where the weather event has been determined to begin.

    [0036] It is to be appreciated that while the mission timelines are not rendered to scale in FIGS. 3 and 4, they are sized to sufficiently communicate relative distances between the flight segments. The extent of a weather event and its associated duration on the mission timeline is also visually conveyed by system 102 in a relative manner, as follows. A beginning 216 of the weather event indicator and an end 218 of the weather event indicator convey an extent of the weather event to a viewer; the extent of the weather event is experienced as a duration in the sense that the aircraft is predicted to experience the weather event for the duration of time it flies the mission timeline from the beginning 216 of the weather event indicator to the end 218. In FIG. 3, the beginning 216 aligns with the beginning of the second flight segment 208 (which is also a location of WPT1), and the end 218 is shown midway in the third flight segment 210 (between WPT2 and WPT3). The specific beginning and ending for a given weather event indicator are determined by the rules in the program 134. In various embodiments, a "snap-to" percent is employed, as follows.

    [0037] With reference to FIG. 4, and with continued reference to FIGS. 1-3, the extent of the weather event indicator 214 is described. Note that there are four sequential flight segments, labeled FS1, FS2, FS3 and FS4, and that the flight segments extend between waypoints, as described above, and each flight segment is not the same size or distance.

    [0038] In a simple example, the weather event could be determined to start exactly at one waypoint and end exactly at another waypoint, in which case no further extent/duration processing would be required. However, when the start or end is in between waypoints, the system 102 applies predetermined rules for showing the extent (and associated predicted duration). In a pre-processing step, the system 102 (e.g., via the display processing module 406) may calculate the distance associated with each flight segment and determine a distance that is equal to a snap-to start percent and a distance that is equal to a snap-to end percent for each of the flight segments. For example, if a flight segment is 100 nautical miles (NM) long, and the snap-to start is 15%, the system 102 will be determining whether weather events start prior to the first 15 NM of that flight segment; likewise, if the snap-to end is 90 %, the system 102 will be determining whether the weather event ends prior to the last 10 NM of the flight segment.

    [0039] In a first example, when the start of impact occurs at or within a prescribed snap-to start percent of the flight segment, the weather event indicator is aligned with the beginning of a flight segment. This example is depicted in FIG. 4, on mission timelines 304 and 306 (note in each case the weather event indicator begins at the beginning of FS2, which visually conveys that the weather event starts (from the perspective of traveling toward it) within the first prescribed snap-to start percent of the flight segment FS2.

    [0040] In other example, as depicted on timeline 302, the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment. On timeline 302, the weather event occurs entirely within FS2.

    [0041] In another example, as depicted on timeline 308, the beginning of the weather event indicator is placed at a center (i.e., midpoint) of the flight segment when the start of impact occurs after the first prescribed snap-to percent of the flight segment. In an embodiment, the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within to a final prescribed snap-to end percent of the flight segment (as shown on the mission timeline 304). In an embodiment, the end of the weather event indicator is placed at the center of the flight segment (as shown on mission timeline 308) or before the ending of the flight segment (as shown on mission timeline 302) when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment.

    [0042] When comparing mission timeline 302 and mission timeline 308, the determiner on where the end 218 of the weather event indicator 214 is placed has to do with whether the end of the weather event is in the same flight segment as the beginning (as it is in mission timeline 302) or in a different flight segment (as it is in mission timeline 308). With respect to mission timeline 308, the above processes may be expanded as follows. The flight segment is one of two or more flight segments displayed on the mission timeline 308, and the controller is further configured to: identify a start flight segment corresponding to the beginning of the weather event; identify a stop flight segment corresponding to the end of the weather event; and wherein: the beginning of the weather event indicator is aligned with a beginning of the start flight segment when the start of impact occurs at or within the prescribed snap-to start percent of the flight segment; the beginning of the weather event indicator is placed after the beginning of the start flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment; the end of the weather event indicator is aligned with an ending of the stop flight segment when the end of impact occurs after the prescribed snap-to end percent of the end of the flight segment; and the end of the weather event indicator is placed after the beginning of the weather event indicator and before the ending of the stop flight segment when the end of impact occurs at or before the prescribed snap-to end percent of the end of the flight segment.

    [0043] As may be appreciated, more than one weather phenomena may be indicated by the weather data. In various embodiments, the weather phenomenon is one of a plurality of weather phenomena and the system 102 is further configured to: identify the plurality of weather phenomena. The system creates, for each of the plurality of weather phenomena, a respective information structure, and also identifies a respective weather interval for each of the plurality of weather phenomenon, the weather interval extending from a respective start of impact to a respective end of impact. As each weather phenomenon may have its own interval, on occasion, they may overlap.

    [0044] The system 102 is configured to respond differently based on user selected (via user input device 108) or preprogrammed options for display processing submodules. In various embodiments, the system 102 (e.g., in the display processing module 406) may apply a prioritization scheme in instances of weather phenomena having overlapping weather intervals in a given flight segment. In various embodiments, the system 102 may employ the prioritization scheme to overlay on the mission timeline a weather event indicator that depicts only a weather phenomenon with the highest priority in the prioritization scheme. In an embodiment, the prioritization scheme may be preprogrammed into the rules in the program 134. In an embodiment, the prioritization scheme may be a function of the system 102, in which the system 102 processes aircraft sensor data or aircraft system status data (such as an amount of fuel) with at least the weather data.

    [0045] In various embodiments, the display processing module 406 of the system 102 may be configured to, instead of prioritizing, group weather phenomenon together and generate a weather event indicator and an alphanumeric notice of the weather event that represent the grouped weather phenomenon.

    [0046] In various embodiments, wherein the weather phenomenon is one of a plurality of weather phenomena the display processing module 406 of the system 102 may be configured to: identify the plurality of weather phenomena; for each of the plurality of weather phenomena, create a respective information structure, and identify a weather interval extending from the start of impact to the end of impact; and, apply a fusion scheme to fuse incidents of a same subtype weather phenomena having weather intervals that overlap in the flight segment.

