

(11) **EP 3 988 653 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **27.04.2022 Bulletin 2022/17**

(21) Application number: 21190194.7

(22) Date of filing: 23.03.2016

(51) International Patent Classification (IPC):
C12N 9/10 (2006.01)
C12P 19/56 (2006.01)
A23L 2/60 (2006.01)
C12N 9/02 (2006.01)
A23L 27/30 (2016.01)

(52) Cooperative Patent Classification (CPC):
 C12P 19/56; A23L 2/60; A23L 27/36; C12N 9/0042;
 C12N 9/1048; C12N 9/1051; C12Y 106/02004;
 C12Y 204/01017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 23.03.2015 US 201562136759 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 16711641.7 / 3 274 448

(71) Applicant: DSM IP Assets B.V. 6411 TE Heerlen (NL)

(72) Inventors:

 BOSCH, Hendrik Jan 6100 AA Echt (NL)

- BEEKWILDER, Martinus Julius 6100 AA Echt (NL)
- BOER, Viktor Marius
 6100 AA Echt (NL)
- (74) Representative: DSM Intellectual Property
 P.O. Box 4
 6100 AA Echt (NL)

Remarks:

This application was filed on 06.08.2021 as a divisional application to the application mentioned under INID code 62.

(54) UDP-GLYCOSYLTRANSFERASES FROM SOLANUM LYCOPERSICUM

(57) The present invention relates to polypeptides having UDP-Glycosyltransferase activity derived from tomato (Solanum lycopersicum) and having the amino acid sequence set out in any of SEQ ID NO: 1 to 4 or an amino acid sequence having at least about 30% sequence identity thereto. The application also relates to recombinant

hosts comprising a recombinant nucleic acid sequence encoding said polypeptides and uses thereof to prepare glycosylated diterpenes, like steviol glycoside. The host cells might comprise further enzymes of the steviol glycoside biosynthesis pathway.

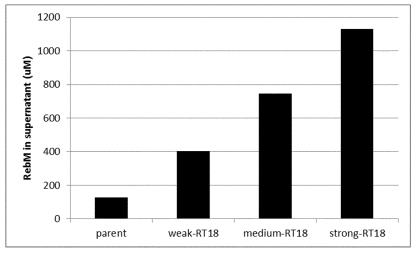


Fig. 3

Description

Field

10

15

30

35

40

50

[0001] The present invention relates to a recombinant host comprising a recombinant nucleic acid sequence encoding a UDP-glycosyltransferase (UGT) polypeptide. The invention also relates to a process for the preparation of a glycosylated diterpene using such a recombinant host and to a fermentation broth which may be the result of such a process. The invention further relates to a glycosylated diterpene obtained by such a process or obtainable from such a fermentation broth and to a composition comprising two or more such glycosylated diterpenes. In addition the invention relates to a foodstuff, feed or beverage which comprises such a glycosylated diterpene or a such composition. The invention also relates to a method for converting a first glycosylated diterpene into a second glycosylated diterpene using the abovementioned recombinant host.

Background

[0002] The leaves of the perennial herb, *Stevia rebaudiana* Bert., accumulate quantities of intensely sweet compounds known as steviol glycosides. Whilst the biological function of these compounds is unclear, they have commercial significance as alternative high potency sweeteners.

[0003] These sweet steviol glycosides have functional and sensory properties that appear to be superior to those of many high potency sweeteners. In addition, studies suggest that stevioside can reduce blood glucose levels in Type II diabetics and can reduce blood pressure in mildly hypertensive patients.

[0004] Steviol glycosides accumulate in Stevia leaves where they may comprise from 10 to 20% of the leaf dry weight. Stevioside and rebaudioside A are both heat and pH stable and suitable for use in carbonated beverages and many other foods. Stevioside is between 110 and 270 times sweeter than sucrose, rebaudioside A between 150 and 320 times sweeter than sucrose. In addition, rebaudioside D is also a high-potency diterpene glycoside sweetener which accumulates in Stevia leaves. It may be about 200 times sweeter than sucrose. Rebaudioside M is a further high-potency diterpene glycoside sweetener. It is present in trace amounts in certain stevia variety leaves, but has been suggested to have a superior taste profile.

[0005] Steviol glycosides have traditionally been extracted from the *Stevia* plant. In *Stevia*, (-)-kaurenoic acid, an intermediate in gibberellic acid (GA) biosynthesis, is converted into the tetracyclic diterpene steviol, which then proceeds through a multi-step glycosylation pathway to form the various steviol glycosides. However, yields may be variable and affected by agriculture and environmental conditions. Also, Stevia cultivation requires substantial land area, a long time prior to harvest, intensive labour and additional costs for the extraction and purification of the glycosides.

[0006] More recently, interest has grown in producing steviol glycosides using fermentative processes. WO2013/110673 and WO2015/007748 describe microorganisms that may be used to produce at least the steviol glycosides rebaudioside A and rebaudioside D.

[0007] Further improvement of such microorganisms is desirable in order that higher amounts of steviol glycosides may be produced and/or additional or new steviol glycosides and/or higher amounts of specific steviol glycosides and/or mixtures of steviol glycosides having desired ratios of different steviol glycosides.

Summary

[0008] In *Stevia rebaudiana*, steviol is synthesized from GGPP, which is formed by the deoxyxylulose 5- phosphate pathway. The activity of two diterpene cyclases (-)-copalyl diphosphate synthase (CPS) and (-)-kaurene synthase (KS) results in the formation of (-)-Kaurene which is then oxidized in a three step reaction by (-)-kaurene oxidase (KO) to form (-)-kaurenoic acid.

[0009] In *Stevia rebaudiana* leaves, (-)-kaurenoic acid is then hydroxylated, by ent-kaurenoic acid 13-hydroxylase (KAH) to form steviol. Steviol is then glycosylated by a series of UDP-glycosyltransferases (UGTs) leading to the formation of a number of steviol glycosides. Specifically, these molecules can be viewed as a steviol molecule, with its carboxyl hydrogen atom replaced by a glucose molecule to form an ester, and an hydroxyl hydrogen with combinations of glucose and rhamnose to form an acetal.

[0010] These pathways may be reconstructed in recombinant hosts, for example yeasts such as yeasts of the genera *Saccharomyces* and *Yarrowia*.

[0011] The invention relates to the identification of polypeptides having UDP-glycosyltransferase (UGT), typically having improved properties in comparison to those that are currently known. These polypeptides may be used to generate recombinant hosts that produce higher amounts of steviol glycosides and/or additional or new steviol glycosides and/or higher amounts of specific steviol glycosides and/or mixtures of steviol glycosides having desired ratios of different steviol glycosides.

[0012] Thus, the invention also relates to a recombinant host capable of producing a glycosylated diterpene, i.e. a diterpene glycoside such as a steviol glycoside, for example steviolmonoside, steviolbioside, stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, rebaudioside M, rubusoside, dulcoside A, steviol-13-monoside, steviol-19-monoside or 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-Dglucopyranosyl-p-D-glucopyranosyl ester steviol-19-diside.

[0013] Accordingly, the invention relates to a recombinant host comprising a recombinant nucleic acid sequence, typically having UDP-glycosyltransferase (UGT) activity such as UGT2 activity, encoding a polypeptide having:

- a. the amino acid sequence set forth in SEQ ID NO: 1 or an amino acid sequence having at least about 30% sequence identity thereto:
- b. the amino acid sequence set forth in SEQ ID NO: 2 or an amino acid sequence having at least about 30% sequence identity thereto;
- c. the amino acid sequence set forth in SEQ ID NO: 3 or an amino acid sequence having at least about 30% sequence identity thereto; or
- d. the amino acid sequence set forth in SEQ ID NO: 4 or an amino acid sequence having at least about 30% sequence identity thereto.

[0014] The invention also relates to:

- 20 a process for the preparation of a glycosylated diterpene which comprises fermenting a recombinant host of the invention in a suitable fermentation medium, and optionally recovering the glycosylated diterpene;
 - a fermentation broth comprising a glycosylated diterpene obtainable by the process of the invention;
 - a glycosylated diterpene obtained by such a process or obtainable from such a fermentation broth;
 - a composition comprising two or more such diterpenes;
 - a foodstuff, feed or beverage which comprises such a glycosylated diterpene; and
 - a method for converting a first glycosylated diterpene into a second glycosylated diterpene, which method comprises:
 - contacting said first glycosylated diterpene with a recombinant host of the invention, a cell free extract derived from such a recombinant host or an enzyme preparation derived from either thereof;
 - thereby to convert the first glycosylated diterpene into the second glycosylated diterpene.

Brief description of the drawings

[0015]

Figure 1 sets out Western blot detection of His-tagged UGTs

Figure 2 sets out Western blot of UGT2 1a and RT18. Lanes 1,2,3,4: 0.5, 1.0, 1.9, 3.8 μg of UGT2 1a crude enzyme extract. Lane 5 and 6: 31.9 and 63.8 µg RT18 crude enzyme extract.

Figure 3 sets out the effect of the expression of RT18 on the production of RebM

Figure 4 sets out the effect of the expression of RT18 on the production of RebD

Figure 5 sets out a schematic diagram of the potential pathways leading to biosynthesis of steviol glycosides.

Figure 6 sets out a schematic diagram of the potential pathways leading to biosynthesis of steviol glycosides. The compound shown with an asterisk is 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl- β -D-glucopyranosyl ester.

Description of the sequence listing

[0016] A description of the sequences is set out in Table 10. Sequences described herein may be defined with reference to the sequence listing or with reference to the database accession numbers also set out herein, for example in Table 10.

Detailed description

[0017] Throughout the present specification and the accompanying claims, the words "comprise", "include" and "having" and variations such as "comprises", "comprising", "includes" and "including" are to be interpreted inclusively. That is, these words are intended to convey the possible inclusion of other elements or integers not specifically recited, where the context allows.

[0018] The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to one or at least one) of the grammatical object of the article. By way of example, "an element" may mean one element or more than one element.

3

40

35

10

15

25

30

45

50

[0019] Herein, "rebaudioside" may be shortened to "reb". That is to say, rebaudioside A and reb A, for example, are intended to indicate the same molecule.

[0020] The term "recombinant" when used in reference to a cell, nucleic acid, protein or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. The term "recombinant" is synonymous with "genetically modified".

[0021] The invention concerns polypeptides identified as having UDP-glycosyltransferase (UGT) activity which can be used in recombinant hosts, typically for the production of diterpene glycosides, such as steviol glycosides.

[0022] For the purposes of this invention, a polypeptide having UGT activity is one which has glycosyltransferase activity (EC 2.4), i.e. that can act as a catalyst for the transfer of a monosaccharide unit from an activated nucleotide sugar (also known as the "glycosyl donor") to a glycosyl acceptor molecule, usually an alcohol. The glycosyl donor for a UGT is typically the nucleotide sugar uridine diphosphate glucose (uracil-diphosphate glucose, UDP-glucose). A polypeptide suitable for use in a host of the invention typically has UGT activity and a polynucleotide sequence as described herein typically encodes such a polypeptide. Typically, the polypeptides for use in a host of the invention are polypeptides having UGT2-type activity.

[0023] The invention thus provides a recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide comprising:

a. the amino acid sequence set forth in SEQ ID NO: 1 or an amino acid sequence having at least about 30% sequence identity thereto;

b. the amino acid sequence set forth in SEQ ID NO: 2 or an amino acid sequence having at least about 30% sequence identity thereto;

c. the amino acid sequence set forth in SEQ ID NO: 3 or an amino acid sequence having at least about 30% sequence identity thereto; or

d. the amino acid sequence set forth in SEQ ID NO: 4 or an amino acid sequence having at least about 30% sequence identity thereto.

[0024] The polypeptide encoded by the recombinant nucleic acid sequence typically has UGT activity, such as UGT2 activity. A recombinant host of the invention is typically capable of producing a glycosylated diterpene, for example a steviol glycoside.

[0025] A polypeptide encoded by a recombinant nucleic acid present in a recombinant host of the invention may comprise an amino acid sequence having at least about 35%, at least about 40%, at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity to any one of SEQ ID NOs: 1, 2, 3 or 4.

[0026] Thus, the invention relates to:

a recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide, typically having UGT activity, which comprises an amino acid sequence having at least about 35%, at least about 40%, at least about 50%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity to SEQ ID NO: 1;

- a recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide, typically having UGT activity, which comprises an amino acid sequence having at least about 35%, at least about 40%, at least about 50%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity to SEQ ID NO: 2;

a recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide, typically having UGT activity, which comprises an amino acid sequence having at least about 35%, at least about 40%, at least about 50%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity to SEQ ID NO: 3;

4

20

25

10

40

35

45

55

- a recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide, typically having UGT activity, which comprises an amino acid sequence having at least about 35%, at least about 40%, at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 89%, at least about 99%, at least about 99%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% sequence identity to SEQ ID NO: 4.

5

10

20

30

35

40

50

[0027] As used herein, the term "polypeptide" refers to a molecule comprising amino acid residues linked by peptide bonds and containing more than five amino acid residues. The amino acids are identified by either the single-letter or three-letter designations. The term "protein" as used herein is synonymous with the term "polypeptide" and may also refer to two or more polypeptides. Thus, the terms "protein", "peptide" and "polypeptide" can be used interchangeably. Polypeptides may optionally be modified (e.g., glycosylated, phosphorylated, acylated, farnesylated, prenylated, sulfonated, and the like) to add functionality. Polypeptides exhibiting activity may be referred to as enzymes. It will be understood that, as a result of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding a given polypeptide may be produced.

[0028] The term "nucleic acid sequence" (or ""polynucleotide") as used in the present invention refers to a nucleotide polymer including at least 5 nucleotide units. A nucleic acid refers to a ribonucleotide polymer (RNA), deoxynucleotide polymer (DNA) or a modified form of either type of nucleic acid or synthetic form thereof or mixed polymers of any of the above. Nucleic acids may include either or both naturally-occurring and modified nucleic acids linked together by naturally-occurring and/or non-naturally occurring nucleic acid linkages. The nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleic acid bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleic acids with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) The term nucleic acid is also intended to include any topological conformation, including single-stranded (sense strand and antisense strand), double-stranded, partially duplexed, triplex, hairpinned, circular and padlocked conformations. Also included are synthetic molecules that mimic nucleic acids in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule. A reference to a nucleic acid sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence. The complementary strand is also useful, therapy, hybridization probes and **PCR** primers. acid", "polynucleotide" and "polynucleotide sequence" can be used interchangeably herein. A polypeptide encoded by a recombinant nucleic acid for use in a recombinant host of the invention may comprise a signal peptide and/or a propeptide sequence. In the event that a polypeptide comprises a signal peptide and/or a propeptide, sequence identity may be calculated over the mature polypeptide sequence.

[0029] The polypeptide typically has UGT activity and more preferably has UGT2 activity. Figures 5 and 6 illustrate a non-exhaustive list of reactions that may be catalyzed by a polypeptide having UGT2 activity.

[0030] A polypeptide having UGT2 activity is one which may function as a uridine 5'-diphospho glucosyl: steviol- 13-O-glucoside transferase (also referred to as a steviol-13- monoglucoside 1,2-glucosylase), transferring a glucose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol- 13-O-glucoside. Typically, a suitable UGT2 polypeptide may also function as a uridine 5'-diphospho glucosyl: rubusoside transferase transferring a glucose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, rubusoside. That is to say be capable of converting steviol-13-monoside to steviolbioside and/or capable of converting rubusoside to stevioside.

[0031] A polypeptide having UGT2 activity may also or alternatively catalyze reactions that utilize steviol glycoside substrates other than steviol- 13-O-glucoside and rubusoside, e.g., a functional UGT2 polypeptide may utilize stevioside as a substrate, transferring a glucose moiety to the C-2' of the 19-O-glucose residue to produce rebaudioside E. A functional UGT2 polypeptide may also or alternatively utilize rebaudioside A as a substrate, transferring a glucose moiety to the C-2' of the 19-O-glucose residue to produce rebaudioside D.

[0032] A polypeptide having UGT2 activity may also catalyze reactions that utilize steviol-19-glucoside or rubusoside as a substrate, e.g., a functional UGT2 polypeptide may utilize steviol-19-glucoside or rubusoside as a substrate, transferring a glucose moiety to the 19 position to produce steviol-19-2side or 13- $[(\beta-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-<math>\beta$ -D-glucopyranosyl- β -D-glucopyranosyl ester respectively.

[0033] However, a functional UGT2 polypeptide typically does not transfer a glucose moiety to steviol compounds having a 1,3-bound glucose at the C- 13 position, i.e., transfer of a glucose moiety to steviol 1,3-bioside and 1,3-stevioside typically does not occur.

[0034] A polypeptide having UGT2 activity may also or alternatively transfer sugar moieties from donors other than uridine diphosphate glucose. For example, a polypeptide having UGT2 activity act as a uridine 5'-diphospho D-xylosyl: steviol- 13 -O-glucoside transferase, transferring a xylose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol- 13 -O-glucoside. As another example, a polypeptide having UGT2 activity may act as a uridine 5'-diphospho L-rhamnosyl: steviol- 13-O-glucoside transferase, transferring a rhamnose moiety to the C-2' of the 13-O-glucose of the acceptor molecule, steviol.

[0035] One or more of the above-described activities may be used to define a polypeptide having UGT2 activity encoded by a recombinant nucleic acid sequence for use in a recombinant host of the invention. Such a polypeptide may have improved UGT2 activity in respect of one or more of the above-described activities in comparison with the UGT2 1a polypeptide (SEQ ID NO: 6).

10

30

35

50

[0036] A polynucleotide encoding a polypeptide for use in a recombinant host of the invention may be used to steer production of steviol glycosides in a recombinant cell to a desired steviol glycoside, such as rebaudioside A, rebaudioside D or rebaudioside M. For example, a UGT2 polypeptide which preferentially catalyzes conversion of steviol-13-monoside to steviolbioside and/or conversion of rubusoside to stevioside may help to steer production towards rebaudioside A, whereas a UGT2 polypeptide which preferentially catalyzes conversion of stevioside to reb E or rubusoside to a compound with an additional sugar at the 19 position may help to steer production towards rebaudioside M. That is to say preference for addition of a sugar moiety at the 13 position may help steer production towards rebaudioside A, whereas preference for addition of a sugar moiety at the 19 position may help steer production towards rebaudioside M.

[0037] A recombinant nucleic acid sequence for use in a recombinant host of the invention may be provided in the form of a nucleic acid construct. The term "nucleic acid construct" refers to as a nucleic acid molecule, either single-or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acid which are combined and juxtaposed in a manner which would not otherwise exist in nature. The term nucleic acid construct is synonymous with the term "expression cassette" when the nucleic acid construct contains all the control sequences required for expression of a coding sequence, wherein said control sequences are operably linked to said coding sequence.

[0038] A recombinant nucleic acid sequence for use in a recombinant host of the invention may be provided in the form of an expression vector, wherein the polynucleotide sequence is operably linked to at least one control sequence for the expression of the polynucleotide sequence in a recombinant host cell.

[0039] The term "operably linked" as used herein refers to two or more nucleic acid sequence elements that are physically linked and are in a functional relationship with each other. For instance, a promoter is operably linked to a coding sequence if the promoter is able to initiate or regulate the transcription or expression of a coding sequence, in which case the coding sequence should be understood as being "under the control of" the promoter. Generally, when two nucleic acid sequences are operably linked, they will be in the same orientation and usually also in the same reading frame. They usually will be essentially contiguous, although this may not be required.

[0040] An expression vector comprises a polynucleotide coding for a polypeptide as described herein, operably linked to the appropriate control sequences (such as a promoter, and transcriptional and translational stop signals) for expression and/or translation *in vitro*, or in the host cell of the polynucleotide.

[0041] The expression vector may be any vector (e.g., a plasmid or virus), which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the cell into which the vector is to be introduced. The vectors may be linear or closed circular plasmids. The vector may be an autonomously replicating vector, i.e., a vector, which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extra-chromosomal element, a mini-chromosome, or an artificial chromosome.

[0042] Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. The integrative cloning vector may integrate at random or at a predetermined target locus in the chromosomes of the host cell. A vector may comprise one or more selectable markers, which permit easy selection of transformed cells.

