

(11)

EP 3 946 296 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 2 (W2 B1)

Corrections, see

Description Paragraph(s) 131, 132

(48) Corrigendum issued on:

25.12.2024 Bulletin 2024/52

(45) Date of publication and mention
of the grant of the patent:

01.05.2024 Bulletin 2024/18

(21) Application number: 20776923.3

(22) Date of filing: 05.03.2020

(51) International Patent Classification (IPC):

A61K 9/20 (2006.01) A61K 9/28 (2006.01)

A61K 31/135 (2006.01)

(52) Cooperative Patent Classification (CPC):

A61K 9/2031; A61K 31/135; A61K 9/2866

(86) International application number:

PCT/IB2020/051909

(87) International publication number:

WO 2020/194087 (01.10.2020 Gazette 2020/40)

(54) EXTENDED RELEASE PHARMACEUTICAL FORMULATION

PHARMAZETISCHE FORMULIERUNG MIT VERLÄNGERTER FREISETZUNG

FORMULATION PHARMACEUTIQUE À LIBÉRATION PROLONGÉE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 25.03.2019 US 201916362848

(43) Date of publication of application:
09.02.2022 Bulletin 2022/06(73) Proprietor: Douglas Pharmaceuticals Limited
Lincoln, Auckland 0610 (NZ)

(72) Inventors:

- GLUE, Paul William
Dunedin, 9054 (NZ)
- MEDLICOTT, Natalie June
Dunedin, 9054 (NZ)
- SURMAN, Peter William
Auckland, 0610 (NZ)

(74) Representative: HGF

HGF Limited

1 City Walk

Leeds LS11 9DX (GB)

(56) References cited:

WO-A1-2015/031410	WO-A1-2016/073653
WO-A1-2019/073408	WO-A1-2019/073408
US-A1- 2009 202 634	US-A1- 2013 217 615
US-A1- 2016 199 304	US-A1- 2017 355 663
US-A1- 2018 153 813	US-A1- 2019 216 740

- GLUE ET AL.: "Ascending-Dose Study of Controlled-Release Ketamine Tablets in Healthy Volunteers: Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability", J. CLIN. PHARMACOL., vol. 60, no. 6, 17 February 2020 (2020-02-17), pages 751 - 757, XP055761884

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND OF THE INVENTION**

5 **[0001]** The initial report that low doses of the NMDA antagonist ketamine had rapid onset antidepressant effects in patients with treatment resistant depression (TRD; Berman 2000) has been confirmed in multiple subsequent studies (Xu 2016). More recently ketamine has been shown to have similar rapid-onset activity in a range of treatment-resistant anxiety (TRA) disorders including Post-Traumatic Stress Disorder (PTSD; Feder 2014), Obsessive Compulsive Disorder (OCD; Rodriguez 2013), Generalized Anxiety Disorder (GAD) and Social Anxiety Disorder (SAD; Glue 2017). All of these studies
10 have used injected ketamine, usually given intravenously. There are preliminary case series data suggesting that oral ketamine has antidepressant effects in patients with TRD (Schoevers 2016). The major side effects of injected ketamine include dissociative symptoms that occur mainly in the first hour after dosing, and minor increases in blood pressure and heart rate, which occur in the first 30 minutes. An oral ketamine formulation could minimize these side effects, and be less onerous/time consuming to administer than injected ketamine.
15 **[0002]** To explore the potential for an oral ketamine and/or norketamine formulation to show activity in patients with TRD or TRA, the inventors developed an extended release ketamine tablet, using a hydrophilic polymeric matrix approach. Polyethylene oxide (PEO) is one of a number of hydrophilic polymers used in controlled drug delivery formulations, and has a number of positive attributes including nontoxicity, high water solubility and swellability (Maggi 2002). Furthermore, tablets formulations based on a high concentration of PEO are able to be annealed (heated) to give tablets of very high
20 hardness that are resistant to crushing. This is a particularly attractive product attribute because ketamine is a drug of abuse. To minimize the potential for dissociative symptoms associated with rapid absorption of ketamine, a prolonged release profile was desirable. The formulation demonstrated linear in vitro dissolution over 10-12 hours. Elimination half-life estimates for ketamine and norketamine for this formulation are much longer than previously reported for tablets.
25 **[0003]** WO 2015/031410 and WO 2016/073653 disclose tablet formulations comprising ketamine and one or more matrix polymers, which include hydroxypropyl methylcellulose (HPMC), starch, polyacrylic acid, polyvinylacetate/povidone, and PEO.

BRIEF SUMMARY OF THE INVENTION

30 **[0004]** The invention is set out in the appended set of claims.
[0005] In a first aspect there is provided a solid, oral, extended release pharmaceutical tablet comprising:
35 (A) a core comprising:
40 i) a therapeutically effective amount of an active agent selected from ketamine, and pharmaceutically acceptable salts thereof;
 ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least 30% by weight of the core; and
45 (B) optionally, a coating on said core;
50 wherein said tablet is crush resistant and has a breaking strength of at least 200 N; wherein the tablet comprises the active agent at a concentration of 10% to 20% by weight of the core; and wherein when said tablet is administered to a patient said tablet provides a pharmacokinetic parameter selected from the group consisting of:
55 i) a mean t_{max} of said active agent between 1.5 and 3.5 hours after administration of a single dose of 60 mg or 120 mg or 240 mg;
 ii) a mean t_{max} of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 60 mg administered every 12 hours;
 iii) a mean t_{max} of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 120 mg administered every 12 hours;
 iv) a mean t_{max} of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 240 mg administered every 12 hours;
 v) after administration of a single dose of about 60 mg a mean ratio of norketamine C_{max}: ketamine C_{max} of 8.7, or a ratio of norketamine C_{max}: ketamine C_{max} of between 4 to 15;
 vi) after administration of a single dose of about 60 mg a mean ratio of norketamine AUC:ketamine AUC of 11.8, or a ratio of norketamine AUC:ketamine AUC of between 7 to 15;

- vii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine C_{max}: ketamine C_{max} of 9.6; and
- viii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine AUC:ketamine AUC of 11.8.

5 [0006] The disclosure provides a tablet wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least about 4,000,000; at least about 5,000,000; and at least about 6,000,000. The disclosure provides a tablet wherein the active agent comprises at least about 1% (by weight) of the core. The disclosure provides a tablet wherein said high molecular weight PEO comprises at least about 50% (by weight) of said core. The disclosure provides a tablet wherein the dosage amount of active agent is selected from the group consisting of about 30 mg, about 10 60mg, about 120 mg, and about 240 mg. The disclosure provides a tablet wherein the tablet is cured at a temperature of about 70°C to about 75°C. The disclosure provides a tablet wherein the coating comprises: i) hydroxypropylmethylcellulose; ii) titanium dioxide; and iii) polyethylene glycol.

15 [0007] Also described herein is a tablet wherein said tablet provides a ketamine C_{max} between about 12 and about 42 ng/mL. There is also described a tablet wherein said tablet provides a ketamine AUC_{0-inf} between about 79 and about 385 15 ng.h/mL. There is also described a tablet wherein said tablet provides a norketamine C_{max} between about 74 and about 315 ng/mL. There is also described a tablet wherein said tablet provides a norketamine AUC_{0-inf} between about 872 and about 4079 ng·h/mL.

20 [0008] The disclosure provides a tablet wherein the tablet is suitable for once daily administration or twice-daily administration to a patient. The disclosure provides a tablet wherein the tablet has no or minimal dissociative side effects upon administration to a patient.

25 [0009] In a second aspect there is provided a tablet according to the first aspect for use in treating a patient for treatment-resistant depression, comprising selecting a patient in need of such treatment; and orally administering to the patient the tablet; wherein the tablet treats the symptoms of said treatment-resistant depression.

30 [0010] The disclosure provides a tablet suitable for once daily administration or twice-daily administration to a patient. The disclosure provides a treatment according to the second aspect wherein the symptoms of said treatment-resistant depression are alleviated within 2 hours of oral administration of said ketamine. The disclosure provides a treatment according to the second aspect wherein said treatment comprises oral administration of a single dose of said ketamine. The disclosure provides a treatment according to the second aspect wherein said treatment comprises oral administration 30 of multiple doses of said ketamine. The disclosure provides a treatment according to the second aspect wherein a single oral administration of said ketamine in doses between 30-180 mg is sufficient to alleviate the effects of said depression for 3-7 days. The disclosure provides a treatment according to the second aspect wherein tablet has no or minimal dissociative side effects in the patient. The disclosure provides a treatment according to the second aspect wherein maximal mean improvements in ratings of depressed mood were noted after approximately 6 weeks of maintenance 35 treatment. The disclosure provides a treatment according to the second aspect further comprising administering a pharmaceutically effective dose of a second or additional agent, wherein said second or additional agent has anti-depressant properties.

40 [0011] The disclosure provides a treatment according to the second aspect wherein said treatment according to the second aspect further comprises an additional therapy selected from: at least one antidepressant selected from the group consisting of citalopram, escitalopram oxalate, fluoxetine, fluvoxamine, paroxetine, sertraline, dapoxetine; venlafaxine and duloxetine; harmaline, iproniazid, isocarboxazid, nialamide, pargyline, phenelzine, selegiline, toloxatone, tranylcypromine, brofaromine, moclobemide; amitriptyline, amoxapine, butriptyline, clomipramine, desipramine, dibenzepin, dothiepin, doxepin, imipramine, iprindole, lofepramine, melitracen, nortriptyline, opipramol, protriptyline, trimipramine; maprotiline, mianserin, nefazodone, trazodone, pharmaceutically acceptable salts, isomers, and combinations thereof; at 45 least one mood stabilizer selected from the group consisting of lithium carbonate, lithium orotate, lithium salt, valproic acid, divalproex sodium, sodium valproate, lamotrigine, carbamazepine, gabapentin, oxcarbazepine, topiramate, pharmaceutically acceptable salts, isomers, and combinations thereof; at least one herbal antidepressants selected from the group consisting of St. John's Wort; kava kava; echinacea; saw palmetto; holy basil; valerian; milk thistle; Siberian ginseng; Korean ginseng; ashwagandha root; nettle; ginkgo biloba; gotu kola; ginkgo/gotu kola supreme; astragalus; goldenseal; dong quai; ginseng; St. John's wort supreme; echinacea; bilberry, green tea; hawthorne; ginger, gingko, turmeric; boswellia serata; black cohosh; cats claw; catnip; chamomile; dandelion; chaste tree berry; black elderberry; feverfew; garlic; horse chestnut; licorice; red clover blossom and leaf rhodiola rusa; coleus forskohlii; Passion Flower; eyebright; yohimbe; blueberry plant; black pepper plant; Hydrocotyle asiatica; astragalus; valerian poppy root and grape seed; vervain; echinacea ang root; Skull Cap; serenity elixir; and combinations thereof; at least one antipsychotic agent 50 selected from the group consisting of haloperidol, chlorpromazine, fluphenazine, perphenazine, prochlorperazine, thioridazine, trifluoperazine, mesoridazine, promazine, triflupromazine, levomepromazine, promethazine, chlorprothixene, flupenthixol, thiothixene, zuclopentixol, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, paliperidone, dopamine, bifeprunox, norclozapine, aripiprazole, tetrabenazine, cannabidiol, pharmaceutically acceptable 55

salts, isomers, and combinations thereof; other therapeutic interventions selected from the group consisting of counseling, psychotherapy, cognitive therapy, electroconvulsive therapy, hydrotherapy, hyperbaric oxygen therapy, electrotherapy and electrical stimulation, transcutaneous electrical nerve stimulation ("TENS"), deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation, and combinations thereof.

5 **[0012]** In a third aspect there is provided a tablet according to the first aspect, for use in treating a patient for treatment-resistant anxiety, including but not limited to DSM-V Generalized Anxiety Disorder, Social Anxiety Disorder, Panic Disorder, Post-Traumatic Stress Disorder and/or Obsessive-Compulsive Disorder, comprising selecting a patient in need of such treatment; and orally administering to the patient the tablet; wherein the tablet treats the symptoms of said treatment-resistant anxiety. The disclosure provides a tablet suitable for once daily administration or twice-daily administration to a patient. The disclosure provides a treatment according to the third aspect wherein the tablet has no or minimal dissociative side effects upon administration to a patient. The disclosure provides a treatment according to the third aspect wherein the symptoms of said treatment-resistant anxiety are alleviated within 2 hours of oral administration of said ketamine. The disclosure provides a treatment according to the third aspect wherein said treatment comprises oral administration of a single dose of said ketamine. The disclosure provides a treatment according to the third aspect wherein said treatment comprises oral administration of multiple doses of said ketamine. The disclosure provides a treatment according to the third aspect wherein a single oral administration of said ketamine in doses between 30-180mg is sufficient to alleviate the effects of said anxiety for 3-7 days. The disclosure provides a treatment according to the third aspect wherein maximal mean improvements in ratings of anxious mood were noted after approximately 2 weeks of maintenance treatment. The disclosure provides a treatment according to the third aspect further comprising administering a pharmaceutically effective dose of a second or additional agent, wherein said second or additional agent has antianxiety properties. The disclosure provides a treatment according to the third aspect which further comprises an additional therapy selected from: at least one antidepressant selected from the group consisting of citalopram, escitalopram oxalate, fluoxetine, fluvoxamine, paroxetine, sertraline, dapoxetine; venlafaxine and duloxetine; harmaline, iproniazid, isocarboxazid, nialamide, pargyline, phenelzine, selegiline, toloxatone, tranylcypromine, brofaromine, moclobemide; amitriptyline, 25 amoxapine, butriptyline, clomipramine, desipramine, dibenzepin, dothiepin, doxepin, imipramine, iprindole, lofepramine, melitracen, nortriptyline, opipramol, protriptyline, trimipramine; maprotiline, mianserin, nefazodone, trazodone, pharmaceutically acceptable salts, isomers, and combinations thereof; at least one serotonin 1a partial agonist selected from the group consisting of buspirone, eltoprazine, or tandospirone, pharmaceutically acceptable salts, isomers, and combinations thereof; at least one alpha-2-delta ligand selected from the group consisting of gabapentin, pregabalin, 30 3-methylgabapentin, (1alpha,3 alpha,5alpha)(3-amino-methyl-bicyclo[3.2.0]hept-3-yl)-acetic acid, (3S,5R)-3 amino-methyl-5 methyl-heptanoic acid, (3S,5R)-3 amino-5 methyl-heptanoic acid, (3S,5R)-3 amino-5 methyl-octanoic acid, (2S,4S)-4-(3-chlorophenoxy)proline, (2S,4S)-4-(3-fluorobenzyl)-proline, [(1R,5R,6S)-6-(aminomethyl)bicyclo[3.2.0]hept-6-yl]acetic acid, 3-(1-aminomethyl-cyclohexylmethyl)-4H-[1,2,4]oxadiazol-5-one, C-[1-(1H-tetrazol-5-ylmethyl)-cycloheptyl]-methylamine, (3S,4S)-(1-aminomethyl-3,4-dimethyl-cyclopentyl)-acetic acid, (3S,5R)-3 aminomethyl-5 35 methyl-octanoic acid, (3S,5R)-3 amino-5 methyl-nonanoic acid, (3S,5R)-3 amino-5 methyl-octanoic acid, (3R,4R,5R)-3-amino-4,5-dimethyl-heptanoic acid and (3R,4R,5R)-3-amino-4,5-dimethyl-octanoic acid, pharmaceutically acceptable salts, isomers, and combinations thereof; at least one antiadrenergic agents selected from the group consisting of clonidine, prazosin, propranolol, fuanfacine, methyldopa, guanabenz; doxazosin, prazosin, terazosin, silodosin, alfuzosin, tamsulosin, dutasertide/tamsulosin, guanadrel, mecemylamine, guanethidine, pharmaceutically 40 acceptable salts, isomers, and combinations thereof; at least one benzodiazepine agent selected from the group consisting of alprazolam, bromazepam, chlordiazepoxide, clobazam, clonazepam, clorazepate, diazepam, midazolam, lorazepam, nitrazepam, temazepam, nimetazepam, estazolam, flunitrazepam, oxazepam, triazolam, pharmaceutically acceptable salts, isomers, and combinations thereof; at least one antipsychotic agent selected from the group consisting of haloperidol, chlorpromazine, fluphenazine, perphenazine, prochlorperazine, thioridazine, trifluoperazine, mesoridazine, promazine, triflupromazine, levomepromazine, promethazine, chlorprothixene, flupenthixol, thiothixene, zuclopentixol, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, paliperidone, dopamine, bifeprunox, norclozapine, aripiprazole, tetrabenazine, cannabidiol, pharmaceutically acceptable salts, isomers, and combinations thereof; other therapeutic interventions selected from the group consisting of counseling, psychotherapy, cognitive therapy, electroconvulsive therapy, hydrotherapy, hyperbaric oxygen therapy, electrotherapy and electrical stimulation, transcutaneous electrical nerve stimulation ("TENS"), deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation, and combinations thereof.

55 **[0013]** Described herein is a solid, oral, extended release pharmaceutical tablet comprising: (A) a core comprising: i) a therapeutically effective amount of an active agent selected from the group consisting of ketamine, norketamine, pharmaceutically acceptable salts thereof, and combinations thereof; ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least about 30% (by weight) of the core; (B) a coating on said core, wherein said tablet is crush resistant and has a breaking strength of at least about 200 N; and wherein when said tablet is administered to a patient said tablet provides a pharmacokinetic parameter selected from

the group consisting of: after administration of a single dose of 60 mg ketamine a mean ketamine Cmax of about 10 ng/mL or a ketamine Cmax between about 5 and about 15 ng/mL; after administration of a single dose of 120 mg ketamine a mean ketamine Cmax of about 16 ng/mL or a ketamine Cmax between about 7 and about 32 ng/mL; after administration of a single dose of 240 mg ketamine a mean ketamine Cmax of about 38 ng/mL or a ketamine Cmax between about 19 and about 47 ng/mL; after administration of a single dose of 60 mg of the active agent a mean norketamine Cmax of about 74 ng/mL or a norketamine Cmax between about 59 and about 91 ng/mL; after administration of a single dose of 120 mg of the active agent a mean norketamine Cmax of about 161 ng/mL or a norketamine Cmax between about 90 and about 250 ng/mL; after administration of a single dose of 240 mg of the active agent a mean norketamine Cmax of about 315 ng/mL or a norketamine Cmax between about 222 and about 394 ng/mL; after administration of a single dose of 60 mg ketamine a mean ketamine AUC $0-\infty$ of about 79 ng.h/mL or a ketamine AUC $0-\infty$ between about 36 and about 135 ng.h/mL; after administration of a single dose of 120 mg ketamine a mean ketamine AUC $0-\infty$ of about 197 ng.h/mL or a ketamine AUC $0-\infty$ between about 93 and about 460 ng.h/mL; after administration of a single dose of 240 mg ketamine a mean ketamine AUC $0-\infty$ of about 389 ng.h/mL or a ketamine AUC $0-\infty$ between about 231 and about 521 ng.h/mL; after administration of a single dose of 60 mg of the active agent a mean norketamine AUC $0-\infty$ of about 872 ng.h/mL or a norketamine AUC $0-\infty$ between about 549 and about 1543 ng.h/mL; after administration of a single dose of 120 mg of the active agent a mean norketamine AUC $0-\infty$ of about 2133 ng.h/mL or a norketamine AUC $0-\infty$ between about 1353 and about 3260 ng.h/mL; and after administration of a single dose of 240 mg of the active agent a mean norketamine AUC $0-\infty$ of about 4087 ng.h/mL or a norketamine AUC $0-\infty$ between about 3205 and about 5216 ng.h/mL. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least about 4,000,000; at least about 5,000,000; at least about 6,000,000; and at least about 7,000,000. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the active agent comprises at least about 1% (by weight) of the core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein said high molecular weight PEO comprises at least about 50% (by weight) of the core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the dosage amount of active agent is selected from the group consisting of about 30 mg, about 60 mg, about 120 mg, and about 240 mg. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is cured at a temperature of about 70°C to about 75°C. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the coating comprises: i) hydroxypropylmethylcellulose; ii) titanium dioxide; and iii) polyethylene glycol. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is suitable for once daily administration or twice-daily administration to a patient. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet has no or minimal dissociative side effects upon administration to a patient.

[0014] Described herein is a solid, oral, extended release pharmaceutical tablet comprising: (A) a core comprising: i) a therapeutically effective amount of an active agent selected from the group consisting of ketamine, norketamine, pharmaceutically acceptable salts thereof, and combinations thereof; ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least about 30% (by weight) of the core; (B) a coating on said core, wherein said tablet is crush resistant and has a breaking strength of at least about 200 N; and wherein when said tablet is administered to a patient said tablet provides a pharmacokinetic parameter selected from the group consisting of: after administration of 5 doses of 60 mg ketamine administered every 12 hours a mean ketamine Cmax of about 12 ng/mL or a ketamine Cmax between about 8 and about 23 ng/mL; after administration of 5 doses of 120 mg ketamine administered every 12 hours a mean ketamine Cmax of about 21 ng/mL or a ketamine Cmax between about 7 and about 45 ng/mL; after administration of 5 doses of 240 mg ketamine administered every 12 hours a mean ketamine Cmax of about 42 ng/mL or a ketamine Cmax between about 33 and about 53 ng/mL; after administration of 5 doses of 60 mg of the active agent administered every 12 hours a mean norketamine Cmax of about 125 ng/mL or a norketamine Cmax between about 85 and about 185 ng/mL; after administration of 5 doses of 120 mg of the active agent administered every 12 hours a mean norketamine Cmax of about 230 ng/mL or a norketamine Cmax between about 168 and about 335 ng/mL; after administration of 5 doses of 240 mg of the active agent administered every 12 hours a mean norketamine Cmax of about 421 ng/mL or a norketamine Cmax between about 363 and about 474 ng/mL; after administration of 5 doses of 60 mg ketamine administered every 12 hours a mean ketamine AUC $0-12$ of about 74 ng.h/mL or a ketamine AUC $0-12$ between about 35 and about 156 ng.h/mL; after administration of 5 doses of 120 mg ketamine administered every 12 hours a mean ketamine AUC $0-12$ of about 133 ng.h/mL or a ketamine AUC $0-12$ between about 58 and about 287 ng.h/mL; after administration of 5 doses of 240 mg ketamine administered every 12 hours a mean ketamine AUC $0-12$ of about 221 ng.h/mL or a ketamine AUC $0-12$ between about 145 and about 328 ng.h/mL; after administration of 5 doses of 60 mg of the active agent administered every 12 hours a mean norketamine AUC $0-12$ of about 981 ng.h/mL or a norketamine AUC $0-12$ between about 608 and about 1583 ng.h/mL; after administration of 5 doses of 120 mg of the active agent administered every 12 hours a mean norketamine AUC $0-12$ of about 1697 ng.h/mL or a norketamine AUC $0-12$ between about 1124 and about 2557 ng.h/mL; and after administration of 5 doses of 240 mg of the active agent administered every 12 hours a mean norketamine AUC $0-12$ of about 3025 ng.h/mL or a norketamine AUC $0-12$ between about 2381 and about 3666 ng.h/mL.

Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least about 4,000,000; at least about 5,000,000; at least about 6,000,000; and at least about 7,000,000. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the active agent comprises at least about 1% (by weight) of the core. Also described herein is a solid, oral,

5 extended release pharmaceutical tablet wherein said high molecular weight PEO comprises at least about 50% (by weight) of said core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the dosage amount of active agent is selected from the group consisting of about 30 mg, about 60 mg, about 120 mg, and about 240 mg. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is cured at a temperature of about 70°C to about 75°C. Also described herein is a solid, oral, extended release pharmaceutical tablet

10 wherein the coating comprises: i) hydroxypropylmethylcellulose; ii) titanium dioxide; and iii) polyethylene glycol. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is suitable for once daily administration or twice-daily administration to a patient. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet has no or minimal dissociative side effects upon administration to a patient.

15 [0015] Described herein is a solid, oral, extended release pharmaceutical tablet comprising: (A) a core comprising: i) a therapeutically effective amount of an active agent selected from the group consisting of ketamine, norketamine, pharmaceutically acceptable salts thereof, and combinations thereof; ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least about 30% (by weight) of the core; (B) a coating on said core, wherein said tablet is crush resistant and has a breaking strength of at least about 200 N;

20 and wherein when said tablet is administered to a patient said tablet provides a pharmacokinetic parameter selected from the group consisting of: a mean tmax of said active agent between about 1.5 and about 3.5 hours after administration of a single dose of 60 mg or 120 mg or 240 mg; a mean tmax of said active agent between about 1.5 and about 3.5 hours after administration of 5 doses of 60 mg administered every 12 hours; a mean tmax of said active agent between about 1.5 and about 3.5 hours after administration of 5 doses of 120 mg administered every 12 hours; and a mean tmax of said active

25 agent between about 1.5 and about 3.5 hours after administration of 5 doses of 240 mg administered every 12 hours. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least about 4,000,000; at least about 5,000,000; at least about 6,000,000; and at least about 7,000,000. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the active agent comprises at least about 1% (by weight) of the core. Also described herein is a solid, oral,

30 extended release pharmaceutical tablet wherein said high molecular weight PEO comprises at least about 50% (by weight) of said core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the dosage amount of active agent is selected from the group consisting of about 30 mg, about 60 mg, about 120 mg, and about 240 mg. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is cured at a temperature of about 70°C to about 75°C.

35 [0016] Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the coating comprises: i) hydroxypropylmethylcellulose; ii) titanium dioxide; and iii) polyethylene glycol.

[0017] Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is suitable for once daily administration or twice-daily administration to a patient. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet has no or minimal dissociative side effects upon administration to a patient.

40 [0018] Described herein is a solid, oral, extended release pharmaceutical tablet comprising: (A) a core comprising: i) a therapeutically effective amount of an active agent selected from the group consisting of ketamine, norketamine, pharmaceutically acceptable salts thereof, and combinations thereof; ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least about 30% (by weight) of the core; (B) a coating on said core, wherein said tablet is crush resistant and has a breaking strength of at least about 200 N; and wherein when said tablet is administered at a single dose of about 60 mg to a patient provides a pharmacokinetic parameter selected from the group consisting of a ratio of norketamine Cmax: ketamine Cmax of between about 4 to about 15; and a ratio of norketamine AUC:ketamine AUC of between about 7 to about 15. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least about 4,000,000; at least about 5,000,000; at least about 6,000,000; and at least about 7,000,000. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the active agent comprises at least about 1% (by weight) of the core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein said high molecular weight PEO comprises at least about 50% (by weight) of said core. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the dosage amount of active agent is selected from the group consisting of about 30 mg, about 60 mg, about 120 mg, and about 240 mg. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet is cured at a temperature of about 70°C to about 75°C. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the coating comprises: i) hydroxypropylmethylcellulose; ii) titanium dioxide; and iii) polyethylene glycol. Also described herein is a solid, oral, extended release

pharmaceutical tablet wherein the tablet is suitable for once daily administration or twice-daily administration to a patient. Also described herein is a solid, oral, extended release pharmaceutical tablet wherein the tablet has no or minimal dissociative side effects upon administration to a patient.

5 BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0019] The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:

10 Figure 1 is a chart showing dissolution profiles of the 60mg sustained release ketamine tablet at 3 different pHs. Figure 2A is a chart showing the mean dissociation scale scores, using the Clinician-Administered Dissociative States Scale (CADSS) after a single dose of the sustained release tablet; Figure 2B is a chart showing mean CADSS scores after multiple doses of the tablet, Cohorts 1-3. Figure 3A is a chart showing mean concentration-time profiles of ketamine and norketamine after single dose, Cohorts 1-3; Figure 3B is a chart showing mean concentration-time profiles of ketamine and norketamine after multiple doses, Cohorts 1-3. Figure 4A is a chart showing ketamine maximum concentration (C_{max}) dose-proportionality after single doses of 60mg, 120 mg and 240 mg extended release ketamine tablets; Figure 4B is a chart showing ketamine Area under the Concentration-Time curve (AUC) after single doses of 60mg, 120 mg and 240 mg extended release ketamine tablets; Figure 4C is a chart showing ketamine maximum concentration (C_{max}) dose-proportionality after multiple doses of 60mg, 120 mg and 240 mg extended release ketamine tablets; Figure 4D is a chart showing ketamine Area under the Concentration-Time curve (AUC) after multiple doses of 60mg, 120 mg and 240 mg extended release ketamine tablets; Figure 4E is a chart showing norketamine maximum concentration (C_{max}) dose-proportionality after single doses of 60mg, 120 mg and 240 mg extended release norketamine tablets; Figure 4F is a chart showing norketamine Area under the Concentration-Time curve (AUC) after single doses of 60mg, 120 mg and 240 mg extended release norketamine tablets; Figure 4G is a chart showing norketamine maximum concentration (C_{max}) dose-proportionality after multiple doses of 60mg, 120 mg and 240 mg extended release norketamine tablets; Figure 4H is a chart showing norketamine Area under the Concentration-Time curve (AUC) after multiple doses of 60mg, 120 mg and 240 mg extended release norketamine tablets, Cohorts 1-3. Figure 5A is a chart showing the individual and mean CADSS scores, Cohort 4 after dosing with extended release ketamine tablets. Figure 5B is a chart showing the comparison of mean CADSS scores over 3 hours after initial dosing with ketamine tablets (filled symbols) and subcutaneous ketamine (open symbols) in the 6 Cohort 4 participants with both sets of data. Figure 6A is a chart showing the individual and mean Hamilton Anxiety Scale (HAMA) scores, Cohort 4 after dosing with extended release ketamine tablets. Figure 6B is a chart showing the individual and mean Fear Questionnaire (FQ) scores, Cohort 4 after dosing with extended release ketamine tablets. Figure 7 is a chart showing comparison of mean HAMA scores after initial dosing with ketamine tablets (filled symbols) and subcutaneous ketamine (open symbols) in the 6 Cohort 4 participants with both sets of data. Figure 8 is a chart showing individual and mean Montgomery-Asberg Depression Rating Scale (MADRS) scores, Cohort 4 after dosing with extended release ketamine tablets. Figure 9A is a chart showing the smoothed mean depression (MADRS) scores in 3 patients in Cohort 4, who entered a subsequent 3 month open-label extension (OLE) phase; Figure 9B is a chart showing anxiety (FQ) scores in the 3 patients in Cohort 4 who entered a subsequent 3 month open-label extension (OLE) phase; Figure 9C is a chart showing anxiety (HAMA) scores in the 3 patients in Cohort 4 who entered a subsequent 3 month open-label extension (OLE) phase. All three patients reported improvements in mood ratings during this time. Mean depression ratings appeared to take 6 weeks for maximal improvement (Figure 9A), whereas mean maximal anxiety scale improvement appeared to occur by week 2 (Figures 9B, 9C). Figure 10 is a chart showing individual and mean concentration-time profiles of ketamine and norketamine, Cohort 4. Mean dose administered at each 12 hour interval is shown above the concentration-time plots. Figure 11 is a chart showing changes in individual norketamine:ketamine ratios associated with 12 hourly dosing of extended release ketamine tablets, with a fitted regression. Figure 12 is a chart showing the manufacturing process for Ketamine 30 mg, 60 mg, 120 mg, 180 mg and 240 mg Extended Release Tablets.

55 DETAILED DESCRIPTION OF THE INVENTION

[0020] As used herein the term "active pharmaceutical ingredient" ("API") or "pharmaceutically active agent" is a drug or agent which can be employed for the invention and is intended to be used in the human or animal body in order to heal, to

alleviate, to prevent or to diagnose diseases, ailments, physical damage or pathological symptoms; allow the state, the condition or the functions of the body or mental states to be identified; to replace active substances produced by the human or animal body, or body fluids; to defend against, to eliminate or to render innocuous pathogens, parasites or exogenous substances or to influence the state, the condition or the functions of the body or mental states. Drugs in use can be found in reference works such as, for example, the Rote Liste or the Merck Index.

5 [0021] An amount is "effective" as used herein, when the amount provides an effect in the subject. As used herein, the term "effective amount" means an amount of a compound or composition sufficient to significantly induce a positive benefit, including independently or in combinations the benefits disclosed herein, but low enough to avoid serious side effects, i.e., to provide a reasonable benefit to risk ratio, within the scope of sound judgment of the skilled artisan. For those skilled in the art, the effective amount, as well as dosage and frequency of administration, may easily be determined according to their knowledge and standard methodology of merely routine experimentation based on the present disclosure.

10 [0022] As used herein, the terms "subject" and "patient" are used interchangeably. As used herein, the term "patient" refers to an animal, preferably a mammal such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats etc.) and a primate (e.g., monkey and human), and most preferably a human. In some embodiments, the subject is a non-human 15 animal such as a farm animal (e.g., a horse, pig, or cow) or a pet (e.g., a dog or cat). In a specific embodiment, the subject is an elderly human. In another embodiment, the subject is a human adult. In another embodiment, the subject is a human child. In yet another embodiment, the subject is a human infant.

20 [0023] As used herein, the phrase "pharmaceutically acceptable" means approved by a regulatory agency of the federal or a state government, or listed in the U.S. Pharmacopeia, European Pharmacopeia, or other generally recognized pharmacopeia for use in animals, and more particularly, in humans.

25 [0024] As used herein, the terms "prevent," "preventing" and "prevention" in the context of the administration of a therapy to a subject refer to the prevention or inhibition of the recurrence, onset, and/or development of a disease or condition, or a combination of therapies (e.g., a combination of prophylactic or therapeutic agents).

30 [0025] As used herein, the terms "therapies" and "therapy" can refer to any method(s), composition(s), and/or agent(s) that can be used in the prevention, treatment and/or management of a disease or condition, or one or more symptoms thereof.

35 [0026] As used herein, the terms "treat," "treatment," and "treating" in the context of the administration of a therapy to a subject refer to the reduction or inhibition of the progression and/or duration of a disease or condition, the reduction or amelioration of the severity of a disease or condition, and/or the amelioration of one or more symptoms thereof resulting from the administration of one or more therapies.

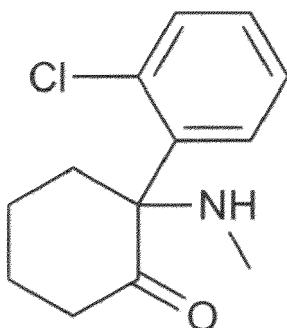
40 [0027] As used herein, the term "about" when used in conjunction with a stated numerical value or range has the meaning reasonably ascribed to it by a person skilled in the art, i.e. denoting somewhat more or somewhat less than the stated value or range.

45 [0028] Depression is characterized by depressed mood, and markedly diminished interest or pleasure in activities. Other symptoms include significant weight loss or weight gain, decrease or increase in appetite, insomnia or hypersomnia, psychomotor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or excessive or inappropriate guilt, diminished ability to think or concentrate or indecisiveness, recurrent thoughts of death, suicidal ideation or suicidal attempts. A variety of somatic symptoms may also be present. Though depressive feelings are common, especially after experiencing setbacks in life, depressive disorder is diagnosed only when the symptoms reach a threshold and last at least 50 two weeks. Depression can vary in severity from mild to very severe. It is most often episodic but can be recurrent or chronic. Some people have only a single episode, with a full return to premorbid function. However, more than 50 percent of those who initially suffer a single major depressive episode eventually develop another.

50 [0029] Treatment resistant-depression includes unipolar depression that does not respond satisfactorily to one or more treatments that are optimally delivered. If the depression has not benefited from at least two adequate trials of medications from different classes in the current episode, clinically significant treatment resistance is present.

55 [0030] Any chronic, treatment-resistant depression may be treated by the methods described herein. Such depression may include but is not limited to any of: major depressive disorder, single episode, recurrent major depressive disorder-unipolar depression, seasonal affective disorder-winter depression, bipolar mood disorder-bipolar depression, mood disorder due to a general medical condition-with major depressive-like episode, or mood disorder due to a general medical condition-with depressive features, wherein those disorders are resistant to treatment in a given patient. Thus, any patient that presents one of those disorders and who has not responded to an adequate trial of one antidepressant in the current episode and has recurrent or chronic depressive symptoms for greater than 2 years can be treated by the methods of the invention. Manic Depressive illnesses are also described in Goodwin, et al. 2007.

[0031] Anxiety is a mood disorder characterized by nervousness, fear, apprehension, and worrying. Patients with anxiety disorders may report symptoms such as excessive worry, panic attacks, or avoidance of specific situations (e.g. social interactions, supermarkets). Treatment resistant anxiety (TRA; anxiety that has not resolved or improved despite adequate medication and psychotherapy) is relatively common, with approximately 30% of patients showing no response to treatment, and a further 30-40% of patients having a partial response (Brown 1996). No drug treatments are approved at


present for TRA.

[0032] Autoinduction is the ability of a drug to induce enzymes that enhance its own metabolism, which may result in tolerance.

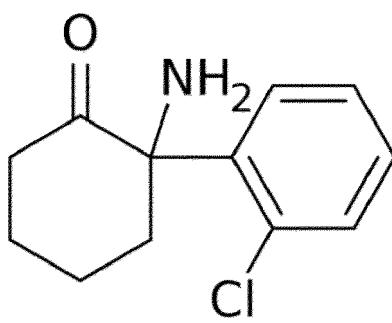
5 **Active Agent**

[0033] The pharmaceutical composition of the invention comprises an active agent, selected from ketamine, and pharmaceutically acceptable salts thereof. "Ketamine" as used herein is understood to comprise the compound of formula (I)

10

15

20


having the IUPAC name 2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one. Accordingly, ketamine comprises the R and S enantiomers as well as pharmaceutically acceptable salts or solvates thereof. In one embodiment, ketamine is (R)-ketamine or pharmaceutically acceptable salts or solvates thereof. In another embodiment, ketamine is (S)-ketamine or pharmaceutically acceptable salts or solvates thereof. In a further embodiment, ketamine is a racemate of (S)-ketamine and (R)-ketamine or pharmaceutically acceptable salts or solvates thereof, or any mixture of (S)-ketamine and (R)-ketamine or pharmaceutically acceptable salts or solvates thereof. Ketamine can preferably comprise the pharmaceutically acceptable acid addition salts thereof. The acids which are used to prepare the pharmaceutically acceptable acid addition salts are preferably those which form non-toxic acid addition salts, i.e. salts containing pharmacologically acceptable anions, such as chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, (D,L)- and L-tartrate, (D,L)- and L-malate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate and benzoate. A preferred salt is the hydrochloride of ketamine.

25

30

35

[0034] Ketamine's metabolites are norketamine or dehydronorketamine. Norketamine has the IUPAC name 2-amino-2-(2-chlorophenyl)cyclohexan-1-one of formula (II)

40

45

and is obtained from ketamine through N-demethylation..

[0035] In exemplary embodiments, formulations of the invention may comprise active agent at a concentration of about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%. In exemplary embodiments, formulations of the invention may comprise active agent at a concentration of about 15% to about 18%.

55

[0036] Compositions for use in treating and/or preventing a condition in a subject are provided according to embodiments of the present invention which include administering, in combination, a compound of the invention as set forth herein and at least one additional therapy, such as a therapeutic agent selected from the group consisting of at least one anti-

anxiety drug, at least one anti-depressant drug, at least one neuroleptic medication, at least one mood stabilizer drug, at least one antipsychotic drug, at least one hypnotic, and combinations thereof. In exemplary embodiments, the active agent is administered in combination with or concurrently with another therapeutic intervention to enhance the efficacy thereof. Examples of other therapeutic interventions include, but are not limited to, counseling, psychotherapy, cognitive therapy or the like, electroconvulsive therapy, hydrotherapy, hyperbaric oxygen therapy, electrotherapy and electrical stimulation, transcutaneous electrical nerve stimulation or "TENS" (e.g., for the treatment of pain such as neuropathic pain), deep brain stimulation (e.g., for the treatment of pain such as neuropathic pain, Parkinson's disease, tremor, dystonia, etc.), vagus nerve stimulation and/or transcranial magnetic stimulation, etc.

[0037] In exemplary embodiments, at least one anti-anxiety drug is alprazolam, bromazepam, diazepam, lorazepam, clonazepam, temazepam, oxazepam, flunitrazepam, triazolam, chlordiazepoxide, flurazepam, estazolam, nitrazepam, and pharmaceutically acceptable salts, isomers, and mixtures thereof. Further examples of anxiolytic drugs include, but are not limited to, benzodiazepines (e.g., alprazolam, bromazepam (LEXOTAN), chlordiazepoxide (LIBRIUM), clobazam, clonazepam, clorazepate, diazepam, midazolam, lorazepam, nitrazepam, , nimepiril, estazolam, flunitrazepam, oxazepam (Serax), temazepam (RESTORIL, NORMISON, PLANUM, TENOX, and TEMAZE), triazolam, serotonin 1A agonists (e.g., buspirone (BUSPAR)), barbiturates (e.g., amobarbital (amytal sodium), pentobarbital (NEMBUTAL), secobarbital (SECONAL), phenobarbital, methohexitol, thiopental, methylphenobarbital, metharbital, barbexaclone), hydroxyzine, cannabidiol, and herbal treatments, (e.g., valerian, kava (Kava Kava), chamomile, Kratom, Blue Lotus extracts, Sceletium tortuosum (kanna) and Bacopa monniera).

[0038] In exemplary embodiments, at least one anti-depressant drug is citalopram, escitalopram oxalate, fluoxetine, fluvoxamine, paroxetine, sertraline, dapoxetine; venlafaxine and duloxetine; harmaline, iproniazid, isocarboxazid, nialamide, pargyline, phenelzine, selegiline, toloxatone, tranylcypromine, brofaromine, moclobemide; amitriptyline, amoxapine, butriptyline, clomipramine, desipramine, dibenzepin, dothiepin, doxepin, imipramine, iprindole, lofepramine, melitracen, nortriptyline, opipramol, protriptyline, trimipramine; maprotiline, mianserin, nefazodone, trazodone, and pharmaceutically acceptable salts, isomers, and combinations thereof. Anti-depressant medications include synthesized chemical compounds as well as naturally occurring or herbal remedies such as St. John's Wort.

[0039] Herbal antidepressants may include, for example, St. John's Wort; kava kava; echinacea; saw palmetto; holy basil; valerian; milk thistle; Siberian ginseng; Korean ginseng; ashwagandha root; nettle; ginkgo biloba; gotu kola; ginkgo/gotu kola supreme; astragalus; goldenseal; dong quai; ginseng; St. John's wort supreme; echinacea; bilberry, green tea; hawthorne; ginger, gingko, turmeric; boswellia serata; black cohosh; cats claw; catnip; chamomile; dandelion; chaste tree berry; black elderberry; feverfew; garlic; horse chestnut; licorice; red clover blossom and leaf rhodiola rusa; coleus forskohlii; Passion Flower; eyebright; yohimbe; blueberry plant; black pepper plant; Hydrocotyle asiatica; astragalus; valerian poppy root and grape seed; vervain; echinacea ang root; Skull Cap; serenity elixir; and combinations thereof.

[0040] Examples of antidepressants include, but are not limited to, selective serotonin reuptake inhibitors (SSRIs) (e.g., fluoxetine (PROZAC), paroxetine (PAXIL, SEROXAT), escitalopram (LEXAPRO, ESIPRAM), citalopram (CELEXA), and sertraline (ZOLOFT)), serotonin-norepinephrine reuptake inhibitors (SNRIs) (e.g., venlafaxine (EFFEXOR), and duloxetine (CYMBALTA)), noradrenergic and specific serotonergic antidepressants (NASSAs) (e.g., mirtazapine (AVANZA, ZISPIN, REMERON)), norepinephrine (noradrenaline) reuptake inhibitors (NRIs) (e.g., reboxetine (EDRONAX)), norepinephrine-dopamine reuptake inhibitors (e.g., bupropion (WELLBUTRIN, ZYBAN)), tricyclic antidepressants (TCAs) (e.g., amitriptyline and desipramine), monoamine oxidase inhibitor (MAOIs) (e.g., phenelzine (NARDIL), moclobemide (MANERIX), selegiline), and augmentor drugs (e.g., tryptophan (TRYPTAN) and buspirone (BUSPAR)).