    [0047] In various embodiments, the display processing module 406 of the system 102 may be configured to flatten some of the information in the information structure, using various fusion schemes. In an embodiment, the system 102 may combine type and subtype (e.g., all thunderstorm-related). In an embodiment, the system 102 combine subtype and severity (e.g. only a weather type). In another embodiment, the system 102 may combine all weather events that have a same level of severity. In various embodiments, wherein the weather phenomenon is one of a plurality of weather phenomena the system 102 is further configured to: identify the plurality of weather phenomena; for each of the plurality of weather phenomena, create a respective information structure, and identify a weather interval extending from the start of impact to the end of impact; and, apply a fusion scheme to fuse incidents of a same subtype weather phenomena having weather intervals that overlap in the flight segment. In other embodiments, any combination of the above fusion schemes may be employed.

    [0048] In various embodiments, the system 102 may determine that a short distance exists between two similar weather phenomena. In such cases, the system 102 may compare the distance to a threshold, and if it is smaller than the threshold, the system 102 may fuse the two weather phenomena, such that the resulting weather event indicator extends from the beginning of the first one to the ending of the second one.

    [0049] The examples provided with respect to FIGS. 3 and 4 show the mission timeline displayed in increments that are flight segments separated by waypoints. In other embodiments, the mission timeline may be displayed in nonlinearly time-mapped flight segments. In other embodiments, the techniques and processes described above can be applied to smaller intervals than a flight segment. For example, a flight plan can be broken into intervals of any predefined length and the above processing can be applied to an interval in the same manner as it was applied to a flight segment. For example, a single flight segment might comprise four intervals, and the snap-to percentages and other display processing techniques described above can be applied to each interval. In various embodiments, the choice of interval or flight segment is based at least in part on the device selected for the display unit 110.

    [0050] Turning now to FIG. 5, the system 102 described above may be implemented by a processor-executable method 500. For illustrative purposes, the following description of method 500 may refer to elements and modules mentioned above in connection with FIGS. 1-2. In practice, portions of method 500 may be performed by different components of the described system. It should be appreciated that method 500 may include any number of additional or alternative tasks, the tasks shown in FIG. 5 need notbe performed in the illustrated order, and method 500 may be incorporated into a more comprehensive procedure or method having additional functionality not described in detail herein. Moreover, one or more of the tasks shown in FIG. 5 could be omitted from an embodiment of the method 500 as long as the intended overall functionality remains intact.

    [0051] At 502, the system 102 is initialized. Initialization may include loading instructions and program 134 into a processor within the controller circuit 104, as well as loading preprogrammed variables 136, map data, and aircraft-specific features into one or more database(s) 138.

    [0052] At 504 the system 102 receives weather data from at least one weather source. At 506, the system receives or references ownship data from onboard data sources. The ownship data includes FMS data, such as the flight plan (FP), aircraft state data from the geospatial sensors 118, system status data, such as fuel status and an aircraft configuration, and optionally, onboard weather radar data. At 508, the system 102 performs processing steps to identify one or more weather phenomenon that impacts the FP. At 510, the system creates an information structure for the weather phenomenon. At 512, the system 102 performs display processing to generate the weather event indicator and determine where on the displayed mission timeline its start and end will be. At 512, the system 102 also determines what alphanumeric notices to post alongside the weather event indicator. At 514, the system 102 presents the weather event indicator on the mission timeline displayed on the display unit 110. Block 510 may be repeated for each weather phenomenon identified in block 508.

    [0053] Thus, enhanced systems and methods for displaying weather information on a mission timeline display are provided. By processing the weather data with the aircraft-specific ownship data (from ownship sources 106), the system 102 is able to not only detect that a weather event is ahead, but to put weather data into context for the pilot, on an easy to comprehend visual, providing an objectively improved human-machine interface.

    [0054] Although an exemplary embodiment of the present disclosure has been described above in the context of a fully-functioning computer system (e.g., system 102 described above in conjunction with FIG. 1), those skilled in the art will recognize that the mechanisms of the present disclosure are capable of being distributed as a program product (e.g., an Internet-disseminated program or software application that includes program 134) and, further, that the present teachings apply to the program product regardless of the particular type of computer-readable media (e.g., hard drive, memory card, optical disc, etc.) employed to carry-out its distribution.

    [0055] Terms such as "comprise," "include," "have," and variations thereof are utilized herein to denote non-exclusive inclusions. Such terms may thus be utilized in describing processes, articles, apparatuses, and the like that include one or more named steps or elements but may further include additional unnamed steps or elements. While at least one exemplary embodiment has been presented in the foregoing Detailed Description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing Detailed Description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. Various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set-forth in the appended Claims.


    Claims

    1. A flight plan, FP, display system (102) on an aircraft for automating processes of receiving, prioritizing, and grouping weather data into a weather event with an associated extent for presentation on a displayed mission timeline (202, 204), the system comprising a controller circuit (104) with a processor configured by programming instructions on non-transient computer readable media, the controller circuit configured to:

    receive weather data from at least one weather source (122, 146);

    reference aircraft state data and aircraft system status data; and

    identify a weather phenomenon that impacts the FP by processing the weather data with the aircraft state data, aircraft system status data, and the FP;

    create an information structure for the weather phenomenon, the information structure including a type, a subtype, a severity, a start of impact and an end of impact;

    present a weather event indicator (214) overlaid on the mission timeline to depict the weather phenomenon, wherein the displayed mission timeline is vertical and places graphic symbols (212) along the displayed mission timeline at locations that indicate when required activities should be performed and when situations requiring attention may occur;

    present an alphanumeric notice (220) of the weather event next to the weather event indicator; and

    depict an extent of the weather event with a beginning of the weather event indicator (216) and an end of the weather event indicator (218);