[0043] Standard genetic techniques, such as overexpression of enzymes in the host cells, as well as for additional genetic modification of host cells, are known methods in the art, such as described in Sambrook and Russel (2001) "Molecular Cloning: A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or F. Ausubel et al, eds., "Current protocols in molecular biology", Green Publishing and Wiley Interscience, New York (1987). Methods for transformation and genetic modification of fungal host cells are known from e.g. EP-A-0 635 574, WO 98/46772, WO 99/60102 and WO 00/37671.

[0044] A recombinant host of the invention may comprise any polypeptide as described herein. Typically, a recombinant host of the invention is capable of producing a glycosylated diterpene, such as a steviol glycoside. For example, a recombinant host of the invention may be capable of producing one or more of, for example, steviol-13-monoside, steviol-19-monoside, 13-[(β -D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O- β -D-glucopyranosyl- β -D-glucopyranosyl ester, rubusoside, steviol-19-diside, steviolbioside, reb A, reb E, reb D or reb M.

[0045] Thus, a recombinant host of the invention will typically comprise polynucleotides encoding polypeptides having UGT1, UGT2, UGT2 and UGT4 activity and polypeptides which provide for the production of steviol in the host (which may then be converted to one or more steviol glycosides).

[0046] One polynucleotide may encode more than one of such polypeptides. One polynucleotide may encode a polypeptide having more than one of the activities UGT1, UGT2, UGT3 or UGT4 or the activity of a polypeptide providing for production of steviol in the host. Accordingly, a recombinant host according to the invention may comprise one or more recombinant nucleotide sequence(s) encoding one of more of:

a polypeptide having ent-copalyl pyrophosphate synthase activity;

a polypeptide having ent-Kaurene synthase activity;

10

15

20

25

30

35

40

45

50

- a polypeptide having ent-Kaurene oxidase activity; and
- a polypeptide having kaurenoic acid 13-hydroxylase activity.

[0047] A recombinant host may comprise one or more recombinant polynucleotide sequences encoding all four such polypeptides.

[0048] For the purposes of this invention, a polypeptide having *ent*-copalyl pyrophosphate synthase (EC 5.5.1.13) is capable of catalyzing the chemical reaction:

[0049] This enzyme has one substrate, geranylgeranyl pyrophosphate, and one product, *ent*-copalyl pyrophosphate. This enzyme participates in gibberellin biosynthesis. This enzyme belongs to the family of isomerase, specifically the class of intramolecular lyases. The systematic name of this enzyme class is *ent*-copalyl-diphosphate lyase (decyclizing). Other names in common use include having *ent*-copalyl pyrophosphate synthase, *ent*-kaurene synthase A, and *ent*-kaurene synthetase A.

[0050] Suitable nucleic acid sequences encoding an ent-copalyl pyrophosphate synthase may for instance comprise a sequence as set out in SEQ ID. NO: 1, 3, 5, 7, 17, 19, 59, 61, 141, 142, 151, 152, 153, 154, 159, 160, 182 or 184 of WO2015/007748.

[0052] Hence, this enzyme has one substrate, ent-copalyl diphosphate, and two products, ent-kaurene and diphosphate.

[0053] This enzyme belongs to the family of lyases, specifically those carbon-oxygen lyases acting on phosphates. The systematic name of this enzyme class is ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-kaurene-forming). Other names in common use include ent-kaurene synthase B, ent-kaurene synthetase B, ent-copalyl-diphosphate diphosphate-lyase, and (cyclizing). This enzyme participates in diterpenoid biosynthesis.

[0054] Suitable nucleic acid sequences encoding an ent-Kaurene synthase may for instance comprise a sequence as set out in SEQ ID. NO: 9, 11, 13, 15, 17, 19, 63, 65, 143, 144, 155, 156, 157, 158, 159, 160, 183 or 184 of WO2015/007748.

[0055] *ent*-copalyl diphosphate synthases may also have a distinct *ent*-kaurene synthase activity associated with the same protein molecule. The reaction catalyzed by *ent*-kaurene synthase is the next step in the biosynthetic pathway to gibberellins. The two types of enzymic activity are distinct, and site-directed mutagenesis to suppress the *ent*-kaurene synthase activity of the protein leads to build up of *ent*-copalyl pyrophosphate.

[0056] Accordingly, a single nucleotide sequence used in a recombinant host of the invention may encode a polypeptide having *ent*-copalyl pyrophosphate synthase activity and *ent*-kaurene synthase activity. Alternatively, the two activities may be encoded two distinct, separate nucleotide sequences.

[0057] For the purposes of this invention, a polypeptide having ent-kaurene oxidase activity (EC 1.14.13.78) is a polypeptide which is capable of catalysing three successive oxidations of the 4-methyl group of ent-kaurene to give kaurenoic acid. Such activity typically requires the presence of a cytochrome P450.

[0058] Suitable nucleic acid sequences encoding an ent-Kaurene oxidase may for instance comprise a sequence as set out in SEQ ID. NO: 21, 23, 25, 67, 85, 145, 161, 162, 163, 180 or 186 of WO2015/007748.

[0059] For the purposes of the invention, a polypeptide having kaurenoic acid 13-hydroxylase activity (EC 1.14.13) is

one which is capable of catalyzing the formation of steviol (ent-kaur-16-en-13-ol-19-oic acid) using NADPH and O₂. Such activity may also be referred to as ent-ka 13-hydroxylase activity.

[0060] Suitable nucleic acid sequences encoding a kaurenoic acid 13-hydroxylase may for instance comprise a sequence as set out in SEQ ID. NO: 27, 29, 31, 33, 69, 89, 91, 93, 95, 97, 146, 164, 165, 166, 167 or 185 of WO2015/007748. [0061] A recombinant host of the invention may comprise a recombinant nucleic acid sequence encoding a polypeptide having NADPH-cytochrome p450 reductase activity. That is to say, a recombinant host of the invention may be capable of expressing a nucleotide sequence encoding a polypeptide having NADPH-cytochrome p450 reductase activity. For the purposes of the invention, a polypeptide having NADPH-Cytochrome P450 reductase activity (EC 1.6.2.4; also known as NADPH:ferrihemoprotein oxidoreductase, NADPH:hemoprotein oxidoreductase, NADPH:P450 oxidoreductase, P450 reductase, POR, CPR, CYPOR) is typically one which is a membrane-bound enzyme allowing electron transfer to cytochrome P450 in the microsome of the eukaryotic cell from a FAD- and FMN-containing enzyme NADPH:cytochrome P450 reductase (POR; EC 1.6.2.4).

[0062] A recombinant host of the invention may comprise one or more recombinant nucleic acid sequences encoding one or more UGT polypeptides, in addition to RT7, RT11, RT15 or RT18 or related sequences as described herein. Such additional UGTs may be selected so as to produce a desired diterpene glycoside, such as a steviol glycoside. Schematic diagrams of steviol glycoside formation are set out in Humphrey et al., Plant Molecular Biology (2006) 61: 47-62 and Mohamed et al., J. Plant Physiology 168 (2011) 1136-1141. In addition, Figures 5 and 6 sets out a schematic diagram of steviol glycoside formation.

[0063] A recombinant host of the invention may thus comprise one or more recombinant nucleic acid sequences encoding one or more of:

- (i) a polypeptide having UGT74G1 activity (UGT3 activity);
- (ii) a polypeptide having UGT85C2 activity (UGT1 activity); and
- (iii) a polypeptide having UGT76G1 activity (UGT4 activity).

[0064] Figures 5 and 6 set out schematic diagram of the potential pathways leading to biosynthesis of steviol glycosides. **[0065]** A recombinant host of the invention will typically comprise at least one recombinant nucleic acid encoding a polypeptide having UGT1 activity, at least one recombinant nucleic acid encoding a polypeptide having UGT2 activity, at least one recombinant nucleic acid encoding a polypeptide having UGT3 activity and at least one recombinant nucleic acid encoding a polypeptide having UGT4 activity. One nucleic acid may encode two or more of such polypeptides.

[0066] A recombinant host of the invention typically comprises polynucleotides expressing at least one of each of a UGT1, UGT2, UGT3 and UGT4 polypeptide and a polypeptide having ent-copalyl pyrophosphate synthase activity, a polypeptide having ent-Kaurene oxidase activity and a polypeptide having kaurenoic acid 13-hydroxylase activity. In such a recombinant host, all polynucleotides encoding such polypeptides may be recombinant.

[0067] A nucleic acid encoding a polypeptide as described herein may be used to steer production of steviol glycosides in a recombinant cell to a desired steviol glycoside, such as rebaudioside A, rebaudioside D or rebaudioside M. For example, a recombinant nucleic acid which encodes a UGT2 polypeptide which preferentially catalyzes conversion of steviol-13-monoside to steviolbioside and/or conversion of rubusoside to stevioside may help to steer production towards rebaudioside A, whereas a recombinant nucleic acid which encodes a UGT2 polypeptide which preferentially catalyzes conversion of stevioside to reb E or rubusoside to a compound with an additional sugar at the 19 position may help to steer production towards rebaudioside M. That is to say preference for addition of a sugar moiety at the 13 position may help steer production towards rebaudioside A, whereas preference for addition of a sugar moiety at the 19 position may help steer production towards rebaudioside M. A recombinant host of the invention may comprises a nucleotide sequence encoding a polypeptide capable of catalyzing the addition of a C-13-glucose to steviol. That is to say, a recombinant host of the invention may comprise a UGT which is capable of catalyzing a reaction in which steviol is converted to steviolmonoside.

[0068] Such a recombinant host of the invention may comprise a nucleotide sequence encoding a polypeptide having the activity shown by UDP-glycosyltransferase (UGT) UGT85C2, whereby the nucleotide sequence upon transformation of the host confers on that host the ability to convert steviol to steviolmonoside.

[0069] UGT85C2 activity is transfer of a glucose unit to the 13-OH of steviol. Thus, a suitable UGT85C2 may function as a uridine 5'-diphospho glucosyl: steviol 13-OH transferase, and a uridine 5'-diphospho glucosyl: steviol-19-O-glucoside 13-OH transferase. A functional UGT85C2 polypeptides may also catalyze glucosyl transferase reactions that utilize steviol glycoside substrates other than steviol and steviol- 19-O-glucoside. Such sequences may be referred to as UGT1 sequences herein.

[0070] A recombinant host of the invention may comprises a nucleotide sequence encoding a polypeptide having UGT activity may comprise a nucleotide sequence encoding a polypeptide capable of catalyzing the addition of a C-19-glucose to steviolbioside and/or to rebaudioside B. That is to say, a recombinant host of the invention may comprise a UGT

8

25

30

20

10

35

45

40

which is capable of catalyzing a reaction in which steviolbioside is converted to stevioside and/or in which rebaudioside B is converted to rebaudioside A. Accordingly, such a recombinant host may be capable of converting steviolbioside to stevioside and/or rebaudioside B is converted to rebaudioside A. Expression of such a nucleotide sequence may confer on the recombinant host the ability to produce at least stevioside and/or rebaudioside A.

[0071] A recombinant host of the invention may thus also comprise a nucleotide sequence encoding a polypeptide having the activity shown by UDP-glycosyltransferase (UGT) UGT74G1, whereby the nucleotide sequence upon transformation of the host confers on the cell the ability to convert steviolbioside to stevioside.

[0072] Suitable UGT74G1 polypeptides may be capable of transferring a glucose unit to the 13-OH or the 19-COOH, respectively, of steviol. A suitable UGT74G1 polypeptide may function as a uridine 5'-diphospho glucosyl: steviol 19-COOH transferase and a uridine 5'-diphospho glucosyl: steviol- 13-O-glucoside 19-COOH transferase. Functional UGT74G1 polypeptides also may catalyze glycosyl transferase reactions that utilize steviol glycoside substrates other than steviol and steviol- 13-O-glucoside, or that transfer sugar moieties from donors other than uridine diphosphate glucose. Such sequences may be referred to herein as UGT3 sequences.

10

30

45

50

55

[0073] A recombinant host of the invention may comprise a nucleotide sequence encoding a polypeptide capable of catalyzing glucosylation of the C-3' of the glucose at the C-13 position of stevioside. That is to say, a recombinant host of the invention may comprise a UGT which is capable of catalyzing a reaction in which stevioside is converted to rebaudioside A. Accordingly, such a recombinant host may be capable of converting stevioside to rebaudioside A. Expression of such a nucleotide sequence may confer on the host the ability to produce at least rebaudioside A.

[0074] A recombinant host of the invention may thus also comprise a nucleotide sequence encoding a polypeptide having the activity shown by UDP-glycosyltransferase (UGT) UGT76G1, whereby the nucleotide sequence upon transformation of a host confers on that host the ability to convert stevioside to rebaudioside A and/or steviolbioside to rebaudioside B.

[0075] A suitable UGT76G1 adds a glucose moiety to the C-3' of the C-13-O-glucose of the acceptor molecule, a steviol 1,2 glycoside. Thus, UGT76G1 functions, for example, as a uridine 5'-diphospho glucosyl: steviol 13-0-1,2 glucoside C-3' glucosyl transferase and a uridine 5'-diphospho glucosyl: steviol-19-O-glucose, 13-0-1,2 bioside C-3' glucosyl transferase. Functional UGT76G1 polypeptides may also catalyze glucosyl transferase reactions that utilize steviol glycoside substrates that contain sugars other than glucose, e.g., steviol rhamnosides and steviol xylosides. Such sequences may be referred to herein as UGT4 sequences. A UGT4 may alternatively or in addition be capable of converting Reb D to Reb M.

[0076] A recombinant host of the invention typically comprises nucleotide sequences encoding polypeptides having all four UGT activities described above. A given nucleic acid may encode a polypeptide having one or more of the above activities. For example, a nucleic acid encode for a polypeptide which has two, three or four of the activities set out above. Preferably, a recombinant host of the invention comprises UGT1, UGT2 and UGT3 and UGT4 activity. Suitable UGT1, UGT3 and UGT4 sequences are described in Table 1 of WO2015/007748.

[0077] A recombinant host of the invention may comprise a recombinant nucleic acid sequence encoding an additional polypeptide having UGT2 activity. That is to say, a recombinant host of the invention may comprise a nucleic acid sequence encoding a variant UGT2 of the invention and one or more additional, different, variant of the invention or any another, different, UGT2.

[0078] Use of a nucleic acid sequence encoding a RT7, RT11, RT15 or RT18 polypeptide (or related polypeptide as described herein) may be useful in improving reb A production in a recombinant host of the invention.

[0079] Use of a nucleic acid sequence encoding a RT7, RT11, RT15 or RT18 polypeptide (or related polypeptide as described herein) may be useful in improving reb M production in a recombinant host of the invention.

[0080] In a recombinant host of the invention, the ability of the host to produce geranylgeranyl diphosphate (GGPP) may be upregulated. Upregulated in the context of this invention implies that the recombinant host produces more GGPP than an equivalent non-recombinant host.

[0081] Accordingly, a recombinant host of the invention may comprise one or more nucleotide sequence(s) encoding hydroxymethylglutaryl-CoA reductase, farnesyl-pyrophosphate synthetase and geranylgeranyl diphosphate synthase, whereby the nucleotide sequence(s) upon transformation of a host confer(s) on that host the ability to produce elevated levels of GGPP. Thus, a recombinant host according to the invention may comprise one or more recombinant nucleic acid sequence(s) encoding one or more of hydroxymethylglutaryl-CoA reductase, farnesyl-pyrophosphate synthetase and geranylgeranyl diphosphate synthase.

 $\textbf{[0082]} \quad \textbf{Accordingly, a recombinant host of the invention may comprise nucleic acid sequences encoding one or more of:} \\$

- a polypeptide having hydroxymethylglutaryl-CoA reductase activity;
- a polypeptide having farnesyl-pyrophosphate synthetase activity;
- a polypeptide having geranylgeranyl diphosphate synthase activity.

[0083] A recombinant host of the invention may be, for example, an multicellular organism or a cell thereof or a

unicellular organism. A host of the invention may be a prokaryotic, archaebacterial or eukaryotic host cell.

10

30

35

45

50

55

[0084] A prokaryotic host cell may, but is not limited to, a bacterial host cell. An eukaryotic host cell may be, but is not limited to, a yeast, a fungus, an amoeba, an algae, an animal, an insect or a plant host cell.

[0085] An eukaryotic host cell may be a fungal host cell. "Fungi" include all species of the subdivision *Eumycotina* (Alexopoulos, C. J., 1962, In: Introductory Mycology, John Wiley & Sons, Inc., New York). The term fungus thus includes among others filamentous fungi and yeast.

[0086] "Filamentous fungi" are herein defined as eukaryotic microorganisms that include all filamentous forms of the subdivision Eumycotina and Oomycota (as defined by Hawksworth et al., 1995, supra). The filamentous fungi are characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligatory aerobic. Filamentous fungal strains include, but are not limited to, strains of Acremonium, Aspergillus, Agaricus, Aureobasidium, Cryptococcus, Corynascus, Chrysosporium, Filibasidium, Fusarium, Humicola, Magnaporthe, Monascus, Mucor, Myceliophthora, Mortierella, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Piromyces, Phanerochaete Podospora, Pycnoporus, Rhizopus, Schizophyllum, Sordaria, Talaromyces, Rasmsonia, Thermoascus, Thielavia, Tolypocladium, Trametes and Trichoderma. Preferred filamentous fungal strains that may serve as host cells belong to the species Aspergillus niger, Aspergillus oryzae, Aspergillus fumigatus, Penicillium chrysogenum, Penicillium citrinum, Acremonium chrysogenum, Trichoderma reesei, Rasamsonia emersonii (formerly known as Talaromyces emersonii), Aspergillus sojae, Chrysosporium lucknowense, Myceliophtora thermophyla. Reference host cells for the comparison of fermentation characteristics of transformed and untransformed cells, include e.g. Aspergillus niger CBS120.49, CBS 513.88, Aspergillus oryzae ATCC16868, ATCC 20423, IFO 4177, ATCC 1011, ATCC 9576, ATCC14488-14491, ATCC 11601, ATCC12892, Aspergillus fumigatus AF293 (CBS101355), P. chrysogenum CBS 455.95, Penicillium citrinum ATCC 38065, Penicillium chrysogenum P2, Acremonium chrysogenum ATCC 36225, ATCC 48272, Trichoderma reesei ATCC 26921, ATCC 56765, ATCC 26921, Aspergillus sojae ATCC11906, Chrysosporium lucknowense ATCC44006 and derivatives of all of these strains. Particularly preferred as filamentous fungal host cell are Aspergillus niger CBS 513.88 and derivatives thereof.

[0087] An eukaryotic host cell may be a yeast cell. Preferred yeast host cells may be selected from the genera: Saccharomyces (e.g., S. cerevisiae, S. bayanus, S. pastorianus, S. carlsbergensis), Brettanomyces, Kluyveromyces, Candida (e.g., C. krusei, C. revkaufi, C. pulcherrima, C. tropicalis, C. utilis), Issatchenkia (eg. I. orientalis) Pichia (e.g., P. pastoris), Schizosaccharomyces, Hansenula, Kloeckera, Pachysolen, Schwanniomyces, Trichosporon, Yarrowia (e.g., Y. lipolytica (formerly classified as Candida lipolytica)), Yamadazyma.

[0088] Prokaryotic host cells may be bacterial host cells. Bacterial host cell may be Gram negative or Gram positive bacteria. Examples of bacteria include, but are not limited to, bacteria belonging to the genus *Bacillus* (e.g., *B. subtilis*, *B. amyloliquefaciens*, *B. licheniformis*, *B. puntis*, *B. megaterium*, *B. halodurans*, *B. pumilus*,), *Acinetobacter*, *Nocardia*, *Xanthobacter*, *Escherichia* (e.g., *E. coli* (e.g., strains DH 1 OB, Stbl2, DH5-alpha, DB3, DB3.1), DB4, DB5, JDP682 and ccdA-over (e.g., U.S. application No. 09/518,188))), *Streptomyces*, *Erwinia*, *Klebsiella*, *Serratia* (e.g., *S. marcessans*), *Pseudomonas* (e.g., *P. aeruginosa*), *Salmonella* (e.g., *S. typhimurium*, *S. typhi*). Bacteria also include, but are not limited to, photosynthetic bacteria (e.g., green non-sulfur bacteria (e.g., *Choroflexus* bacteria (e.g., *C. aurantiacus*), *Chloronema* (e.g., *C. gigateum*)), green sulfur bacteria (e.g., *Chlorobium bacteria* (e.g., *C. limicola*), *Pelodictyon* (e.g., *P. luteolum*), purple sulfur bacteria (e.g., *Chromatium* (e.g., *C. okenii*)), and purple non-sulfur bacteria (e.g., *R. vanellii*)).