[0041] In exemplary embodiments, at least one neuroleptic drug is haloperidol (HALDOL), droperidol, benperidol, triperidol, melperone, lenperone, azaperone, domperidone, risperidone, chlorpromazine, fluphenazine, perphenazine, prochlorperazine, thioridazine, trifluoperazine, mesoridazine, pericazine, promazine, trifluopromazine, levomepromazine, promethazine, pimozide, cyamemazine, chlorprothixene, clopenthixol, flupenthixol, thiothixene, zuclopenthixol, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, asenapine, paliperidone, iloperidone, zotepine, sertindole, lurasidone, aripiprazole, and pharmaceutically acceptable salts, isomers, and combinations thereof,

[0042] In exemplary embodiments, at least one mood stabilizer drugs includes, but is not limited to, Lithium carbonate, lithium orotate, lithium salt, Valproic acid (DEPAKENE), divalproex sodium (DEPAKOTE), sodium valproate (DEPACON), Lamotrigine (LAMICTAL), Carbamazepine (TEGRETOL), Gabapentin (NEURONTIN), Oxcarbazepine (TRILEPTAL), and Topiramate (TOPAMAX), and combinations thereof.

[0043] Examples of antipsychotic drugs include, but are not limited to, butyrophenones (e.g., haloperidol), phenothiazines (e.g., chlorpromazine (THORAZINE), fluphenazine (PROLIXIN), perphenazine (TRILAFON), prochlorperazine (COMPATINE), thioridazine (MELLARIL), trifluoperazine (STELAZINE), mesoridazine (SERENTIL), promazine, trifluopromazine (VESPRIN), levomepromazine (NOZINAN), promethazine (PHENERGAN)), thioxanthenes (e.g., chlorprothixene (TRUXAL), flupenthixol (DEPIXOL and FLUANXOL), thiothixene (NAVANE), zuclopenthixol (CLOPIXOL & ACUPHASE)), clozapine, olanzapine, risperidone (RISPERDAL), quetiapine (SEROQUEL), ziprasidone (GEODON), amisulpride (SOLIAN), paliperidone (INVEGA), dopamine, bifeprunox, norclozapine (ACP-104), Aripiprazole (ABILIFY),

tetrabenazine (XENAZINE), and cannabidiol and pharmaceutically acceptable salts, isomers, and combinations thereof.

[0044] Examples of hypnotics include, but are not limited to, barbiturates, opioids, benzodiazepines (e.g., alprazolam, bromazepam (Lexotan), chlordiazepoxide (Librium), clobazam, clonazepam, clorazepate, diazepam, midazolam, lorazepam, nitrazepam, , nimetazepam, estazolam, flunitrazepam, oxazepam (SERAX), temazepam (RESTORIL, NORMISON, PLANUM, TENOX, and TEMAZE), triazolam), nonbenzodiazepines (e.g., ZOLPIDEM, ZALEPLON, ZOPICLONE, ESZOPICLONE), antihistamines (e.g., diphenhydramine, doxylamine, hydroxyzine, promethazine), gamma-hydroxybutyric acid (Xyrem), Glutethimide, Chloral hydrate, Ethchlorvynol, Levomepromazine, Chlormethiazole, Melatonin, and Alcohol. Examples of sedatives include, but are not limited to, barbituates (e.g., amobarbital (Amytal), pentobarbital (Nembutal), secobarbital (Seconal), phenobarbital, methohexitol, thiopental, methylphenobarbital, metharbital, barbexacalone), benzodiazepines (e.g., alprazolam, bromazepam (LEXOTAN), chlordiazepoxide (LIBRIUM), clobazam, clonazepam, clorazepate, diazepam, midazolam, lorazepam, nitrazepam, , nimetazepam, estazolam, flunitrazepam, oxazepam (SERAX), temazepam (RESTORIL, NORMISON, PLANUM, TENOX, and TEMAZE), triazolam), and pharmaceutically acceptable salts, isomers, and combinations thereof. Examples further include Herbal sedatives (e.g., ashwagandha, catnip, kava (Piper methysticum), mandrake, marijuana, valerian), solvent sedatives (e.g., chloral hydrate (NOCTEC), diethyl ether (Ether), ethyl alcohol (alcoholic beverage), methyl trichloride (chloroform)), nonbenzodiazepine sedatives (e.g., eszopiclone (LUNESTA), zaleplon (SONATA), zolpidem (AMBIEN), zopiclone (IMOVANE, ZIMOVANE)), clomethiazole, gamma-hydroxybutyrate (GHB), thalidomide, ethchlorvynol (PLACIDYL), glutethimide (DORIDEN), ketamine (KETALAR, KETASET), methaqualone (SOPOR, QUAALUDE), methyprylon (NOLUDAR), and ramelteon (ROZEREM).

[0045] Examples of alpha-2-delta ligand include gabapentin, pregabalin, 3-methylgabapentin, (1alpha,3 alpha,5alpha) (3-amino-methyl-bicyclo[3.2.0]hept-3-yl)-acetic acid, (3S,5R)-3 aminomethyl-5 methyl-heptanoic acid, (3S,5R)-3 amino-5 methyl-heptanoic acid, (3S,5R)-3 amino-5 methyl-octanoic acid, (2S,4S)-4-(3-chlorophenoxy)proline, (2S,4S)-4-(3-fluorobenzyl)-proline, [(1R,5R,6S)-6-(aminomethyl)bicyclo[3.2.0]hept-6-yl]acetic acid, 3-(1-aminomethyl-cyclohexylmethyl)-4H-[1,2,4]oxadiazol-5-one, C-[1-(1H-tetrazol-5-ylmethyl)-cycloheptyl]-methylamine, (3S,4S)-(1-amino-3-methyl-3,4-dimethyl-cyclopentyl)-acetic acid, (3S,5R)-3 aminomethyl-5 methyl-octanoic acid, (3S,5R)-3 amino-5 methyl-nonanoic acid, (3S,5R)-3 amino-5 methyl-octanoic acid, (3R,4R,5R)-3-amino-4,5-dimethyl-heptanoic acid and (3R,4R,5R)-3-amino-4,5-dimethyl-octanoic acid, and combinations thereof.

[0046] Examples of serotonin 1a partial agonist include buspirone, gepirone, eltoprazine, or tandospirone, pharmaceutically acceptable salts, isomers, and combinations thereof.

[0047] Examples of antiadrenergic agents include clonidine, prazosin, propranolol, fuanfacine, methyldopa, guanabenz; doxazosin, prazosin, terazosin, silodosin, alfuzosin, tamsulosin, dutasteride/tamsulosin, guanadrel, mecemylamine, guanethidine, pharmaceutically acceptable salts, isomers, and combinations thereof.

[0048] Examples of benzodiazepine agents include alprazolam, bromazepam (LEXOTAN), chlordiazepoxide (LIBRIUM), clobazam, clonazepam, clorazepate, diazepam, midazolam, lorazepam, nitrazepam, nimetazepam, estazolam, flunitrazepam, oxazepam (SERAX), temazepam (RESTORIL, NORMISON, PLANUM, TENOX, and TEMAZE), triazolam, pharmaceutically acceptable salts, isomers, and combinations thereof.

[0049] The agents are administered in therapeutically effective amounts. In certain embodiments the agents are administered in the same dosage form. In certain embodiments the therapeutic agents are administered separately.

40 Pharmacokinetics

[0050] In pharmacokinetics the term Cmax refers to peak drug concentrations in blood or plasma after dosing. Cmax can be influenced by drug dose (higher doses usually produce higher Cmax values), how a drug is administered (e.g., higher Cmax values may occur after IV bolus dosing compared with oral dosing), and the type of formulation (a higher Cmax may occur after dosing with an immediate release oral formulation compared with an extended release formulation). Other drug characteristics such as solubility, permeability, ways in which it is absorbed into the body, metabolism and metabolic products etc., can also influence Cmax, which means that although certain projections may be made based on the factors mentioned above, the actual behavior observed is difficult to predict without significant experimentation in humans and may be unexpected.

[0051] The Specification discloses that the compositions as disclosed herein provide upon administration to a patient, for example, a pharmacokinetic parameter selected from the group consisting of:

- 55 i) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of a single dose of 60 mg or 120 mg or 240 mg;
- ii) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 60 mg administered every 12 hours;
- iii) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 120 mg administered every 12 hours;

iv) a mean *t_{max}* of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 240 mg administered every 12 hours;

v) after administration of a single dose of about 60 mg a mean ratio of norketamine *C_{max}*: ketamine *C_{max}* of 8.7, or a ratio of norketamine *C_{max}*: ketamine *C_{max}* of between 4 to 15;

5 vi) after administration of a single dose of about 60 mg a mean ratio of norketamine *AUC*:ketamine *AUC* of 11.8, or a ratio of norketamine *AUC*:ketamine *AUC* of between 7 to 15;

vii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine *C_{max}*: ketamine *C_{max}* of 9.6; and

10 viii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine *AUC*:ketamine *AUC* of 11.8.

[0052] *T_{max}* refers to the time at which peak drug concentration (*C_{max}*) occurs. The Specification discloses that the compositions and methods as disclosed herein provide upon administration to a patient, for example, a pharmacokinetic parameter selected from the group consisting of: a mean *t_{max}* of said active agent between about 1.5 and about 3.5 hours after administration of a single dose of 60 mg or 120 mg or 240 mg; a mean *t_{max}* of said active agent between about 1.5 and about 3.5 hours after administration of 5 doses of 60 mg administered every 12 hours; a mean *t_{max}* of said active agent between about 1.5 and about 3.5 hours after administration of 5 doses of 120 mg administered every 12 hours; and a mean *t_{max}* of said active agent between about 1.5 and about 3.5 hours after administration of 5 doses of 240 mg administered every 12 hours.

[0053] The term *AUC* means Area Under the drug concentration-time Curve in blood or plasma. The *AUC* reflects the total body exposure to drug after dosing. Again, the size of *AUC* is influenced by several factors - what dose is administered; ease and speed of drug absorption; how widely the drug is distributed in the body; and rate of drug elimination from the body. All of these variables make it difficult to predict *AUC* accurately without significant experimentation in humans.

[0054] Also described herein are compositions that provide upon administration to a patient, for example, a pharmacokinetic parameter selected from the group consisting of:

- after administration of a single dose of 60 mg ketamine a mean ketamine *AUC* $0-\infty$ of about 79 or a ketamine *AUC* $0-\infty$ between about 36 and about 135 ng.h/mL;
- after administration of a single dose of 120 mg ketamine a mean ketamine *AUC* $0-\infty$ about 197 ng.h/mL or a ketamine *AUC* $0-\infty$ between about 93 and about 460 ng.h/mL;
- after administration of a single dose of 240 mg ketamine a mean ketamine *AUC* $0-\infty$ about 389 ng.h/mL or a ketamine *AUC* $0-\infty$ between about 292 and 521 ng.h/mL;
- after administration of a single dose of 60 mg of the active agent a mean norketamine *AUC* $0-\infty$ of about 872 ng.h/mL or a norketamine *AUC* $0-\infty$ between about 549 and about 1543 ng.h/mL;
- after administration of a single dose of 120 mg of the active agent a mean norketamine *AUC* $0-\infty$ of about 2133 ng.h/mL or a norketamine *AUC* $0-\infty$ between about 1353 and about 3260 ng.h/mL; and
- after administration of a single dose of 240 mg of the active agent a mean norketamine *AUC* $0-\infty$ of about 4087 ng.h/mL or a norketamine *AUC* $0-\infty$ between about 3205 and about 5216 ng.h/mL;
- after administration of 5 doses of 60 mg ketamine administered every 12 hours a mean ketamine *AUC* $0-12$ of about 74 ng.h/mL or a ketamine *AUC* $0-12$ between about 35 and about 156 ng.h/mL;
- after administration of 5 doses of 120 mg ketamine administered every 12 hours a mean ketamine *AUC* $0-12$ of about 133 ng.h/mL or a ketamine *AUC* $0-12$ between about 58 and about 287 ng.h/mL;
- after administration of 5 doses of 240 mg ketamine administered every 12 hours a mean ketamine *AUC* $0-12$ of about 221 ng.h/mL or a ketamine *AUC* $0-12$ between about 145 and about 328 ng.h/mL;
- after administration of 5 doses of 60 mg of the active agent administered every 12 hours a mean norketamine *AUC* $0-12$ of about 981 ng.h/mL or a norketamine *AUC* $0-12$ between about 608 and about 1583 ng.h/mL;
- after administration of 5 doses of 120 mg of the active agent administered every 12 hours a mean norketamine *AUC* $0-12$ of about 1697 ng.h/mL or a norketamine *AUC* $0-12$ between about 1124 and about 2557 ng.h/mL; and
- after administration of 5 doses of 240 mg of the active agent administered every 12 hours a mean norketamine *AUC* $0-12$ of about 3025 ng.h/mL or a norketamine *AUC* $0-12$ between about 2381 and about 3666 ng.h/mL.

[0055] The formulation of the disclosure provides extended release of ketamine of, for example, over 4 hours, over 5 hours, over 6 hours, over 7 hours, over 8 hours, over 9 hours, over 10 hours, or more. Elimination half-life estimates for ketamine and norketamine for the formulation as set forth herein are much longer than previously reported for immediate release tablet formulations (e.g. 8h vs <2h; Yanagihara 2003)

[0056] There is evidence that the formulations of the invention provide for autoinduction (Figure 10). This appears to have stabilized after 3-4 days of repeat dosing. There is no prior human data on this.

[0057] There is evidence for the formulations of the invention that over 90% of the absorbed drug is present as norketamine rather than ketamine. In the patient cohort (cohort 4) there were improvements in depression and anxiety despite the major measurable drug present being norketamine. There has been much discussion in the scientific literature about whether ketamine or a metabolite are important in producing improvements in mood after dosing with ketamine.

5 **Zanos 2016 and Zarate 2017** highlight ketamine's metabolite, 6-hydroxy norketamine as important. The inventors have surprisingly found that norketamine itself is important in the tablet's therapeutic effects. This is in contrast to a previous report which presented data as combined ketamine and norketamine, rather than separately, and did not report on the importance of norketamine to the therapeutic effect. (See WO 2015/031410).

[0058] The oral formulation as set forth herein has no dissociative side effects after 60-120mg doses, and minimal dissociative side effects at 240 mg (Figures 2A and 2B). This contrasts markedly with injected ketamine by any route of administration (e.g. Loo 2016), where there are marked dissociative symptoms for up to 60 minutes after dosing.

[0059] There is evidence that the formulations of the invention are efficacious in improving both depressed and anxious mood, with improved tolerability compared with injected ketamine. For example, a leading research group has highlighted a finding that having a dissociative experience is critical to mood improvement in TRD. "Among the examined mediators of 15 ketamine's antidepressant response, only dissociative side effects predicted a more robust and sustained antidepressant" (www.ncbi.nlm.nih.gov/pubmed/24679390). The inventors have found that improvement in depression scores occurs with no or minimal dissociation (see Figures 8 and 5A). This observation of improvement in depression scores in the absence of dissociation is novel and nonobvious.

[0060] The onset of improvement of anxiety symptoms in study 603 cohort 4 was more gradual (48h) compared with 20 1-2h for injected ketamine (Figure 7), however the same overall magnitude of effect was observed as with injected drug in earlier treatment.

[0061] Furthermore, a safe and effective dose and dosing schedule have been identified in an open-label extension study for patients who completed the 603 study. Three of 4 patients with mixed anxiety/depressive disorders remained in remission on doses of 120mg orally once or twice weekly.

[0062] This has been accomplished by preparing the sustained release formulation in such a manner that the active agent is released more favorably in low pH (e.g., gastric fluid) rather than high pH (e.g., intestinal fluid).

Matrix Formulations

[0063] Also described herein is a process of preparing a solid oral extended release pharmaceutical dosage form, comprising at least the steps of:

(a) combining:

30 (1) at least one polyethylene oxide having, based on rheological measurements, an approximate molecular weight selected from the group consisting of at least about 1,000,000; at least about 2,000,000; at least about 3,000,000; at least about 4,000,000; at least about 5,000,000; at least about 6,000,000; at least about 6,000,000; at least about 7,000,000; and at least about 8,000,000; and
40 (2) at least one active agent, to form a composition;

(b) shaping the composition to form an extended release matrix formulation; and
(c) curing said extended release matrix formulation comprising at least a curing step of subjecting the extended release matrix formulation to a temperature which is at least the softening temperature of said polyethylene oxide for a time period selected from the group consisting of at least about 1 minute, at least about 2 minutes, at least about 3 minutes, at least about 4 minutes, at least about 5 minutes, at least about 6 minutes, at least about 7 minutes, at least about 8 minutes, at least about 9 minutes, and at least about 10 minutes. Preferably, the curing is conducted at atmospheric pressure. In a preferred embodiment the dosage form is coated.

[0064] In certain embodiments the composition is shaped in step b) to form an extended release matrix formulation in the 50 form of tablet. For shaping the extended release matrix formulation in the form of tablet a direct compression process can be used. Direct compression is an efficient and simple process for shaping tablets by avoiding process steps like wet granulation. However, any other process for manufacturing tablets as known in the art may be used, such as wet granulation and subsequent compression of the granules to form tablets.

[0065] In one embodiment, the curing of the extended release matrix formulation in step c) comprises at least a curing 55 step wherein the high molecular weight polyethylene oxide in the extended release matrix formulation at least partially melts. For example, at least about 20% or at least about 30% of the high molecular weight polyethylene oxide in the extended release matrix formulation melts. Preferably, at least about 40% or at least about 50%, more preferably at least about 60%, at least about 75% or at least about 90% of the high molecular weight polyethylene oxide in the extended

release matrix formulation melts. In a preferred embodiment, about 100% of the high molecular weight polyethylene oxide melts.

[0066] In other embodiments, the curing of the extended release matrix formulation in step c) comprises at least a curing step wherein the extended release matrix formulation is subjected to an elevated temperature for a certain period of time. In such embodiments, the temperature employed in step c), i.e. the curing temperature, is at least as high as the softening temperature of the high molecular weight polyethylene oxide. Without wanting to be bound to any theory it is believed that the curing at a temperature that is at least as high as the softening temperature of the high molecular weight polyethylene oxide causes the polyethylene oxide particles to at least adhere to each other or even to fuse. According to some embodiments the curing temperature is at least about 60°C or at least about 62°C, or ranges from about 62°C, to about 10 90°C, or from about 62°C to about 85°C or from about 62°C to about 80°C or from about 65°C to about 90°C or from about 65°C to about 85°C or from about 65°C to about 80°C. The curing temperature preferably ranges from about 68°C to about 15 90°C or from about 68°C to about 85°C or from about 68°C to about 80°C, more preferably from about 70°C to about 90°C or from about 75°C to about 85°C or from about 72°C to about 80°C, or from about 70°C to about 75°C. The curing temperature may be at least about 60°C, or at least about 62°C, but less than about 90°C or less than about 80°C. Preferably, it is in the 20 range of from about 62°C to about 75°C, in particular from about 68°C to about 75°C. Preferably, the curing temperature is at least as high as the lower limit of the softening temperature range of the high molecular weight polyethylene oxide or at least about 62°C or at least about 68°C. More preferably, the curing temperature is within the softening temperature range of the high molecular weight polyethylene oxide or at least about 70°C. Even more preferably, the curing temperature is at least as high as the upper limit of the softening temperature range of the high molecular weight polyethylene oxide or at least about 72°C. In an alternative embodiment, the curing temperature is higher than the upper limit of the softening temperature range of the high molecular weight polyethylene oxide, for example the curing temperature is at least about 75°C or at least about 80°C.

[0067] The curing time may vary from about 1 minute to about 24 hours or from about 5 minutes to about 20 hours or from 25 about 10 minutes to about 15 hours or from about 15 minutes to about 10 hours or from about 30 minutes to about 5 hours depending on the specific composition and on the formulation and the curing temperature. The parameter of the composition, the curing time and the curing temperature are chosen to achieve the tamper resistance as described herein. According to certain embodiments the curing time varies from about 15 minutes to about 30 minutes.

[0068] In certain embodiments of the present invention, the sustained release formulation may be achieved via a matrix 30 optionally having a controlled release coating as set forth herein. The present invention may also utilize a sustained release matrix that affords in-vitro dissolution rates of the API within desired ranges and releases the API in a pH-dependent or pH-independent manner.

[0069] A non-limiting list of suitable sustained-release materials which may be included in a sustained-release matrix according to the invention includes hydrophilic and/or hydrophobic materials, such as gums, cellulose ethers, acrylic 35 resins, protein derived materials, waxes, shellac, and oils such as hydrogenated castor oil and hydrogenated vegetable oil. However, any pharmaceutically acceptable hydrophobic or hydrophilic sustained-release material which is capable of imparting sustained-release of the API may be used in accordance with the present invention. Preferred sustained-release polymers include alkylcelluloses such as ethylcellulose, acrylic and methacrylic acid polymers and copolymers; and cellulose ethers, especially hydroxyalkylcelluloses (especially hydroxypropylmethylcellulose) and carboxyalkylcelluloses. Preferred acrylic and methacrylic acid polymers and copolymers include methyl methacrylate, methyl methacrylate 40 copolymers, ethoxyethyl methacrylates, ethyl acrylate, trimethyl ammonioethyl methacrylate, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamine copolymer, poly(methylmethacrylate), poly(methacrylic acid) (anhydride), polymethacrylate, polyacrylamide, poly(methacrylic acid 45 anhydride), and glycidyl methacrylate copolymers. Certain embodiments utilize mixtures of any of the foregoing sustained-release materials in the matrix of the invention. The matrix also may include a binder.

[0070] In addition to the above ingredients, a sustained-release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids and glidants that are conventional in the pharmaceutical art.

[0071] A sustained-release matrix can be prepared by, e.g., melt-granulation or melt-extrusion techniques. Generally, melt-granulation techniques involve melting a normally solid hydrophobic binder material, e.g., a wax, and incorporating a 50 powdered drug therein. To obtain a sustained release dosage form, it may be necessary to incorporate a hydrophobic sustained-release material, e.g., ethylcellulose or a water-insoluble acrylic polymer, into the molten wax hydrophobic binder material.

[0072] The additional hydrophobic binder material may comprise one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or 55 more water-insoluble wax-like substances. In order to achieve sustained release, the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases. Useful water-insoluble wax-like binder substances may be those with a water-solubility that is lower than about 1 :5,000 (w/w).

[0073] The preparation of a suitable melt-extruded matrix according to the present invention may, for example, include the steps of blending the API with a sustained release material and preferably a binder material to obtain a homogeneous mixture. The homogeneous mixture is then heated to a temperature sufficient to at least soften the mixture sufficiently to extrude the same. The resulting homogeneous mixture is then extruded, e.g., using a twin-screw extruder, to form strands.

5 The extrudate is preferably cooled and cut into multiparticulates by any means known in the art. The matrix multiparticulates are then divided into unit doses. The extrudate preferably has a diameter of from about 0.1 to about 5 mm and provides sustained release of the active agent or pharmaceutically acceptable salt therefor for a time period of at least about 24 hours.