    wherein:

    the beginning of the weather event indicator is aligned with a beginning of a flight segment (206, 208, 210) when the start of impact occurs at or within a first prescribed snap-to start percent of the flight segment;

    the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment;

    the beginning of the weather event indicator is placed at a center of the flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment;

    the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within a final prescribed snap-to end percent of the flight segment; and

    the end of the weather event indicator is placed at the center of the weather event indicator or before the ending of the flight segment when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment;

    wherein the flight segment is one of two or more flight segments displayed on the mission timeline, and the controller is further configured to:

    identify a start flight segment corresponding to the beginning of the weather event;
    identify a stop flight segment corresponding to the end of the weather event;

    and wherein:

    the beginning of the weather event indicator is aligned with a beginning of the start flight segment when the start of impact is less than or equal to a prescribed snap-to start percent of the beginning of the start flight segment;

    the beginning of the weather event indicator is placed after the beginning of the start flight segment when the start of impact is greater than the prescribed snap-to start percent of the beginning of the start flight segment;

    the end of the weather event indicator is aligned with an ending of the stop flight segment when the end of impact is greater than or equal to a prescribed snap-to end percent of the ending of the stop flight segment; and

    the end of the weather event indicator is placed after the beginning of the weather event indicator and before the ending of the stop flight segment when the end of impact is less than the prescribed snap-to end percent of the ending of the stop flight segment.


     
    2. The FP display system of claim 1, wherein the at least one weather source includes an external weather system (146) and an on-board weather radar system (122).
     
    3. The FP display system of claim 1, wherein the controller is further configured to:
    regenerate the information structure responsive to a change in weather data from the at least one weather source.
     
    4. The FP display system of claim 3, wherein the weather phenomenon is one of a plurality of weather phenomena and the controller is further configured to:

    identify the plurality of weather phenomena;

    for each of the plurality of weather phenomena, create a respective information structure, and identify a respective weather interval extending from the start of impact to the end of impact;

    apply a prioritization scheme to weather phenomena with weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts a weather phenomenon with a highest priority in the prioritization scheme.


     
    5. The FP display system of claim 4, wherein the prioritization scheme is a function of an aircraft system status provided by on-board sensors (122).
     
    6. The FP display system of claim 3, wherein the weather phenomenon is one of a plurality of weather phenomena and the controller is further configured to:

    identify the plurality of weather phenomena;

    for each of the plurality of weather phenomena, create a respective information structure, and identify a weather interval extending from the start of impact to the end of impact;

    apply a fusion scheme to fuse incidents of a same type weather phenomena having weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts the type of weather phenomenon.


     
    7. The FP display system of claim 3, wherein the weather phenomenon is one of a plurality of weather phenomena and the controller is further configured to:

    identify the plurality of weather phenomena;

    for each of the plurality of weather phenomena, create a respective information structure, and identify a weather interval extending from the start of impact to the end of impact;

    apply a fusion scheme to fuse incidents of a same subtype weather phenomena having weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts the subtype of weather phenomenon.


     
    8. A method for automating processes of receiving, prioritizing, and grouping weather data into a weather event with an associated extent for presentation on a displayed mission timeline (202, 204) in an aircraft having a flight plan, FP, the method comprising:

    receiving, by a controller circuit (104) with a processor (130) configured by programming instructions, weather data from at least one weather source (122, 146);

    referencing, by the controller circuit, aircraft state data and aircraft system status data; and

    identifying, by the controller circuit, a weather phenomenon that impacts the FP by processing the weather data with the aircraft state data, the aircraft system status data, and the FP;

    creating an information structure for the weather phenomenon, the information structure including a type, a subtype, a severity, a start of impact and an end of impact;

    presenting a weather event indicator (214) overlaid on the mission timeline to depict the weather phenomenon, wherein the displayed mission timeline is vertical and places graphic symbols (212) along the displayed mission timeline at locations that indicate when required activities should be performed and when situations requiring attention may occur;

    presenting an alphanumeric notice (220) of the weather event next to the weather event indicator; and

    depicting an extent of the weather event with a beginning of the weather event indicator (216) and an end of the weather event indicator (218);

    wherein:

    the beginning of the weather event indicator is aligned with a beginning of a flight segment (206, 208, 210) when the start of impact occurs at or within a first prescribed snap-to start percent of the flight segment;

    the beginning of the weather event indicator is placed after the beginning of the flight segment when (i) the start of impact occurs after the first prescribed snap-to start percent of the flight segment (ii) the end of the weather event indicator occurs prior to a last prescribed snap-to end percent of the flight segment;

    the beginning of the weather event indicator is placed at a center of the flight segment when the start of impact occurs after the prescribed snap-to start percent of the flight segment;

    the end of the weather event indicator is aligned with an ending of the flight segment when the end of impact occurs at or within a final prescribed snap-to end percent of the flight segment; and

    the end of the weather event indicator is placed at the center of the weather event indicator or before the ending of the flight segment when the end of impact occurs prior to the last prescribed snap-to end percent of the flight segment;

    wherein:
    wherein the flight segment is one of two or more flight segments displayed on the mission timeline, and the method includes:

    identify a start flight segment corresponding to the beginning of the weather event;

    identify a stop flight segment corresponding to the end of the weather event;

    and wherein:

    the beginning of the weather event indicator is aligned with a beginning of the start flight segment when the start of impact is less than or equal to a prescribed snap-to start percent of the beginning of the start flight segment;

    the beginning of the weather event indicator is placed after the beginning of the start flight segment when the start of impact is greater than the prescribed snap-to start percent of the beginning of the start flight segment;

    the end of the weather event indicator is aligned with an ending of the stop flight segment when the end of impact is greater than or equal to a prescribed snap-to end percent of the ending of the stop flight segment; and

    the end of the weather event indicator is placed after the beginning of the weather event indicator and before the ending of the stop flight segment when the end of impact is less than the prescribed snap-to end percent of the ending of the stop flight segment.