[0089] Host cells may be host cells from non-microbial organisms. Examples of such cells, include, but are not limited to, insect cells (e.g., *Drosophila* (e.g., *D. melanogaster*), *Spodoptera* (e.g., *S. frugiperda* Sf9 or Sf21 cells) and *Trichoplusa* (e.g., High-Five cells); nematode cells (e.g., C. *elegans* cells); avian cells; amphibian cells (e.g., *Xenopus laevis* cells); reptilian cells; and mammalian cells (e.g., NIH3T3, 293, CHO, COS, VERO, C127, BHK, Per-C6, Bowes melanoma and HeLa cells).

[0090] A recombinant host according to the present invention may be able to grow on any suitable carbon source known in the art and convert it to a glycosylated diterpene, eg. a steviol glycoside. The recombinant host may be able to convert directly plant biomass, celluloses, hemicelluloses, pectines, rhamnose, galactose, fucose, maltodextrines, ribose, ribulose, or starch, starch derivatives, sucrose, lactose and glycerol. Hence, a preferred host expresses enzymes such as cellulases (endocellulases and exocellulases) and hemicellulases (e.g. endo- and exo-xylanases, arabinases) necessary for the conversion of cellulose into glucose monomers and hemicellulose into xylose and arabinose monomers, pectinases able to convert pectines into glucuronic acid and galacturonic acid or amylases to convert starch into glucose monomers. Preferably, the host is able to convert a carbon source selected from the group consisting of glucose, xylose, arabinose, sucrose, lactose and glycerol. The host cell may for instance be a eukaryotic host cell as described in WO03/062430, WO06/009434, EP1499708B1, WO2006096130 or WO04/099381.

[0091] Thus, in a further aspect, the invention also provides a process for the preparation of a glycosylated diterpene which comprises fermenting a recombinant host of the invention which is capable of producing at least one glycosylated diterpene in a suitable fermentation medium, and optionally recovering the glycosylated diterpene.

[0092] The fermentation medium used in the process for the production of a glycosylated diterpene may be any suitable fermentation medium which allows growth of a particular eukaryotic host cell. The essential elements of the fermentation medium are known to the person skilled in the art and may be adapted to the host cell selected.

[0093] Preferably, the fermentation medium comprises a carbon source selected from the group consisting of plant biomass, celluloses, hemicelluloses, pectines, rhamnose, galactose, fucose, fructose, maltose, maltodextrines, ribose, ribulose, or starch, starch derivatives, sucrose, lactose, fatty acids, triglycerides and glycerol. Preferably, the fermentation medium also comprises a nitrogen source such as ureum, or an ammonium salt such as ammonium sulphate, ammonium chloride, ammoniumnitrate or ammonium phosphate.

[0094] The fermentation process according to the present invention may be carried out in batch, fed-batch or continuous mode. A separate hydrolysis and fermentation (SHF) process or a simultaneous saccharification and fermentation (SSF) process may also be applied. A combination of these fermentation process modes may also be possible for optimal productivity. A SSF process may be particularly attractive if starch, cellulose, hemicelluose or pectin is used as a carbon source in the fermentation process, where it may be necessary to add hydrolytic enzymes, such as cellulases, hemicellulases or pectinases to hydrolyse the substrate.

10

30

35

55

[0095] The recombinant host used in the process for the preparation of a glycosylated diterpene may be any suitable recombinant host as defined herein above. It may be advantageous to use a recombinant eukaryotic recombinant host according to the invention in the process since most eukaryotic cells do not require sterile conditions for propagation and are insensitive to bacteriophage infections. In addition, eukaryotic host cells may be grown at low pH to prevent bacterial contamination.

[0096] The recombinant host according to the present invention may be a facultative anaerobic microorganism. A facultative anaerobic recombinant host can be propagated aerobically to a high cell concentration. This anaerobic phase can then be carried out at high cell density which reduces the fermentation volume required substantially, and may minimize the risk of contamination with aerobic microorganisms.

[0097] The fermentation process for the production of a glycosylated diterpene according to the present invention may be an aerobic or an anaerobic fermentation process.

[0098] An anaerobic fermentation process may be herein defined as a fermentation process run in the absence of oxygen or in which substantially no oxygen is consumed, preferably less than 5, 2.5 or 1 mmol/L/h, and wherein organic molecules serve as both electron donor and electron acceptors. The fermentation process according to the present invention may also first be run under aerobic conditions and subsequently under anaerobic conditions.

[0099] The fermentation process may also be run under oxygen-limited, or micro-aerobical, conditions. Alternatively, the fermentation process may first be run under aerobic conditions and subsequently under oxygen-limited conditions. An oxygen-limited fermentation process is a process in which the oxygen consumption is limited by the oxygen transfer from the gas to the liquid. The degree of oxygen limitation is determined by the amount and composition of the ingoing gasflow as well as the actual mixing/mass transfer properties of the fermentation equipment used.

[0100] The production of a glycosylated diterpene in the process according to the present invention may occur during the growth phase of the host cell, during the stationary (steady state) phase or during both phases. It may be possible to run the fermentation process at different temperatures.

[0101] The process for the production of a glycosylated diterpene may be run at a temperature which is optimal for the recombinant host. The optimum growth temperature may differ for each transformed recombinant host and is known to the person skilled in the art. The optimum temperature might be higher than optimal for wild type organisms to grow the organism efficiently under non-sterile conditions under minimal infection sensitivity and lowest cooling cost. Alternatively, the process may be carried out at a temperature which is not optimal for growth of the recombinant host.

[0102] The process for the production of a glycosylated diterpene according to the present invention may be carried out at any suitable pH value. If the recombinant host is a yeast, the pH in the fermentation medium preferably has a value of below 6, preferably below 5,5, preferably below 5, preferably below 4,5, preferably below 4, preferably below pH 3,5 or below pH 3,0, or below pH 2,5, preferably above pH 2. An advantage of carrying out the fermentation at these low pH values is that growth of contaminant bacteria in the fermentation medium may be prevented.

[0103] Such a process may be carried out on an industrial scale. The product of such a process is one or more glycosylated diterpenes, such as one or more steviol glycosides.

[0104] Recovery of glycosylated diterpene(s) from the fermentation medium may be performed by known methods in the art, for instance by distillation, vacuum extraction, solvent extraction, or evaporation.

[0105] In the process for the production of a glycosylated diterpene according to the invention, it may be possible to achieve a concentration of above 5 mg/l fermentation broth, preferably above 10 mg/l, preferably above 20 mg/l, preferably above 30 mg/l fermentation broth, preferably above 40 mg/l, more preferably above 50 mg/l, preferably above 60 mg/l, preferably above 70, preferably above 80 mg/l, preferably above 100 mg/l, preferably above 1 g/l, preferably above 5 g/l, preferably above 10 g/l, for example above 20g/l, but usually up to a concentration of about 200g/l, such as up to about 150g/l, such as up to about 100g/l, for example up to about 70 g/l. Such concentrations may be concentration of the total broth or of the supernatant..

[0106] The invention further provides a fermentation broth comprising a glycosylated diterpene obtainable by the process of the invention for the preparation of a glycosylated diterpene.

[0107] In the event that one or more glycosylated diterpenes is expressed within a recombinant host of the invention, such cells may need to be treated so as to release them. Preferentially, at least one glycosylated diterpene, such as a steviol glycoside, for example rebA or rebM, is produced extracellularly

[0108] The invention also provides a glycosylated diterpene obtained by a process according to the invention for the preparation of a glycosylated diterpene or obtainable from a fermentation broth of the invention. Such a glycosylated diterpene may be a non- naturally occurring glycosylated diterpene, that is to say one which is not produced in plants.

[0109] Also provided is a composition comprising one or more steviol glycosides obtainable by process for the preparation of a glycosylated diterpene or obtainable from a fermentation broth of the invention. Such a composition may comprise two or more glycosylated diterpenes obtainable by a process of the invention for the preparation of a glycosylated diterpene or obtainable from a fermentation broth of the invention. In such a composition, one or more of the glycosylated diterpenes may be a non-naturally occurring glycosylated diterpene, that is to say one which is not produced in plants. **[0110]** Furthermore, the invention provides a method for converting a first glycosylated diterpene into a second glycosylated diterpene, which method comprises:

- contacting said first glycosylated diterpene with a recombinant host of the invention, a cell free extract derived from such a recombinant host or an enzyme preparation derived from either thereof;
- thereby to convert the first glycosylated diterpene into the second glycosylated diterpene.

10

15

20

30

35

40

50

55

[0111] In such a method, the second glycosylated diterpene may be steviol-19-diside, steviolbioside, stevioside, 13-[(β -D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O- β -D-glucopyranosyl-p-D-glucopyranosyl ester, Reb E or Reb D.

[0112] In such a method, the first glycosylated diterpene may be steviol-13-monoside, steviol-19-monoside, rubuso-side, stevioside, rebaudioside A or 13-[(β -D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O- β -D-glucopyranosyl- β -D-glucopyranosyl ester and the second glycosylated diterpene is steviol-19-diside, steviolbioside, stevioside, 13-[(β -D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O- β -D-glucopyranosyl- β -D-glucopyranosyl ester, Reb E or Reb D.

[0113] These are the first and second steviol glycosides in relation to a reaction catalysed by a polypeptide described herein having UGT2 activity.

[0114] That is to say, the invention relates to a method of bioconversion or biotransformation.

[0115] A steviol glycoside or composition produced by the fermentation process according to the present invention may be used in any application known for such compounds. In particular, they may for instance be used as a sweetener, for example in a food or a beverage. According to the invention therefore, there is provided a foodstuff, feed or beverage which comprises a glycosylated diterpene, such as a steviol glycoside, or a composition of the invention.

[0116] For example a glycosylated diterpene or a composition of the invention may be formulated in soft drinks, as a tabletop sweetener, chewing gum, dairy product such as yoghurt (e.g. plain yoghurt), cake, cereal or cereal-based food, nutraceutical, pharmaceutical, edible gel, confectionery product, cosmetic, toothpastes or other oral cavity composition, etc. In addition, a glycosylated diterpene or a composition of the invention can be used as a sweetener not only for drinks, foodstuffs, and other products dedicated for human consumption, but also in animal feed and fodder with improved characteristics.

[0117] Accordingly, the invention provides, *inter alia*, a foodstuff, feed or beverage which comprises a diterpene or glycosylated diterpene prepared according to a process of the invention.

[0118] During the manufacturing of foodstuffs, drinks, pharmaceuticals, cosmetics, table top products, chewing gum the conventional methods such as mixing, kneading, dissolution, pickling, permeation, percolation, sprinkling, atomizing, infusing and other methods can be used.

[0119] The glycosylated diterpene, for example a steviol glycoside, or a composition of the invention can be used in dry or liquid forms. It can be added before or after heat treatment of food products. The amount of the sweetener depends on the purpose of usage. It can be added alone or in the combination with other compounds.

[0120] Compounds produced according to the method of the invention may be blended with one or more further non-caloric or caloric sweeteners. Such blending may be used to improve flavour or temporal profile or stability. A wide range of both non-caloric and caloric sweeteners may be suitable for blending with a glycosylated diterpene or a composition of the invention. For example, non-caloric sweeteners such as mogroside, monatin, aspartame, accesulfame salts, cyclamate, sucralose, saccharin salts or erythritol. Caloric sweeteners suitable for blending with a glycosylated diterpene or a composition of the invention include sugar alcohols and carbohydrates such as sucrose, glucose, fructose and HFCS. Sweet tasting amino acids such as glycine, alanine or serine may also be used.

[0121] A glycosylated diterpene or a composition of the invention can be used in the combination with a sweetener suppressor, such as a natural sweetener suppressor. It may be combined with an umami taste enhancer, such as an amino acid or a salt thereof.

[0122] A glycosylated diterpene or a composition of the invention can be combined with a polyol or sugar alcohol, a

carbohydrate, a physiologically active substance or functional ingredient (for example a carotenoid, dietary fiber, fatty acid, saponin, antioxidant, nutraceutical, flavonoid, isothiocyanate, phenol, plant sterol or stanol (phytosterols and phytostanols), a polyols, a prebiotic, a probiotic, a phytoestrogen, soy protein, sulfides/thiols, amino acids, a protein, a vitamin, a mineral, and/or a substance classified based on a health benefits, such as cardiovascular, cholesterol-reducing or anti-inflammatory.

[0123] A composition with a glycosylated diterpene or a composition of the invention may include a flavoring agent, an aroma component, a nucleotide, an organic acid, an organic acid salt, an inorganic acid, a bitter compound, a protein or protein hydrolyzate, a surfactant, a flavonoid, an astringent compound, a vitamin, a dietary fiber, an antioxidant, a fatty acid and/or a salt.

[0124] A glycosylated diterpene or a composition of the invention may be applied as a high intensity sweetener to produce zero calorie, reduced calorie or diabetic beverages and food products with improved taste characteristics. Also it can be used in drinks, foodstuffs, pharmaceuticals, and other products in which sugar cannot be used.

10

15

20

30

35

45

50

[0125] In addition, a glycosylated diterpene or a composition of the invention may be used as a sweetener not only for drinks, foodstuffs, and other products dedicated for human consumption, but also in animal feed and fodder with improved characteristics.

[0126] The examples of products where a glycosylated diterpene or a composition of the invention can be used as a sweetening compound can be as alcoholic beverages such as vodka, wine, beer, liquor, sake, etc.; natural juices, refreshing drinks, carbonated soft drinks, diet drinks, zero calorie drinks, reduced calorie drinks and foods, yogurt drinks, instant juices, instant coffee, powdered types of instant beverages, canned products, syrups, fermented soybean paste, soy sauce, vinegar, dressings, mayonnaise, ketchups, curry, soup, instant bouillon, powdered soy sauce, powdered vinegar, types of biscuits, rice biscuit, crackers, bread, chocolates, caramel, candy, chewing gum, jelly, pudding, preserved fruits and vegetables, fresh cream, jam, marmalade, flower paste, powdered milk, ice cream, sorbet, vegetables and fruits packed in bottles, canned and boiled beans, meat and foods boiled in sweetened sauce, agricultural vegetable food products, seafood, ham, sausage, fish ham, fish sausage, fish paste, deep fried fish products, dried seafood products, frozen food products, preserved seaweed, preserved meat, tobacco, medicinal products, and many others. In principal it can have unlimited applications.

[0127] The sweetened composition comprises a beverage, non-limiting examples of which include non-carbonated and carbonated beverages such as colas, ginger ales, root beers, ciders, fruit-flavored soft drinks (e.g., citrus-flavored soft drinks such as lemon-lime or orange), powdered soft drinks, and the like; fruit juices originating in fruits or vegetables, fruit juices including squeezed juices or the like, fruit juices containing fruit particles, fruit beverages, fruit juice beverages, beverages containing fruit juices, beverages with fruit flavorings, vegetable juices, juices containing vegetables, and mixed juices containing fruits and vegetables; sport drinks, energy drinks, near water and the like drinks (e.g., water with natural or synthetic flavorants); tea type or favorite type beverages such as coffee, cocoa, black tea, green tea, oolong tea and the like; beverages containing milk components such as milk beverages, coffee containing milk components, cafe au lait, milk tea, fruit milk beverages, drinkable yogurt, lactic acid bacteria beverages or the like; and dairy products

[0128] Generally, the amount of sweetener present in a sweetened composition varies widely depending on the particular type of sweetened composition and its desired sweetness. Those of ordinary skill in the art can readily discern the appropriate amount of sweetener to put in the sweetened composition.

[0129] A glycosylated diterpene or a composition of the invention can be used in dry or liquid forms. It can be added before or after heat treatment of food products. The amount of the sweetener depends on the purpose of usage. It can be added alone or in the combination with other compounds.

[0130] During the manufacturing of foodstuffs, drinks, pharmaceuticals, cosmetics, table top products, chewing gum the conventional methods such as mixing, kneading, dissolution, pickling, permeation, percolation, sprinkling, atomizing, infusing and other methods can be used.

[0131] Thus, compositions of the present invention can be made by any method known to those skilled in the art that provide homogeneous even or homogeneous mixtures of the ingredients. These methods include dry blending, spray drying, agglomeration, wet granulation, compaction, co-crystallization and the like.

[0132] In solid form a glycosylated diterpene or a composition of the invention can be provided to consumers in any form suitable for delivery into the comestible to be sweetened, including sachets, packets, bulk bags or boxes, cubes, tablets, mists, or dissolvable strips. The composition can be delivered as a unit dose or in bulk form.

[0133] For liquid sweetener systems and compositions convenient ranges of fluid, semi-fluid, paste and cream forms, appropriate packing using appropriate packing material in any shape or form shall be invented which is convenient to carry or dispense or store or transport any combination containing any of the above sweetener products or combination of product produced above.

[0134] The composition may include various bulking agents, functional ingredients, colorants, flavors.

[0135] The terms "sequence homology" or "sequence identity" or "homology" or "identity" are used interchangeably herein. For the purpose of this invention, it is defined here that in order to determine the percentage of sequence homology

or sequence identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes. In order to optimize the alignment between the two sequences gaps may be introduced in any of the two sequences that are compared. Such alignment can be carried out over the full length of the sequences being compared. Alternatively, the alignment may be carried out over a shorter length, for example over about 20, about 50, about 100 or more nucleic acids/based or amino acids. The sequence identity is the percentage of identical matches between the two sequences over the reported aligned region.

[0136] A comparison of sequences and determination of percentage of sequence identity between two sequences can be accomplished using a mathematical algorithm. The skilled person will be aware of the fact that several different computer programs are available to align two sequences and determine the identity between two sequences (Kruskal, J. B. (1983) An overview of sequence comparison In D. Sankoff and J. B. Kruskal, (ed.), Time warps, string edits and macromolecules: the theory and practice of sequence comparison, pp. 1-44 Addison Wesley). The percent sequence identity between two amino acid sequences or between two nucleotide sequences may be determined using the Needleman and Wunsch algorithm for the alignment of two sequences. (Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453). Both amino acid sequences and nucleotide sequences can be aligned by the algorithm. The Needleman-Wunsch algorithm has been implemented in the computer program NEEDLE. For the purpose of this invention the NEEDLE program from the EMBOSS package was used (version 2.8.0 or higher, EMBOSS: The European Molecular Biology Open Software Suite (2000) Rice,P. Longden, I. and Bleasby,A. Trends in Genetics 16, (6) pp276-277, http://emboss.bioinformatics.nl/). For protein sequences EBLOSUM62 is used for the substitution matrix. For nucleotide sequence, EDNAFULL is used. The optional parameters used are a gap-open penalty of 10 and a gap extension penalty of 0.5. The skilled person will appreciate that all these different parameters will yield slightly different results but that the overall percentage identity of two sequences is not significantly altered when using different algorithms.

[0137] After alignment by the program NEEDLE as described above the percentage of sequence identity between a query sequence and a sequence of the invention is calculated as follows: Number of corresponding positions in the alignment showing an identical amino acid or identical nucleotide in both sequences divided by the total length of the alignment after subtraction of the total number of gaps in the alignment. The identity defined as herein can be obtained from NEEDLE by using the NOBRIEF option and is labeled in the output of the program as "longest-identity".

[0138] The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to nucleic acid molecules as described herein. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to protein molecules as described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17): 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See the homepage of the National Center for Biotechnology Information at http://www.ncbi.nlm.nih.gov/.

[0139] Embodiments of the invention:

- 1. A recombinant host comprising a recombinant nucleic acid sequence encoding a polypeptide having:
 - a. the amino acid sequence set forth in SEQ ID NO: 4 or an amino acid sequence having at least about 30% sequence identity thereto;
 - b. the amino acid sequence set forth in SEQ ID NO: 2 or an amino acid sequence having at least about 30% sequence identity thereto;
 - c. the amino acid sequence set forth in SEQ ID NO: 3 or an amino acid sequence having at least about 30% sequence identity thereto; or
 - d. the amino acid sequence set forth in SEQ ID NO: 1 or an amino acid sequence having at least about 30% sequence identity thereto.
- 2. A recombinant host according to embodiment 1 which is capable of producing a glycosylated diterpene, such as a steviol glycoside.
 - 3. A recombinant host according to embodiment 1 or 2 which comprises one or more recombinant nucleotide sequence(s) encoding:
 - a polypeptide having ent-copalyl pyrophosphate synthase activity;
 - a polypeptide having ent-Kaurene synthase activity;
 - a polypeptide having ent-Kaurene oxidase activity; and

55

10

15

30

35

40

45

a polypeptide having kaurenoic acid 13-hydroxylase activity.