[0074] An optional process for preparing the melt extruded formulations of the present invention includes directly metering into an extruder a hydrophobic sustained release material, the API, and an optional binder material; heating the homogenous mixture; extruding the homogenous mixture to thereby form strands; cooling the strands containing the homogeneous mixture; cutting the strands into matrix multiparticulates having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.

10 **[0075]** Plasticizers, such as those described above, may be included in melt-extruded matrices. The plasticizer is preferably included as from about 0.1 to about 30% by weight of the matrix. Other pharmaceutical excipients, e.g., talc, mono or poly saccharides, lubricants and the like may be included in the sustained release matrices of the present invention as desired. The amounts included will depend upon the desired characteristic to be achieved.

15 **[0076]** The diameter of the extruder aperture or exit port can be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.

20 **[0077]** A melt extruded matrix multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms "melt-extruded matrix multiparticulate(s)" and "melt-extruded matrix multiparticulate system(s)" and "melt-extruded matrix particles" shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a hydrophobic sustained release material as described herein. Preferably the melt-extruded matrix multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.1 to about 5 mm. In addition, it is to be understood that the melt-extruded matrix multiparticulates can be any geometrical shape within this size range. In certain embodiments, the extrudate may simply be cut into desired lengths and divided into unit doses of the therapeutically active agent without the need of a spheronization step.

25 **[0078]** In another embodiment, a suitable amount of the multiparticulate extrudate is compressed into an oral tablet using conventional tableting equipment using standard techniques. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980).

30 **[0079]** In addition to the above ingredients, the spheroids, granules, or matrix multiparticulates may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, and glidants that are conventional in the *pharmaceutical* art in amounts up to about 50% by weight of the formulation if desired. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation.

35 **[0080]** Also described herein, at least one active agent in solubility-improved form is incorporated into an erodible or non-erodible polymeric matrix-controlled release device. By an erodible matrix is meant aqueous-erodible or water-swellable or aqueous-soluble in the sense of being either erodible or swellable or dissolvable in pure water or requiring the presence of an acid or base to ionize the polymeric matrix sufficiently to cause erosion or dissolution. When contacted with the aqueous environment of use, the erodible polymeric matrix imbibes water and forms an aqueous-swollen gel or "matrix" that entraps the solubility-improved form of the active agent. The aqueous-swollen matrix gradually erodes, swells, disintegrates or dissolves in the environment of use, thereby controlling the release of the active agent to the environment of use. The erodible polymeric matrix into which the active agent is incorporated may generally be described as a set of excipients that are mixed with the solubility-improved form following its formation that, when contacted with the aqueous environment of use imbibes water and forms a water-swollen gel or "matrix" that entraps the drug form. Drug release may occur by a variety of mechanisms: the matrix may disintegrate or dissolve from around particles or granules of the drug in solubility-improved form; or the drug may dissolve in the imbibed aqueous solution and diffuse from the tablet, beads or granules of the device. A key ingredient of this water-swollen matrix is the water-swellable, erodible, or soluble polymer, which may generally be described as an osmopolymer, hydrogel or water-swellable polymer. Such polymers may be linear, branched, or crosslinked. They may be homopolymers or copolymers. Although they may be synthetic polymers derived from vinyl, acrylate, methacrylate, urethane, ester and oxide monomers, they are most preferably derivatives of naturally occurring polymers such as polysaccharides or proteins.

40 **[0081]** Such materials include naturally occurring polysaccharides such as chitin, chitosan, dextran and pullulan; gum agar, gum arabic, gum karaya, locust bean gum, gum tragacanth, carrageenans, gum ghatti, guar gum, xanthan gum and scleroglucan; starches such as dextrin and maltodextrin; hydrophilic colloids such as pectin; phosphatides such as

lecithin; alginates such as ammonium alginate, sodium, potassium or calcium alginate, propylene glycol alginate; gelatin; collagen; and cellulosics. By "cellulosics" is meant a cellulose polymer that has been modified by reaction of at least a portion of the hydroxyl groups on the saccharide repeat units with a compound to form an ester-linked or an ether-linked substituent. For example, the cellulosic ethyl cellulose has an ether linked ethyl substituent attached to the saccharide repeat unit, while the cellulosic cellulose acetate has an ester linked acetate substituent.

[0082] A preferred class of cellulosics for the erodible matrix comprises aqueous-soluble and aqueous-erodible cellulosics such as ethyl cellulose (EC), methylethyl cellulose (MEC), carboxymethyl cellulose (CMC), CMEC, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB), cellulose acetate butyrate (CAB), CAP, CAT, hydroxypropyl methyl cellulose (HPMC), HPMCP, HPMCAS, hydroxypropyl methyl cellulose acetate trimellitate (HPMCAT), and ethylhydroxy ethylcellulose (EHEC). A particularly preferred class of such cellulosics comprises various grades of low viscosity (MW less than or equal to 50,000 daltons) and high viscosity (MW greater than 50,000 daltons) HPMC. Commercially available low viscosity HPMC polymers include the Dow METHOCEL series E5, E15LV, E50LV and K100LY, while high viscosity HPMC polymers include E4MCR, E10MCR, K4M, K15M and K100M; especially preferred in this group are the METHOCEL K series. Other commercially available types of HPMC include the Shin Etsu METOLOSE 90SH series.

[0083] Although the primary role of the erodible matrix material is to control the rate of release of the active agent in solubility-improved form to the environment of use, the inventors have found that the choice of matrix material can have a large effect on the maximum drug concentration attained by the device as well as the maintenance of a high drug concentration. In one embodiment, the matrix material is a concentration-enhancing polymer, as defined herein below.

[0084] Other materials useful as the erodible matrix material include, but are not limited to, pullulan, polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl acetate, glycerol fatty acid esters, polyacrylamide, polyacrylic acid, copolymers of ethacrylic acid or methacrylic acid (EUDRAGIT®, Rohm America, Inc., Piscataway, N.J.) and other acrylic acid derivatives such as homopolymers and copolymers of butylmethacrylate, methylmethacrylate, ethylmethacrylate, ethyl acrylate, (2-dimethylaminoethyl)methacrylate, and (trimethylaminoethyl) methacrylate chloride.

[0085] The erodible matrix polymer may contain a wide variety of the same types of additives and excipients known in the pharmaceutical arts, including osmopolymers, osmagens, solubility-enhancing or -retarding agents and excipients that promote stability or processing of the device.

[0086] The formulation may comprise an excipient that is a swellable material such as a hydrogel in amounts that can swell and expand. Examples of swellable materials include polyethylene oxide, hydrophilic polymers that are lightly cross-linked, such cross-links being formed by covalent or ionic bond, which interact with water and aqueous biological fluids and swell or expand to some equilibrium state. Swellable materials such as hydrogels exhibit the ability to swell in water and retain a significant fraction of water within its structure, and when cross-linked they will not dissolve in the water. Swellable polymers can swell or expand to a very high degree, exhibiting a 2 to 50-fold volume increase. Specific examples of hydrophilic polymeric materials include poly(hydroxyalkyl methacrylate), poly(N-vinyl-2-pyrrolidone), anionic and cationic hydrogels, polyelectrolyte complexes, poly(vinyl alcohol) having a low acetate residual and cross-linked with glyoxal, formaldehyde, or glutaraldehyde, methyl cellulose cross-linked with dialdehyde, a mixture of cross-linked agar and carboxymethyl cellulose, a water insoluble, water-swellable copolymer produced by forming a dispersion of finely divided copolymer of maleic anhydride with styrene, ethylene, propylene, butylene, or isobutylene cross-linked with from 0.001 to about 0.5 moles of a polyunsaturated cross-linking agent per mole of maleic anhydride in the copolymer, water-swellable polymers of N-vinyl lactams, cross-linked polyethylene oxides, and the like. Other examples of swellable materials include hydrogels exhibiting a cross-linking of 0.05 to 60%, hydrophilic hydrogels known as Carbopol acidic carboxy polymer, Cyanamer™ polyacrylamides, cross-linked water-swellable indene-maleic anhydride polymers, Good-rite™ polyacrylic acid, starch graft copolymers, Aqua-Keeps.™ acrylate polymer, diester cross-linked polyglucan, and the like.

[0087] The formulations may comprise additives such as polyethylene oxide polymers, polyethylene glycol polymers, cellulose ether polymers, cellulose ester polymers, homo- and copolymers of acrylic acid cross-linked with a polyalkenyl polyether, poly(meth)acrylates, homopolymers (e.g., polymers of acrylic acid crosslinked with allyl sucrose or allyl pentaerythritol), copolymers (e.g., polymers of acrylic acid and C₁₀-C₃₀ alkyl acrylate crosslinked with allyl pentaerythritol), interpolymers (e.g., a homopolymer or copolymer that contains a block copolymer of polyethylene glycol and a long chain alkyl acid ester), disintegrants, ion exchange resins, polymers reactive to intestinal bacterial flora (e.g., polysaccharides such as guar gum, inulin obtained from plant or chitosan and chondroitin sulphate obtained from animals or alginates from algae or dextran from microbial origin) and pharmaceutical resins.

Polyalkylene Oxides

[0088] The polyethylene oxide (PEO) in the tablet according to the first aspect of the invention is a high molecular weight PEO with an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements. In a preferred embodiment, the PEO has a molecular weight of about 7,000,000. Examples of polyethylene oxide include POLYOX® water soluble resin, which is listed in the NF and has approximate molecular weights which range from 100,000

to about 8,000,000. A preferred polyethylene oxide is POLYOX® WSR-80, POLYOX® WSR N-750, POLYOX® WSR-205, POLYOX® WSR-1105, POLYOX® WSR N-12K, POLYOX® WSR N-60K, WSR-301, WSR Coagulant, WSR-303, and combinations thereof.

[0089] The amount of polyethylene oxide present in the pharmaceutical composition is at least 30% by weight of the composition. In various embodiments, the amount of the PEO present in the pharmaceutical composition may range from about 30% to about 80%, or from about 35% to about 70% by weight of the pharmaceutical composition. In various embodiments, the amount of the PEO present in the pharmaceutical composition may be about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%.

[0090] In the above described embodiments high molecular weight polyethylene oxide having, based on rheological measurements, an approximate molecular weight of 2,000,000, 4,000,000, or 7,000,000 may be used. In particular polyethylene oxides having, based on rheological measurements, an approximate molecular weight of 4,000,000, may be used.

[0091] In embodiments wherein the composition further comprises at least one low molecular weight polyethylene oxide is used polyethylene oxides having, based on rheological measurements, an approximate molecular weight of less than 1,000,000, such as polyethylene oxides having, based on rheological measurements, an approximate molecular weight of from 100,000 to 900,000 may be used. The addition of such low molecular weight polyethylene oxides may be used to specifically tailor the release rate such as enhance the release rate of a formulation that otherwise provides a release rate to slow for the specific purpose. In such embodiments at least one polyethylene oxide having, based on rheological measurements, an approximate molecular weight of 100,000 may be used.

20 Lubricant

[0092] In exemplary embodiments, the pharmaceutical composition of the invention may include lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof and other 25 tabling aids such a magnesium stearate and microcrystalline cellulose

[0093] The pharmaceutical compositions disclosed herein may also further comprise at least one lubricant, which facilitates preparation of solid dosage forms of the pharmaceutical composition. Non-limiting examples of suitable lubricants include magnesium stearate, calcium stearate, zinc stearate, colloidal silicon dioxide, hydrogenated vegetable 30 oils, sterotex, polyoxyethylene monostearate, polyethylene glycol, sodium stearyl fumarate, sodium benzoate, sodium lauryl sulfate, magnesium lauryl sulfate, and light mineral oil. In exemplary embodiments, the lubricant may be magnesium stearate.

[0094] In embodiments in which the lubricant is included in the pharmaceutical composition, the amount of the lubricant may range from about 0.1% to about 3% by weight of the pharmaceutical composition. In various embodiments, the amount of the lubricant may range from about 0.1% to about 0.3%, from about 0.3% to about 1%, or from about 1% to about 35% by weight of the pharmaceutical composition. In exemplary embodiments, the amount of the lubricant may be about 0.5%, about 1%, about 1.5%, about 2%, about 2.5%, about 3%, about 3.5%, about 4%, about 4.5%, or about 5% by weight of the pharmaceutical composition.

40 Coating

[0095] The pharmaceutical composition can be coated with one or more enteric coatings, seal coatings, film coatings, barrier coatings, compress coatings, fast disintegrating coatings, or enzyme degradable coatings.

[0096] In some cases, the formulation disclosed herein is coated with a coating material, e.g., a sealant. In some 45 embodiments, the coating material is water soluble. In some embodiments, the coating material comprises a polymer, plasticizer, a pigment, or any combination thereof. In some embodiments, the coating material is a form of a film coating, e.g., a glossy film, a pH independent film coating, an aqueous film coating, a dry powder film coating (e.g., complete dry powder film coating), or any combination thereof. In some embodiments, the coating material is highly adhesive. In some 50 embodiments, the coating material provides low level of water permeation. In some embodiments, the coating material provides oxygen barrier protection. In some embodiments, the coating material allows immediate disintegration for fast release of drug actives. In some embodiments, the coating material is pigmented, clear, or white. In some embodiments, the coating material is clear. Exemplary coating materials include, without limitation, polyvinyl alcohol (PVA), cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), methacrylic acid copolymers, cellulose acetate trimellitate (CAT), hydroxypropyl methylcellulose phthalate (HPMCP), hydroxypropyl methylcellulose (HPMC), hydroxy propyl methyl cellulose acetate succinate (hypromellose acetate succinate), shellac, sodium alginate, and zein. In some 55 embodiments, the coating material comprises or is PVA. In some embodiments, the coating material comprises or is HPMC. An exemplary PVA-based coating material includes Opadry II. In some instances, the coating material is about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% of the weight of the formulation. In some instances, the coating material represent between about 1% and about 15% of the total weight of each first particulate, including, but not limited to, between about 5% and about

10%, between about 6% and about 10%, between about 7% and about 10%, between about 8% and about 10%, or between about 9% and about 10%. In some instances, the coating material is greater than about 2%, greater than about 3%, greater than about 4%, greater than about 5%, greater than about 6%, greater than about 7%, greater than about 8%, greater than about 9%, or greater than about 10% of the weight of the formulation. In some instances, the coating material is less than about 2%, less than about 3%, less than about 4%, less than about 5%, less than about 6%, less than about 7%, less than about 8%, less than about 9%, or less than about 10% of the weight of the formulation.

5 **[0097]** Multiple coatings can be applied for desired performance. Further, the dosage form can be designed for immediate release, pulsatile release, controlled release, extended release, delayed release, targeted release, synchronized release, or targeted delayed release. For release/absorption control, solid carriers can be made of various 10 component types and levels or thicknesses of coats, with or without an active ingredient. Such diverse solid carriers can be blended in a dosage form to achieve a desired performance. The definitions of these terms are known to those skilled in the art. In addition, the dosage form release profile can be affected by a polymeric matrix composition, a coated matrix composition, a multiparticulate composition, a coated multiparticulate composition, an ion-exchange resin-based 15 composition, an osmosis-based composition, or a biodegradable polymeric composition. Without wishing to be bound by theory, it is believed that the release may be effected through favorable diffusion, dissolution, erosion, ion-exchange, osmosis or combinations thereof.

20 **[0098]** Dosage forms of the invention can further be coated with, for example, a seal coating, an enteric coating, an extended release coating, or a targeted delayed release coating. These various coatings are known in the art, but for clarity, the following brief descriptions are provided: seal coating, or coating with isolation layers: Thin layers of up to 20 microns in thickness can be applied for variety of reasons, including for particle porosity reduction, to reduce dust, for 25 chemical protection, to mask taste, to reduce odor, to minimize gastrointestinal irritation, etc. The isolating effect is proportional to the thickness of the coating. Water soluble cellulose ethers are preferred for this application. HPMC and ethyl cellulose in combination, or Eudragit E100, may be particularly suitable. In exemplary embodiments, the coating may be OPADRY® Y- 1-7000, a coating ready mix from Colorcon. Opadry Y-1-7000 contains hypromellose 5 cP, titanium dioxide and macrogol/PEG 400. Traditional enteric coating materials listed elsewhere can also be applied to form an isolating layer.

30 **[0099]** Optionally, the sustained-release matrix multiparticulate systems, tablets, or capsules can be coated with a sustained release coating such as the sustained release coatings described herein. Such coatings preferably include a sufficient amount of hydrophobic and/or hydrophilic sustained-release material to obtain a weight gain level from about 2 to about 25 percent, although the overcoat may be greater depending upon, e.g., the desired release rate. In certain 35 embodiments, a sustained release coating is applied to the sustained release spheroids, granules, or matrix multiparticulates. In such embodiments, the sustained-release coating may include a water insoluble material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein. The coating is preferably derived from an aqueous dispersion of the hydrophobic sustained release material.

40 **[0100]** In other preferred embodiments of the present invention, the sustained release material comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.

45 **[0101]** In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. In order to obtain a desirable dissolution profile, it may be necessary to incorporate two or more ammonio methacrylate copolymers having differing physical properties, such as different molar ratios of the quaternary ammonium groups to the neutral (meth)acrylic esters.

50 **[0102]** Certain methacrylic acid ester-type polymers are useful for preparing pH-dependent coatings which may be used in accordance with the present invention. For example, there are a family of copolymers synthesized from diethylaminoethyl methacrylate and other neutral methacrylic esters, also known as methacrylic acid copolymer or polymeric methacrylates, commercially available as Eudragit® from Rohm GMBH and Co. Kg Darmstadt, Germany. There are several different types of Eudragit®. For example, Eudragit E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media. Eudragit L is a methacrylic acid copolymer which does not swell at about pH<5.7 and is soluble at about pH>6. Eudragit S does not swell at about pH<6.5 and is soluble at about pH>7. Eudragit RL and Eudragit RS are water swellable, and the amount of water absorbed by these polymers is pH-dependent; however, dosage forms coated with Eudragit RL and RS are pH-independent.

55 **[0103]** In certain preferred embodiments, the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively. Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in

Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.

5 [0104] Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Methyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.

10 [0105] Extended release coatings are designed to effect delivery over an extended period of time. The extended release coating is a pH-independent coating formed of, for example, ethyl cellulose, hydroxypropyl cellulose, methylcellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, acrylic esters, or sodium carboxymethyl cellulose. Various extended release dosage forms can be readily designed by one skilled in art to achieve delivery to both the small and large intestines, to only the small intestine, or to only the large intestine, depending upon the choice of coating materials and/or coating thickness.

15 [0106] Enteric coatings are mixtures of pharmaceutically acceptable excipients which are applied to, combined with, mixed with or otherwise added to the carrier or composition. The coating may be applied to a compressed or molded or extruded tablet, a gelatin capsule, and/or pellets, beads, granules or particles of the carrier or composition. The coating may be applied through an aqueous dispersion or after dissolving in appropriate solvent.

20 [0107] In certain embodiments, the pharmaceutical composition, upon oral administration to a human or non-human patient in need thereof, provides controlled release for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 24, 36, 48, 72, 96, 120, 144, or 168 hours.

25 [0108] The term "sustained release" refers release of a drug from its dosage form (e.g., tablet) at such a rate that its blood levels are maintained within the therapeutic range (i.e., at or above minimum effective concentration (MEC)) but below toxic levels over an extended period of time (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 36, 48, 72, 96, 120, 144, or 168 hours or greater). The term "sustained release" may be used interchangeably with "slow-release," "controlled release," or "extended release." The sustained release property of a dosage form is typically measured by an in vitro dissolution method and confirmed by an in vivo blood concentration-time profile (i.e., a pharmacokinetic profile).

30 [0109] In certain embodiments, the pharmaceutical compositions of the present invention release about 90% to 100% of their pharmaceutically active agents in a linear or near linear fashion for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 36, 48, 72, 96, 120, 144, or 168 hours in an in vitro dissolution analysis.

35 [0110] Delayed release generally refers to the delivery so that the release can be accomplished at some generally predictable location in the lower intestinal tract more distal to that which would have been accomplished if there had been no delayed release alterations. The preferred method for delay of release is coating. Any coatings should be applied to a sufficient thickness such that the entire coating does not dissolve in the gastrointestinal fluids at pH below about 5, but does dissolve at pH about 5 and above. It is expected that any anionic polymer exhibiting a pH-dependent solubility profile can be used as an enteric coating in the practice of the present invention to achieve delivery to the lower gastrointestinal tract. Polymers for use in the present invention are anionic carboxylic polymers.

40 [0111] In exemplary embodiments, the coating may comprise shellac, also called purified lac, a refined product obtained from the, resinous secretion of an insect. This coating dissolves in media of pH>7.

45 [0112] Colorants, detackifiers, surfactants, antifoaming agents, lubricants, stabilizers such as hydroxy propyl cellulose, acid/base may be added to the coatings besides plasticizers to solubilize or disperse the coating material, and to improve coating performance and the coated product.

Hardness

45 [0113] The present invention is directed to a solid oral extended release pharmaceutical tablet according to the first aspect of the invention, wherein the extended release tablet when subjected to an indentation test has a "hardness" of at least about 200 N.

50 [0114] In certain such embodiments of the invention the extended release tablet has a hardness or cracking force of at least about 210 N, at least about 220 N, at least about 230 N, at least about 240 N, or at least about 250 N.

55 [0115] The invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be limited thereto.

EXAMPLES

Example 1

55 [0116] Ketamine 30 mg, 60 mg, 120 mg, 180 mg and 240 mg Extended Release Tablet Formulations ("R-107" Tablet

Formulation)

Excipients	30 mg Dosage Strength (mg/tablet)	60 mg Dosage Strength (mg/tablet)	120 mg Dosage Strength (mg/tablet)	180 mg Dosage Strength (mg/tablet)	240 mg Dosage Strength (mg/tablet)
Ketamine Hydrochloride	34.6	69.2	138.4	207.6	276.8
Polyethylene Oxide	163.4	326.8	653.6	980.4	1307.2
Magnesium Stearate	2.0	4.0	8.0	12.0	16.0
Total core tablet	200.0	400.0	800.0	1200.0	1600.0
Opadry White Y-1-7000 (coating)	6.0	12.0	24.0	36.0	48.0

Manufacturing Steps:

[0117]

1. Mix ketamine HCl with polyethylene oxide in a suitable mixer until uniformed.
2. Blend magnesium stearate into the above dry powder mixture.
3. Compress the final powder blend into tablets with aim tablet mass of 400 mg and aim tablet hardness of 210 N.
4. Perform initial coating to protect tablets from damage in next step of tablets curing.
5. Cure tablets at the temperature range of 70°C to 75°C to achieve desired firmness.
6. Continue to coat tablets from above step to gain sufficient weight.