     
    9. The method of claim 8, wherein the at least one weather source includes an external weather system (146) and an on-board weather radar system (122).
     
    10. The method of claim 8, wherein the controller is further configured to: regenerate the information structure responsive to a change in weather data from the at least one weather source.
     
    11. The method of claim 10, wherein the weather phenomenon is one of a plurality of weather phenomena and the controller is further configured to:

    identify the plurality of weather phenomena;

    for each of the plurality of weather phenomena, create a respective information structure, and identify a respective weather interval extending from the start of impact to the end of impact;

    apply a prioritization scheme to weather phenomena with weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts a weather phenomenon with a highest priority.


     
    12. The method of claim 11, further comprising, basing the prioritization scheme on an aircraft system status provided by on-board sensors.
     
    13. The method of claim 10, wherein the weather phenomenon is one of a plurality of weather phenomena and further comprising:

    identifying the plurality of weather phenomena;

    for each of the plurality of weather phenomena, creating a respective information structure, and identifying a respective weather interval extending from the start of impact to the end of impact;

    applying a fusion scheme to fuse incidents of a same type weather phenomena having weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts the type of weather phenomenon.


     
    14. The method of claim 10, wherein the weather phenomenon is one of a plurality of weather phenomena and further comprising:

    identifying the plurality of weather phenomena;

    for each of the plurality of weather phenomena, creating a respective information structure, and identifying a weather interval extending from the start of impact to the end of impact;

    applying a fusion scheme to fuse incidents of a same subtype weather phenomena having weather intervals that overlap in the flight segment; and

    wherein the weather event indicator overlaid on the mission timeline depicts the subtype of weather phenomenon.


     


    Ansprüche

    1. Flugplan-, FP-, Anzeigesystem (102) in einem Flugzeug zum Automatisieren von Prozessen des Empfangens, Priorisierens und Gruppierens von Wetterdaten zu einem Wetterereignis mit einem damit verbundenen Ausmaß zur Darstellung auf einer angezeigten Missionszeitachse (202, 204), wobei das System eine Steuerschaltung (104) mit einem Prozessor umfasst, die durch Programmieren von Anweisungen auf nicht flüchtigen computerlesbaren Medien konfiguriert ist, wobei die Steuerschaltung dazu konfiguriert ist:

    Wetterdaten von mindestens einer Wetterquelle (122, 146) zu empfangen;

    Bezug auf Flugzeugstatusdaten und Flugzeugsystemstatusdaten zu nehmen; und

    ein Wetterphänomen, das sich auf den FP auswirkt, durch Verarbeiten der Wetterdaten mit den Flugzeugstatusdaten, den Flugzeugsystemstatusdaten und dem FP zu identifizieren;

    eine Informationsstruktur für das Wetterphänomen zu erstellen, wobei die Informationsstruktur einen Typ, einen Untertyp, einen Schweregrad, einen Start der Auswirkung und ein Ende der Auswirkung beinhaltet;

    einen Wetterereignisindikator (214), der auf die Missionszeitachse gelegt wird, darzustellen, um das Wetterphänomen abzubilden, wobei die angezeigte Missionszeitachse vertikal ist und graphische Symbole (212) entlang der angezeigten Missionszeitachse an Orten platziert, die angeben, wann erforderliche Maßnahmen durchgeführt werden sollten und wann Situationen, die Aufmerksamkeit erfordern, auftreten könnten;

    einen alphanumerischen Hinweis (220) des Wetterereignisses neben dem Wetterereignisindikator darzustellen; und

    ein Ausmaß des Wetterereignisses mit einem Beginn des Wetterereignisindikators (216) und einem Ende des Wetterereignisindikators (218) abzubilden;

    wobei:

    der Beginn des Wetterereignisindikators sich an einem Beginn eines Flugsegments (206, 208, 210) orientiert, wenn der Start der Auswirkung an oder innerhalb eines ersten vorgegebenen, am Start ausgerichteten Prozentsatzes des Flugsegments auftritt;

    der Beginn des Wetterereignisindikators nach dem Beginn des Flugsegments platziert wird, wenn (i) der Start der Auswirkung nach dem ersten vorgegebenen, am Start ausgerichteten Prozentsatz des Flugsegments auftritt, (ii) das Ende des Wetterereignisindikators vor einem letzten vorgegebenen, am Ende ausgerichteten Prozentsatz des Flugsegments auftritt;

    der Beginn des Wetterereignisindikators an einem Mittelpunkt des Flugsegments platziert ist, wenn der Start der Auswirkung nach dem vorgegebenen, am Start ausgerichteten Prozentsatz des Flugsegments auftritt;

    das Ende des Wetterereignisindikators sich an einem Schluss des Flugsegments orientiert, wenn das Ende der Auswirkung an oder innerhalb eines abschließenden vorgegebenen, am Ende ausgerichteten Prozentsatzes des Flugsegments auftritt; und

    das Ende des Wetterereignisindikators an dem Mittelpunkt des Wetterereignisindikators oder vor dem Schluss des Flugsegments platziert ist, wenn das Ende der Auswirkung vor dem letzten vorgegebenen, am Ende ausgerichteten Prozentsatz des Flugsegments auftritt;

    wobei das Flugsegment eines aus zwei oder mehreren Flugsegmenten ist, die auf der Missionszeitachse angezeigt werden, und die Steuerung ferner dazu konfiguriert ist:

    ein Startflugsegment zu identifizieren, welches dem Beginn des Wetterereignisses entspricht;
    ein Stopflugsegment zu identifizieren, welches dem Ende des Wetterereignisses entspricht;

    und wobei:

    der Beginn des Wetterereignisindikators sich an einem Beginn des Startflugsegments orientiert, wenn der Start der Auswirkung geringer als oder gleich einem vorgegebenen, am Start ausgerichteten Prozentsatz des Beginns des Startflugsegments ist;