- 4. A recombinant host according to any one of the preceding embodiments, which comprises a recombinant nucleic acid sequence encoding a polypeptide having NADPH-cytochrome p450 reductase activity.
- 5. A recombinant host according to any one of the preceding embodiments which comprises a recombinant nucleic acid sequence encoding one or more of:
 - (i) a polypeptide having UGT74G1 activity (UGT3 activity);
 - (ii) a polypeptide having UGT85C2 activity (UGT1 activity); and
 - (iii) a polypeptide having UGT76G1 activity (UGT4 activity).
- 6. A recombinant host according to any one of the preceding embodiments which comprises a recombinant nucleic acid sequence encoding an additional polypeptide having UGT2 activity.
- 7. A recombinant host according to any one of the preceding embodiments, wherein the host belongs to one of the genera Saccharomyces, Aspergillus, Pichia, Kluyveromyces, Candida, Hansenula, Humicola, Issatchenkia, Trichosporon, Brettanomyces, Pachysolen, Yarrowia, Yamadazyma or Escherichia.
- 8. A recombinant host according to embodiment 7, wherein the recombinant host is a Saccharomyces cerevisiae cell, a Yarrowia lipolytica cell, a Candida krusei cell, an Issatchenkia orientalis or an Escherichia coli cell.
 - 9. A recombinant host according to any one of the preceding embodiments, wherein the ability of the host to produce geranylgeranyl diphosphate (GGPP) is upregulated.
 - 10. A recombinant host according to any one of the preceding embodiments, comprising one or more recombinant nucleic acid sequence(s) encoding hydroxymethylglutaryl-CoA reductase, farnesyl-pyrophosphate synthetase and geranylgeranyl diphosphate synthase.
- 30 11. A recombinant host according to any one of the preceding embodiments which comprises a nucleic acid sequence encoding one or more of:
 - a polypeptide having hydroxymethylglutaryl-CoA reductase activity;
 - a polypeptide having farnesyl-pyrophosphate synthetase activity;
 - a polypeptide having geranylgeranyl diphosphate synthase activity.
 - 12. A process for the preparation of a glycosylated diterpene which comprises fermenting a recombinant host according to any one of embodiments 2 to 11 in a suitable fermentation medium, and optionally recovering the glycosylated diterpene.
 - 13. A process according to embodiment 12 for the preparation of a glycosylated diterpene, wherein the process is carried out on an industrial scale.
 - 14. A fermentation broth comprising a glycosylated diterpene obtainable by the process according to embodiment 12 or 13.
 - 15. A glycosylated diterpene obtained by a process according to embodiment 12 or 13 or obtainable from a fermentation broth according to embodiment 14.
- 16. A composition comprising two or more glycosylated diterpenes obtained by a process according to embodiment 12 or 13 or obtainable from a fermentation broth according to embodiment 14.
 - 17. A foodstuff, feed or beverage which comprises a glycosylated diterpene according to embodiment 15 or a composition according to embodiment 16.
 - 18. A method for converting a first glycosylated diterpene into a second glycosylated diterpene, which method comprises:

55

5

10

15

25

35

40

- contacting said first glycosylated diterpene with a recombinant host according to any one of embodiments 1 to 11, a cell free extract derived from such a recombinant host or an enzyme preparation derived from either thereof;
- thereby to convert the first glycosylated diterpene into the second glycosylated diterpene.
- 5 19. A method according to embodiment 18, wherein the second glycosylated diterpene is: steviol-19-diside, steviolbioside, stevioside, 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester, Reb E or Reb D.
- 20. A method according to embodiment 19, wherein the first glycosylated diterpene is steviol-13-monoside, steviol-19-monoside, rubusoside, stevioside, Rebaudioside A or 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester and the second glycosylated diterpene is steviol-19-diside, steviolbioside, stevioside, 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl-β-D-glucopyranosyl ester, Reb E or Reb D.
- [0140] A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.
 - [0141] The disclosure of each reference set forth herein is incorporated herein by reference in its entirety.
 - [0142] The present invention is further illustrated by the following Examples:

EXAMPLES

20

30

35

40

45

50

Example 1: Construction of E. coli expression vectors

[0143] The full length open reading frame encoding UGTs from Solanum lycopersicon were amplified from S. lycopersicon cDNA. 1 μg of total RNA isolated from tomato fruit was used as starting material to prepare cDNA using the SMART[™] RACE cDNA Amplification Kit (Clontech), according to the manufacturer's instructions.

[0144] For amplification Phusion "proofreading polymerase" (Finnzymes) and the primers mentioned in Table 1 were used.

16

Table 1: primers used to amplify tomato and stevia UGT fragments

	Forward primer	Reverse primer
RT7	ATTAGGATCCAATGGGAACACAAGTAACAGAG	AATACTGCAGTTAATTAGTACTAATCTTACAAAATT
RT11	ATTAGGATCCAATGGAAGCCAAGAAAAAAAAATGAG	AATACTGCAGTCATTTGTTGCTGCAAAGAGCCATG
RT15	ATTAGGATCCAATGGATGGTTCGAATGAAAAGTC	AATACTGCAGCTAGACAACATTTGATCTAGTCTTG
RT18	ATTAGGATCCAATGAGTACTATTAAAAGGTATTGATG	AATACTGCAGATTCACTTATTACTATTCCTACAAA(
UGT2_1 a	ATTAGGATCCAATGGCCACTTCTGACTCCAT	AATAAAGCTTTTAGCTTTCGTGGTCAATGGCA
85C2	ATTAGGATCCAATGGACGCTATGGCCACCACT	AATAAAGCTTTTAGTTTCGAGCCAAGACAGTG

[0145] The amplified fragment and vector pACYC-DUET1 (Novagen) were digested with the restriction enzymes BamHI and PstI for the tomato UGT fragments or BamHI and HindIII for UGT2_1 a and UGT85C2, followed by purification of the required DNA fragments, their subsequent ligation and finally transformation into E. coli XL-1 blue using standard procedures. Recombinant bacteria were selected on LB plates containing 50 μ g /mL chloramphenicol. After ON growth of recombinant colonies in liquid culture (3 mL LB broth with 50 μ g /mL chloramphenicol, 250 rpm, 37°C), plasmid DNA was isolated using the Qiaprep Spin Miniprep kit (Qiagen). Isolated plasmid material was checked by Sanger sequencing with vector primers.

[0146] This cloning strategy led to constructs from which the UGTs can be expressed with an N-terminal His₆-tag

Example 2: Synthesis of Steviolmonoside by UGT85C2

10

15

20

25

30

35

40

45

50

55

[0147] To prepare Steviolmonoside enzymatically from Steviol (Sigma U4625) and UDP-glucose (Sigma 4625), the following compounds were mixed in a total reaction volume of 4 ml. For preparation of a crude enzyme extract of UGT85C2 see Example 3.

	μl
100 mM 2-mercaptoethanol in 0.1 M Tris-buffer	160
100 mM UDP-glucose in 10% DMSO	800
100 mM Steviol in 100% DMSO	40
Crude enzyme extract UGT85C2	400

[0148] The glycosylation reaction was performed overnight at 30 °C and 100 rpm.

Subsequently the reaction was purified using an Oasis hydrophilic-Balanced (HLB) 3 cc extraction cartridge (Waters), which had been preconditioned according to the manufacturer's instructions. The enzymatic reaction was loaded on the HLB column, and allowed to enter the column by gravity flow. Subsequently the column was washed with 6 mL of water. Product was eluted by passing 3 ml of 100% methanol over the column. The methanol elute was dried under vacuum centrifugation and the pellet dissolved in 80 μ l DMSO. This resulted in a 50 mM steviolmonoside preparation.

Example 3: In vitro comparison of different tomato UGTs and Stevia UGT2 1a

[0149] The control plasmid pACYC-DUET-1 and the UGT constructs were transformed to *E. coli* BL21 DE3 (Invitrogen). For expression, a 3 mL overnight culture of the recombinant *E. coli* strains was prepared (LB medium with appropriate antibiotic; 50 ug chloramphenicol / mL and 1% glucose). 200 μL of that culture was transferred to 20 mL of LB medium with the appropriate antibiotic in a 100 mL Erlenmeijer flask, and incubated at 37°C, 250 rpm until the A600 was 0.4 to 0.6. Subsequently IPTG was added to a final concentration of 1 mM and cultures were incubated overnight at 18°C and 250 rpm. The next day, cells were harvested by centrifugation (10 min 8000xg), medium was removed, and cells were resuspended in 1 mL Resuspension buffer (100 mM Tris-HCl pH = 7.5, 1.4 mM 2-mercaptoethanol; 4°C, 15% glycerol). Cells were disrupted by two times shaking with 200 mg 0.1 mm Zirconia/Silica Beads (BioSpec) for 10 seconds in a FastPrep FP120 machine (Savant) at speed 6.5 . Insoluble particles were subsequently removed by centrifugation (10 min 13,000xg, 4°C). The resulting supernatants were referred to as crude enzyme extracts.

Example 4: Glucosylation of Steviolmonoside and RebaudiosideA by UGTs

[0150] For enzyme assays, a mix of total 50 μ l was made in a 2 ml eppendorf tube:

0.1 M Tris in 2% DMSO	37.5µl
100 mM 2-mercaptoethanol in 0.1M tris	2 μl
100 mM UDP-glucose in 10%DMSO	5 μl
50 mM Steviolmonoside in 100%DMSO	0.5 μl
Crude UGT enzyme extract	5 μl

[0151] The tubes were incubated overnight at 30 °C and 100 rpm.

[0152] For assays with Rebaudiosise-A (Reb A), Steviolmonoside was replaced by 0.5 μ l 50mM Reb A (ChromDex ASB-00018225) in 50% DMSO.

5 Example 5: LC-MS analyses

10

15

20

25

30

35

40

[0153] An LC-PDA-QTOF-MS system was used to analyse reaction products. After incubation, the *in vitro* enzyme assay mix (50 μ l) was stopped by addition of 150 μ l of 100% methanol in MQ water acidified with 0.13% formic acid. Samples were sonicated for 15 min, centrifuged at 2500 rpm for 10 min and filtered through 0.45 μ m filters (Minisart SRP4, Biotech GmbH, Germany). For chromatographic separation, a Luna C18(2) pre-column (2.0 x 4 mm) and an analytical column (2.0 x 150 mm, 100Å, particle size 3 μ m) from Phenomenex (Torrance, CA, USA) were used. Five microliters of each filtered sample were injected into the system for LC-PDA-MS analysis using formic acid: water (1:1000, v/v; eluent A) and formic acid: acetonitrile (1:1000, v/v; eluent B) as elution solvents. Flow was set at 0.19 mL/min with the gradient from 80% eluent A and 20% eluent B to 45% Eluent A and 55% eluent B across a period of 45 min. The column temperature was maintained at 40°C and the samples at 20°C. UV absorbance was measured using a Waters 2996 PDA (A range from 240 to 600 nm) and ESI-MS analysis was performed using a QTOF Ultima V4.00.00 mass spectrometer (Waters-Corporation, MS technologies) in negative mode. A collision energy of 10 eV was used for full-scan LC-MS in the m/z range 100 to 1,500. Leucine enkephalin ([M - H]- = 554.2620), was used for online mass calibration (lock mass).

[0154] Compounds were identified by their retention time and their apparent mass and compared to standard steviosides present in the Rebaudioside-A Impurities Mix-6 (Cerilliant S-017) (Table 2).

Table 2: Retention time and masses of steviosides in the Rebaudioside-A Impurities Mix-6

	Rt (min)	m/z
Reb D	12.95	1127.47
Reb A	18.76	965.42
Stevioside	18.94	803.37
Rubusoside	22.84	803.37
Reb B	25.15	641.31
Steviolbioside	25.58	641.31
Steviol	44.73	317.21

[0155] The results of the *in vitro* tests are given in Table 3 and 4. To semi-quantify the produced compounds of the *in vitro* assays, the peak surface area for each relevant peak was measured from the total ion count chromatograms. Clearly, UGT2_1a was able to produce steviolbioside (Rt = 25.6) from Steviolmonoside. UGT RT18 also produces predominantly steviolbioside. Other RTs produce preferentially other steviolglycosides (Table 3).

Table 3: Products detected by LC-MS after *in vitro* reaction of Steviolmonoside with different UGT enzymes. As substrate, Steviolmonoside (Rt=30.4 min; m/z 959 =[2M-H]) was used. Shown are peak surface area in the LC-MS chromatograms. Rt: retention time in minutes. Steviolbioside is detected at 25.6 min.

	m/z=1011	m/z=407	m/z = 803	m/z = 803	m/z = 641	m/z = 641	m/z = 641
	Rt=14.0	Rt=19.0	Rt=20.7	Rt=20.8	Rt=24.8	Rt=25.6	Rt=26.3
blanc						2	
UGT2_1 a		23				11532	
RT18					153	4408	
RT15			540		5841	8467	1
RT11	3			10110	16229	2163	
RT7				163	7764	1788	

[0156] When testing Reb A as a substrate, it was clear that RT18 showed a relatively strong formation of Reb D

19

45

50

(Rt=12.9 min) from Reb A, in comparison with UGT2_1 a, while the other UGTs preferentially produce different Reb A-glycosides (Table 4).

Table 4: Products detected by LC-MS after *in vitro* reaction of Reb A with different UGT enzymes. As substrate, Reb A (Rt=18.74 min; m/z 1011 = [M-H + formic acid]) was used. Shown are peak surface area in the LC-MS chromatograms.

Rt: retention time in minutes. Reb D is detected at Rt=12.9 min.

	m/z=565	m/z=1127	m/z=1127	m/z=1127	m/z=1127	m/z=1127
	Rt=12.6	Rt=12.9	Rt=14.1	Rt=14.25	Rt=14.9	Rt=17.4
Blanc		6		12		
UGT2_1 a		1037	16			
RT18	98	3596		494		
RT15		376		8946	234	
RT11		33		7684	159	
RT7		1212		2169		31

[0157] Thus, RT18 can form steviolbioside from steviolmonoside, and Reb D from Reb A.

Example 6: UGT protein content in crude-enzyme extracts

[0158] We observed that the activity for the formation of steviolbioside of the RT18 crude enzyme extract was 2-3 fold lower compared to UGT2_1 a. To be able to compare the two enzymes for the activity per enzyme molecule in the crude extracts, we analysed the total protein content of the crude enzyme extracts.

[0159] First, the extracts were compared for protein content using Protein Dye Reagent concentrate (BIO-RAD 500-0006), according to the manufacturer's instructions, using lyophilized Bovine Serum Albumine BioRad 500-0007) as a standard. Based on this it was observed that UGT2_1 a crude extract contained twice as much protein as the RT18 crude extract (Table 5).

Table 5: Total protein content of crude enzyme extracts. Protein concentration is given in

[0160] Subsequently, to compare the enzyme concentrations in the crude extracts, a western blot experiment was

performed. 50 μ g of total protein was brought in 50 ul Sample buffer (20 mM Tris pH 6.8, 6% glycerol, 0.4% SDS, 20 mM Dithiothreitol, 0.01% Bromophenol Blue) and boiled for 5 minutes. Subsequently 10 μ l sample (= 10 μ g total protein) was loaded on a 12.5 % poly-acryl amide gel with SDS and run for 2 hours at 20 mA. Proteins were transferred from the gel onto nitrocellulose membrane (BIO-RAD) in standard blotting buffer (3 g/L Tris, 14.4 g/L glycine, 10% ethanol) for 1 hour (100 V). The nitrocellulose was subsequently washed with TBST buffer (20 mM Tris-Cl buffer pH 7.5, 150 mM NaCl, 0.05% Tween 20) for 5 minutes, and blocked with TBST buffer with 2% non-fat dry milk powder (ELK) for 1 hour. The presence of enzyme was detected by incubation for 1 hour with TBST with 2% ELK and 1:4000 diluted antiHis monoclonal antibody conjugated to peroxidase (Sigma, St Louis, A7058). After washing four times five minutes with TBST, the peroxidase was detected by the TMB Liquid substrate system for membranes (Sigma T0565). A purple colour

was detected at the position where His-tagged proteins (here: UGTs) were present on the blot. When all five crude enzyme extracts were compared in this way (Fig. 1) it was clear that UGT2_1a was expressed to well-detectable levels, while RT18 protein could not be detected. The other UGTs (RT15, RT11,RT7) were also detected, to different intensities.

20

15

20

10

5

25

35

30

40

45

55

[0161] To compare the UGT content in the crude enzyme extracts of RT18 and UGT2_1a, another western blot was made. For UGT2_1a, 0.5, 1.0, 1.9, 3.8 μ g protein was loaded, while for RT18, 31.9 and 63.8 μ g was loaded. Detection of UGTs was performed as described above. The blot (Fig. 2) showed that the amount of His-tagged UGT protein was the same in 1.9 μ g UGT2_1a extract and 63.8 μ g RT18, as estimated by visual inspection. This indicated that the concentration of UGT protein in the RT18 crude extract was 20-50 fold lower than in the UGT2_1a crude extract. Thus, the activity of RT18, as recorded in Tables 3 and 4, is more than 10-fold higher than UGT2_1a when using steviolmonoside as a substrate, and more than 50-fold higher when using Reb A as a substrate.

Example 7: MSMS analysis

10

[0162] To provide more evidence that the products of UGT2_1a and RT18 with steviolmonoside as a substrate were identical, the steviolbioside product of RT18 was further compared to the steviolbioside product from UGT2_1a and the steviol-diglucoside product from RT11 by tandem mass spectrometry analysis (LC-MS²). The methanol extracts from the RT18 and UGT2_1a enzyme assays were injected in an Accela HPLC-PDA (Thermo) coupled to a LTQ Ion Trap-Orbitrap FTMS hybrid mass spectrometer (Thermo) system was used. Data-directed MSMS was performed using the same LC conditions as described for LC-QTOF MS analysis (see above), and using negative ionization mode, with an Isolation Width of 3.00 Dalton and a Normalized Collission Energy of 35.0. Retention times of steviolglucosides differed slightly from the analysis on the LC-QTOF MS system (see above, Table 3).

[0163] Fragmentation was performed on the compounds with m/z 641.30 eluting at 23.0 min in the RT18 and UGT2_1a samples and eluting at 22.2 min in the RT11 sample.

[0164] In the fragmentation spectra of ions of m/z 641.30, the fragments m/z 479.26 [M-H-Glucose] and m/z 317.21 [M-H-2Glucose] were observed in all three samples. The ratio between the m/z 317.21 and m/z 479.26 ions was recorded for all three compounds. For both the RT18 and UGT2_1a compounds, the ratio m/z 317 to m/z 479 was 2:10, while the ratio m/z 317 to m/z 479 for the RT11 compound was 4:10. Thus, the MS2 analysis did not differentiate the steviolbioside products from RT18 and UGT2_1a, but did differentiate the RT11 steviol diglucoside product from these two. These results further confirm that the major product of RT18 corresponds to steviolbioside.

Example 8. RT18 expression in steviol glycoside production strain

[0165] In order to demonstrate the effect of the in vivo activity of the RT18 enzyme on the production of steviol glycosides, RT18 (SEQ ID NO: 19) was assembled with three promoters of different strength (Table 6), and transformed to a *Yarrowia lipolytica* strain that produces steviol glycosides using the approach described in WO2013/110673 and WO2015/007748. The genotype of this Yarrowia strain is given in Table 7

Table 6. Different strength promotors used for RT18 expression

Relative promoters strength	Name
Weak	CWP (SEQ ID NO: 20)
Medium	SCP2 (SEQ ID NO: 21)
Strong	HSP (SEQ ID NO: 22)

Table 7. Genotype of parental strain (copy number; SEQ ID NO).

Parent strain genotype	MATB tHMG (2; SEQ ID NO: 23) GGS (3; SEQ ID NO: 24) CPS (5; SEQ ID NO: 25) KS (4; SEQ ID NO: 26) KO (3; SEQ ID NO: 27) KAH4 (4; SEQ ID NO: 28) CPR (2; SEQ ID NO:
3. 13,11	29) UGT1 (3; SEQ ID NO: 30) UGT2 (2; SEQ ID NO: 31) UGT3 (2; SEQ ID NO: 32) UGT4 (3; SEQ ID NO: 33)

[0166] For positive transformants, a pre-culture was inoculated with colony material from YEPh-D agar. The pre-culture was grown in 200 μ l YEP with glucose as carbon source. The pre-culture was incubated 72 hours in an Infors incubator at 30°C, 750 rpm and 80% humidity. 40 μ l of pre-culture was used to inoculate 2.5 ml main culture. The main cultures were incubated 120 hours in an Infors incubator at 30°C, 550 rpm, 80% humidity. After 120 h the main culture was spun down at 2750 rpm for 10 min. Supernatant was diluted with water and acetonitrile, and measured using LC/MS.