Example 2

[0118] Study ZPS-603 (Study 603) was a hybrid study design with 4 cohorts and multiple study objectives. The objectives of Cohorts 1, 2 and 3 were to evaluate the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of an extended release ketamine oral formulation in healthy volunteers after single dose and multiple doses. The design was a double-blind, placebo-controlled single and multiple ascending dose study in healthy volunteers. Doses were 60mg, 120mg and 240mg for Cohorts 1, 2 and 3 respectively. Each dose level was initially given as a single dose, then one week later as 5 doses given at 12 hour intervals. Endpoints included safety, tolerability, ketamine and norketamine PK, and PD (suicidality assessments, and dissociative symptom rating scale scores).

[0119] The objective of Cohort 4 was to evaluate efficacy, safety, PK and PD of an extended release ketamine oral formulation in patients with treatment-resistant depression and/or treatment-resistant anxiety (TRD/TRA). Patients were selected based on prior demonstrated mood response to subcutaneous ketamine, and clinically significant scores on the Montgomery Asberg Depression Rating Scale (MADRS; Montgomery 1979) and/or the Hamilton Anxiety Scale (HAMA; Hamilton 1959). The design was an open label multiple ascending dose study. The initial dose was 60mg, and could be escalated by an additional 60 mg 12 hourly, based on assessment of mood symptoms, to a maximum dose of 240 mg, with a total of 7 doses given 12 hourly between 0 and 72 hours. Endpoints included safety, tolerability, ketamine and norketamine PK, and PD (mood ratings including the Fear Questionnaire (FQ; Marks 1979), HAMA and MADRS, and dissociative symptom rating scale scores).

[0120] A protocol amendment added a further objective to Cohort 4, namely to evaluate the safety and efficacy of up to 3 months dosing of the extended release ketamine oral formulation in patients with TRD/TRA, who responded to treatment in the initial 96 hour ascending dose phase of ZPS-603, in an open-label extension (OLE) treatment phase. Endpoints for the OLE were similar to those of the initial 96 hour ascending dose phase of ZPS-603.

50 Results, Cohorts 1-3:

[0121] Demographics: Mean (SD) parameters for Cohort 1-3 participants are shown in Table 1. One subject in Cohort 2 (#16) withdrew from the study between single and multiple dosing, for reasons unrelated to safety/tolerability.

Table 1: Demographic parameter	Cohort 1	Cohort 2	Cohort 3
Ketamine dose	60mg	120mg	240mg

(continued)

Table 1: Demographic parameter	Cohort 1	Cohort 2	Cohort 3
N ketamine/placebo	6/2	6/2	6/2
Dropouts	0	1	0
Age (years)	27 ± 10	23 ± 3	21 ± 1
Number of Males/Females	6/2	7/1	5/3
Weight (kg)	83.8 ± 10.2	74.9 ± 9.7	68.9 ± 6.7
Height (cm)	1.80 ± 0.09	1.76 ± 0.07	1.73 ± 0.07
BMI (kg/m ²)	25.9 ± 1.5	24.2 ± 2.1	23.1 ± 1.3

15 [0122] **Safety:** There were no changes of clinical significance in vital signs, ECGs, safety laboratory tests or urinalyses in any subjects in Cohorts 1-3 during or after study completion.

10 [0123] **Tolerability:** Adverse events reported by study group are shown in Table 2. The only adverse event to show dose-related increases in frequency was dissociation, in subjects dosed with 240mg.

20 **Table 2:**

Adverse event	Cohort 1 (60 mg)	Cohort 2 (120 mg)	Cohort 3 (240 mg)	All cohorts (Placebo)
Vascular disorders				
Syncope	0	0	0	1
Dizziness	0	1	1	0
Respiratory, thoracic and mediastinal disorders				
Throat irritation	1	0	0	0
epistaxis	1	0	0	0
Psychiatric disorders				
Restlessness	1	0	0	0
Dissociation	0	0	11	2
Nervous system disorders				
Headache	2	0	1	0
Gastrointestinal disorders				
Nausea	0	0	1	0
General disorders and administration site conditions				
Swelling at catheter site	0	0	0	1
Total	5	1	14	4

Pharmacodynamics:

50 [0124] CADSS: Mean CADSS scores over time are shown in Figure 2. Minor increases were noted at 3 hours after single dosing in Cohorts 1 and 3 (Figure 2A), and at 3-12 hours after the first dose in the multiple dose phase for Cohort 3 (Figure 2B). (It should be noted that the maximum score on this scale is 84 points and that these are minimal changes compared with subcutaneous or IV ketamine dosing).

55 [0125] Suicidality Ratings: No participants reported suicidal ideation at any time in Cohorts 1-3, as assessed by the Columbia Suicide Severity Rating Scale.

[0126] **Pharmacokinetics:** Figure 3 shows mean concentration-time profiles of ketamine and norketamine after single and multiple doses of 60, 120 and 240mg. Concentrations of both analytes were relatively stable for 5-10 hours after dosing, consistent with the sustained release characteristics of the tablet. Norketamine concentrations were approximately 10-fold higher than ketamine concentrations in both plots, reflecting extensive first pass metabolism after oral

5 dosing. For all 3 cohorts, ketamine and norketamine pharmacokinetic parameters appeared to follow first order kinetics, specifically AUC and Cmax were dose proportional after single and multiple doses of ketamine 60mg, 120 mg and 240 mg extended release tablets (Figure 4). There appeared to be evidence of autoinduction, in that the multiple dose AUC_{0-12} values for both ketamine and norketamine were less than the single dose $AUC_{0-\infty}$, and the ratio of these decreased in a dose-related manner (see Table 3). The mechanism for induction appears to be via CYP2B6. Ketamine induces activity of CYP2B6 (Chen 2010), and is itself metabolized by this enzyme.

Table 3

Ketamine						
Dose	AUC			Cmax		
	SD ¹ (0- ∞)	MD ² (0-12)	Ratio ³	SD ¹	MD ² (0-12)	Ratio ³
60 mg	79.24	74.18	0.94	9.71	11.91	1.23
120 mg	196.92	133.11	0.68	16.40	20.66	1.26
240 mg	384.58	217.41	0.57	37.98	41.57	1.09

Table 4

Norketamine						
Dose	AUC			Cmax		
	SD ¹ (0- ∞)	MD ² (0-12)	Ratio ³	SD ¹	MD ² (0-12)	Ratio ³
60 mg	872.21	980.54	1.12	73.74	124.65	1.69
120 mg	2133.09	1697.06	0.80	161.24	229.91	1.43
240 mg	4079.19	3019.81	0.74	314.67	421.11	1.34

30 [0127] Tables 3 and 4: Single and multiple dose AUC and Cmax for ketamine (upper panel) and norketamine (lower panel), and ratios. MD/SD AUC ratios less than 1 are suggestive of autoinduction (bolded). ¹Single Dose ²Multiple Dose
 3Ratio =MD/SD.

Table 5: Summary of pharmacokinetic characteristics for the R-107 tablet compared with published data for an immediate release ketamine tablet

		R-107 tablets/ oral dosing				Immediate release ketamine tablets/ oral dosing*	Ketamine solution/ subcutaneous dosing
		60mg	120mg	240mg	All doses		
Norketamine:ketamine ratio	Mean Cmax	8.7	11.4	8.7	9.6	4.3	0.5
	Mean AUCinf	11.8	12.3	11.1	11.8	7.5	1.4
Mean Tmax - ketamine		2.62h				0.52h	0.64h
Mean Tmax - norketamine		2.19h				0.39h	1.35h

50 [0128] Table 5 provides a summary of pharmacokinetic characteristics after single dose oral administration of ketamine using the R-107 tablet compared with published data for an immediate release ketamine tablet (*Yanagihara, Y. et al. Plasma Concentration Profiles of Ketamine and Norketamine after Administration of Various Ketamine Preparations to Healthy Japanese Volunteers. Biopharm. Drug Dispos. 24: 37-43 (2003)), and for subcutaneous dosing of ketamine solution (Glue and Medicott, unpublished data). The ratio of norketamine to ketamine for R-107 Cmax and AUC was substantially larger compared with injected ketamine solution and an oral immediate release tablet. Tmax for both ketamine and norketamine was delayed after R-107 oral dosing compared with injected ketamine solution and an oral immediate release tablet. The results for R-107 are unexpected, in that it is not possible to predict the pharmacokinetic

behavior of an extended release tablet in humans, based on in vitro dissolution data. Although it was expected that the ratio of norketamine to ketamine would be higher for the oral route of administration, because of first pass metabolism, it was unknown and could not be predicted what the magnitude or effect of this change would be prior to testing in humans. As shown in Table 5, the norketamine:ketamine ratios for AUC and Cmax were larger than anticipated. In addition, it was not possible to predict when Tmax might occur after oral dosing of R-107 tablets, based on in vitro dissolution data. These results are also unexpectedly beneficial, in that lower ketamine exposures relative to norketamine, for both Cmax and AUC (Table 5), produced fewer and less intense dissociative symptoms compared with ketamine injected subcutaneously. In addition, the delay in Tmax after R-107 dosing (Table 5) also contributed to reduced dissociative symptoms compared with ketamine injected subcutaneously. It is notable that despite the reductions in dissociation, patients still reported improvements in depression and anxiety ratings after dosing with R-107. Prior to this, clinicians treating depressed patients with ketamine explicitly and uniquely linked antidepressant responses with extent of dissociation. The present findings, whereby clinical improvement is observed after R-107 dosing despite minimal dissociative symptoms, is unexpected.

15 **Table 6: NK:K Ratios for Three Formulations**

Formulation R-107 Tablet			Ketamine IR Tablet*		Ketamine Subcutaneous Injection	
Dosing	Single		Single		Single	
Ratio	NK:K		NK:K		NK:K	
Parameter	AUC 0-inf	Cmax	AUC 0-8	Cmax	AUC 0-2	Cmax
Individual Data	Mean Data				Individual Data	
	15.2	12.3			1.5	0.5
	11.5	6.0			1.3	0.3
	8.3	7.2			1.5	0.5
	8.1	4.3			1.4	0.1
	16.7	13.9			1.5	0.4
	11.2	8.7			1.5	0.2
	9.4	7.1			1.4	0.4
	14.6	19.9			1.4	0.2
	15.9	11.9			1.7	0.3
	7.1	5.7			1.6	0.3
	12.0	11.6			1.6	0.5
	15.0	12.2			1.5	0.8
	7.6	5.8			1.3	0.3
	11.0	11.8			1.2	0.8
	10.6	6.5			1.3	0.6
	15.7	10.9			1.0	0.1
	10.2	8.2			1.6	2.2
	11.4	9.0			1.5	0.9
					1.3	0.2
					1.4	0.3
					1.4	0.3
					1.2	0.1
					1.4	0.6
					1.3	0.8

(continued)

Individual Data			Mean Data		Individual Data		
5					1.7	0.1	
					1.2	0.4	
					1.5	0.2	
10					1.6	0.2	
					1.5	0.5	
					1.7	0.4	
15					1.6	0.3	
	Mean Ratio	11.8	9.6	7.5	4.3	1.4	0.5

[0129] Table 6 presents the individual data for the determination of the pharmacokinetic characteristics after single dose oral administration of ketamine using the R-107 tablet compared with published data for an immediate release ketamine tablet (*Yanagihara, Y. et al. Plasma Concentration Profiles of Ketamine and Norketamine after Administration of Various Ketamine Preparations to Healthy Japanese Volunteers. *Biopharm. Drug Dispos.* 24: 37-43 (2003)), and for subcutaneous dosing of ketamine solution (Glue and Medlicott, unpublished data).

Table 7

25	single dose		ketamine			norketamine		
	dose (mg)	subject	AUC inf ng.h/mL	Cmax ng/mL	Tmax h	AUC inf ng.h/mL	Cmax ng/mL	Tmax h
30	60 single	d	36	7.4	2.5	549	90.7	2.5
	60 single	e	135	13.6	0.5	1543	82.4	2.5
35	60 single	f	73	8.2	2.0	602	58.6	2.5
	60 single	c	93	15.1	7.0	759	64.5	3.0
40	60 single	a	41	4.6	1.0	683	63.8	1.0
	60 single	b	98	9.4	1.0	1097	82.4	2.0
	mean		79	9.7	2.3	872	73.7	2.3
45	SD		37	4.0	2.4	381	13.1	0.7
	120 single	j	174	12.6	1.5	1646	89.6	2.0
	120 single	h	93	7.0	1.0	1353	138.6	1.0
50	120 single	k	185	20.9	5.0	2946	249.5	5.0
	120 single	i	460	32.4	2.5	3260	184.4	3.5
	120 single	l	148	11.3	1.0	1775	131.2	1.0
	120 single	g	121	14.3	4.5	1818	174.1	2.0
	mean		197	16.4	2.6	2133	161.2	2.4
	SD		133	9.1	1.8	775	54.9	1.6
55	240 single	033-17	521	45.2	2.5	3962	264.0	2.5
	240 single	024-18	292	18.7	5.0	3205	221.8	5.0
	240 single	036-20	492	46.7	1.5	5216	302.7	1.5
	240 single	031-21	231	36.3	2.5	3621	394.2	2.5
	240 single	023-22	464	46.4	4.5	4740	380.3	3.0
	240 single	035-24	332	36.5	4.5	3777	328.3	2.5
	mean		389	38.3	3.4	4087	315.2	2.8
	SD		120	10.7	1.4	749	66.6	1.2

[0130] Table 7 presents the Single Dose Ketamine and Norketamine Pharmacokinetic Parameters after Oral Dosing of R-107 Tablets, Cohorts 1-3 (Healthy Volunteers)

Table 8

	multiple dose dose (mg)	subject	ketamine			norketamine		
			AUC 0-12 ng.h/mL	Cmax ng/mL	Tmax h	AUC 0-12 ng.h/mL	Cmax ng/mL	Tmax h
5	60 multiple	d	35	9.4	1.0	608	102.4	1.5
	60 multiple	e	90	11.9	1.0	1280	140.9	1.0
	60 multiple	t	47	9.2	2.0	687	85.4	2.5
	60 multiple	c	73	10.0	2.0	760	95.3	2.5
10	60 multiple	a	44	7.7	3.0	965	138.8	3.0
	60 multiple	b	156	23.2	2.0	1583	185.0	2.0
	mean		74	11.9	1.8	981	124.7	2.1
	SD		45	5.7	0.8	381	37.4	0.7
15	120 multiple	j	125	16.1	1.5	1485	172.8	1.5
	120 multiple	h	58	7.5	1.5	1124	168.1	1.5
	120 multiple	k	115	21.5	1.0	2557	334.6	2.0
	120 multiple	i	287	44.7	2.5	2153	295.6	1.0
20	120 multiple	l	81	13.6	4.5	1167	178.5	4.5
	120 multiple	g	*	*	*	*	*	*
	mean		133	20.7	2.2	1697	229.9	2.1
	SD		90	14.3	1.4	633	79.1	1.4
25	240 multiple	033-17	328	44.5	2.5	2853	369.5	2.5
	240 multiple	024-18	215	32.6	1.0	3200	420.6	1.0
	240 multiple	036-20	263	53.0	1.0	3666	474.3	1.0
	240 multiple	031-21	145	37.0	1.0	2807	451.4	0.5
30	240 multiple	023-22	217	48.1	2.0	3242	449.4	2.5
	240 multiple	035-24	161	36.8	3.0	2381	362.9	1.5
	mean		221	42.0	1.8	3025	421.4	1.5
	SD		67	7.8	0.9	443	46.0	0.8

* dropout

35 [0131] Table 8 presents the Multiple Dose Ketamine and Norketamine Pharmacokinetic Parameters after Oral Dosing of R-107 Tablets, Cohorts 1-3 (Healthy Volunteers)

Table 9

40 Pharmacokinetic Parameters	Cohort 1 Dose = 60 mg n = 6 (mean \pm S.D) (Range)	Cohort 2 Dose = 120 mg n=6 (mean \pm S.D) (Range)	Cohort 3 Dose = 240 mg a = 6 (mean \pm S.D) (Range)
	79.24 \pm 37.34 (36.01-134.53)	196.92 \pm 133.35 (92.75-460.10)	388.64 \pm 119.55 (230.65-521.13)
45 AUC _{0-∞} (ng.hr/ml)	75.85 \pm 36.63 (34.19-130.78)	190.85 \pm 129.40 (87.43-445.64)	377.11 \pm 113.30 (228.26-509.86)
50 Cmax(ng/ml)	9.71 \pm 3.96 (4.60-15.08)	16.40 \pm 9.06 (6.95-32.40)	38.32 \pm 10.72 (18.74-46.75)
Tmax(hr)	2.33 \pm 2.40 (0.50-7.00)	(2.58 \pm 1.77 (1.00-5.00)	3.42 \pm 1.43 (1.50-5.00)
t _{1/2} (h _r)	6.92 \pm 2.19 (5.17-10.71)	8.42 \pm 1.56 (5.96-9.82)	8.69 \pm 2.48 (5.71-11.92)

55 [0132] Table 9 presents the Single Dose Pharmacokinetics for Ketamine in Cohorts 1 - 3.

Table 10

Pharmacokinetic Parameters	Cohort 1 Dose = 60 mg n = 6 (mean \pm S.D) (Range)	Cohort 2 Dose = 120 mg n = 6 (mean \pm S.D) (Range)	Cohort 3 Dose = 240 mg n = 6 (mean \pm S.D) (Range)
$AUC_{0-\infty}$ (ng.hr/ml)	872.21 \pm 381.09 (549.04-1542.74)	2133.09 \pm 775.29 (1352.76-3260.42)	4087.01 \pm 749.40 (3205.28-5216.42)
AUC_{0-t} (ng.hr/ml)	843.82 \pm 365.25 (536.09-1474.63)	2074.07 \pm 737.71 (1333.05-3111.79)	4006.45 \pm 700.92 (3131.36-5026.70)
C_{max} (ng/ml)	73.74 \pm 13.05 (58.64-90.74)	161.24 \pm 54.85 (89.62-249.53)	315.22 \pm 66.56 (221.84-394.20)
T_{max} (hr)	2.25 \pm 0.69 (1.00-3.00)	2.42 \pm 1.56 (1.00-5.00)	2.83 \pm 1.17 (1.50-5.00)
$t_{1/2}$ (hr)	7.91 \pm 1.60 (5.81-10.18)	8.09 \pm 1.79 (5.42-10.42)	7.67 \pm 1.60 (5.15-9.37)

[0133] Table 10 presents the Single Dose Pharmacokinetics for Norketamine in Cohorts 1 - 3.

Table 11

Pharmacokinetic Parameters	Cohort 1 Dose = 60 mg n = 6 (mean \pm S.D) (Range)	Cohort 2 Dose = 120 mg n = 5 (mean \pm S.D) (Range)	Cohort 3 Dose = 240 mg n = 6 (mean \pm S.D) (Range)
AUC_{0-12} (ng.hr/ml)	74.18 \pm 44.84 (35.34-155 59)	133.11 \pm 90.17 (57.63-287.15)	221.34 \pm 67.33 (145.28-328.13)
AUC_{12-t} (ng hr ml)	17.03 \pm 9.04 (5.43-28.19)	37.78 \pm 17.79 (20.49-65.10)	69.79 \pm 36.45 (27.46-123.78)
$C_{max0-12}$ (ng/ml)	11.91 \pm 5.70 (7.68-23.22)	20.66 \pm 14.34 (7.47-44.68)	42.01 \pm 7.80 (32.60-53.03)
$C_{min0-12}$ (ng/ml)	2.90 \pm 1.80 (1.09-5.68)	5.09 \pm 2.86 (2.47-9.59)	8.16 \pm 4.10 (3.39-14.06)
$T_{max0-12}$ (hr)	1.83 \pm 0.75 (1.00-3.00)	2.20 \pm 1.40 (1.00-4.50)	1.75 \pm 0.88 (1.00-3.00)
$DF\%_{0-12}$ (%)	164.91 \pm 66.54 (97.65-283.69)	136.65 \pm 33.36 (99.20-173.88)	197.20 \pm 64.04 (111.32-277.82)

[0134] Table 11 presents the Multiple Dose Pharmacokinetics for Ketamine in Cohorts 1 - 3.

Table 12

Pharmacokinetic Parameters	Cohort 1 Dose = 60 mg n = 6 (mean \pm S.D) (Range)	Cohort 2 Dose = 120 mg n=5 (mean \pm S.D) (Range)	Cohort 3 Dose = 240 mg n=6 (mean \pm S.D) (Range)
AUC_{0-12} (ng.hr/ml)	980.54 \pm 381.12 (608.15-1583.14)	1697.06 \pm 632.92 (1123.75-2557.24)	3024.76 \pm 442.72 (2380.94-3665.85)
AUC_{12-t} (ng.hr/ml)	296.47 \pm 173.22 (90.91-554.90)	520.59 \pm 150.00 (360.95-702.82)	967.72 \pm 341.72 (410.26-1279.57)
$C_{max0-12}$ (ng/ml)	124.65 \pm 37.42 (85.45-185.03)	229.91 \pm 79.06 (168.12-334.63)	421.36 \pm 46.02 (362.89-474.25)
$C_{min0-12}$ (ng/ml)	47.45 \pm 23.67 (20.93-76.26)	73.24 \pm 21.72 (48.80-97.71)	135.14 \pm 36.74 (77.14-187.16)

(continued)

5 Pharmacokinetic Parameters	Cohort 1 Dose = 60 mg n = 6 (mean \pm S.D) (Range)	Cohort 2 Dose = 120 mg n=5 (mean \pm S.D) (Range)	Cohort 3 Dose = 240 mg n=6 (mean \pm S.D) (Range)
10 T _{max0-12} (hr)	2.08 \pm 0.74 (1.00-3.00)	2.10 \pm 1.39 (1.00-4.50)	1.50 \pm 0.84 (0.50-2.50)
DF% ₀₋₁₂ (%)	101.85 \pm 33.61 (60.63-160.75)	111.97 \pm 21.53 (76.55-133.39)	115.51 \pm 23.34 (90.88-144.02)

[0135] Table 12 presents the Multiple Dose Pharmacokinetics for Norketamine for Cohorts 1 - 3.