    der Beginn des Wetterereignisindikators nach dem Beginn des Startflugsegments platziert ist, wenn der Start der Auswirkung größer als der vorgegebene, am Start ausgerichtete Prozentsatz des Beginns des Startflugsegments ist;

    das Ende des Wetterereignisindikators sich an einem Schluss des Stopflugsegments orientiert, wenn das Ende der Auswirkung größer als oder gleich einem vorgegebenen, am Ende ausgerichteten Prozentsatz des Schlusses des Stopflugsegments ist; und

    das Ende des Wetterereignisindikators nach dem Beginn des Wetterereignisindikators und vor dem Schluss des Stopflugsegments platziert ist, wenn das Ende der Auswirkung geringer als der vorgegebene, am Ende ausgerichtete Prozentsatz des Schlusses des Stopflugsegments ist.


     
    2. FP-Anzeigesystem nach Anspruch 1, wobei die mindestens eine Wetterquelle ein externes Wettersystem (146) und ein bordeigenes Wetterradarsystem (122) beinhaltet.
     
    3. FP-Anzeigesystem nach Anspruch 1, wobei die Steuerung ferner dazu konfiguriert ist: die Informationsstruktur als Antwort auf eine Änderung der Wetterdaten von der mindestens einen Wetterquelle neu zu erstellen.
     
    4. FP-Anzeigesystem nach Anspruch 3, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist und die Steuerung ferner dazu konfiguriert ist:

    die Vielzahl von Wetterphänomenen zu identifizieren;

    für jedes der Vielzahl von Wetterphänomenen eine jeweilige Informationsstruktur zu erstellen und ein jeweiliges Wetterintervall zu identifizieren, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    ein Priorisierungsschema auf das Wetterphänomen mit Wetterintervallen, die sich in dem Flugsegment überlappen, anzuwenden; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, ein Wetterphänomen mit einer höchsten Priorität des Priorisierungsschemas abbildet.


     
    5. FP-Anzeigesystem nach Anspruch 4, wobei das Priorisierungsschema eine Funktion eines Flugzeugsystemstatus ist, der von bordeigenen Sensoren (122) bereitgestellt wird.
     
    6. FP-Anzeigesystem nach Anspruch 3, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist und die Steuerung ferner dazu konfiguriert ist:

    die Vielzahl von Wetterphänomenen zu identifizieren;

    für jedes der Vielzahl von Wetterphänomenen eine jeweilige Informationsstruktur zu erstellen und ein Wetterintervall zu identifizieren, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    ein Vereinigungsschema anzuwenden, um Ereignisse desselben Typs von Wetterphänomenen zu vereinigen, die Wetterintervalle aufweisen, die sich in dem Flugsegment überlappen; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, den Typ des Wetterphänomens abbildet.


     
    7. FP-Anzeigesystem nach Anspruch 3, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist und die Steuerung ferner dazu konfiguriert ist:

    die Vielzahl von Wetterphänomenen zu identifizieren;

    für jedes der Vielzahl von Wetterphänomenen eine jeweilige Informationsstruktur zu erstellen und ein Wetterintervall zu identifizieren, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    ein Vereinigungsschema anzuwenden, um Ereignisse desselben Untertyps von Wetterphänomenen zu vereinigen, die Wetterintervalle aufweisen, die sich in dem Flugsegment überlappen; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, den Untertyp des Wetterphänomens abbildet.


     
    8. Verfahren zum Automatisieren von Prozessen des Empfangens, Priorisierens und Gruppierens von Wetterdaten zu einem Wetterereignis mit einem damit verbundenen Ausmaß zur Darstellung auf einer angezeigten Missionszeitachse (202, 204) in einem Flugzeug, das einen Flugplan, FP, aufweist, das Verfahren umfassend:

    Empfangen, durch eine Steuerschaltung (104) mit einem Prozessor (130), die durch Programmieren von Anweisungen konfiguriert ist, von Wetterdaten von mindestens einer Wetterquelle (122, 146);

    Bezugnehmen, durch die Steuerschaltung, auf Flugzeugstatusdaten und Flugzeugsystemstatusdaten; und

    Identifizieren, durch die Steuerschaltung, eines Wetterphänomens, das sich auf den FP auswirkt, durch Verarbeiten der Wetterdaten mit den Flugzeugstatusdaten, den Flugzeugsystemstatusdaten und dem FP;

    Erstellen einer Informationsstruktur für das Wetterphänomen, wobei die Informationsstruktur einen Typ, einen Untertyp, einen Schweregrad, einen Start der Auswirkung und ein Ende der Auswirkung beinhaltet;

    Darstellen eines Wetterereignisindikators (214), der auf die Missionszeitachse gelegt wird, um das Wetterphänomen abzubilden, wobei die angezeigte Missionszeitachse vertikal ist und graphische Symbole (212) entlang der angezeigten Missionszeitachse an Orten platziert, die angeben, wann erforderliche Maßnahmen durchgeführt werden sollten und wann Situationen, die Aufmerksamkeit erfordern, auftreten könnten;

    Darstellen eines alphanumerischen Hinweises (220) des Wetterereignisses neben dem Wetterereignisindikator; und