[0167] The results are set out in in Figures 3 and 4. It can be seen that the strains that express the RT18 produce higher amounts of Reb M and Reb D compared to the parent. In addition, the stronger the expression, the more Reb D

21

45

30

35

40

and Reb M were produced. The formation of higher Reb D illustrates RT18 is effective in catalyzing the glycosylation of the glucose on the 19-position of steviol glycosides (see Figure 6), for example catalyzing the formation of Reb D from Reb A. Reb D can then be further converted to Reb M, catalyzed by UGT4.

5 Example 9. RT18 and UGT4 expression in steviol glycoside production strain

[0168] The expression of other UDP-glycosyl transferases, in combination with RT18, will have an influence on the product profile. For example the Reb D that is over-produced in a strain expressing RT18 can be further converted to Reb M by the activity of UGT4. In order to evaluate the effect of over-expression of RT18 with UGT4, expression vectors of RT18 and UGT4 were transformed to a *Yarrowia lipolytica* strain producing steviol glycosides using the approach described in WO2013/110673 and WO2015/007748. The genotype of this parental strain is given in Table 8.

Table 8. Genotype of strain used to transform RT18 and UGT4 (copy number; SEQ ID NO)

15	Parent strain genotype	MATB tHMG (2; SEQ ID NO: 23) GGS (2; SEQ ID NO: 24) CPS (2; SEQ ID NO: 25) KS (2; SEQ ID NO: 26) KO (2; SEQ ID NO: 27) KAH4 (2; SEQ ID NO: 28) CPR (2;
		SEQ ID NO: 29) UGT1 (2; SEQ ID NO: 30) UGT2 (1; SEQ ID NO: 34) UGT3 (2; SEQ ID NO: 32) UGT4 (2; SEQ ID NO: 33)

[0169] For positive transformants, a pre-culture was inoculated with colony material from YEPh-D agar. The pre-culture was grown in 200 μ l YEP with glucose as carbon source. The pre-culture was incubated 72 hours in an Infors incubator at 30°C, 750 rpm and 80% humidity. 40 μ l of pre-culture was used to inoculate 2.5 ml main culture. The main cultures were incubated 120 hours in an Infors incubator at 30°C, 550 rpm, 80% humidity. After 120 h the main culture was spun down at 2750 rpm for 10 min. Supernatant was diluted with water and acetonitrile, and measured using LC/MS.

[0170] The results are set out in Table 9, where the percentages of steviol glycosides on total steviol glycosides are listed for the two strains. It can be seen that the strains that expresses the RT18 in combination with additional UGT4 effectively convert a higher percentage of the steviol glycosides to higher glycosylated steviol glycosides. Particularly, Reb B, Stevioside and Reb A are lower in the strain expressing the RT18 and UGT4, whereas the abundance of Reb M is greatly increased. This illustrates the effectiveness of RT18 expression in steering steviol glycoside production towards higher glycosylated products such as Reb M.

Table 9. Percentages of steviol glycosides of total steviol glycosides in parent strain and strain expressing RT18 and an extra copy of UGT4.

Strain	Reb M	Reb D	Reb A	Stevioside	Reb B	Other steviol glycosides
parent	3	6	54	25	7	6
RT18, UGT4	66	5	20	1	1	6

Table 10: Description of the sequence listing

SEQ ID NO	Description
SEQ ID NO: 1	amino acid sequence of the RT7 protein from <i>Solanum lycopersicon</i> (Solyc11g007480 - tomato genome: http://solgenomics.net/)
SEQ ID NO: 2	amino acid sequence of the RT11 protein from Solanum lycopersicon (Solyc11g007500)
SEQ ID NO: 3	amino acid sequence of the RT15 protein from Solanum lycopersicon (Solyc04g081830)
SEQ ID NO: 4	amino acid sequence of the RT18 protein from Solanum lycopersicon (Solyc05g005930)
SEQ ID NO: 5	amino acid sequence of the UGT85C2 protein from Stevia rebaudiana
SEQ ID NO: 6	amino acid sequence of the UGT2_1 a protein from Stevia rebaudiana
SEQ ID NO: 7	nucleic acid sequence of the RT7 forward primer
SEQ ID NO: 8	nucleic acid sequence of the RT7 reverse primer
SEQ ID NO: 9	nucleic acid sequence of the RT11 forward primer

20

30

35

40

45

(continued)

	SEQ ID NO	Description
5	SEQ ID NO: 10	nucleic acid sequence of the RT11 reverse primer
Ü	SEQ ID NO: 11	nucleic acid sequence of the RT15 forward primer
	SEQ ID NO: 12	nucleic acid sequence of the RT15 reverse primer
	SEQ ID NO: 13	nucleic acid sequence of the RT18 forward primer
10	SEQ ID NO: 14	nucleic acid sequence of the RT18 reverse primer
	SEQ ID NO: 15	nucleic acid sequence of the UGT2_1 a forward primer
	SEQ ID NO: 16	nucleic acid sequence of the UGT2_1 a reverse primer
15	SEQ ID NO: 17	nucleic acid sequence of the UGT85C2 forward primer
	SEQ ID NO: 18	nucleic acid sequence of the UGT82C2 reverse primer
	SEQ ID NO: 19	nucleic acid sequence of the RT18 open reading frame optimized for expression in Y. lipolytica
	SEQ ID NO: 20	nucleic acid sequence of CWP promoter from Y. lipolytica
20	SEQ ID NO: 21	nucleic acid sequence of SCP2 promoter from Y. lipolytica
	SEQ ID NO: 22	nucleic acid sequence of HSP promoter from Y. lipolytica
	SEQ ID NO: 23	nucleic acid sequence of tHMG optimized for expression in Y. lipolítica
25	SEQ ID NO: 24	nucleic acid sequence of GGS optimized for expression in Y. lipolytica
	SEQ ID NO: 25	nucleic sequence of CPS from S. rebaudiana optimized for expression in Y. lipolytica
	SEQ ID NO: 26	nucleic acid sequence of tKS from S. rebaudiana optimized for expression in Y. lipolytica
	SEQ ID NO: 27	nucleic acid sequence of KO from Gibberella fujikori optimized for expression in Y. lipolytica
30	SEQ ID NO: 28	nucleic acid sequence of KAH_4 optimized for expression in Y. lipolytica
	SEQ ID NO: 29	nucleic acid sequence of CPR_optimized for expression in Y. lipolytica
	SEQ ID NO: 30	nucleic acid sequence of UGT1 optimized for expression in Y. lipolytica
35	SEQ ID NO: 31	nucleic acid sequence of UGT2 variant optimized for expression in Y. lipolytica
	SEQ ID NO: 32	nucleic acid sequence of UGT3 optimized for expression in Y. lipolytica
	SEQ ID NO: 33	nucleic acid sequence of UGT4 optimized for expression in Y. lipolytica
	SEQ ID NO: 34	nucleic acid sequence of UGT2 variant optimized for expression in Y. lipolytica
40		

SEQUENCE LISTING

	<110>	DSM :	IP A	ssets	s B.	٧.									
5	<120>	UDP-	glyc	o syl i	tran	sfera	ases								
	<130>	3002	8-EP-	-ETD											
10	<150> <151>	US62, 2015													
	<150> <151>														
	<160>	34													
15	<170>	Pate	ntIn	ver	sion	3.5									
20	<210> <211> <212> <213>	1 453 PRT Solar	num i	lycoj	pers:	icon									
	<400>	1													
25	Met Gl	y Thr	Gln	Val 5	Thr	Glu	His	Gly	Thr 10	Ser	Asn	Leu	Arg	Val 15	Val
	Met Ph	e Pro	Trp 20	Leu	Ala	Tyr	Gly	His 25	Ile	Ser	Pro	Phe	Leu 30	Tyr	Val
30	Ala Ly	s Lys 35	Leu	Ala	Asp	Arg	Gly 40	Phe	Leu	Ile	Tyr	Le u 4 5	Cys	Ser	Thr
35	Pro I1 50	e Asn	Leu	Lys	Ser	Thr 55	Ile	Glu	Lys	Ile	Pro 60	Glu	Lys	Tyr	Ala
40	Asp Se	r Ile	His	Leu	Ile 70	Glu	Leu	His	Leu	Pro 75	Glu	Leu	Pro	Glu	Leu 80
	Pro Pr	o His	Tyr	His 85	Thr	Thr	Asn	Gly	Leu 90	Pro	Pro	His	Leu	Asn 95	His
45	Thr Le	u Gln	Lys 100	Ala	Leu	Lys	Met	Ser 105	Lys	Pro	Asn	Leu	Ser 110	Lys	Ile
50	Leu Ly	s Asn 115	Leu	Lys	Pro	Asp	Leu 120	Met	Ile	Tyr	Asp	Val 125	Leu	Gln	Gln
	Trp Al		Arg	Val	Ala	Asn 135	Glu	Gln	Ser	Ile	Pro 140	Ala	Val	Arg	Leu
55	Leu Th	r Phe	Gly	Ala	Ala 150	Val	Phe	Ser	Tyr	Phe 155	Cys	Asn	Leu	Val	Lys 160

	Lys	Pro	Gly	Val	Glu 165	Phe	Pro	Phe	Pro	Asp 170	Ile	Tyr	Leu	Arg	Lys 175	Ile
5	Glu	Gln	Val	Lys 180	Leu	Gly	Glu	Met	Leu 185	Glu	Lys	Ser	Ala	Lys 190	Asp	Gln
10	Asp	Pro	Asp 195	Asp	Glu	Glu	Arg	Leu 200	Val	Asp	Glu	Tyr	Lys 205	Gln	Ile	Ala
	Leu	Ile 210	Cys	Thr	Ser	Arg	Thr 215	Ile	Glu	Ala	Lys	Tyr 220	Ile	Asp	Phe	Leu
15	Leu 225	Glu	Leu	Ser	Asn	Leu 230	Lys	Val	Val	Pro	Val 235	Gly	Ser	Pro	Val	Gln 240
20	Asp	Leu	Ile	Thr	Asn 245	Asp	Ala	Asp	Asp	Met 250	Glu	Leu	Ile	Asp	Trp 255	Leu
25	Gly	Ser	Lys	Asp 260	Glu	Asn	Ser	Thr	Val 265	Phe	Val	Ser	Phe	Gly 270	Ser	Glu
	Tyr	Phe	Leu 275	Ser	Lys	Glu	Asp	Met 280	Glu	Glu	Val	Ala	Leu 285	Gly	Leu	Glu
30	Leu	Ser 290	Asn	Val	Asn	Phe	Val 295	Trp	Val	Ala	Arg	Phe 300	Pro	Lys	Gly	Glu
35	Glu 305	Gln	Asn	Leu	Glu	Asp 310	Ala	Leu	Pro	Lys	Gly 315	Phe	Leu	Glu	Arg	Ile 320
40	Gly	Glu	Arg	Gly	Arg 325	Val	Leu	Asp	Lys	Phe 330	Ala	Pro	Gln	Leu	Arg 335	Ile
	Leu	Asn	His	Thr 340	Ser	Thr	Gly	Gly	Phe 3 4 5	Ile	Ser	His	Cys	Gly 350	Trp	Asn
45	Ser	Val	Met 355	Glu	Ser	Ile	His	Phe 360	Gly	Val	Pro	Ile	Val 365	Ala	Met	Pro
50	Met	His 370	Leu	Asp	Gln	Pro	Met 375	Asn	Ala	Arg	Leu	Ile 380	Val	Glu	Leu	Gly
55	Val 385	Ala	Val	Glu	Ile	Val 390	Arg	Asp	Asp	Asp	Gly 395	Lys	Ile	Tyr	Arg	Glu 400
55	Glu	Ile	Ala	Lys	Thr	Leu	Lys	Asp	Val	Ile	Thr	Glu	Arg	Ile	Gly	Glu

					405					410					415	
5	Asn	Leu	Arg	Ala 420	Lys	Met	Arg	Glu	Ile 425	Ser	Lys	Asn	Leu	Asn 430	Ser	Ile
40	Ser	Gly	Glu 435	Glu	Met	Asp	Ala	Ala 440	Ala	His	Glu	Leu	Ile 445	Gln	Phe	Cys
10	Lys	Ile 450	Ser	Thr	Asn											
15	<210 <211 <212 <213	L> 4 2> 1	2 444 PRT Solar	num]	Lycop	persi	icon									
20	<400)> 2	2													
20	Met 1	Glu	Ala	Lys	Lys 5	Asn	Lys	Met	Ser	Ile 10	Leu	Met	Leu	Pro	Trp 15	Leu
25	Ala	His	Gly	His 20	Ile	Ser	Pro	Phe	Leu 25	Glu	Leu	Ala	Lys	Lys 30	Leu	Thr
30	Asn	Arg	Asn 35	Phe	His	Ile	Tyr	Met 40	Cys	Ser	Thr	Pro	Ile 45	Asn	Leu	Ser
	Ser	Ile 50	Lys	Lys	Asn	Ile	Thr 55	Lys	Lys	Tyr	Phe	Glu 60	Ser	Ile	Glu	Leu
35	Val 65	Glu	Phe	His	Leu	Pro 70	Ser	Leu	Pro	Asn	Leu 75	Pro	Pro	His	Tyr	His 80
40	Thr	Thr	Asn	Gly	Leu 85	Pro	Pro	His	Leu	Met 90	Asn	Thr	Leu	Lys	Thr 95	Ala
	Phe	Glu	Asn	Ala 100	Ser	Pro	Asn	Phe	Ser 105	Lys	Ile	Leu	Gln	Thr 110	Leu	Asn
45	Pro	Asp	Leu 115	Val	Ile	Tyr	Asp	Phe 120	Asn	Gln	Pro	Trp	Ala 125	Ala	Glu	Ser
50	Ala	Ser 130	Ser	Val	Asn	Ile	Pro 135	Ala	Val	Gln	Phe	Leu 140	Thr	Phe	Gly	Ala
55	Ala 145	Val	Val	Ser	Leu	A la 150	Ile	His	Met	Phe	Glu 155	Asp	Thr	Glu	Asp	Lys 160
	Phe	Pro	Phe	Pro	Glu	Ile	Tyr	Leu	His	Glu	Tyr	Glu	Met	Leu	Ser	Leu

					165					170					175	
5	Lys	Glu	Ala	Val 180	Lys	Glu	Ala	Pro	Gly 185	Asn	Lys	Tyr	Ser	Phe 190	Asp	Glu
10	Ala	Ile	Arg 195	Leu	Ser	Arg	Asp	Ile 200	Val	Leu	Val	Lys	Thr 205	Cys	Arg	Asp
	Phe	Glu 210	Gly	Lys	Tyr	Val	Asp 215	Tyr	Leu	Ser	Asn	Leu 220	Val	Ser	Lys	Lys
15	Ile 225	Val	Pro	Val	Gly	Ser 230	Leu	Val	Gln	Glu	Ser 235	Ile	Ala	Arg	Asp	Asp 240
20	Asn	Asp	Glu	Glu	Ile 245	Met	Gln	Trp	Leu	Asp 250	Lys	Lys	Glu	Lys	Gly 255	Leu
0.5	Thr	Val	Phe	Val 260	Ser	Phe	Gly	Ser	G1u 265	Tyr	Phe	Leu	Ser	Lys 270	Glu	Asp
25	Ile	Phe	Val 275	Val	Ala	Arg	Gly	Leu 280	Glu	Leu	Ser	Lys	Val 285	Asn	Phe	Ile
30	Trp	Val 290	Ile	Arg	Phe	Ser	Gln 295	Gly	Glu	Arg	Ile	Ser 300	Ile	Gln	Asp	Ala
35	Leu 305	Pro	Glu	Gly	Tyr	Leu 310	Glu	Arg	Val	Gly	Glu 315	Arg	Gly	Met	Val	Ile 320
	Glu	Gly	Trp	Ala	Pro 325		Ala	Met	Ile		Gln		Pro	Ser	Ile 335	Gly
40	Gly	Phe	Val	Ser 340	His	Cys	Gly	Trp	Ser 345	Ser	Phe	Met	Glu	Ser 350	Met	Lys
45	Phe	Gly	Val 355	Pro	Ile	Ile	Ala	Met 360	Pro	Met	His	Ile	Asp 365	Gln	Pro	Met
50	Asn	Ala 370	Arg	Leu	Val	Glu	Tyr 375	Ile	Arg	Met	Gly	Val 380	Glu	Ala	Ala	Arg
	Asp 385	Glu	Asn	Gly	Lys	Leu 390	Gln	Ser	Glu	Glu	Ile 395	Ala	Asn	Thr	Ile	Arg 400
55	Lys	Val	Leu	Val	Glu 405	Glu	Ser	Gly	Glu	Asp 410	Val	Arg	Asn	Lys	Ala 415	Lys

	Glu Leu S	Ser Gly L 420	ys Met	Asn Ala	Lys Gly 425	Asp Glu	Glu Ile 430	Asp Gly
5	Val Val (Glu Glu L 135	eu Met	Ala Leu 440	Cys Ser	Asn Lys		
10	<210> 3 <211> 45 <212> PF <213> So		copersi	icon				
	<400> 3							
15	Met Asp (Gly Ser A 5		Lys Ser	Ile Arg 10	Val Leu	Met Phe	Pro Trp 15
20	Leu Gly B	His Gly H 20	is Ile	Ser Pro	Phe Phe 25	Glu Leu	Ala Lys 30	Lys Leu
25	Val Lys A	Arg Asn P 35	he Thr	Ile Phe 40	Leu Val	Ser Thr	Pro Ala 45	Asn Phe
25	Ile Ser 1	lle Lys G	ln Lys	Leu Ile 55	His Glu	Asn Leu 60	Cys Asp	Lys Ile
30	His Leu E 65	?he Asp L	eu Arg 70	Leu Pro	Ser Leu	Pro Asp 75	Leu Pro	Pro His 80
35	Tyr His T		sn Gly 5	Leu Pro	Pro His 90	Leu Met	Ser Thr	Leu Lys 95
	Lys Ala I	Phe Ala L 100	_	Arg Pro		Thr Gln	Ile Met 110	Asn Thr
40	Ile Glu I	Pro Asp L 115	eu Leu	Leu Tyr 120	Asp Leu	Leu Gln	Pro Trp 125	Ala Pro
45	Lys Val 1	Ala Lys G	lu Lys	Asn Ile 135	Pro Ser	Val Val 140	Phe Val	Thr Ser
50	Ser Ala 1	Thr Met P	he Ser 150	Tyr Met	Phe His	Asn Phe 155	Arg Tyr	Pro Asn 160
	Ser Gln I		he Ser 65	Ser Ile	Туг Туг 170	Arg Asp	Tyr Glu	Leu Thr 175
55	Arg Leu	lle Lys A 180	sn Gln	Glu Met	Glu Thr 185	Ile Glu	Gln His 190	Gln Arg