15 **Results, Cohort 4:**

[0136] **Demographics:** Mean (SD) parameters for Cohort 4 participants are shown in Table 12.

20	Table 13: Demographic parameter	Cohort 1
25	Dropouts	0
	Age (years)	27 \pm 4
	Number of Males/Females	4/3
	Weight (kg)	82.1 \pm 22.3
	Height (cm)	1.75 \pm 0.07
	BMI (kg/m ²)	26.5 \pm 5.6

30 [0137] **Diagnoses:** All 7 patients had current diagnoses of Social Anxiety Disorder. Five also had diagnoses of Major Depressive Disorder (MDD), and one had comorbid Generalized Anxiety Disorder. At screening, mean HAMA score was 22.9 (consistent with moderate severity) and mean FQ score was 48.4 (approximately 2-fold higher than the non-clinical population mean). Mean MADRS score in the 5 patients with MDD was 31.2 (consistent with moderate depression).

35 [0138] **Dosing:** On Day 1 all 7 patients were dosed with 1 x 60 mg tablets in the morning. All 7 patients received 2 x 60 mg tablets at 12 hours, and all 7 patients received 3 x 60 mg tablets at 24 hours. At 36 hours 2 patients received 3 x 60 mg tablets and 5 patients received 4 x 60 mg tablets. At 48 hours, 1 patient received 3 x 60 mg tablets and 6 patients received 4 x 60 mg tablets. At 56 and 72 hours all 7 patients received 4 x 60 mg tablets (see Table 14).

40 Table 14 - Patient ID	Day 1 (mg)		Day 2 (mg)		Day 3 (mg)		Day 4 (mg)
	am	pm	am	pm	am	pm	am
	039-25	60	120	180	180	180	240
45 042-26	60	120	180	240	240	240	240
040-27	60	120	180	240	240	240	240
043-28	60	120	180	240	240	240	240
041-29	60	120	180	180	240	240	240
038-30	60	120	180	240	240	240	240
044-32	60	120	180	240	240	240	240

55 [0139] **Safety:** There were no changes of clinical significance in vital signs, ECGs, safety laboratory tests or urinalyses in any subjects in Cohort 4 during or after study completion.

[0139] **Tolerability:** Adverse events reported by Cohort 4 are shown in Table 15. Overall, single and multiple doses of the extended release ketamine tablets were well tolerated.

Table 15: Adverse Events (total no. AEs reported/subject n)		Cohort 4
Feeling spaced out		1/1
Headache		3/3
Lightheadedness		1/1

Pharmacodynamics:

5 [0140] **CADSS:** Mean CADSS scores over time are shown in Figure 5A. Mean CADSS scores tended to decrease over time. This contrasts markedly from the change in CADSS scores after subcutaneous (SC) ketamine. Figure 5B shows mean CADSS scores up to 3 hours after oral and SC dosing, in six of seven Cohort 4 participants with both sets of data. Overall, multiple dose oral ketamine was not associated with dissociative symptoms, as evaluated by the CADSS scale.

10 [0141] **Anxiety Rating Scales: HAMA and FQ:** Individual and group mean HAMA and FQ scores by timepoint are shown in Figure 6 (6A: HAMA; 6B: FQ) There was a consistent trend for both scores to decrease over time, most noticeably in patients with higher baseline scores. The trend for gradual improvement in anxiety contrasts markedly from the rapid reduction in anxiety scores after subcutaneous (SC) ketamine. Figure 7 shows mean HAMA scores after oral and SC dosing, in six of seven Cohort 4 participants with both sets of data. All seven participants were assessed to be treatment responders (>50% reduction) based on changes in HAMA scores, and six of seven participants were responders based on changes in FQ scores.

15 [0142] **MADRS:** Individual and group mean MADRS scores by timepoint are shown in Figure 8. There was a consistent trend for scores to decrease over time, most noticeably in patients with higher baseline scores. All seven participants were assessed to be treatment responders (>50% reduction) based on change in MADRS scores. Subject 042-026 reported worsening symptoms of depression at 48 and 72h, without changes in ratings of anxiety. After discussion with clinic staff he reported that these were related to feelings of sadness at his experience of being excluded from group activities, rather than substantial and persistent changes in mood suggestive of a relapse of major depression. Following this discussion his MADRS scores fell again.

20 [0143] Figure 9 shows smoothed mean depression (MADRS; 9A) and anxiety (FQ, HAMA; 9B and C) scores in 3 patients in Cohort 4, who entered a subsequent 3 month open-label extension (OLE) phase. All three patients reported improvements in mood ratings during this time. Mean depression ratings appeared to take 6 weeks for maximal improvement (Figure 9A), whereas mean maximal anxiety scale improvement appeared to occur by week 2 (Figures 9B, 9C).

25 [0144] **Pharmacokinetics:** Figure 10 shows mean concentration-time profiles of ketamine and norketamine over 96 hours in Cohort 4. Dose-related increases in both ketamine and norketamine plasma concentrations were noted out to 48h, as patients continued to take higher doses. Norketamine concentrations were consistently higher than ketamine concentrations at all time points, reflecting extensive first pass metabolism. The data indicate a large inter-subject and intra-subject variation in the PK profiles.

30 [0145] To assess the impact of repeated dosing on enzyme induction, individual norketamine:ketamine (NK:K) ratios were calculated for each time point. These are plotted in Figure 11. The mean ratio of NK:K was approximately 11 at 0 hours, and progressively increased to approximately 20 at 96 hours. The correlation of NK:K ratios against time gave a coefficient of determination (r^2) of 0.18. Data variability (expressed as % coefficient of variation) decreased during multiple dosing, from 51% at 0 h to 25% at 96 hours. These data are suggestive of increased first pass metabolism associated with repeat 12-hourly dosing, which appears to asymptote by 72 hours.

35 [0146] **Claims**

40 1. A solid, oral, extended release pharmaceutical tablet comprising:

45 (A) a core comprising:

50 i) a therapeutically effective amount of an active agent selected from ketamine, and pharmaceutically acceptable salts thereof;

55 ii) at least one high molecular weight polyethylene oxide (PEO) that is cured, wherein said high molecular weight PEO has an approximate molecular weight of from 2 million to 7 million, based upon rheological measurements, and is present in an amount of at least 30% by weight of the core;

55 (B) optionally, a coating on said core;

wherein said tablet is crush resistant and has a breaking strength of at least 200 N;
 wherein the tablet comprises the active agent at a concentration of 10% to 20% by weight of the core; and
 wherein when said tablet is administered to a patient said tablet provides a pharmacokinetic parameter selected from the group consisting of:

- 5 i) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of a single dose of 60 mg or 120 mg or 240 mg;
- 10 ii) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 60 mg administered every 12 hours;
- 15 iii) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 120 mg administered every 12 hours;
- 20 iv) a mean tmax of said active agent between 1.5 and 3.5 hours after administration of 5 doses of 240 mg administered every 12 hours;
- 25 v) after administration of a single dose of about 60 mg a mean ratio of norketamine Cmax: ketamine Cmax of 8.7, or a ratio of norketamine Cmax: ketamine Cmax of between 4 to 15;
- 30 vi) after administration of a single dose of about 60 mg a mean ratio of norketamine AUC:ketamine AUC of 11.8, or a ratio of norketamine AUC:ketamine AUC of between 7 to 15;
- 35 vii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine Cmax: ketamine Cmax of 9.6; and
- 40 viii) after administration of a single dose of 60 mg, 120 mg, or 240 mg a mean ratio of norketamine AUC:ketamine AUC of 11.8.

2. The tablet of claim 1 wherein the molecular weight of said high molecular weight PEO is selected from the group consisting of at least 4,000,000; at least 5,000,000; at least 6,000,000; and at least 7,000,000.

25 3. The tablet of claim 1 wherein said high molecular weight PEO is present in an amount of at least 50% by weight of the core.

30 4. The tablet of claim 1 wherein the tablet comprises 30 mg, 60 mg, 120 mg, or 240 mg of active agent.

35 5. The tablet of claim 1 wherein the tablet is cured at a temperature of 70°C to 75°C.

40 6. The tablet of claim 1 wherein the coating comprises:

- 35 i) hydroxypropylmethylcellulose;
- 40 ii) titanium dioxide; and
- 45 iii) polyethylene glycol.

40 7. A solid, oral, extended release pharmaceutical tablet according to any one of claims 1 to 6 for use in treating a patient for a condition selected from the group consisting of treatment-resistant depression; and treatment-resistant anxiety, including but not limited to DSM-V Generalized Anxiety Disorder, Social Anxiety Disorder, Panic Disorder, Post-Traumatic Stress Disorder and/or Obsessive-Compulsive Disorder, comprising:

- 45 - selecting a patient in need of such treatment; and
- 50 - orally administering to the patient the tablet;

wherein the tablet treats the symptoms of said treatment-resistant depression or said treatment-resistant anxiety.

55 8. The tablet for the use of claim 7 wherein the tablet is administered once daily or twice-daily to the patient.

50 9. The tablet for the use of claim 7 wherein the symptoms of said treatment-resistant depression or said treatment-resistant anxiety are alleviated within 2 hours of oral administration of said tablet.

55 10. The tablet for the use of claim 7 wherein said use comprises oral administration of either a single dose, or multiple doses, of said tablet.

55 11. The tablet for the use of claim 7 wherein a single oral administration of said tablet is sufficient to alleviate the effects of said depression or said anxiety for 3-7 days.

12. The tablet for the use of claim 7 wherein the tablet has no or minimal dissociative side effects in the patient.

13. The tablet for the use of claim 7 wherein maximal mean improvements in ratings of depressed mood or anxious mood were noted after approximately 6 weeks of maintenance treatment.

5 14. The tablet for the use of claim 7, the use further comprising administering a pharmaceutically effective dose of a second or additional therapy, wherein said second or additional therapy has antidepressant properties; and optionally wherein said additional therapy is selected from:

10 - at least one antidepressant selected from the group consisting of citalopram, escitalopram oxalate, fluoxetine, fluvoxamine, paroxetine, sertraline, dapoxetine; venlafaxine and duloxetine; harmaline, iproniazid, isocarboxazid, nialamide, pargyline, phenelzine, selegiline, toloxatone, tranylcypromine, brofaromine, moclobemide; amitriptyline, amoxapine, butriptyline, clomipramine, desipramine, dibenzepin, dothiepin, doxepin, imipramine, iprindole, lofepramine, melitracen, nortriptyline, opipramol, protriptyline, trimipramine; maprotiline, mianserin, nefazodone, trazodone, pharmaceutically acceptable salts, isomers, and combinations thereof;

15 - at least one mood stabilizer selected from the group consisting of lithium carbonate, lithium orotate, lithium salt, valproic acid, divalproex sodium, sodium valproate, lamotrigine, carbamazepine, gabapentin, oxcarbazepine, topiramate, pharmaceutically acceptable salts, isomers, and combinations thereof;

20 - at least one herbal antidepressant selected from the group consisting of St. John's Wort; kava kava; echinacea; saw palmetto; holy basil; valerian; milk thistle; Siberian ginseng; Korean ginseng; ashwagandha root; nettle; ginkgo biloba; gotu kola; ginkgo/gotu kola supreme; astragalus; goldenseal; dong quai; ginseng; St. John's wort supreme; echinacea; bilberry, green tea; hawthorne; ginger, gingko, turmeric; boswellia serata; black cohosh; cats claw; catnip; chamomile; dandelion; chaste tree berry; black elderberry; feverfew; garlic; horse chestnut; licorice; red clover blossom and leaf rhodiola rusa; coleus forskohlii; Passion Flower; eyebright; yohimbe; blueberry plant; black pepper plant; Hydrocotyle asiatica; astragalus; valerian poppy root and grape seed; vervain; echinacea ang root; Skull Cap; serenity elixir; and combinations thereof;

25 - at least one antipsychotic agent selected from the group consisting of haloperidol, chlorpromazine, fluphenazine, perphenazine, prochlorperazine, thioridazine, trifluoperazine, mesoridazine, promazine, triflupromazine, levomepromazine, promethazine, chlorprothixene, flupenthixol, thiothixene, zuclopentixol, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, paliperidone, dopamine, bifeprunox, norclozapine, aripiprazole, tetrabenazine, cannabidiol, pharmaceutically acceptable salts, isomers, and combinations thereof;

30 - other therapeutic interventions selected from the group consisting of counseling, psychotherapy, cognitive therapy, electroconvulsive therapy, hydrotherapy, hyperbaric oxygen therapy, electrotherapy and electrical stimulation, transcutaneous electrical nerve stimulation ("TENS"), deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation; and

35 - combinations thereof.

Patentansprüche

40 1. Feste, orale pharmazeutische Tablette mit verlängerter Freisetzung, umfassend:

(A) einen Kern, der Folgendes umfasst:

45 i) eine therapeutisch wirksame Menge eines Wirkstoffs, der aus Ketamin und pharmazeutisch unbedenklichen Salzen davon ausgewählt ist;

ii) mindestens ein hochmolekulares Polyethylenoxid (PEO), das gehärtet ist, wobei das hochmolekulare PEO basierend auf rheologischen Messungen ein ungefähres Molekulargewicht von 2 Millionen bis 7 Millionen aufweist und in einer Menge von mindestens 30 Gew.-% des Kerns vorliegt;

50 (B) optional eine Beschichtung auf dem Kern;

55 wobei die Tablette druckwiderstandsfähig ist und eine Bruchfestigkeit von mindestens 200 N aufweist; wobei die Tablette den Wirkstoff in einer Konzentration von 10 bis 20 Gew.-% des Kerns umfasst; und wobei, wenn die Tablette einem Patienten verabreicht wird, die Tablette einen pharmakokinetischen Parameter bereitstellt, der aus der Gruppe ausgewählt ist, die aus Folgendem besteht:

i) einer mittleren t_{max} des Wirkstoffs zwischen 1,5 und 3,5 Stunden nach Verabreichung einer Einzel-

dosis von 60 mg oder 120 mg oder 240 mg;
ii) einer mittleren *t_{max}* des Wirkstoffs zwischen 1,5 und 3,5 Stunden nach Verabreichung von 5 Dosen von 60 mg, die alle 12 Stunden verabreicht werden;
iii) einer mittleren *t_{max}* des Wirkstoffs zwischen 1,5 und 3,5 Stunden nach Verabreichung von 5 Dosen von 120 mg, die alle 12 Stunden verabreicht werden;
iv) einer mittleren *t_{max}* des Wirkstoffs zwischen 1,5 und 3,5 Stunden nach Verabreichung von 5 Dosen von 240 mg, die alle 12 Stunden verabreicht werden;
v) nach Verabreichung einer Einzeldosis von etwa 60 mg, einem mittleren Verhältnis von Norketamin-C_{max} : Ketamin-C_{max} von 8,7 oder einem Verhältnis von Norketamin-C_{max} : Ketamin-C_{max} von zwischen 4 und 15;
vi) nach Verabreichung einer Einzeldosis von etwa 60 mg, einem mittleren Verhältnis von Norketamin-AUC : Ketamin-AUC von 11,8 oder einem Verhältnis von Norketamin-AUC : Ketamin-AUC von zwischen 7 und 15;
vii) nach Verabreichung einer Einzeldosis von 60 mg, 120 mg oder 240 mg, einem mittleren Verhältnis von Norketamin-C_{max} : Ketamin-C_{max} von 9,6; und
viii) nach Verabreichung einer Einzeldosis von 60 mg, 120 mg oder 240 mg einem mittleren Verhältnis von Norketamin-AUC : Ketamin-AUC von 11,8.

2. Tablette nach Anspruch 1, wobei das Molekulargewicht des hochmolekularen PEO aus der Gruppe ausgewählt ist, die aus mindestens 4.000.000; mindestens 5.000.000; mindestens 6.000.000; und mindestens 7.000.000 besteht.

3. Tablette nach Anspruch 1, wobei das hochmolekulare PEO in einer Menge von mindestens 50 Gew.-% des Kerns vorliegt.

4. Tablette nach Anspruch 1, wobei die Tablette 30 mg, 60 mg, 120 mg oder 240 mg Wirkstoff umfasst.

5. Tablette nach Anspruch 1, wobei die Tablette bei einer Temperatur von 70 °C bis 75 °C gehärtet ist.

6. Tablette nach Anspruch 1, wobei die Beschichtung Folgendes umfasst:

i) Hydroxypropylmethylcellulose;
ii) Titandioxid; und
iii) Polyethylenglykol.

7. Feste, orale pharmazeutische Tablette mit verlängerter Freisetzung nach einem der Ansprüche 1 bis 6 zur Verwendung beim Behandeln eines Patienten wegen einer Erkrankung, die aus der Gruppe ausgewählt ist, die aus behandlungsresistenter Depression; und behandlungsresistenter Angst, einschließlich, aber nicht beschränkt auf generalisierte Angststörung, soziale Angststörung, Panikstörung, posttraumatische Belastungsstörung und/oder Zwangsstörung, nach DSM-V, besteht, umfassend:

- Auswählen eines Patienten, der eine solche Behandlung benötigt; und
- orales Verabreichen der Tablette an den Patienten;

wobei die Tablette die Symptome der behandlungsresistenten Depression oder der behandlungsresistenten Angst behandelt.

8. Tablette zur Verwendung nach Anspruch 7, wobei die Tablette dem Patienten einmal täglich oder zweimal täglich verabreicht wird.

9. Tablette zur Verwendung nach Anspruch 7, wobei die Symptome der behandlungsresistenten Depression oder der behandlungsresistenten Angst innerhalb von 2 Stunden nach oraler Verabreichung der Tablette gelindert werden.

10. Tablette zur Verwendung nach Anspruch 7, wobei die Verwendung eine orale Verabreichung entweder einer Einzeldosis oder mehrerer Dosen der Tablette umfasst.

11. Tablette zur Verwendung nach Anspruch 7, wobei eine einzelne orale Verabreichung der Tablette ausreicht, um die Auswirkungen der Depression oder der Angstzustände für 3-7 Tage zu lindern.

12. Tablette zur Verwendung nach Anspruch 7, wobei die Tablette bei dem Patienten keine oder nur minimale dissoziative Nebenwirkungen aufweist.

13. Tablette zur Verwendung nach Anspruch 7, wobei nach ungefähr 6 Wochen Erhaltungsbehandlung maximale mittlere Verbesserungen bei den Bewertungen von depressiver Stimmung oder ängstlicher Stimmung festgestellt wurden.

14. Tablette zur Verwendung nach Anspruch 7, wobei die Verwendung ferner Verabreichen einer pharmazeutisch wirksamen Dosis einer zweiten oder zusätzlichen Therapie umfasst, wobei die zweite oder zusätzliche Therapie antidepressive Eigenschaften aufweist; und optional wobei die zusätzliche Therapie aus Folgenden ausgewählt ist:

10 - mindestens einem Antidepressivum, das aus der Gruppe ausgewählt ist, die aus Citalopram, Escitalopramoxalat, Fluoxetin, Fluvoxamin, Paroxetin, Sertralin, Dapoxetin; Venlafaxin und Duloxetin; Harmalin, Iproniazid, Isocarboxazid, Nialamid, Pargylin, Phenelzin, Selegilin, Toloxaton, Tranylcypromin, Brofaromin, Moclobemid; Amitriptylin, Amoxapin, Butriptylin, Clomipramin, Desipramin, Dibenzepin, Dothiepin, Doxepin, Imipramin, Iprindol, Lofepramin, Melitracen, Nortriptylin, Opiplramol, Protriptylin, Trimipramin; Maprotilin, Mianserin, Nefazodon, Trazodon, pharmazeutisch unbedenklichen Salzen, Isomeren und Kombinationen davon besteht;

15 - mindestens einem Stimmungsstabilisierer, der aus der Gruppe ausgewählt ist, die aus Lithiumcarbonat, Lithiumorotat, Lithiumsalz, Valproinsäure, Divalproex-Natrium, Natriumvalproat, Lamotrigin, Carbamazepin, Gabapentin, Oxcarbazepin, Topiramat, pharmazeutisch unbedenklichen Salzen, Isomeren und Kombinationen davon besteht;

20 - mindestens einem pflanzlichen Antidepressivum, das aus der Gruppe ausgewählt ist, die aus Johanniskraut; Kava-Kava; Echinacea; Sägepalme; Heiligem Basilikum; Baldrian; Mariendistel; Sibirischem Ginseng; Koreanschem Ginseng; Ashwagandha-Wurzel; Nessel; Ginkgo biloba; Gotu Kola; Ginkgo/Gotu-Kola-Supreme; Astragalus; Gelbwurzel; Dong Quai; Ginseng; Johanniskraut-Supreme; Echinacea; Heidelbeere, grünem Tee; Weißdorn; Ingwer, Gingko, Kurkuma; Boswellia serata; Traubensilberkerze; Katzenkralle; Katzenminze; Kamille; Löwenzahn; Mönchspfefferbeere; schwarzem Holunder; Mutterkraut; Knoblauch; Rosskastanie; Lakritze; Rotkleeblüten und -blätter Rhodiola rusa; Coleus forskohlii; Passionsblume; Augentrost; Yohimbe; Blaubeerpflanze; schwarzer Pfefferpflanze; Hydrocotyle asiatica; Astragalus; Baldrian-Mohnwurzel und Traubenkern; Eisenkraut; Echinacea-ang.-Wurzel; Helmkrat; Gelassenheitselixier; und Kombinationen davon besteht;

25 - mindestens ein Antipsychotikum, das aus der Gruppe ausgewählt ist, die aus Haloperidol, Chlorpromazin, Fluphenazin, Perphenazin, Prochlorperazin, Thioridazin, Trifluoperazin, Mesoridazin, Promazin, Triflupromazin, Levomepromazin, Promethazin, Chlorprothixen, Flupenthixol, Thiothixen, Zuclopenthixol, Clozapin, Olanzapin, Risperidon, Quetiapin, Ziprasidon, Amisulprid, Paliperidon, Dopamin, Bifeprunox, Norclozapin, Aripiprazol, Tetrabenazin, Cannabidiol, pharmazeutisch unbedenklichen Salzen, Isomeren und Kombinationen davon besteht;

30 - anderen therapeutischen Interventionen, die aus der Gruppe ausgewählt sind, die aus Beratung, Psychotherapie, kognitiver Therapie, Elektrokonvulsionstherapie, Hydrotherapie, hyperbarer Sauerstofftherapie, Elektrotherapie und Elektrostimulation, transkutaner elektrischer Nervenstimulation ("TENS"), tiefer Hirnstimulation, Vagusnervstimulation und transkranieller Magnetstimulation besteht; und

35 - Kombinationen davon.