    Abbilden eines Ausmaßes des Wetterereignisses mit einem Beginn des Wetterereignisindikators (216) und einem Ende des Wetterereignisindikators (218);

    wobei:

    der Beginn des Wetterereignisindikators sich an einem Beginn eines Flugsegments (206, 208, 210) orientiert, wenn der Start der Auswirkung an oder innerhalb eines ersten vorgegebenen, am Start ausgerichteten Prozentsatzes des Flugsegments auftritt;

    der Beginn des Wetterereignisindikators nach dem Beginn des Flugsegments platziert wird, wenn (i) der Start der Auswirkung nach dem ersten vorgegebenen, am Start ausgerichteten Prozentsatz des Flugsegments auftritt, (ii) das Ende des Wetterereignisindikators vor einem letzten vorgegebenen, am Ende ausgerichteten Prozentsatz des Flugsegments auftritt;

    der Beginn des Wetterereignisindikators an einem Mittelpunkt des Flugsegments platziert ist, wenn der Start der Auswirkung nach dem vorgegebenen, am Start ausgerichteten Prozentsatz des Flugsegments auftritt;

    das Ende des Wetterereignisindikators sich an einem Schluss des Flugsegments orientiert, wenn das Ende der Auswirkung an oder innerhalb eines abschließenden vorgegebenen, am Ende ausgerichteten Prozentsatzes des Flugsegments auftritt; und

    das Ende des Wetterereignisindikators an dem Mittelpunkt des Wetterereignisindikators oder vor dem Schluss des Flugsegments platziert ist, wenn das Ende der Auswirkung vor dem letzten vorgegebenen, am Ende ausgerichteten Prozentsatz des Flugsegments auftritt;

    wobei:
    wobei das Flugsegment eines aus zwei oder mehreren Flugsegmenten ist, die auf der Missionszeitachse angezeigt werden, und das Verfahren Folgendes beinhaltet:

    Identifizieren eines Startflugsegments, welches dem Beginn des Wetterereignisses entspricht;

    Identifizieren eines Stopflugsegments, welches dem Ende des Wetterereignisses entspricht;

    und wobei:

    der Beginn des Wetterereignisindikators sich an einem Beginn des Startflugsegments orientiert, wenn der Start der Auswirkung geringer als oder gleich einem vorgegebenen, am Start ausgerichteten Prozentsatz des Beginns des Startflugsegments ist;

    der Beginn des Wetterereignisindikators nach dem Beginn des Startflugsegments platziert ist, wenn der Start der Auswirkung größer als der vorgegebene, am Start ausgerichtete Prozentsatz des Beginns des Startflugsegments ist;

    das Ende des Wetterereignisindikators sich an einem Schluss des Stopflugsegments orientiert, wenn das Ende der Auswirkung größer als oder gleich einem vorgegebenen, am Ende ausgerichteten Prozentsatz des Schlusses des Stopflugsegments ist; und

    das Ende des Wetterereignisindikators nach dem Beginn des Wetterereignisindikators und vor dem Schluss des Stopflugsegments platziert ist, wenn das Ende der Auswirkung geringer als der vorgegebene, am Ende ausgerichtete Prozentsatz des Schlusses des Stopflugsegments ist.


     
    9. Verfahren nach Anspruch 8, wobei die mindestens eine Wetterquelle ein externes Wettersystem (146) und ein bordeigenes Wetterradarsystem (122) beinhaltet.
     
    10. Verfahren nach Anspruch 8, wobei die Steuerung ferner dazu konfiguriert ist: die Informationsstruktur als Antwort auf eine Änderung der Wetterdaten von der mindestens einen Wetterquelle neu zu erstellen.
     
    11. Verfahren nach Anspruch 10, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist und die Steuerung ferner dazu konfiguriert ist:

    die Vielzahl von Wetterphänomenen zu identifizieren;

    für jedes der Vielzahl von Wetterphänomenen eine jeweilige Informationsstruktur zu erstellen und ein jeweiliges Wetterintervall zu identifizieren, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    ein Priorisierungsschema auf das Wetterphänomen mit Wetterintervallen, die sich in dem Flugsegment überlappen, anzuwenden; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, ein Wetterphänomen mit einer höchsten Priorität abbildet.


     
    12. Verfahren nach Anspruch 11, ferner umfassend Basieren des Priorisierungsschemas auf einem von bordeigenen Sensoren bereitgestellten Flugzeugsystemstatus.
     
    13. Verfahren nach Anspruch 10, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist, und ferner umfassend:

    Identifizieren der Vielzahl von Wetterphänomenen;

    für jedes der Vielzahl von Wetterphänomenen, Erstellen einer jeweilige Informationsstruktur und Identifizieren eines jeweiligen Wetterintervalls, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    Anwenden eines Vereinigungsschemas, um Ereignisse desselben Typs von Wetterphänomenen zu vereinigen, die Wetterintervalle aufweisen, die sich in dem Flugsegment überlappen; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, den Typ des Wetterphänomens abbildet.


     
    14. Verfahren nach Anspruch 10, wobei das Wetterphänomen eines aus einer Vielzahl von Wetterphänomenen ist, und ferner umfassend:

    Identifizieren der Vielzahl von Wetterphänomenen;

    für jedes der Vielzahl von Wetterphänomenen, Erstellen einer jeweiligen Informationsstruktur und Identifizieren eines Wetterintervalls, das sich von dem Start der Auswirkung bis zu dem Ende der Auswirkung erstreckt;

    Anwenden eines Vereinigungsschemas, um Ereignisse desselben Untertyps von Wetterphänomenen zu vereinigen, die Wetterintervalle aufweisen, die sich in dem Flugsegment überlappen; und

    wobei der Wetterereignisindikator, der auf die Missionszeitachse gelegt wird, den Untertyp des Wetterphänomens abbildet.