	Asp	Asn	Lys 195	Ser	Val	Lys	Met	Cys 200	Phe	Lys	Arg	Ser	Thr 205	Asn	Ile	Val
5	Leu	Ile 210	Lys	Gly	Phe	Lys	Glu 215	Ile	Asp	Gly	Gln	Tyr 220	Cys	Glu	Tyr	Ile
10	Ser 225	Ser	Leu	Thr	Lys	Lys 230	Arg	Val	Val	Pro	Val 235	Gly	Pro	Leu	Val	Gln 240
	Glu	Gln	Thr	Ser	Glu 2 4 5	Asp	Asn	Asn	Ser	Gln 250	Ile	Leu	Thr	Trp	Leu 255	Asn
15	Gln	Lys	Ser	Lys 260	Gly	Ser	Thr	Ile	Phe 265	Val	Ser	Phe	Gly	Ser 270	Glu	Tyr
20	Phe	Leu	Ser 275	Gln	Glu	Asp	Arg	Glu 280	Glu	Ile	Ala	His	Gly 285	Leu	Glu	Gln
25	Ser	Ar g 290	Val	Asn	Phe	Ile	Trp 295	Val	Val	Arg	Phe	Pro 300	Lys	Gly	Glu	Lys
	Leu 305	Lys	Leu	Glu	Gln	A la 310	Leu	Pro	Arg	Asp	Phe 315	Phe	Lys	Lys	Val	Gly 320
30	Glu	Arg	Gly	Met	Val 325	Val	Glu	Asp	Trp	Ala 330	Pro	Gln	Ala	Lys	Ile 335	Leu
35	Gly	Asn	Pro	Asn 340	Ile	Gly	Gly	Phe	Val 345	Ser	His	Cys	Gly	Trp 350	Asn	Ser
40	Val	Leu	Glu 355	Ser	Met	Lys	Ile	Gly 360	Val	Pro	Ile	Ile	Ala 365	Met	Pro	Met
40	His	Leu 370	Asp	Gln	Pro	Leu	As n 375	Ala	Arg	Leu	Val	Glu 380	Glu	Val	Gly	Ile
45	Gly 385	Leu	Glu	Val	Val	Arg 390	Asp	Lys	Asp	Gly	Lys 395	Leu	Asp	Gly	Glu	Gln 400
50	Ile	Ser	Glu	Ile	Ile 405	Asn	Lys	Val	Val	Leu 410	Glu	Lys	Glu	Gly	Glu 415	Ser
	Ile	Arg	Glu	Lys 420	Ala	Lys	Lys	Met	Ser 425	Glu	Thr	Ile	Arg	Val 430	Lys	Gly
55	Asp	Glu	Glu 435	Ile	Asp	Asp	Val	Val 440	Gln	Glu	Leu	Val	Asn 445	Leu	Cys	Lys

Thr Arg Ser Asn Val Val 450

5	<210> 4 <211> 446 <212> PRT <213> Sol		persicon				
10	<400> 4						
	Met Ser Th	r Thr Leu 5	Lys Val	Leu Met	Phe Pro 10	Phe Leu	Ala Tyr Gly 15
15	His Ile Se	r Pro Tyr 20	Leu Asn	Val Ala 25	Lys Lys		Asp Arg Gly 30
20	Phe Leu Il	_	Cys Ser	Thr Pro	Ile Asn	Leu Lys 45	Ser Thr Ile
25	Asn Lys Il 50	e Pro Glu	Lys Tyr 55	Ala Asp	Ser Ile	Gln Leu 60	Ile Glu Leu
25	His Leu Pr 65	o Glu Leu	Pro Glu 70	Leu Pro	Pro His 75	Tyr His	Thr Thr Asn 80
30	Gly Leu Pr	o Pro Asn 85	Leu Asn	His Ile	Leu Arg 90	Arg Ala	Leu Lys Met 95
35	Ser Lys Pr	o Asn Phe 100	Ser Lys	Ile Met 105	Gln Asn	_	Pro Asp Leu 110
	Leu Ile Ty 11	_	Leu Gln	Gln Trp 120	Ala Glu	Asp Val	Ala Thr Glu
40	Leu Asn Il 130	e Pro Ala	Val Lys 135		Thr Ser	-	Ala Val Phe
45	Ser Tyr Ph	e Phe Asn	Leu Thr 150	Lys Lys	Pro Glu 155	Val Glu	Phe Pro Tyr 160
50	Pro Ala Il	e Tyr Leu 165		Ile Glu	Leu Val 170	Arg Trp	Cys Glu Thr 175
	Leu Ser Ly	s His A sn 180	Lys Glu	Gly Glu 185	Glu His		Gly Leu Ala 190
55	Tyr Gly As		Ile Met	Leu Met 200	Ser Thr	Ser Lys 205	Ile Leu Glu

	Ala	Lys 210	Tyr	Ile	Asp	Tyr	Cys 215	Ile	Glu	Leu	Thr	A sn 220	Trp	Lys	Val	Val
5	Pro 225	Val	Gly	Ser	Leu	Val 230	Gln	Asp	Ser	Ile	Thr 235	Asn	Asp	Ala	Ala	Asp 240
10	Asp	Asp	Met	Glu	Leu 245	Ile	Asp	Trp	Leu	Gly 250	Thr	Lys	Asp	Glu	As n 255	Ser
	Thr	Val	Phe	Val 260	Ser	Phe	Gly	Ser	Glu 265	Tyr	Phe	Leu	Ser	Lys 270	Glu	Asp
15	Val	Glu	Glu 275	Val	Ala	Phe	Gly	Leu 280	Glu	Leu	Ser	Asn	Val 285	Asn	Phe	Ile
20	Trp	Val 290	Val	Arg	Phe	Pro	Lys 295	Gly	Glu	Glu	Lys	A sn 300	Leu	Glu	Asp	Val
25	Leu 305	Pro	Lys	Gly	Phe	Phe 310	Glu	Arg	Ile	Gly	Glu 315	Arg	Gly	Arg	Val	Leu 320
	Asp	Lys	Phe	Ala	Pro 325	Gln	Pro	Arg	Ile	Leu 330	Asn	His	Pro	Ser	Thr 335	Gly
30	Gly	Phe	Ile	Ser 340	His	Cys	Gly	Trp	Asn 345	Ser	Ala	Met	Glu	Ser 350	Ile	Asp
35	Phe	Gly	Val 355	Pro	Ile	Val	Ala	Met 360	Pro	Met	Gln	Leu	Asp 365	Gln	Pro	Met
40	Asn	A la 370	Arg	Leu	Ile	Val	Glu 375	Leu	Gly	Val	Ala	Val 380	Glu	Ile	Val	Arg
40	Asp 385	Asp	Asp	Gly	Lys	Ile 390	Tyr	Arg	Gly	Glu	Ile 395	Ala	Glu	Thr	Leu	Lys 400
45	Gly	Val	Ile	Thr	Gly 405	Glu	Ile	Gly	Glu	Ile 410	Leu	Arg	Ala	Lys	Val 415	Arg
50	Asp	Ile	Ser	Lys 420	Asn	Leu	Lys	Ala	Ile 425	Lys	Asp	Glu	Glu	Met 430	Asp	Val
	Ala	Ala	Gln 435	Glu	Leu	Ile	Gln	Leu 440	Cys	Arg	Asn	Ser	Asn 445	Lys		
55	<210 <211		5 1 73													

	<212 <213		PRT Stevi	ia re	ebaud	diana	1									
5	<400)>	5													
J	Met 1	Ala	Thr	Ser	Asp 5	Ser	Ile	Val	Asp	Asp 10	Arg	Lys	Gln	Leu	His 15	Val
10	Ala	Thr	Phe	Pro 20	Trp	Leu	Ala	Phe	Gly 25	His	Ile	Leu	Pro	Tyr 30	Leu	Gln
15	Leu	Ser	Lys 35	Leu	Ile	Ala	Glu	Lys 40	Gly	His	Lys	Val	Ser 45	Phe	Leu	Ser
. •	Thr	Thr 50	Arg	Asn	Ile	Gln	Arg 55	Leu	Ser	Ser	His	Ile 60	Ser	Pro	Leu	Ile
20	Asn 65	Val	Val	Gln	Leu	Thr 70	Leu	Pro	Arg	Val	Gl n 75	Glu	Leu	Pro	Glu	Asp 80
25	Ala	Glu	Ala	Thr	Thr 85	Asp	Val	His	Pro	Glu 90	Asp	Ile	Pro	Tyr	Leu 95	Lys
	Lys	Ala	Ser	Asp 100	Gly	Leu	Gln	Pro	Glu 105	Val	Thr	Arg	Phe	Leu 110	Glu	Gln
30	His	Ser	Pro 115	Asp	Trp	Ile	Ile	Туг 120	Asp	Tyr	Thr	His	Tyr 125	Trp	Leu	Pro
35	Ser	Ile 130	Ala	Ala	Ser	Leu	Gly 135	Ile	Ser	Arg	Ala	His 140	Phe	Ser	Val	Thr
40	Thr 145	Pro	Trp			Ala 150				Pro			Asp	Ala	Met	Ile 160
••	Asn	Gly	Ser	Asp	Gly 165	Arg	Thr	Thr	Val	Glu 170	Asp	Leu	Thr	Thr	Pro 175	Pro
45	Lys	Trp	Phe	Pro 180	Phe	Pro	Thr	Lys	Val 185	Cys	Trp	Arg	Lys	His 190	Asp	Leu
50	Ala	Arg	Leu 195	Val	Pro	Tyr	Lys	Ala 200	Pro	Gly	Ile	Ser	Asp 205	Gly	Tyr	Arg
	Met	Gly 210	Leu	Val	Leu	Lys	Gly 215	Ser	Asp	Cys	Leu	Leu 220	Ser	Lys	Cys	Tyr
55	His 225	Glu	Phe	Gly	Thr	Gln 230	Trp	Leu	Pro	Leu	Leu 235	Glu	Thr	Leu	His	Gln 240

	Val	Pro	Val	Val	Pro 245	Val	Gly	Leu	Leu	Pro 250	Pro	Glu	Ile	Pro	Gly 255	Asp
5	Glu	Lys	Asp	Glu 260	Thr	Trp	Val	Ser	Ile 265	Lys	Lys	Trp	Leu	Asp 270	Gly	Lys
10	Gln	Lys	Gly 275	Ser	Val	Val	Tyr	Val 280	Ala	Leu	Gly	Ser	Glu 285	Val	Leu	Val
	Ser	Gln 290	Thr	Glu	Val	Val	Glu 295	Leu	Ala	Leu	Gly	Leu 300	Glu	Leu	Ser	Gly
15	Leu 305	Pro	Phe	Val	Trp	Ala 310	Tyr	Arg	Lys	Pro	Lys 315	Gly	Pro	Ala	Lys	Ser 320
20	Asp	Ser	Val	Glu	Leu 325	Pro	Asp	Gly	Phe	Val 330	Glu	Arg	Thr	Arg	Asp 335	Arg
25	Gly	Leu	Val	Trp 340	Thr	Ser	Trp	Ala	Pro 345	Gln	Leu	Arg	Ile	Leu 350	Ser	His
	Glu	Ser	Val 355	Cys	Gly	Phe	Leu	Thr 360	His	Cys	Gly	Ser	Gly 365	Ser	Ile	Val
30	Glu	Gly 370	Leu	Met	Phe	Gly	His 375	Pro	Leu	Ile	Met	Leu 380	Pro	Ile	Phe	Gly
35	Asp 385	Gln	Pro	Leu	Asn	Ala 390	Arg	Leu	Leu	Glu	Asp 395	Lys	Gln	Val	Gly	Ile 400
40	Glu	Ile	Pro		Asn 405		Glu	Asp	Gly	Cys 410		Thr	Lys	Glu	Ser 415	Val
70	Ala	Arg	Ser	Leu 420	Arg	Ser	Val	Val	Val 425	Glu	Lys	Glu	Gly	Glu 430	Ile	Tyr
45	Lys	Ala	As n 4 35	Ala	Arg	Glu	Leu	Ser 440	Lys	Ile	Tyr	Asn	Asp 445	Thr	Lys	Val
50	Glu	Lys 450	Glu	Tyr	Val	Ser	Gln 455	Phe	Val	Asp	Tyr	Leu 460	Glu	Lys	Asn	Ala
	Arg 465	Ala	Val	Ala	Ile	Asp 470	His	Glu	Ser							
55	<210)> (5													

	<211> <212> <213>	481 PRT Stev	ia re	ebauo	diana	a									
5	<400>	6													
	Met As	sp Ala	Met	Ala 5	Thr	Thr	Glu	Lys	Lys 10	Pro	His	Val	Ile	Phe 15	Ile
10	Pro Ph	ne Pro	Ala 20	Gln	Ser	His	Ile	Lys 25	Ala	Met	Leu	Lys	Leu 30	Ala	Gln
15	Leu Le	u His 35	His	Lys	Gly	Leu	Gln 40	Ile	Thr	Phe	Val	Asn 45	Thr	Asp	Phe
	Ile Hi		Gln	Phe	Leu	Glu 55	Ser	Ser	Gly	Pro	His 60	Суз	Leu	Asp	Gly
20	Ala Pi 65	o Gly	Phe	Arg	Phe 70	Glu	Thr	Ile	Pro	Asp 75	Gly	Val	Ser	His	Ser 80
25	Pro Gl	u Ala	Ser	Ile 85	Pro	Ile	Arg	Glu	Ser 90	Leu	Leu	Arg	Ser	Ile 95	Glu
30	Thr As	sn Phe	Leu 100	Asp	Arg	Phe	Ile	Asp 105	Leu	Val	Thr	Lys	Leu 110	Pro	Asp
	Pro Pi	0 Thr 115	Cys	Ile	Ile	Ser	Asp 120	Gly	Phe	Leu	Ser	Val 125	Phe	Thr	Ile
35	Asp Al		Lys	Lys	Leu	Gly 135	Ile	Pro	Val	Met	Met 140	Tyr	Trp	Thr	Leu
40	Ala Al 145	a Cys	Gly	Phe	Met 150	Gly	Phe	Tyr	His	Ile 155	His	Ser	Leu	Ile	Glu 160
	Lys G	y Phe	Ala	Pro 165	Leu	Lys	Asp	Ala	Ser 170	Tyr	Leu	Thr	Asn	Gly 175	Tyr
45	Leu As	sp Thr	Val 180	Ile	Asp	Trp	Val	Pro 185	Gly	Met	Glu	Gly	Ile 190	Arg	Leu
50	Lys As	p Phe 195	Pro	Leu	Asp	Trp	Ser 200	Thr	Asp	Leu	Asn	Asp 205	Lys	Val	Leu
55	Met Ph		Thr	Glu	Ala	Pro 215	Gln	Arg	Ser	His	Lys 220	Val	Ser	His	His
	Ile Ph	ne His	Thr	Phe	Asp	Glu	Leu	Glu	Pro	Ser	Ile	Ile	Lys	Thr	Leu

	225					230					235					240
5	Ser	Leu	Arg	Tyr	As n 2 4 5	His	Ile	Tyr	Thr	11e 250	Gly	Pro	Leu	Gln	Leu 255	Leu
10	Leu	Asp	Gln	Ile 260	Pro	Glu	Glu	Lys	Lys 265	Gln	Thr	Gly	Ile	Thr 270	Ser	Leu
	His	Gly	Tyr 275	Ser	Leu	Val	Lys	Glu 280	Glu	Pro	Glu	Cys	Phe 285	Gln	Trp	Leu
15	Gln	Ser 290	Lys	Glu	Pro	Asn	Ser 295	Val	Val	Tyr	Val	Asn 300	Phe	Gly	Ser	Thr
20	Thr 305	Val	Met	Ser	Leu	Glu 310	Asp	Met	Thr	Glu	Phe 315	Gly	Trp	Gly	Leu	Ala 320
25	Asn	Ser	Asn	His	Tyr 325	Phe	Leu	Trp	Ile	11e 330	Arg	Ser	Asn	Leu	Val 335	Ile
	Gly	Glu	Asn	Ala 3 4 0	Val	Leu	Pro	Pro	Glu 345	Leu	Glu	Glu	His	Ile 350	Lys	Lys
30	Arg	Gly	Phe 355	Ile	Ala	Ser	Trp	Cys 360	Ser	Gln	Glu	Lys	Val 365	Leu	Lys	His
35	Pro	Ser 370	Val	Gly	Gly	Phe	Leu 375	Thr	His	Cys	Gly	Trp 380	Gly	Ser	Thr	Ile
40	Glu 385	Ser	Leu	Ser	Ala	Gly 390	Val	Pro	Met	Ile	Cys 395	Trp	Pro	Tyr	Ser	Trp 400
	Asp	Gln	Leu	Thr	Asn 405	Cys	Arg	Tyr	Ile	Cys 410	Lys	Glu	Trp	Glu	Val 415	Gly
45	Leu	Glu	Met	Gly 420	Thr	Lys	Val	Lys	Arg 425	Asp	Glu	Val	Lys	Arg 430	Leu	Val
50	Gln	Glu	Leu 435	Met	Gly	Glu	Gly	Gly 440	His	Lys	Met	Arg	Asn 445	Lys	Ala	Lys
	Asp	Trp 450	Lys	Glu	Lys	Ala	Arg 4 55	Ile	Ala	Ile	Ala	Pro 460	Asn	Gly	Ser	Ser
55	Ser 465	Leu	Asn	Ile	Asp	Lys 470	Met	Val	Lys	Glu	Ile 475	Thr	Val	Leu	Ala	Arg 480

Asn

5	<210>	7	
	<211>	32	
	<212>		
		Artificial sequence	
	<220>		
10		RT7 forward primer	
	<400>	7	
		gatcc aatgggaaca caagtaacag ag	32
45			
15	<210>	8	
	<211>		
	<212>		
		Artificial sequence	
20	<220>		
	<223>	RT7 reverse primer	
	<400>	8	
	aatact	tgcag ttaattagta ctaatcttac aaaattg	37
25			
	<210>	9	
	<211>		
	<212>	DNA	
30	<213>	Artificial sequence	
50	<220>		
		DM11 forward majman	
	~ 2237	RT11 forward primer	
	<400>	9	
35	attagg	gatcc aatggaagcc aagaaaaata aaatgag	37
	<210>	10	
	<211>		
	<211>		
40		Artificial sequence	
	<220>		
		RT11 reverse primer	
45	<400>		
	aatact	tgcag tcatttgttg ctgcaaagag ccatc	35
	.040		
	<210>		
50	<211>		
50	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	RT15 forward primer	
55	<400>	11	
	attagg	gatcc aatggatggt tcgaatgaaa agtc	34

	<210>	12	
	<211>		
	<212>		
	<213>	Artificial sequence	
5			
	<220>		
		DELE POSSESSE PRIMER	
	~223/	RT15 reverse primer	
	<400>	12	
	aatact	gcag ctagacaaca tttgatctag tcttg	35
10			
	<210>	12	
	<211>		
	<212>	D NA	
15	<213>	Artificial sequence	
		7	
	<220>		
		RT18 forward primer	
	~2237	KIIO IOIWAIG PIIMEI	
	<400>	13	
20	attagg	atcc aatgagtact actttaaagg tattgatg	38
	<210>	14	
	<211>		
25	<212>	D NA	
	<213>	Artificial sequence	
		-	
	<220>		
		DT revenue primer	
	~2237	RT reverse primer	
20			
30	<400>	14	
	aatact	gcag attcacttat tactattcct acaaag	36
	<210>	15	
	<211>		
35			
	<212>		
	<213>	Artificial sequence	
	<220>		
		UGT2_1a forward primer	
40	1000	oord_ra rorwara primer	
	-400-	45	
	<400>		
	attagg	atcc aatggccact tctgactcca t	31
15	<210>	16	
45	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
50	<223>	UGT2_1a reverse primer	
	<400>	16	
	aataaa	gctt ttagctttcg tggtcaatgg ca	32
55			
55	<210>	17	