Revendications

45 1. Comprimé pharmaceutique solide oral à libération prolongée comprenant :

(A) un coeur comprenant :

50 i) une quantité thérapeutiquement efficace d'un principe actif choisi parmi la kétamine et ses sels pharmaceutiquement acceptables ;

ii) au moins un oxyde de polyéthylène (PEO) de poids moléculaire élevé qui est durci, ledit PEO de poids moléculaire élevé comportant un poids moléculaire approximatif de 2 millions à 7 millions, sur la base de mesures rhéologiques, et étant présent en une quantité d'au moins 30 % en poids du coeur ;

55 (B) éventuellement, un enrobage sur ledit coeur ;

ledit comprimé étant résistant à l'écrasement et comportant une résistance à la rupture d'au moins 200 N ; ledit comprimé comprenant le principe actif à une concentration de 10 % à 20 % en poids du coeur ; et

lorsque ledit comprimé est administré à un patient, ledit comprimé fournissant un paramètre pharmacocinétique choisi dans le groupe constitué par :

- 5 i) un t_{max} moyen dudit principe actif compris entre 1,5 et 3,5 heures après administration d'une dose unique de 60 mg ou 120 mg ou 240 mg ;
- 10 ii) un t_{max} moyen dudit principe actif compris entre 1,5 et 3,5 heures après administration de 5 doses de 60 mg administrées toutes les 12 heures ;
- 15 iii) un t_{max} moyen dudit principe actif compris entre 1,5 et 3,5 heures après administration de 5 doses de 120 mg administrées toutes les 12 heures ;
- 20 iv) un t_{max} moyen dudit principe actif compris entre 1,5 et 3,5 heures après administration de 5 doses de 240 mg administrées toutes les 12 heures ;
- v) après administration d'une dose unique d'environ 60 mg, un rapport moyen de C_{max} de norkétamine: C_{max} de kétamine de 8,7, ou un rapport de C_{max} de norkétamine: C_{max} de kétamine compris entre 4 à 15 ;
- 25 vi) après administration d'une dose unique d'environ 60 mg, un rapport moyen de ASC de norkétamine: ASC de kétamine de 11,8, ou un rapport de ASC de norkétamine: ASC de kétamine compris entre 7 à 15 ;
- vii) après administration d'une dose unique de 60 mg, 120 mg ou 240 mg, un rapport moyen de C_{max} de norkétamine: C_{max} de kétamine de 9,6 ; et
- 20 viii) après administration d'une dose unique de 60 mg, 120 mg ou 240 mg, un rapport moyen de ASC de norkétamine: ASC de kétamine de 11,8.

2. Comprimé selon la revendication 1, ledit poids moléculaire dudit PEO de poids moléculaire élevé étant choisi dans le groupe constitué par au moins 4 000 000 ; au moins 5 000 000 ; au moins 6 000 000 ; et au moins 7 000 000.

3. Comprimé selon la revendication 1, ledit PEO de poids moléculaire élevé étant présent en une quantité d'au moins 50 % en poids du coeur.

4. Comprimé selon la revendication 1, ledit comprimé comprenant 30 mg, 60 mg, 120 mg ou 240 mg de principe actif.

5. Comprimé selon la revendication 1, ledit comprimé étant durci à une température de 70°C à 75°C.

6. Comprimé selon la revendication 1, ledit enrobage comprenant :

- 35 i) de l'hydroxypropylméthylcellulose ;
- ii) du dioxyde de titane ; et
- iii) du polyéthylène glycol.

7. Comprimé pharmaceutique solide oral à libération prolongée selon l'une quelconque des revendications 1 à 6 destiné à être utilisé dans le traitement d'un patient pour un état choisi dans le groupe constitué par une dépression résistant au traitement ; et une anxiété résistant au traitement, y compris mais sans s'y limiter un trouble d'anxiété généralisée DSM-V, un trouble d'anxiété sociale, un trouble panique, un trouble de stress post-traumatique et/ou un trouble obsessionnel compulsif, comprenant :

- 45 - la sélection d'un patient ayant besoin d'un tel traitement ; et
- l'administration orale du comprimé au patient ;

ledit comprimé traitant les symptômes de ladite dépression résistant au traitement ou de ladite anxiété résistant au traitement.

8. Comprimé destiné à être utilisé selon la revendication 7, ledit comprimé étant administré une fois par jour ou deux fois par jour au patient.

9. Comprimé destiné à être utilisé selon la revendication 7, lesdits symptômes de ladite dépression résistant au traitement ou de ladite anxiété résistant au traitement étant soulagés dans un délai de 2 heures après l'administration orale dudit comprimé.

10. Comprimé destiné à être utilisé selon la revendication 7, ladite utilisation comprenant l'administration orale soit d'une

dose unique, soit de doses multiples, dudit comprimé.

11. Comprimé destiné à être utilisé selon la revendication 7, une administration orale unique dudit comprimé étant suffisante pour soulager les effets de ladite dépression ou de ladite anxiété pendant 3 à 7 jours.

5 12. Comprimé destiné à être utilisé selon la revendication 7, ledit comprimé ne comportant pas ou un minimum d'effets secondaires dissociatifs chez le patient.

10 13. Comprimé destiné à être utilisé selon la revendication 7, des améliorations moyennes maximales dans les évaluations de l'humeur déprimée ou de l'humeur anxiouse ayant été notées après environ 6 semaines de traitement de maintien.

15 14. Comprimé destiné à être utilisé selon la revendication 7, ladite utilisation comprenant en outre l'administration d'une dose pharmaceutiquement efficace d'une seconde ou d'une autre thérapie, ladite seconde ou autre thérapie comportant des propriétés antidépressives ; et éventuellement ladite autre thérapie étant choisie parmi :

20 - au moins un antidépresseur choisi dans le groupe constitué par le citalopram, l'oxalate d'escitalopram, la fluoxétine, la fluvoxamine, la paroxétine, la sertraline, la dapoxétine ; la venlafaxine et la duloxétine ; l'harmaline, l'iproniazide, l'isocarboxazide, la nialamide, la pargyline, la phénelzine, la sélégiline, la toloxatone, la tranylcypromine, la brofaromine, le moclobémide ; l'amitriptyline, l'amoxapine, la butriptyline, la clomipramine, la désipramine, la dibenzépine, la dothiépine, la doxépine, l'imipramine, l'iprindole, la lofépramine, le mélétracène, la nortriptyline, l'opipramol, la protriptyline, la trimipramine ; la maprotiline, la miansérine, la néfazodone, la trazodone, leurs sels, isomères et combinaisons pharmaceutiquement acceptables ;

25 - au moins un thymorégulateur choisi dans le groupe constitué par le carbonate de lithium, l'orotate de lithium, un sel de lithium, l'acide valproïque, le divalproex sodium, le valproate de sodium, la lamotrigine, la carbamazépine, la gabapentine, l'oxcarbazépine, le topiramate, leurs sels, isomères et combinaisons pharmaceutiquement acceptables ;

30 - au moins un antidépresseur à base de plantes choisi dans le groupe constitué par le millepertuis ; le kava rotâtes ; l'échinacée ; le palmier nain ; le basilic sacré ; la valériane ; le chardon Marie ; le ginseng de Sibérie ; le ginseng de Corée ; la racine d'ashwagandha ; l'ortie ; le ginkgo biloba ; le gotu kola ; le ginkgo/gotu kola suprême ; l'astragale ; l'hydraste du Canada ; le dong quai ; le ginseng ; le millepertuis suprême ; l'échinacée ; la myrtille, le thé vert ; l'aubépine ; le gingembre, le gingko, le curcuma ; le boswellia serata ; l'actée à grappes noires ; la griffe de chat ; la cataire ; la camomille ; le pissenlit ; la baie de gattilier ; la baie de sureau noir ; la grande camomille ; l'ail ; le marron d'Inde ; la réglisse ; la fleur et la feuille de trèfle rouge l'orpin rose ; le coleus forskohlii ; la passiflore ; l'euphrase ; le yohimbe ; le myrtillier ; le poivrier noir ; l'hydrocotyle asiatica ; l'astragale ; la racine de valériane pavot et le pépin de raisin ; la verveine ; la racine d'échinacea augustifolia ; la scutellaria indica ; l'élixir de sérénité ; et leurs combinaisons ;

35 - au moins un agent antipsychotique choisi dans le groupe constitué par l'halopéridol, la chlorpromazine, la fluphénazine, la perphénazine, la prochlorpérazine, la thioridazine, la trifluopérazine, la mésoridazine, la promazine, la triflupromazine, la lévomépromazine, la prométhazine, le chlorprothixène, le flupenthixol, le thiothixène, le zuclopentixol, la clozapine, l'olanzapine, la rispéridon, la quetiapine, la ziprasidone, l'amisulpride, la palipéridone, la dopamine, le bifeprunox, la norclozapine, l'aripiprazole, la tétrabénazine, le cannabidiol, leurs sels, isomères et combinaisons pharmaceutiquement acceptables ;

40 - les autres interventions thérapeutiques choisies dans le groupe constitué par le conseil, une psychothérapie, une thérapie cognitive, une thérapie électroconvulsive, une hydrothérapie, une oxygénothérapie hyperbare, une électrothérapie et une stimulation électrique, une stimulation nerveuse électrique transcutanée (« TENS »), une stimulation cérébrale profonde, une stimulation du nerf vague et une stimulation magnétique transcrânienne ; et - leurs combinaisons.

45 50

55

Figure 1

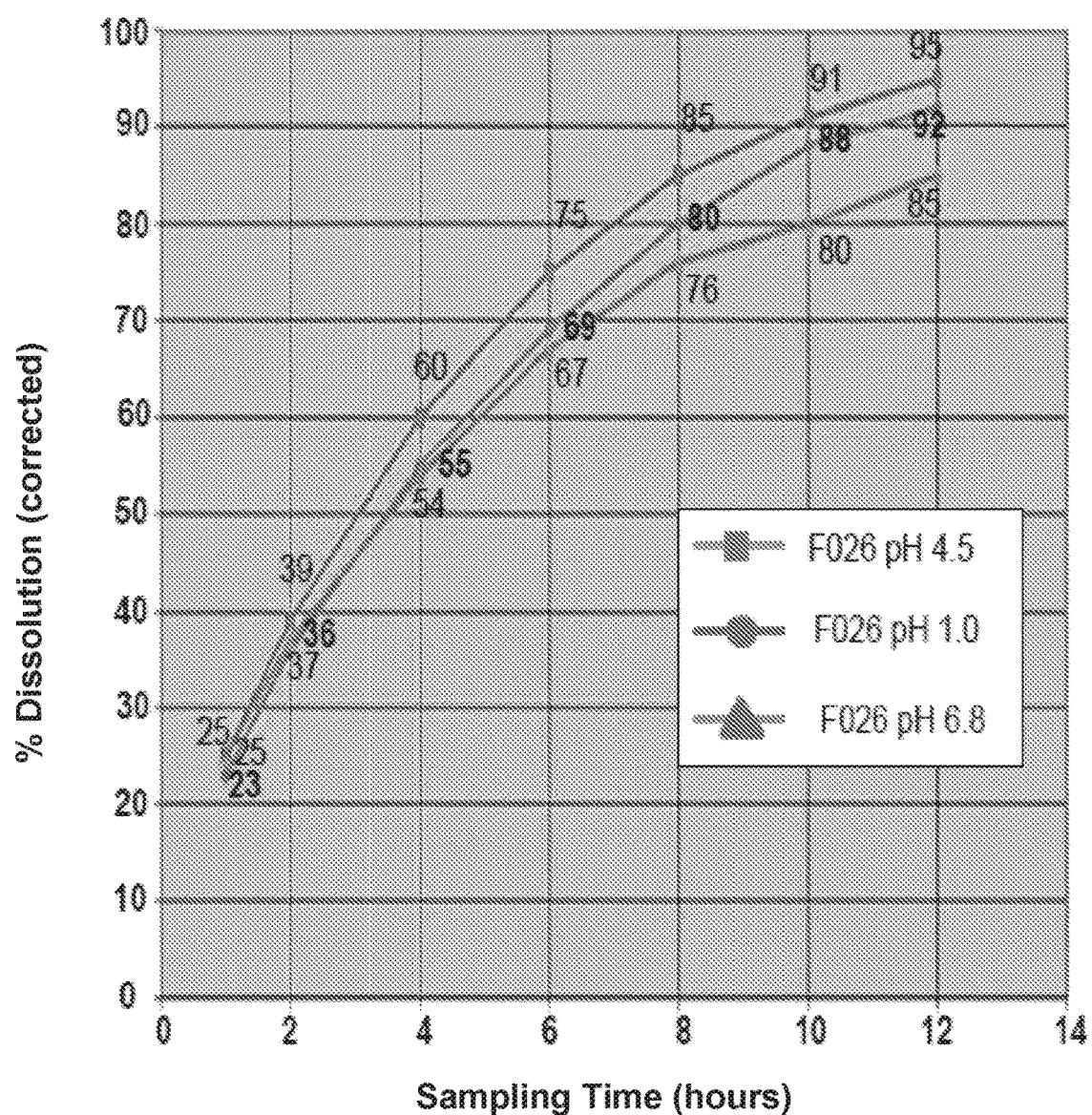


Figure 2A

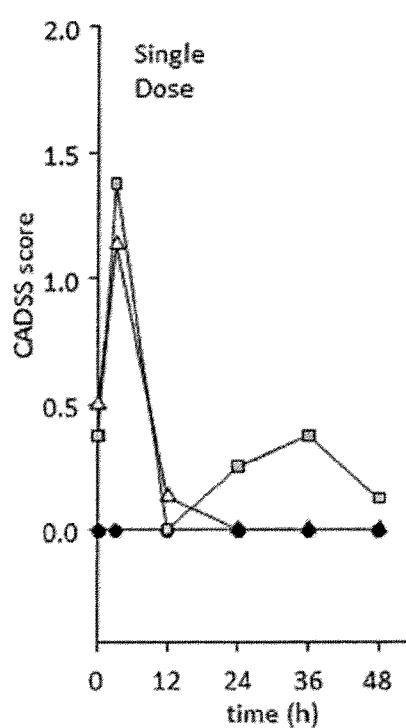


Figure 2B

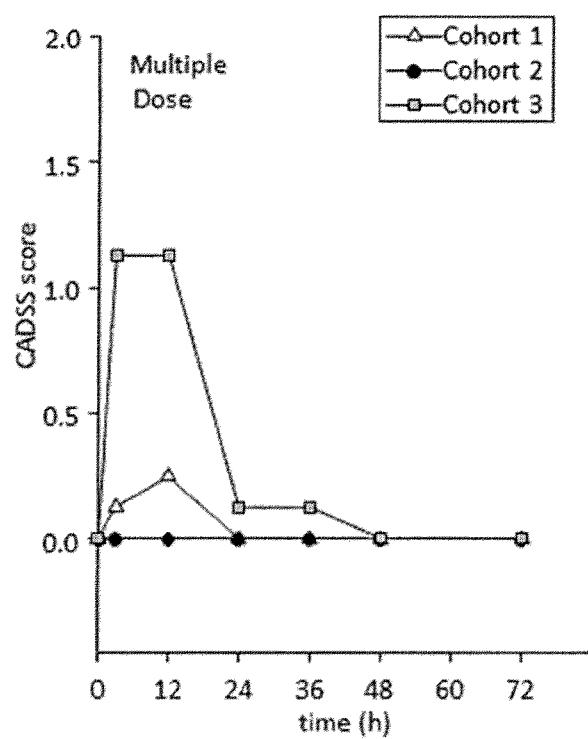


Figure 3A

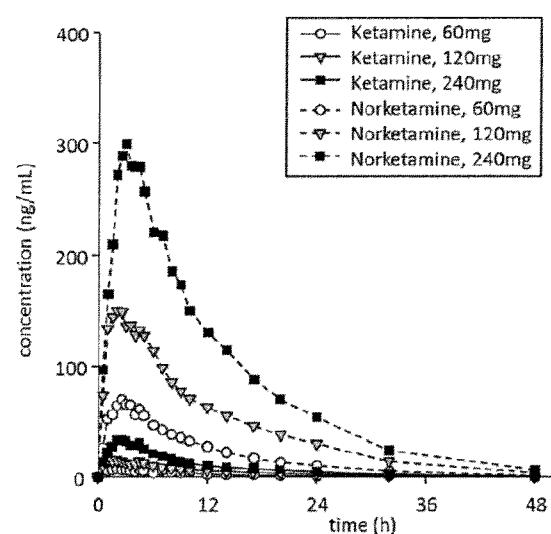


Figure 3B

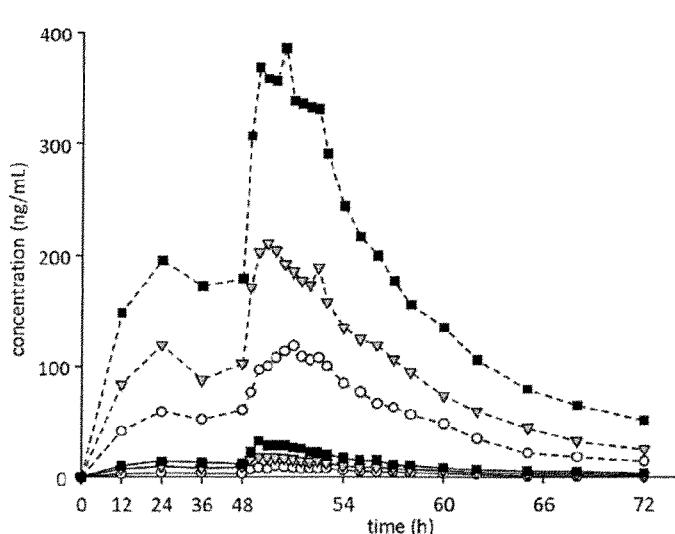


Figure 4A

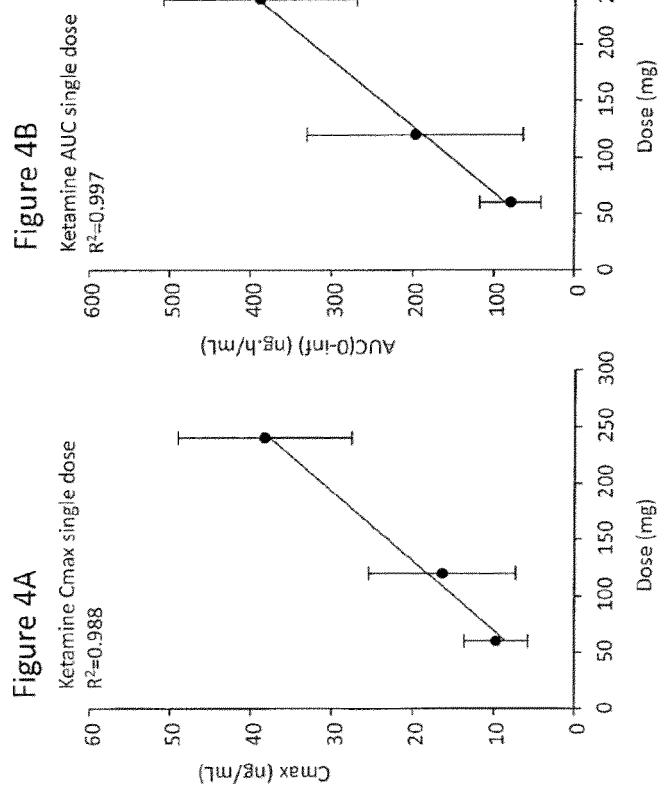


Figure 4D

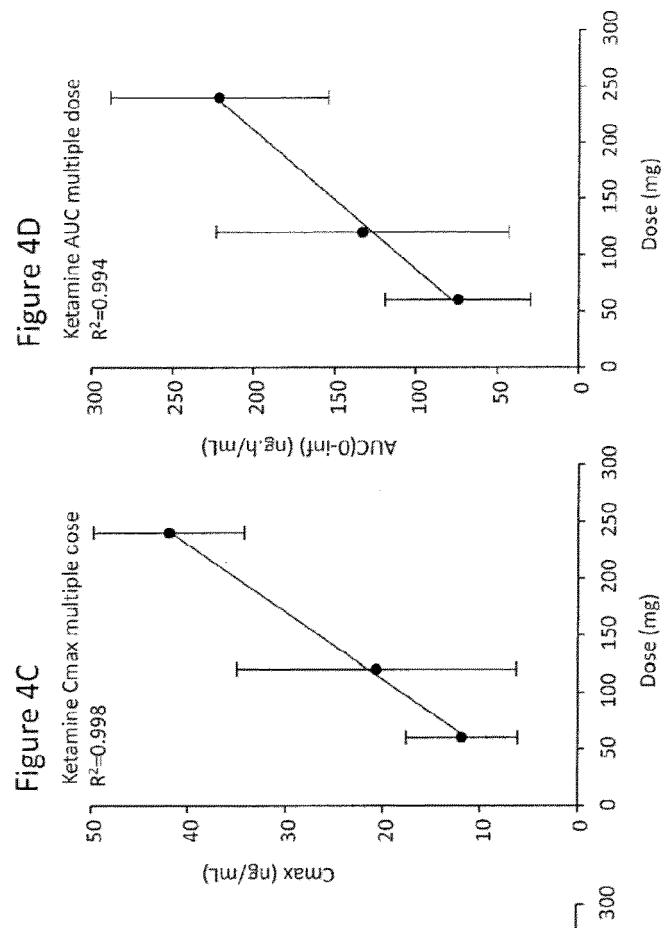


Figure 4C

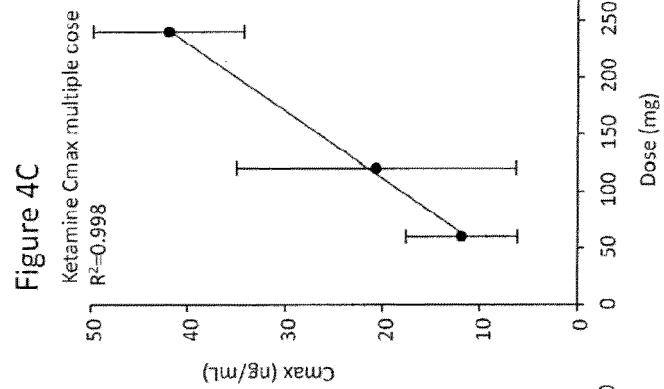
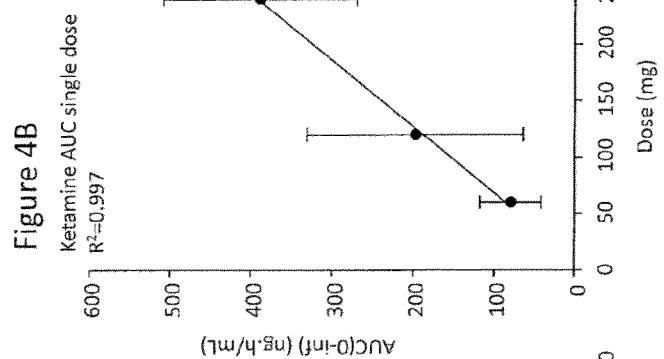