     


    Revendications

    1. Système d'affichage (102) de plan de vol, FP, à bord d'un aéronef pour l'automatisation de processus de réception, de priorisation et de regroupement des données météorologiques en un événement météorologique avec une étendue associée pour présentation sur une chronologie de mission affichée (202, 204), le système comprenant un circuit de contrôleur (104) avec un processeur configuré par des instructions de programmation sur des supports non transitoires lisibles par ordinateur, le circuit de contrôleur étant configuré pour :

    recevoir des données météorologiques provenant d'au moins une source météorologique (122, 146) ;

    référencer les données d'état de l'aéronef et les données de statut du système de l'aéronef ; et

    identifier un phénomène météorologique qui impacte le FP par le traitement des données météorologiques avec les données d'état de l'aéronef, les données de statut du système de l'aéronef, et le FP ;

    créer une structure d'information pour le phénomène météorologique, la structure d'information incluant un type, un sous-type, une gravité, un début d'impact et une fin d'impact ;

    présenter un indicateur d'événement météorologique (214) superposé à la chronologie de mission pour représenter le phénomène météorologique, dans laquelle la chronologie de mission affichée est verticale et place des symboles graphiques (212) le long de la chronologie de mission affichée à des emplacements indiquant quand les activités requises doivent être effectuées et quand des situations nécessitant une attention peuvent se produire ;

    présenter un avis alphanumérique (220) de l'événement météorologique à côté de l'indicateur d'événement météorologique ; et

    représenter une étendue de l'événement météorologique avec un commencement de l'indicateur d'événement météorologique (216) et une fin de l'indicateur d'événement météorologique (218) ;

    dans lequel :

    le commencement de l'indicateur d'événement météorologique est aligné avec un commencement de segment de vol (206, 208, 210) lorsque le début d'impact se produit au niveau ou dans un premier pourcentage prescrit de début ajusté du segment de vol ;

    le commencement de l'indicateur d'événement météorologique est placé après le commencement du segment de vol lorsque (i) le début d'impact se produit après le premier pourcentage prescrit de début ajusté du segment de vol (ii) la fin de l'indicateur d'événement météorologique se produit avant un dernier pourcentage prescrit de fin ajustée du segment de vol ;

    le commencement de l'indicateur d'événement météorologique est placé au centre du segment de vol lorsque le début d'impact se produit après le pourcentage prescrit de début ajusté du segment de vol ;

    la fin de l'indicateur d'événement météorologique est alignée avec un achèvement du segment de vol lorsque la fin d'impact se produit au niveau ou dans un pourcentage prescrit final de fin ajustée du segment de vol ; et

    la fin de l'indicateur d'événement météorologique est placée au centre de l'indicateur d'événement météorologique ou avant l'achèvement du segment de vol lorsque la fin d'impact se produit avant le dernier pourcentage prescrit de fin ajustée du segment de vol ;

    dans lequel le segment de vol est l'un parmi deux ou plusieurs segments de vol affichés sur la chronologie de mission, et le contrôleur est en outre configuré pour :

    identifier un segment de vol de début correspondant au commencement de l'événement météorologique ;
    identifier un segment de vol d'arrêt correspondant à la fin de l'événement météorologique

    et dans lequel :

    le commencement de l'indicateur d'événement météorologique est aligné avec un commencement du segment de vol de début lorsque le début d'impact est inférieur ou égal à un pourcentage prescrit de début ajusté du commencement du segment de vol de début ;

    le commencement de l'indicateur d'événement météorologique est placé après le commencement du segment de vol de début lorsque le début d'impact est supérieur au pourcentage prescrit de début ajusté du commencement du segment de vol de début ;

    la fin de l'indicateur d'événement météorologique est alignée avec un achèvement du segment de vol d'arrêt lorsque la fin d'impact est supérieure ou égale à un pourcentage prescrit de fin ajustée de l'achèvement du segment de vol d'arrêt ; et

    la fin de l'indicateur d'événement météorologique est placée après le commencement de l'indicateur d'événement météorologique et avant l'achèvement du segment de vol d'arrêt lorsque la fin d'impact est inférieure au pourcentage prescrit de fin ajustée de l'achèvement du segment de vol d'arrêt.


     
    2. Système d'affichage FP de la revendication 1, dans lequel au moins la source météorologique inclut un système météorologique externe (146) et un radar météorologique embarqué (122).
     
    3. Système d'affichage FP de la revendication 1, dans lequel le contrôleur est en outre configuré pour :
    régénérer la structure d'information en réponse à un changement dans les données météorologiques provenant d'au moins la source météorologique.
     
    4. Système d'affichage FP de la revendication 3, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et le contrôleur est en outre configuré pour :

    identifier la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité des phénomènes météorologiques, créer une structure d'information respective, et identifier un intervalle météorologique respectif s'étendant du début d'impact à la fin d'impact ;

    appliquer un schéma de priorisation aux phénomènes météorologiques dont les intervalles météorologiques se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente un phénomène météorologique ayant la priorité la plus élevée dans le schéma de priorisation.


     
    5. Système d'affichage FP de la revendication 4, dans lequel le schéma de priorisation est une fonction du statut du système de l'aéronef fourni par des capteurs embarqués (122).
     
    6. Système d'affichage FP de la revendication 3, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et le contrôleur est en outre configuré pour :

    identifier la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité des phénomènes météorologiques, créer une structure d'information respective, et identifier un intervalle météorologique s'étendant du début d'impact à la fin d'impact ;

    appliquer un schéma de fusion pour fusionner les incidents de phénomènes météorologiques du même type ayant des intervalles météorologiques qui se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente le type de phénomène météorologique.


     
    7. Système d'affichage FP de la revendication 3, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et le contrôleur est en outre configuré pour :

    identifier la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité des phénomènes météorologiques, créer une structure d'information respective, et identifier un intervalle météorologique s'étendant du début d'impact à la fin d'impact ;

    appliquer un schéma de fusion pour fusionner les incidents de phénomènes météorologiques du même sous-type ayant des intervalles météorologiques qui se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente le sous-type de phénomène météorologique.