	<212> <213>	DNA Arti	ificial sequ	ience				
5	<220> <223>	UGTS	35C2 forward	d primer				
	<400> attagga	17 atcc	aatggacgct	atggccacca	ct			32
10	<210> <211>							
	<212>	DNA	ficial sequ	ience				
15	<220> <223>	UGT	35C2 reverse	e primer				
	<400> aataaa	18 gctt	ttagtttcga	gccaagacag	tg			32
20	-010-	10						
	<210> <211> <212> <213>	1341 DNA	l ificial sequ	1ence				
25	<220>				otimized for	r expression	n in Y. lipo	litica
30	<400> atgtcca	19 acca	ccctcaaggt	cctcatgttc	cccttcctcg	cttacggcca	catctctccc	60
	tacctca	aacg	ttgccaagaa	gctcgccgac	cgaggcttcc	tcatctacct	ctgttccacc	120
	cccatca	aacc	tcaagtccac	catcaacaag	atccccgaga	agtacgccga	ctccatccag	180
35	ctcatc	gaac	tccatctccc	cgagcttccc	gagctgcctc	cccactacca	caccaccaac	240
	ggtctg	cctc	ccaacctcaa	ccacatcctc	cgacgagccc	tcaagatgtc	caagcccaac	300
		_				tctacgacat		360
40						tcaagctgct		420
						ccgaggtcga		480
45						gcgagactct gcaacatgca		5 4 0 600
						actgcattga		660
						tcaccaacga		720
50							cgtctttgtc	780
							cttcggtctg	840
55						ccaagggtga		900
	ctcgag	gacg	ttctgcccaa	gggcttcttc	gagcgaatcg	gtgagcgagg	ccgagtcctc	960

	gacaagtttg	ctccccagcc	ccgaattctc	aaccacccct	ctaccggtgg	tttcatctct	1020
	cactgtggct	ggaactccgc	catggagtcc	attgactttg	gtgtccccat	tgtcgccatg	1080
5	cccatgcagc	tcgaccagcc	catgaacgcc	cgactcattg	tcgagcttgg	tgttgccgtc	1140
	gagattgtcc	gagatgatga	tggtaagatc	taccgaggtg	agattgctga	gactctcaag	1200
	ggtgtcatca	ccggcgagat	tggtgagatc	ctccgagcca	aggtccgaga	catctccaag	1260
10	aacctcaagg	ccatcaagga	cgaggagatg	gacgttgctg	cccaggagct	gatccagctc	1320
	tgccgaaact	ccaataaata	a				1341
15	<210> 20 <211> 866 <212> DNA <213> Yarr	rowia lipoly	r tica				
	<400> 20						
20	catgctcact	tttgttgtcc	tgatgatctc	ccgttatttc	geegeteete	tggaaaccat	60
	ccgcccgcaa	atcccctctg	cccatcttga	caatgcacaa	tgcatcattc	tcagcctgca	120
	tgaatgcgaa	agatggcaat	attggtggag	gaggcgacgg	cggtaaacaa	tggagataga	180
25	aaccacaaaa	gaaacctgga	aacccaaaat	ggactcacga	caactcccc	actccccac	240
	tccccatctc	cccctgggca	tcagttgccc	atcggtatct	caactgtcgc	actagttagc	300
20	gcaaccatca	catactttag	acgccaaaca	atgggacaac	tcatcgcgcc	gaactatggg	360
30	cagattttaa	ctcgcacaac	attaccccaa	ctctaaaagg	taacctcgac	cggaaaacgg	420
	gaagacagga	tcagcaaccg	tgatcgacag	aatcttcagg	gcactacagt	tgatagacat	480
35	aggttatgtt	ggtaggtcta	gacgggcctc	ggggaattga	ccccaccagt	tgcaagtcac	540
	gtgcccctga	tacagctagt	ttagcacatc	tgcccactac	gtctggacgc	accatggtgg	600
	tgccagtcgc	gtgaactcaa	acacccacta	gcctcgggaa	ggattcagtt	aaatccgcac	660
40	cttatttcca	acacaaagaa	gcggttggcg	gacaaagaac	atgtcctttc	tggggcactg	720
	tacattccag	gactctgttc	aaggtcaaat	atacaaaaca	cagatagaga	aacatagaca	780
	gctgcggcct	tataaatacc	tgggcgcact	tctctcttt	tccctcctca	tcacacattc	840
45	gttcaccact	aagtcactcg	ttcaaa				866
50		rowia lipoly	/tica				
	<400> 21 ctactgttgc	tacgattccc	ccattgcaac	cacagtttgg	ggttaccccg	cattatatta	60
55	gcatgattac	gaaagagata	agtatcatat	ggaacatgtg	aagggtagta	tgcaggtccg	120
	gcggagaaag	agaatgacgt	tttcattaag	cgattcgctt	ggcggcttgt	gggggatgtg	180

	acgatactta	cggtaaagac	cctgtgtgag	agctggtact	cgctcgttac	ttcgctgatc	240
	tgttgggccg	tcaatcgaat	ctcgtggaac	ttgcattctt	cttaactgtg	tctatacaag	300
5	acacctaatg	aaacatacaa	gctaccgaaa	tcattttact	cgtactgacc	ggtacggtac	360
	ttgcacaagt	agtgaaactt	ccgaaaatag	ccagcctcat	gcatcatcgc	ttcacccctt	420
	ctgttgacct	caaaagcatt	ccaacggtaa	aaaattataa	cgccgccaac	tggatggttg	480
10	tgacggcgtt	gaccaccaat	gtgtggggc	tggcggtagg	accgagctta	ttcgtcccaa	540
	taagctcttt	ggatttgatt	ctttggggtg	tgtggtaaaa	ttcacatggg	gaagaacacg	600
15	gtggcagttt	gaggcagagg	cccagcgtgt	agttcctagg	gcatgaatat	accgaactca	660
15	tggcgcagaa	ttgagctgaa	tgcgcaaaaa	gctacaggat	caaccgcgtt	agaaatgccg	720
	caaatgtcca	ctaattcccc	ggactgttcc	aaatgattct	gtggggataa	atctcaaact	780
20	gggttaggct	ttgtcacgtt	tctttgtgtc	gtgtcggttc	gtccggggca	atgtgcccac	840
	gcttggctgt	ctccctacac	ctcggtaaaa	actatcacat	gctgcccctc	tcgagcaagc	900
	attaaatgca	tatagtcaat	ctaacgacat	atatataggt	agggtgcatc	ctccggttta	960
25	gctccccaga	atatctctta	ttcattacac	aaaaacaac			999
30	<210> 22 <211> 1000 <212> DNA <213> Yarı <400> 22		y tica				
		atgttgctac	tgtacctgct	gtggaccacg	cacggcggaa	cgtaccgtac	60
35							
	aaatattttc	ttgctcacat	gactctctct	cggccgcgca	cgccggtggc	aaattgctct	120
		ttgctcacat ctgtctctag					120 180
	tgcattggct		acgtccaaac	cgtccaaagt	ggcagggtga	cgtgatgcga	
40	tgcattggct cgcacgaagg	ctgtctctag	acgtccaaac gtggcgagga	cgtccaaagt	ggcagggtga	cgtgatgcga gggaaaaaag	180
40	tgcattggct cgcacgaagg gcggaaaacg	ctgtctctag	acgtccaaac gtggcgagga ggcacaatct	cgtccaaagt accggacacg gacggtgcgg	ggcagggtga gcgagccggc ctgccaccaa	cgtgatgcga gggaaaaaag cccaaggagg	180 240
	tgcattggct cgcacgaagg gcggaaaacg ctattttggg	ctgtctctag agatggcccg aaaagcgaag	acgtccaaac gtggcgagga ggcacaatct tttcacattc	cgtccaaagt accggacacg gacggtgcgg gccctcaatg	ggcagggtga gcgagccggc ctgccaccaa gccactttgc	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac	180 240 300
40 45	tgcattggct cgcacgaagg gcggaaaacg ctattttggg atggtttctg	ctgtctctag agatggcccg aaaagcgaag tcgctttcca	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc	180 240 300 360
	tgcattggct cgcacgaagg gcggaaaacg ctattttggg atggtttctg tatttggcca	ctgtctctag agatggcccg aaaagcgaag tcgctttcca aaacaacccc	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag gggtagcgac	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga gtggaggaca	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag ttccagggcg	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc aattgagcct	180 240 300 360 420
	tgcattggct cgcacgaagg gcggaaaacg ctatttggg atggtttctg tatttggcca agaaagtggt	ctgtctctag agatggcccg aaaagcgaag tcgctttcca aaacaacccc ttgtggggga	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag gggtagcgac ccgtctaagt	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga gtggaggaca cgtccgaatt	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag ttccagggcg gatcgctata	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc aattgagcct actatcacct	180 240 300 360 420 480
45	tgcattggct cgcacgaagg gcggaaaacg ctatttggg atggttctg tatttggcca agaaagtggt ctctcacatg	ctgtctctag agatggcccg aaaagcgaag tcgctttcca aaacaacccc ttgtggggga agcattccaa	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag gggtagcgac ccgtctaagt caaccaacat	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga gtggaggaca cgtccgaatt ccccaacctc	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag ttccagggcg gatcgctata ccccacacta	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc aattgagcct actatcacct aagttcacgc	180 240 300 360 420 480 540
45	tgcattggct cgcacgaagg gcggaaaacg ctatttggg atggttctg tatttggcca agaaagtggt ctctcacatg caataatgta	ctgtctctag agatggcccg aaaagcgaag tcgctttcca aaacaacccc ttgtggggga agcattccaa tctacttccc	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag gggtagcgac ccgtctaagt caaccaacat ctgggtgtgg	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga gtggaggaca cgtccgaatt ccccaacctc gacagcagag	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag ttccagggcg gatcgctata ccccacacta caatacggag	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc aattgagcct actatcacct aagttcacgc gggagattac	180 240 300 360 420 480 540
45	tgcattggct cgcacgaagg gcggaaaacg ctattttggg atggttctg tatttggcca agaaagtggt ctctcacatg caataatgta acaacgagcc	ctgtctctag agatggcccg aaaagcgaag tcgctttcca aaacaacccc ttgtggggga agcattccaa tctacttccc ggcactcttt	acgtccaaac gtggcgagga ggcacaatct tttcacattc ccagaattag gggtagcgac ccgtctaagt caaccaacat ctgggtgtgg agatggtagc	cgtccaaagt accggacacg gacggtgcgg gccctcaatg agtatattga gtggaggaca cgtccgaatt ccccaacctc gacagcagag catctcactc	ggcagggtga gcgagccggc ctgccaccaa gccactttgc tgtgtttaag ttccagggcg gatcgctata ccccacacta caatacggag gacccgtcga	cgtgatgcga gggaaaaaag cccaaggagg ggtggtgaac attgggttgc aattgagcct actatcacct aagttcacgc gggagattac cttttggcaa	180 240 300 360 420 480 540 600

	gcaggtgtgg	gccaggtgcg	ttccagatgc	gagttggcga	accctaagcc	gacagtgtac	900
	tttttgggac	gggcagtagc	aatcgtgggc	ggaaaccccg	gtgtatataa	aggggtggag	960
5	aggacggatt	attagcacca	acacacac	ttatactaca			1000
10	<210> 23 <211> 1503 <212> DNA <213> Arti	3 ificial sequ	ience				
	<220> <223> tHMC	G optimized	for express	sion in Y.]	lipoltica		
15	<400> 23 atgacccagt	ctgtgaaggt	ggttgagaag	cacgttccta	tcgtcattga	gaagcccagc	60
	gagaaggagg	aggacacctc	ttctgaagac	tccattgagc	tgactgtcgg	aaagcagccc	120
20	aagcccgtga	ccgagacccg	ttctctggac	gacttggagg	ctatcatgaa	ggcaggtaag	180
	accaagctcc	tggaggacca	cgaggttgtc	aagctctctc	tcgaaggcaa	gctccctttg	240
	tatgctcttg	agaagcagct	tggtgacaac	acccgagctg	ttggcatccg	acgatctatc	300
25	atctcccagc	agtctaatac	caagactctt	gagacctcaa	agctccctta	cctgcactac	360
	gactacgacc	gtgtttttgg	agcctgttgc	gagaacgtta	ttggttacat	gcctctcccc	420
	gttggtgttg	ctggccccat	gaacattgat	ggcaagaact	accacattcc	tatggccacc	480
30	actgagggtt	gtcttgttgc	ctcaaccatg	cgaggttgca	aggccatcaa	cgccggtggc	540
	ggtgttacca	ctgtgcttac	tcaggacggt	atgacacgag	gtccttgtgt	ttccttcccc	600
35	tctctcaagc	gggctggagc	cgctaagatc	tggcttgatt	ccgaggaggg	tctcaagtcc	660
	atgcgaaagg	ccttcaactc	cacctctcga	tttgctcgtc	tccagtctct	tcactctacc	720
	cttgctggta	acctgctgtt	tattcgattc	cgaaccacca	ctggtgatgc	catgggcatg	780
40	aacatgatct	ccaagggcgt	cgaacactct	ctggccgtca	tggtcaagga	gtacggcttc	840
	cctgatatgg	acattgtgtc	tgtctcgggt	aactactgca	ctgacaagaa	gcccgcagcg	900
	atcaactgga	tcgaaggccg	aggcaagagt	gttgttgccg	aagccaccat	ccctgctcac	960
45	attgtcaagt	ctgttctcaa	aagtgaggtt	gacgctcttg	ttgagctcaa	catcagcaag	1020
	aatctgatcg	gtagtgccat	ggctggctct	gtgggaggtt	tcaatgcaca	cgccgcaaac	1080
50	ctggtgaccg	ccatctacct	tgccactggc	caggatcctg	ctcagaatgt	cgagtcttcc	1140
50	aactgcatca	cgctgatgag	caacgtcgac	ggtaacctgc	tcatctccgt	ttccatgcct	1200
	tctatcgagg	tcggtaccat	tggtggaggt	actattttgg	agccccaggg	tgctatgctg	1260
55	gagatgcttg	gcgtgcgagg	tcctcacatc	gagacccccg	gtgccaacgc	ccaacagctt	1320
	gctcgcatca	ttgcttctgg	agttcttgca	gcggagcttt	cgctgtgttc	tgctcttgct	1380

	gccggccatc	ttgtgcaaag	tcatatgacc	cacaaccgtt	cccaggctcc	tactccggcc 1	440
	aagcagtctc	aggccgatct	gcagcgtctc	caaaacggtt	cgaatatctg	cattcggtca 1	1500
5	tag					1	1503
10	<210> 24 <211> 984 <212> DNA <213> Arti	ficial sequ	lence				
	<220> <223> GGS	optimized f	for expressi	ion in Y. li	ipolitica		
15	<400> 24 atggattata	acagcgcgga	tttcaaggag	atctggggca	aggccgccga	caccgcgctg	60
	ctgggaccgt	acaactacct	cgccaacaac	cggggccaca	acatcagaga	acacttgatc	120
20	gcagcgttcg	gagcggttat	caaggtggac	aagagcgatc	tcgaaaccat	ttcgcacatc	180
20	accaagattt	tgcataactc	gtcgctgctt	gttgatgacg	tggaagacaa	ctcgatgctc	240
	cgacgaggcc	tgccggcagc	ccattgtctg	tttggagtcc	cccaaaccat	caactccgcc	300
25	aactacatgt	actttgtggc	tctgcaggag	gtgctcaagc	tcaagtctta	tgatgccgtc	360
	tccattttca	ccgaggaaat	gatcaacttg	catagaggtc	agggtatgga	tctctactgg	420
	agagaaacac	tcacttgccc	ctcggaagac	gagtatctgg	agatggtggt	gcacaagacc	480
30	ggaggactgt	tteggetgge	tctgagactt	atgctgtcgg	tggcatcgaa	acaggaggac	540
	catgaaaaga	tcaactttga	tctcacacac	cttaccgaca	cactgggagt	catttaccag	600
	attctggatg	attacctcaa	cctgcagtcc	acggaattga	ccgagaacaa	gggattctgc	660
35	gaagatatca	gcgaaggaaa	gttttcgttt	ccgctgattc	acagcatccg	gaccaacccg	720
	gataaccacg	agattctcaa	cattctcaaa	cagcgaacaa	gcgacgcttc	actcaaaaag	780
	tacgccgtgg	actacatgag	aacagaaacc	aagagtttcg	actactgcct	caagagaatc	840
40	caggccatgt	cactcaaggc	aagttcgtac	attgatgatc	tcgcagcagc	cggccacgat	900
	gtctccaagt	tgcgagccat	tttgcattat	tttgtgtcca	cctctgactg	tgaggagaga	960
45	aagtactttg	aggatgcgca	gtga				984
50	<210> 25 <211> 2232 <212> DNA <213> Arti	e ficial sequ	ience				
	<220> <223> CPS	from S. rek	oaudiana opt	imized for	expression	in Y. lipolitica	1
55	<400> 25 atgtgcaagg	ctgtttccaa	ggagtactcc	gatctgctcc	agaaggacga	ggcctctttc	60
	accaagtggg	acqacqacaa	ggtcaaggac	cacctccaca	ccaacaacaa	cctctacccc	120

	aacgacgaga	tcaaggagtt	tgtcgagtcc	gtcaaggcca	tgttcggctc	catgaacgac	180
	ggcgagatta	atgtctctgc	ttacgacacc	gcctgggttg	ctctggtcca	ggatgtcgac	240
5	ggttccggct	ctcctcagtt	cccttcctct	ctcgagtgga	tcgccaacaa	ccagctgtcc	300
	gacggttctt	ggggtgacca	cctgctcttc	tctgctcacg	accgaatcat	caacaccctg	360
	gcctgtgtca	ttgctctgac	ctcttggaac	gtccacccct	ccaagtgcga	gaagggtctg	420
10	aacttcctcc	gagagaacat	ctgcaagctc	gaggacgaga	acgccgagca	catgcccatt	480
	ggcttcgagg	tcaccttccc	ctctctgatt	gacattgcca	agaagctcaa	cattgaggtc	540
15	cccgaggaca	ccccgctct	caaggagatc	tacgctcgac	gagacatcaa	gctcaccaag	600
	atccccatgg	aggttctcca	caaggtcccc	accactctcc	tccactctct	cgagggtatg	660
	cccgatctcg	agtgggagaa	gctgctcaag	ctgcagtgca	aggacggctc	tttcctcttc	720
20	tececetett	ccactgcctt	cgccctcatg	cagaccaagg	acgagaagtg	tctccagtac	780
	ctcaccaaca	ttgtcaccaa	gttcaacggt	ggtgtcccca	acgtctaccc	cgttgacctc	840
	tttgagcaca	tctgggttgt	tgaccgactc	cagcgactcg	gtatcgcccg	atacttcaag	900
25	tccgagatca	aggactgtgt	cgagtacatc	aacaagtact	ggaccaagaa	cggtatctgc	960
	tgggcccgaa	acacccacgt	ccaggacatt	gacgacaccg	ccatgggctt	ccgagttctg	1020
	cgagcccacg	gctacgatgt	cacccccgat	gtctttcgac	agtttgagaa	ggacggcaag	1080
30	tttgtctgtt	tcgccggtca	gtccacccag	gccgtcaccg	gtatgttcaa	cgtctaccga	1140
	gcttctcaga	tgctcttccc	cggtgagcga	atcctcgagg	acgccaagaa	gttctcctac	1200
35	aactacctca	aggagaagca	gtccaccaac	gagctgctcg	acaagtggat	cattgccaag	1260
	gatctgcccg	gtgaggttgg	ctacgccctc	gacatcccct	ggtacgcctc	tctgccccga	1320
	ctggagactc	gatactacct	cgagcagtac	ggtggtgagg	acgatgtctg	gatcggtaag	1380
40	accctgtacc	gaatgggcta	cgtttccaac	aacacctacc	tcgagatggc	caagctcgac	1440
	tacaacaact	acgttgccgt	cctccagctc	gagtggtaca	ccatccagca	gtggtacgtc	1500
	gacattggta	tcgagaagtt	cgagtccgac	aacatcaagt	ccgtccttgt	ctcctactac	1560
45	ctcgctgctg	cctccatctt	cgagcccgag	cgatccaagg	agcgaattgc	ctgggccaag	1620
	accaccatcc	tcgtcgacaa	gatcacctcc	atcttcgact	cctcccagtc	ctccaaggaa	1680
50	gatatcaccg	ccttcattga	caagttccga	aacaagtcct	cctccaagaa	gcactccatc	1740
50	aacggcgagc	cctggcacga	ggtcatggtt	gctctcaaga	aaactctcca	cggctttgcc	1800
	ctcgacgctc	tgatgaccca	ctctcaggac	atccaccccc	agctccacca	ggcctgggag	1860
55	atgtggctca	ccaagctcca	ggacggtgtt	gatgtcactg	ctgagctcat	ggtccagatg	1920
	atcaacatga	ccgccggccg	atgggtttcc	aaggagctcc	tcacccaccc	ccagtaccag	1980