Figure 4B

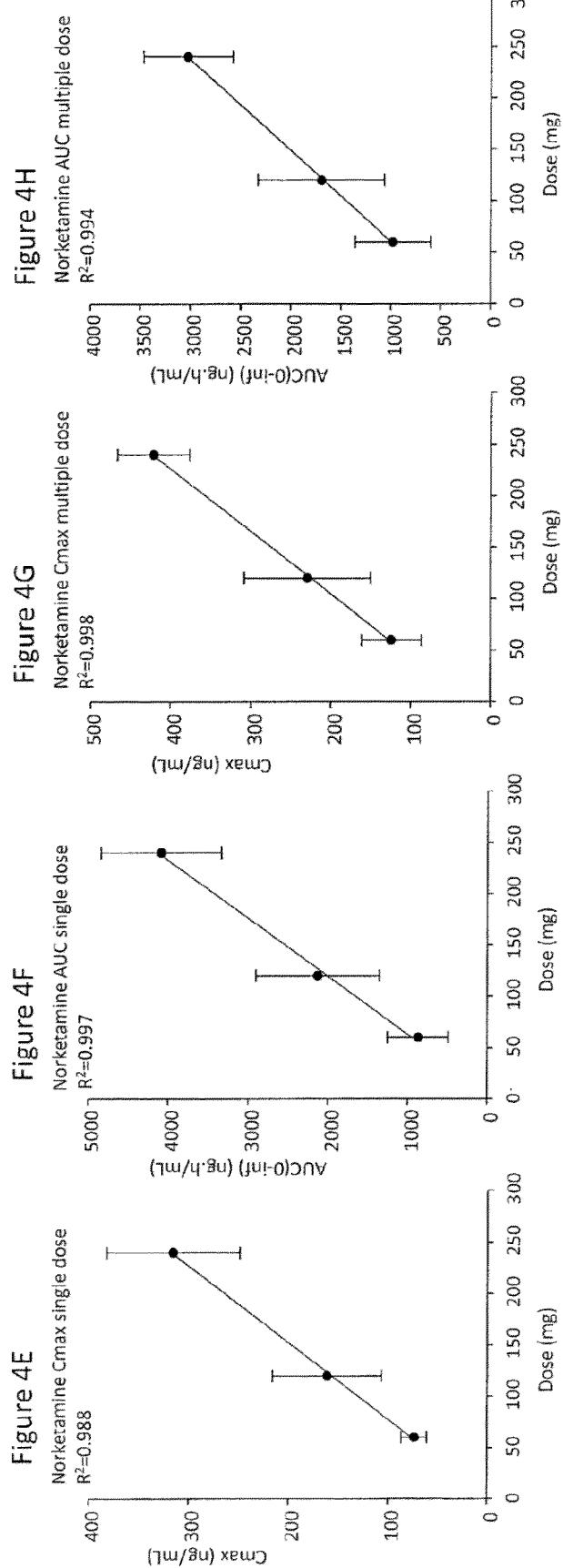


Figure 5A

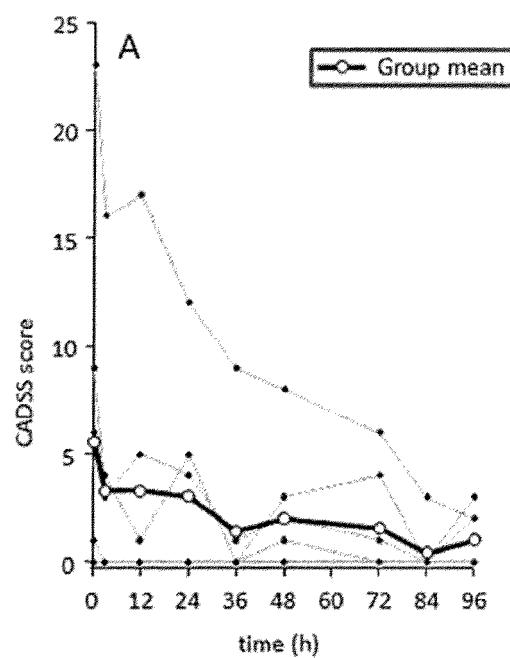


Figure 5B

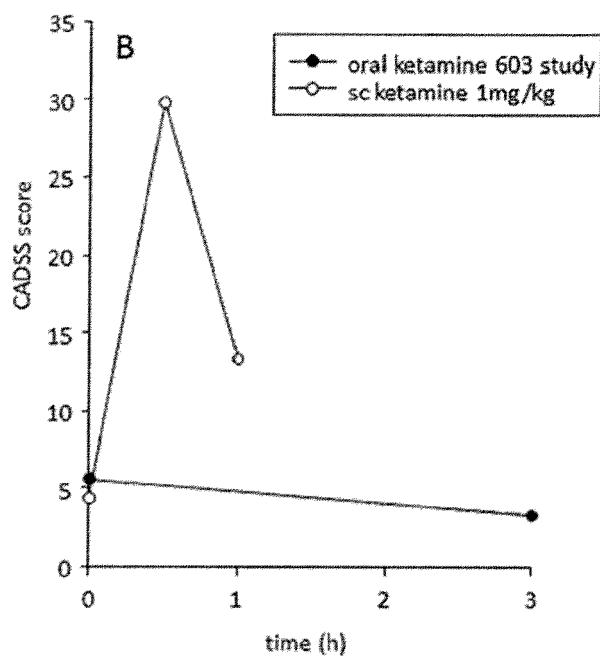
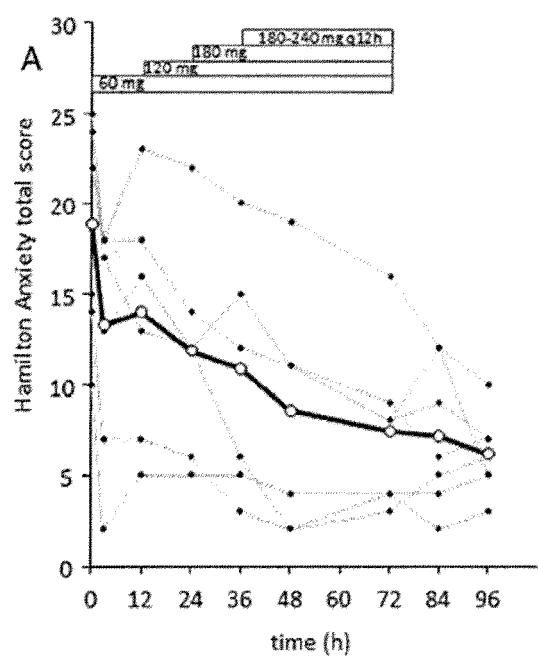
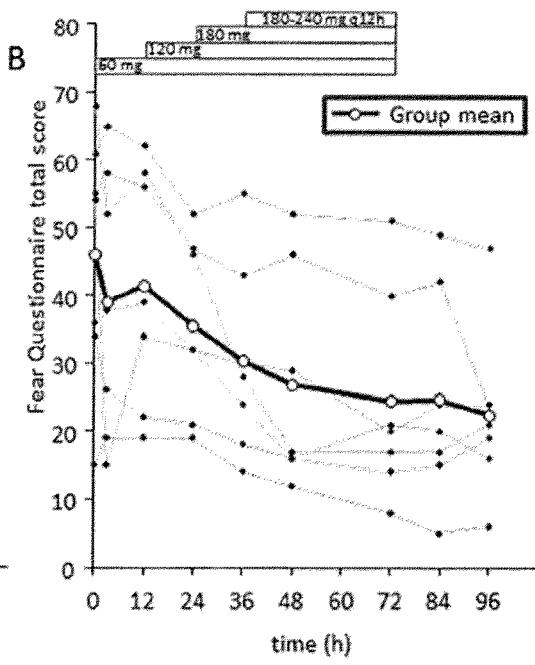




Figure 6A

Responders (>50% decline from baseline) 7/7

Figure 6B

6/7

Figure 7

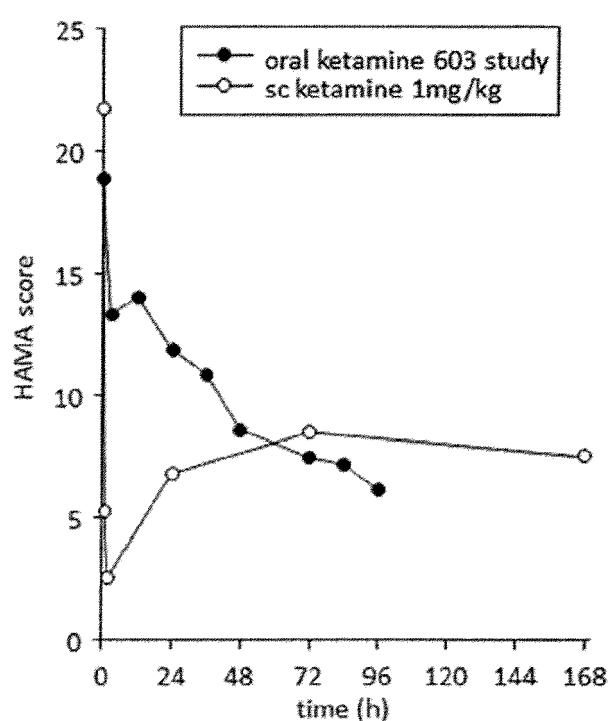


Figure 8

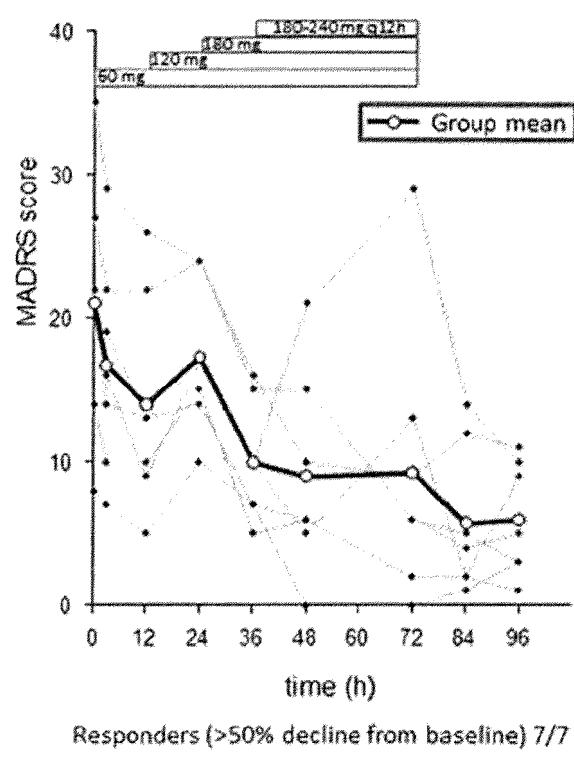


Figure 9A

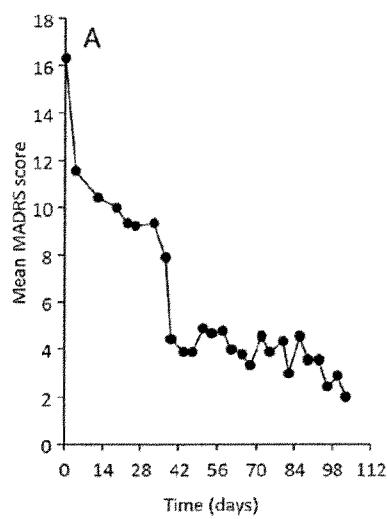


Figure 9B

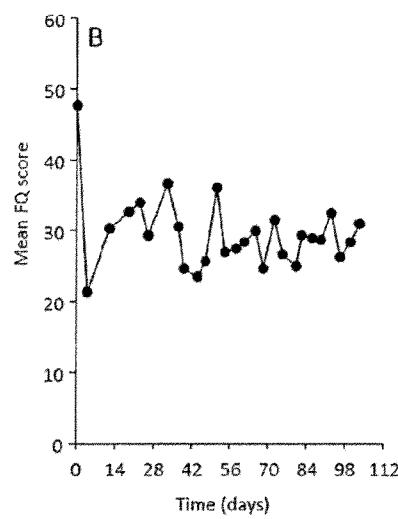


Figure 9C

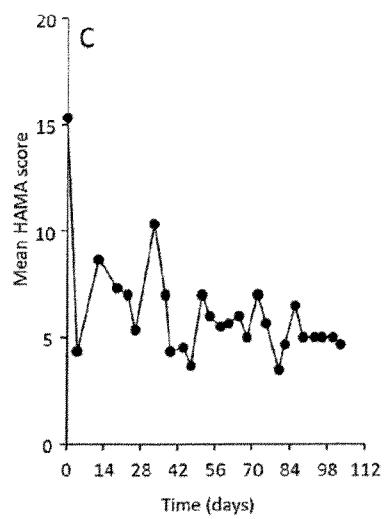


Figure 10

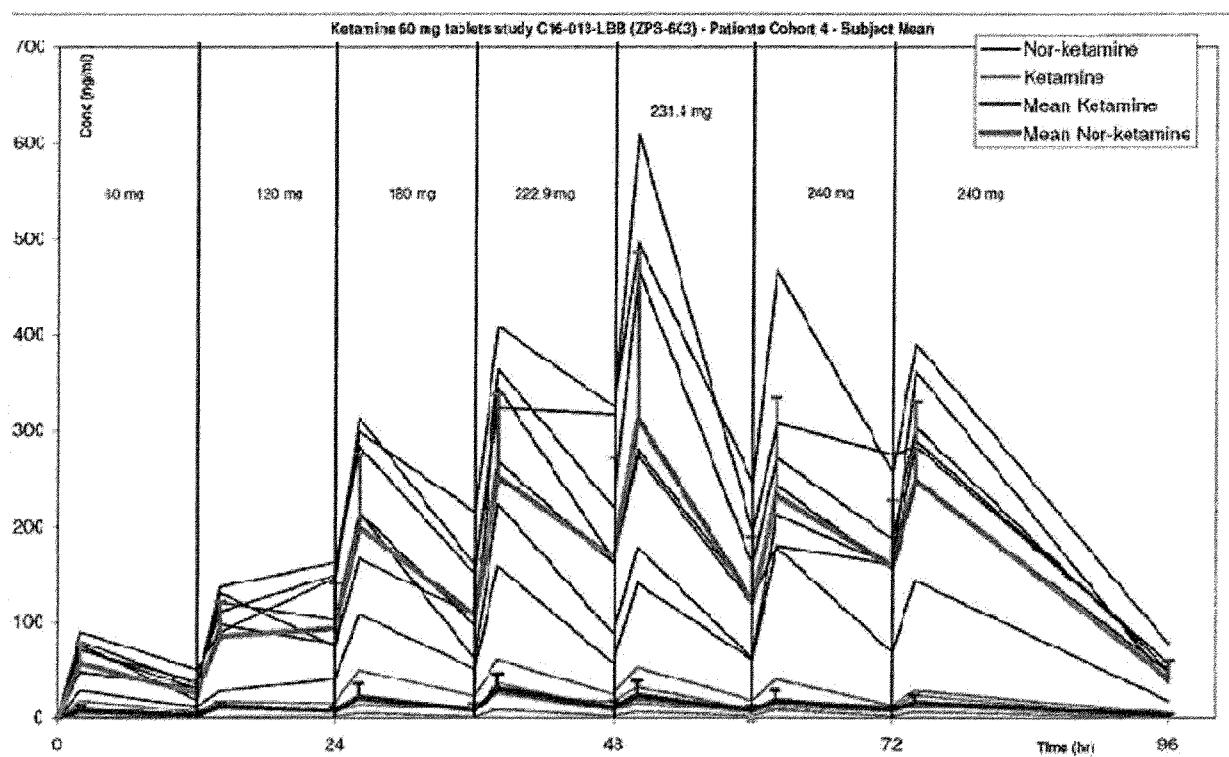


Figure 11

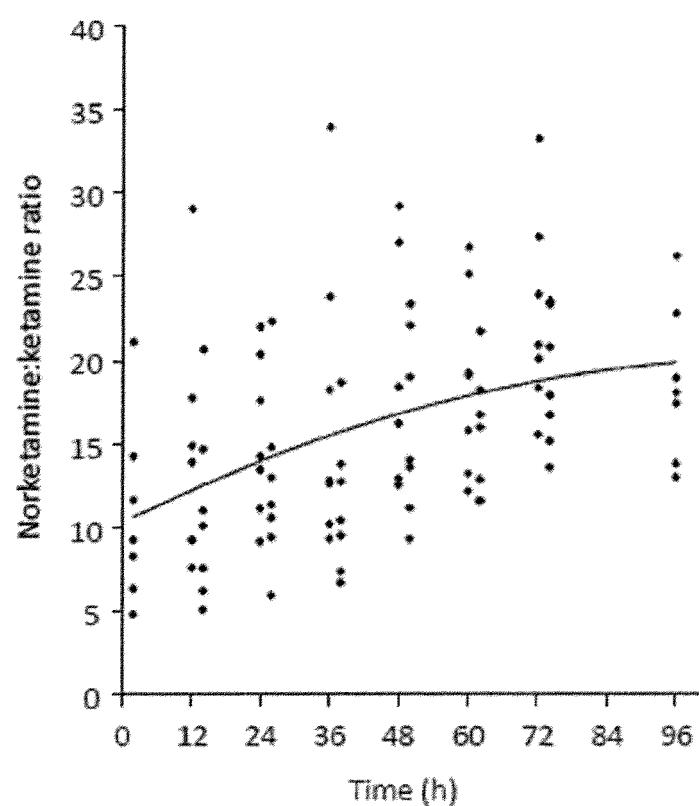
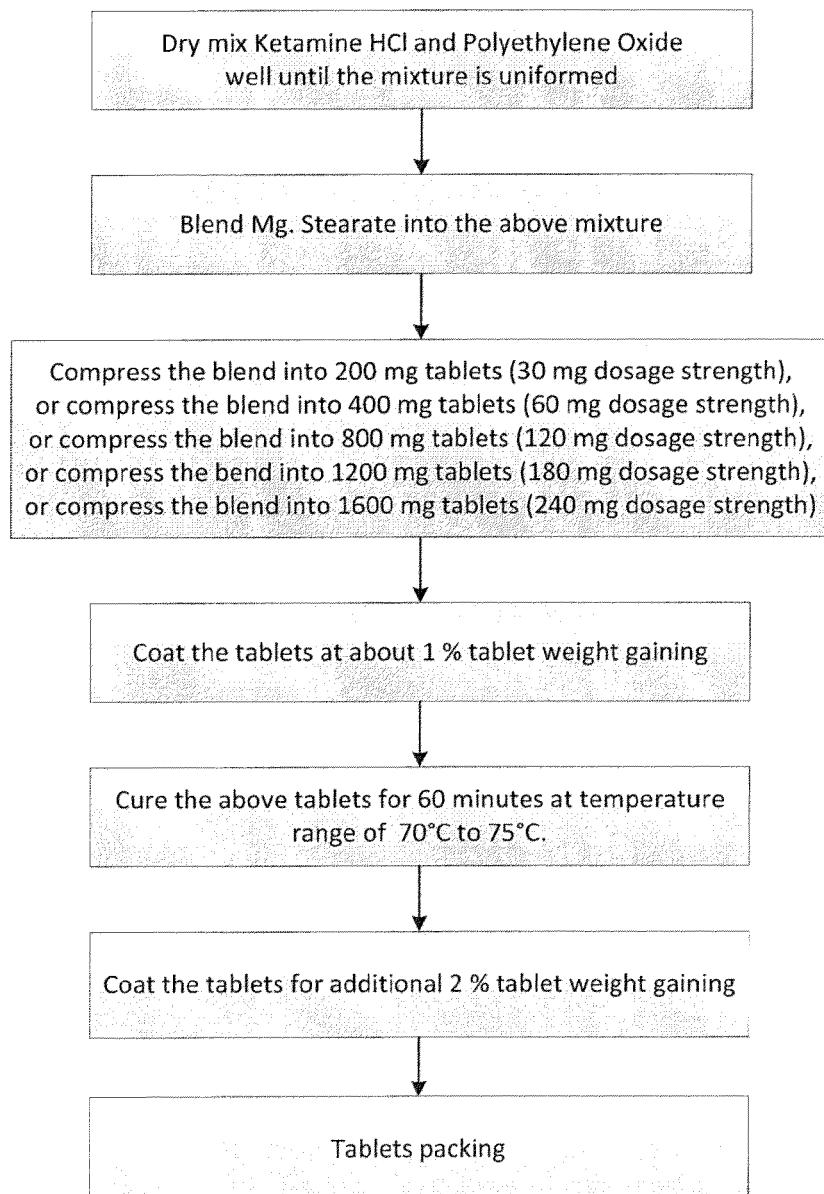



Figure 12

**Ketamine 30 mg, 60 mg, 120 mg, 180 mg and 240 mg
Extended Release Tablets**

Manufacturing Flow Chart

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2015031410 A [0003] [0057]
- WO 2016073653 A [0003]

Non-patent literature cited in the description

- Remington's Pharmaceutical Sciences. 1980, 1553-1593 [0078]
- **YANAGIHARA, Y. et al.** Plasma Concentration Profiles of Ketamine and Norketamine after Administration of Various Ketamine Preparations to Healthy Japanese Volunteers. *Biopharm. Drug Dispos.*, 2003, vol. 24, 37-43 [0128]
- **YANAGIHARA, Y. et al.** Plasma Concentration Profiles of Ketamine and Norketamine after Administration of Various Ketamine Preparations to Healthy Japanese Volunteers. *Biopharm. Drug Dispos.*, 2003, vol. 24, 37-43 [0129]