     
    8. Procédé d'automatisation de processus de réception, de priorisation et de regroupement des données météorologiques en un événement météorologique avec une étendue associée pour une présentation sur une chronologie de mission affichée (202, 204) dans un aéronef ayant un plan de vol, FP, le procédé comprenant :

    la réception, par un circuit de contrôleur (104) avec un processeur (130) configuré par des instructions de programmation, de données météorologiques provenant d'au moins une source météorologique (122, 146) ;

    le référencement, par le circuit de contrôleur, des données d'état de l'aéronef et des données de statut du système de l'aéronef ; et

    l'identification, par le circuit de contrôleur, d'un phénomène météorologique qui impacte le FP par le traitement des données météorologiques avec les données d'état de l'aéronef, les données de statut du système de l'aéronef, et le FP ;

    la création d'une structure d'information pour le phénomène météorologique, la structure d'information incluant un type, un sous-type, une gravité, un début de l'impact et une fin d'impact ;

    la présentation d'un indicateur d'événement météorologique (214) superposé sur la chronologie de mission pour représenter le phénomène météorologique, dans laquelle la chronologie de mission affichée est verticale et place des symboles graphiques (212) le long de la chronologie de mission affichée à des emplacements qui indiquent quand les activités requises doivent être effectuées et quand des situations nécessitant une attention peuvent se produire ;

    la présentation d'un avis alphanumérique (220) de l'événement météorologique à côté de l'indicateur d'événement météorologique ; et

    la représentation d'une étendue de l'événement météorologique avec un commencement de l'indicateur d'événement météorologique (216) et une fin de l'indicateur d'événement météorologique (218) ;

    dans lequel :

    le commencement de l'indicateur d'événement météorologique est aligné avec un commencement de segment de vol (206, 208, 210) lorsque le début d'impact se produit au niveau ou dans un premier pourcentage prescrit de début ajusté du segment de vol ;

    le commencement de l'indicateur d'événement météorologique est placé après le commencement du segment de vol lorsque (i) le début d'impact se produit après le premier pourcentage prescrit de début ajusté du segment de vol (ii) la fin de l'indicateur d'événement météorologique se produit avant un dernier pourcentage prescrit de fin ajustée du segment de vol ;

    le commencement de l'indicateur d'événement météorologique est placé au centre du segment de vol lorsque le début d'impact se produit après le pourcentage prescrit de début ajusté du segment de vol ;

    la fin de l'indicateur d'événement météorologique est alignée avec un achèvement du segment de vol lorsque la fin d'impact se produit au niveau ou dans un pourcentage prescrit final de fin ajustée du segment de vol ; et

    la fin de l'indicateur d'événement météorologique est placée au centre de l'indicateur d'événement météorologique ou avant l'achèvement du segment de vol lorsque la fin d'impact se produit avant le dernier pourcentage prescrit de fin ajustée du segment de vol ;

    dans lequel :
    dans lequel le segment de vol est l'un parmi deux ou plusieurs segments de vol affichés sur la chronologie de mission, et le procédé inclut :

    l'identification d'un segment de vol de début correspondant au commencement de l'événement météorologique ;

    l'identification d'un segment de vol d'arrêt correspondant à la fin de l'événement météorologique ;

    et dans lequel :

    le commencement de l'indicateur d'événement météorologique est aligné avec un commencement du segment de vol de début lorsque le début d'impact est inférieur ou égal à un pourcentage prescrit de début ajusté du commencement du segment de vol de début ;

    le commencement de l'indicateur d'événement météorologique est placé après le commencement du segment de vol de début lorsque le début d'impact est supérieur au pourcentage prescrit de début ajusté du commencement du segment de vol de début ;

    la fin de l'indicateur d'événement météorologique est alignée avec un achèvement du segment de vol d'arrêt lorsque la fin d'impact est supérieure ou égale à un pourcentage prescrit de fin ajustée de l'achèvement du segment de vol d'arrêt ; et

    la fin de l'indicateur d'événement météorologique est placée après le commencement de l'indicateur d'événement météorologique et avant l'achèvement du segment de vol d'arrêt lorsque la fin d'impact est inférieure au pourcentage prescrit de fin ajustée de l'achèvement du segment de vol d'arrêt.


     
    9. Procédé de la revendication 8, dans lequel au moins la source météorologique inclut un système météorologique externe (146) et un radar météorologique embarqué (122).
     
    10. Procédé de la revendication 8, dans lequel le contrôleur est en outre configuré pour : régénérer la structure d'information en réponse à un changement dans les données météorologiques provenant d'au moins la source météorologique.
     
    11. Procédé de la revendication 10, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et le contrôleur est en outre configuré pour

    identifier la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité des phénomènes météorologiques, créer une structure d'information respective, et identifier un intervalle météorologique respectif s'étendant du début d'impact à la fin d'impact ;

    appliquer un schéma de priorisation aux phénomènes météorologiques dont les intervalles météorologiques se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente un phénomène météorologique ayant la priorité la plus élevée.


     
    12. Procédé de la revendication 11, comprenant en outre, le fait de baser le schéma de priorisation sur un statut du système de l'aéronef fourni par des capteurs embarqués.
     
    13. Procédé de la revendication 10, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et comprenant en outre :

    l'identification de la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité des phénomènes météorologiques, la création d'une structure d'information respective, et l'identification d'un intervalle météorologique respectif s'étendant du début d'impact à la fin d'impact ;

    l'application d'un schéma de fusion pour fusionner les incidents de phénomènes météorologiques du même type ayant des intervalles météorologiques qui se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente le type de phénomène météorologique.


     
    14. Procédé de la revendication 10, dans lequel le phénomène météorologique est l'un parmi une pluralité de phénomènes météorologiques et comprenant en outre :

    l'identification de la pluralité de phénomènes météorologiques ;

    pour chacun de la pluralité de phénomènes météorologiques, la création d'une structure d'information respective, et l'identification d'un intervalle météorologique s'étendant du début d'impact à la fin d'impact ;

    l'application d'un schéma de fusion pour fusionner les incidents de phénomènes météorologiques du même sous-type ayant des intervalles météorologiques qui se chevauchent dans le segment de vol ; et

    dans lequel l'indicateur d'événement météorologique superposé sur la chronologie de mission représente le sous-type de phénomène météorologique.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description