	cgactctcca	ctgtcaccaa	ctctgtctgc	cacgacatca	ccaagctcca	caacttcaag	2040
	gagaactcca	ccaccgtcga	ctccaaggtc	caggagctgg	tccagctcgt	tttctccgac	2100
5	acccccgatg	atctcgacca	ggacatgaag	cagaccttcc	tgactgtcat	gaaaactttc	2160
	tactacaagg	cctggtgcga	ccccaacacc	atcaacgacc	acatctccaa	ggtctttgag	2220
	attgtgattt	aa					2232
10	<210> 26 <211> 2274 <212> DNA <213> Arti	4 ificial sequ	1ence				
15	<220> <223> tKS	from S. rek	oaudiana opt	imized for	expression	in Y. lipolti	lca
20	<400> 26 atgacctccc	acggcggcca	gaccaacccc	accaacctca	tcattgacac	caccaaggag	60
20	cgaatccaga	agcagttcaa	gaacgtcgag	atctccgttt	cctcctacga	caccgcctgg	120
	gtcgccatgg	teceetetee	caactccccc	aagtctccct	gcttccccga	gtgtctcaac	180
25	tggctcatca	acaaccagct	caacgacggc	tcttggggtc	tggtcaacca	cacccacaac	240
	cacaaccacc	ccctcctcaa	ggactctctc	tcttccactc	tegeetgeat	tgttgctctc	300
	aagcgatgga	acgttggcga	ggaccagatc	aacaagggtc	tgtctttcat	tgagtccaac	360
30	ctcgcctccg	ccaccgagaa	gtcccagccc	tcccccattg	gctttgatat	catcttcccc	420
	ggtctgctcg	agtacgccaa	gaacctcgat	atcaacctgc	tctccaagca	gaccgacttc	480
	tctctcatgc	tgcacaagcg	agagctcgag	cagaagcgat	gccactccaa	cgagatggac	540
35	ggctacctgg	cctacatttc	cgagggtctg	ggtaacctct	acgactggaa	catggtcaag	600
	aagtaccaga	tgaagaacgg	ttccgttttc	aactccccct	ctgccaccgc	tgctgccttc	660
	atcaaccacc	agaaccccgg	ctgtctcaac	tacctcaact	ctctgctcga	caagtttggt	720
40	aacgccgtcc	ccactgtcta	ccccacgat	ctcttcatcc	gactctccat	ggtcgacacc	780
	attgagcgac	tcggtatttc	ccaccacttc	cgagtcgaga	tcaagaacgt	tctcgatgag	840
45	acttaccgat	gctgggttga	gcgagatgag	cagatcttca	tggacgttgt	cacctgtgct	900
45	ctggccttcc	gactcctccg	aatcaacggt	tacgaggttt	cccccgaccc	cctcgccgag	960
	atcaccaacg	agctggctct	caaggacgag	tacgccgccc	tcgagactta	ccacgcttct	1020
50	cacattctgt	accaagagga	tctgtcctcc	ggcaagcaga	ttctcaagtc	cgccgacttc	1080
	ctcaaggaga	tcatctccac	tgactccaac	cgactctcca	agctcatcca	caaggaagtc	1140
	gagaacgctc	tcaagttccc	catcaacacc	ggtctggagc	gaatcaacac	ccgacgaaac	1200
55	atccagctct	acaacgtcga	caacacccga	attctcaaga	ccacctacca	ctcttccaac	1260
	atctccaaca	ccgactacct	gcgactcgcc	gtcgaggact	tctacacctg	ccagtccatc	1320

	taccgagagg	agctcaaggg	tctggagcga	tgggttgtcg	agaacaagct	cgaccagctc	1380
	aagtttgccc	gacaaaagac	tgcctactgc	tacttctccg	ttgctgccac	cctctcttct	1440
5	cccgagctct	ccgacgcccg	aatctcttgg	gccaagaacg	gtatcctgac	cactgttgtc	1500
	gacgacttct	ttgacattgg	tggcaccatt	gacgagctga	ccaacctcat	ccagtgcgtc	1560
	gagaagtgga	acgtcgacgt	tgacaaggac	tgttgttccg	agcacgtccg	aatcctcttc	1620
10	ctggctctca	aggacgccat	ctgctggatc	ggtgacgagg	ccttcaagtg	gcaggctcga	1680
	gatgtcactt	cccacgtcat	ccagacctgg	ctcgagctca	tgaactccat	gctgcgagag	1740
45	gccatctgga	cccgagatgc	ctacgtcccc	accctcaacg	agtacatgga	gaacgcctac	1800
15	gtcagctttg	ctctcggtcc	cattgtcaag	cccgccatct	actttgtcgg	tcccaagctg	1860
	tccgaggaga	ttgtcgagtc	ctccgagtac	cacaacctct	tcaagctcat	gtccacccag	1920
20	ggccgactcc	tcaacgatat	ccactccttc	aagcgagagt	tcaaggaagg	taagctcaac	1980
	gccgttgctc	tgcacctgtc	caacggtgag	tccggcaagg	tcgaggaaga	ggtcgtcgag	2040
	gagatgatga	tgatgatcaa	gaacaagcga	aaggagctca	tgaagctcat	cttcgaggag	2100
25	aacggctcca	ttgtcccccg	agcctgcaag	gacgccttct	ggaacatgtg	ccacgtcctc	2160
	aacttcttct	acgccaacga	cgacggtttc	accggcaaca	ccattctcga	caccgtcaag	2220
	gacatcatct	acaaccctct	ggttctggtc	aacgagaacg	aggagcagag	gtaa	2274
35	<220> <223> KO :			ri optimized	d for expres	ssion in Y.	
40		ccaactccat	gaactccacc	tcccacgaga	ctctcttcca	gcagctcgtt	60
	ctcggcctcg	accgaatgcc	cctcatggac	gtccactggc	tcatctacgt	tgcctttggt	120
	gcctggctct	gctcctacgt	catccacgtt	ctgtcctctt	cctccactgt	caaggtcccc	180
45	gtcgtcggtt	accgatccgt	tttcgagccc	acctggctcc	tccgactgcg	attcgtctgg	240
	gagggtggtt	ccatcattgg	ccagggctac	aacaagttca	aggactccat	cttccaggtc	300
50	cgaaagctcg	gtaccgacat	tgtcatcatc	cctcccaact	acattgacga	ggtccgaaag	360
	ctctcccagg	acaagacccg	atccgtcgag	cccttcatca	acgactttgc	cggccagtac	420
	acccgaggta	tggtctttct	gcagtccgat	ctccagaacc	gagtcatcca	gcagcgactc	480
55	acccccaagc	ttgtctctct	caccaaggtc	atgaaggaag	agctcgacta	cgctctgacc	540
	aaggagatgc	ccgacatgaa	gaacgacgag	tgggttgagg	tcgacatctc	ttccatcato	600

	gtccgactca	tctctcgaat	ctccgcccga	gttttcctcg	gccccgagca	ctgccgaaac	660
	caggagtggc	tcaccaccac	cgccgagtac	tccgagtctc	tcttcatcac	cggcttcatc	720
5	ctccgagttg	tccccacat	tctccgaccc	ttcattgctc	ctctgctgcc	ctcttaccga	780
	accctgctgc	gaaacgtttc	ttccggccga	cgagtcattg	gtgatatcat	ccgatcccag	840
	cagggtgacg	gtaacgagga	catcctctct	tggatgcgag	atgctgccac	tggtgaggag	900
10	aagcagatcg	acaacattgc	ccagcgaatg	ctcattctgt	ctctcgcctc	catccacacc	960
	accgccatga	ccatgaccca	cgccatgtac	gatctgtgtg	cctgccccga	gtacattgag	1020
15	cccctccgag	atgaggtcaa	gtccgtcgtt	ggtgcttctg	gctgggacaa	gaccgctctc	1080
70	aaccgattcc	acaagctcga	ctctttcctc	aaggagtccc	agcgattcaa	ccccgttttc	1140
	ctgctcacct	tcaaccgaat	ctaccaccag	tccatgaccc	tctccgatgg	taccaacatc	1200
20	ccctccggta	cccgaattgc	tgtcccctct	cacgccatgc	tccaggactc	cgcccacgtc	1260
	cccggtccca	ctcctcccac	tgagttcgac	ggtttccgat	actccaagat	ccgatccgac	1320
	tccaactacg	cccagaagta	cctcttctcc	atgaccgact	cttccaacat	ggcctttggc	1380
25	tacggtaagt	acgcctgccc	cggccgattc	tacgcctcca	acgagatgaa	gctgactctg	1440
	gccattctgc	tcctccagtt	tgagttcaag	ctccccgacg	gtaagggccg	accccgaaac	1500
	atcaccatcg	actccgacat	gatccccgac	ccccgagctc	gactctgtgt	ccgaaagcga	1560
30	tctctgcgtg	acgagtaa					1578
35	<210> 28 <211> 1578 <212> DNA <213> Artis	3 ificial sequ	1ence				
40	<223> KAH_	_4 optimized	d for expres	ssion in Y.	lipolitica		
	<400> 28 atggagtctc	tggttgtcca	caccgtcaac	gccatctggt	gcattgtcat	tgtcggtatc	60
	ttctccgtcg	gctaccacgt	ctacggccga	gctgttgtcg	agcagtggcg	aatgcgacga	120
45	tctctcaagc	tccagggtgt	caagggtcct	cctccctcca	tcttcaacgg	taacgtttcc	180
	gagatgcagc	gaatccagtc	cgaggccaag	cactgctccg	gtgacaacat	catctcccac	240
5 0	gactactctt	cttctctgtt	ccccacttt	gaccactggc	gaaagcagta	cggccgaatc	300
50	tacacctact	ccactggcct	caagcagcac	ctctacatca	accaccccga	gatggtcaag	360
	gagetetece	agaccaacac	cctcaacctc	ggccgaatca	cccacatcac	caagcgactc	420
55	aaccccattc	tcggtaacgg	tatcatcacc	tccaacggcc	cccactgggc	ccaccagcga	480
	cgaatcattg	cctacgagtt	cacccacgac	aagatcaagg	gtatggtcgg	tctgatggtc	540

	gagtccgcca	tgcccatgct	caacaagtgg	gaggagatgg	tcaagcgagg	tggtgagatg	600
	ggctgtgaca	tccgagtcga	cgaggacctc	aaggatgtct	ccgctgacgt	cattgccaag	660
5	gcctgtttcg	gctcttcctt	ctccaagggc	aaggccatct	tctccatgat	ccgagatctg	720
	ctcaccgcca	tcaccaagcg	atccgtcctc	ttccgattca	acggtttcac	cgacatggtt	780
	ttcggctcca	agaagcacgg	tgacgttgac	attgacgctc	tcgagatgga	gctcgagtcc	840
10	tccatctggg	agactgtcaa	ggagcgagag	attgagtgca	aggacaccca	caagaaggac	900
	ctcatgcagc	tcattctcga	gggtgccatg	cgatcttgtg	acggtaacct	gtgggacaag	960
	tctgcttacc	gacgattcgt	tgtcgacaac	tgcaagtcca	tctactttgc	cggccacgac	1020
15	tccaccgccg	tttccgtttc	ttggtgcctc	atgctgctcg	ctctcaaccc	ctcttggcag	1080
	gtcaagatcc	gagatgagat	tctgtcctcc	tgcaagaacg	gtatccccga	cgccgagtcc	1140
00	atccccaacc	tcaagaccgt	caccatggtc	atccaggaga	ctatgcgact	ctaccctccc	1200
20	gctcccattg	tcggccgaga	ggcctccaag	gacattcgac	tcggtgatct	ggttgtcccc	1260
	aagggtgtct	gtatctggac	cctcatcccc	gctctgcacc	gagatcccga	gatctggggt	1320
25	cccgacgcca	acgacttcaa	gcccgagcga	ttctccgagg	gtatctccaa	ggcctgcaag	1380
	tacccccagt	cctacatccc	ctttggcctc	ggcccccgaa	cctgtgtcgg	caagaacttt	1440
	ggtatgatgg	aggtcaaggt	cctcgtttct	ctgattgtct	ccaagttctc	cttcactctg	1500
30	tctcccacct	accagcactc	tccctcccac	aagctgctcg	tcgagcccca	gcacggtgtt	1560
	gtcatccgag	ttgtataa					1578
35	<210> 29 <211> 2133 <212> DNA <213> Arti	3 ificial sequ	ience				
	<220> <223> CPR_	_optimized f	for express:	ion in Y. li	ipolitica		
40	<400> 29						
	atgtcctcct	cttcttcttc	ttccacctcc	atgattgatc	tcatggctgc	catcatcaag	60
45	ggtgagcccg	tcattgtctc	cgaccccgcc	aacgcctccg	cctacgagtc	cgttgctgcc	120
	gagetgteet	ccatgctcat	cgagaaccga	cagtttgcca	tgatcgtcac	cacctccatt	180
	gctgttctca	ttggctgcat	tgtcatgctc	gtctggcgac	gatctggctc	cggtaactcc	240
50	aagcgagtcg	agcccctcaa	gcccctggtc	atcaagcccc	gagaagagga	gatcgacgac	300
	ggccgaaaga	aggtcaccat	cttctttggc	acccagaccg	gtactgctga	gggcttcgcc	360
	aaggctctcg	gtgaggaagc	caaggctcga	tacgaaaaga	cccgattcaa	gattgtcgac	420
55	ctcgatgatt	acgctgccga	tgacgacgag	tacgaggaga	agctcaagaa	agaggacgtt	480
	geettettet	tectequeac	ctacqqtqac	ggtgagccca	ccqacaacqc	tgcccgattc	540

tacaagtggt	tcaccgaggg	taacgaccga	ggcgagtggc	tcaagaacct	caagtacggt	600
gttttcggtc	tgggcaaccg	acagtacgag	cacttcaaca	aggttgccaa	ggttgtcgac	660
gacatcctcg	tcgagcaggg	tgcccagcga	ctcgtccagg	teggeetegg	tgatgatgac	720
cagtgcatcg	aggacgactt	cactgcctgg	cgagaggctc	tgtggcccga	gctcgacacc	780
attctgcgag	aggaaggtga	caccgccgtt	gccaccccct	acaccgccgc	cgtcctcgag	840
taccgagtct	ccatccacga	ctccgaggat	gccaagttca	acgacatcaa	catggccaac	900
ggtaacggct	acaccgtctt	tgacgcccag	cacccctaca	aggccaacgt	cgccgtcaag	960
cgagagctcc	acacccccga	gtccgaccga	tcttgtatcc	acctcgagtt	tgacattgct	1020
ggttccggtc	tgacctacga	gactggtgac	cacgttggtg	tectetgtga	caacctgtcc	1080
gagactgtcg	acgaggctct	gcgactcctc	gacatgtccc	ccgacactta	cttctctctg	1140
cacgccgaga	aagaggacgg	tactcccatc	tettettete	tgcccctcc	cttccctccc	1200
tgcaacctgc	gaaccgctct	gacccgatac	gcctgcctcc	tetettetee	caagaagtct	1260
gctctcgttg	ctctggccgc	ccacgcctcc	gaccccaccg	aggctgagcg	actcaagcac	1320
ctcgcctctc	ccgctggcaa	ggacgagtac	tccaagtggg	ttgtcgagtc	ccagcgatct	1380
ctgctcgagg	tcatggccga	gttcccctcc	gccaagcccc	ctctcggtgt	tttcttcgcc	1440
ggtgttgctc	cccgactcca	gccccgattc	tactccatct	cctcttcccc	caagatcgcc	1500
gagactcgaa	tccacgttac	ctgtgctctg	gtctacgaga	agatgcccac	cggccgaatc	1560
cacaagggtg	tctgctccac	ctggatgaag	aacgccgttc	cctacgagaa	gtccgagaac	1620
tgttcctctg	ctcccatctt	tgtccgacag	tccaacttca	agctcccctc	cgactccaag	1680
gtccccatca	tcatgattgg	ccccggtacc	ggcctcgccc	ccttccgagg	cttcctgcag	1740
gagcgactcg	ccctcgtcga	gtccggtgtc	gageteggee	cctccgtcct	cttctttggc	1800
tgccgaaacc	gacgaatgga	cttcatctac	gaagaggagc	tccagcgatt	cgtcgagtcc	1860
ggtgctctcg	ccgagctctc	cgttgccttc	tcccgagagg	gtcccaccaa	ggagtacgtc	1920
cagcacaaga	tgatggacaa	ggcctccgac	atctggaaca	tgatctccca	gggcgcctac	1980
ctctacgtct	gcggtgacgc	caagggtatg	gcccgagatg	tccaccgatc	tctgcacacc	2040
attgcccagg	agcagggctc	catggactcc	accaaggccg	agggtttcgt	caagaacctc	2100
cagacctccg	gccgatacct	ccgagatgtc	tgg			2133
	gttttcggtc gacatcctcg cagtgcatcg attctgcgag taccgagtct ggtaacggctc gagactgcg cacgccgaga tgcaacctgc gctctcgttg ctcgctctc gagactctc gagactctc ggtgttgctc gagactcgaa cacaagggtg tgttcctctg gtcccatca gagcgactcg cacgcaaacc ggtgctctcg caccaaga ctctacgtc	gtttteggte tegageagegg cagtgeateg aggaeggtga tacegagtet ceatecacga ggtaacgget acacecega ggtteeggte tgacetacga ggaetgteg aegaggetet caegeegag aegaggetet caegeegag aegaggetet getetegttg ctetggeege ctegetete cegetggeaa ctgetegag teatggeega ggtgttgete cecegaeteca ggagactega tecaegetet gagaetegag teatggeega ggtgttgete cecegaeteca gagaetega tecaegttac cacaagggtg tetgeteeac tgtteetetg cteceatett gteeceatea teatgattgg gagegaeteg cectegtega ggtgttete ceceatett gteeceatea teatgattgg gagegaeteg cectegtega tgcegaaace gaegaetete cageacaaga tgatggaea ggtgeteteg cegagetete cageacaaga tgatggaea etetaegtet geggtgaege attgeecagg agcagggete	gtttteggte tegageageg tegeeagega cagtegeagegagegagegagegagegagegagegagegag	ghttheggte tegageaece acagtacega cactteaaca gacatecteg tegageaggg tegecaegega etegtecaegg cagtgeateg aggaaegatt cactegeegg egagaggete attetgeaga aggaaeggta cacegeegtt gecaceceet tacegagget acacegeegt gecaaegtea ggtaaegget acaceceega gteegaecega tettgtatee ggtteegget tegacecega gteegaecega tettgtatee ggtteegget tegacecega gacegetee gacaeggetee acacegeegg gacegaecega tettgtatee ggtteegget tegacecaega gacegetee gacaeggetee acaeggetee gaceceaea gecaegetee gacaeggetee acaeggetee gaceceaea gecteeggaa aagaggaegg tacteceate tettettee tegacaecega acaeggetee gaceceaeae gecteeggetee ecaeggetee gaceceaeae gecteeggetee gaceceaeae gecteeggetee cacegetee gaceceaeae gecteeggetee ecaeggetee tacecaeeg getgtteete ecegaceae geceegatee tacecaeeg ggtgtteete ecegaceae geceegatee tacecaeete gagaaeteega teetaggaea ecaeagggta teetageaea etegateae etegateae geceegatee tacecaeete gacaaagggta teetageaea etegageaeaaagggta teetagatega gacecegatee gaceceaeae gacegatee tegageaeae teetagatega gaceceatea teatgatega gaceeggtaee gaceceaee gagegacee ececaeeae teatgatega gaceeggtaee gaceegeee tgecegaaaee gacegaetee gacegatee gaceggaeee tgecegaaaee gacegaetee ecetegeaa gaceggtaee gageteegee tgecegaaaee gacegaetee ecetegeaa gteceggtae gaagaggage eagacaaaaa tgatggaaea ggeeteegae atecaaggete eceteaeae teatgatega etecaeete ecetegaaaea tgatggaaea ggeeteegae atecaaggagaee ecetegaeea gacegaaeaa tgatggaaea ggeeteegae atecaaggagaeea eceteaeaa tgatggaaea ggeeteegae atecaagaeaa atecaagaeaa ggeeteegae atecaagaeaa tgatggaaea ggeeteegae atecaagaeaaaa tgatggaaea aggaggatae tocaagagaaeaaaaaa tgatggaaea aggaggatae aagaggaatae tocaagagaaeaaaaaa tgatggaaea aggaggatae aagaggaatae aggaagaaaaaaaaaa	gtttteggte tgggeaaceg acagtacgag cactteaaca aggttgecaa gacatecteg tegageaggg tgeceagega etegteeagg teggeetegg cagtgeateg aggaaggtga cactgeegg egagaggete tgtggeeega attetgeagag aggaaggtga cacegeegt gecaacece acacegeege tacegagget ecaacegeaggaggaacegaacegaac	gettetegge teggeaaccy acagtacga gegagege teaagaacce caagtacgge gettetegge gacatcctcy tegageaggy tycccagcga ctcgtccagg teggectegg tgatgatgac cagtgcatcy aggaaggtt cactgcagg teggeaccc attetgcaga aggaaggtga caccgccgt gccaccccc acaccgccgc egtectcgag taccgagtct cactgcagg tycccaccc acaccgaggact caccgccgt gccaccccc acaccgccgc egtectcgag taccgagtct cactgcagga gccaaggtca acaccgccgt tycaccacca aggacaaccg eggaaggctc acaccgccag acaccccaca aggacaaccg eggagagctc acacccccag gccagaccga tettgtatca acgacatca catggccaag eggagagctcc gaccgccaga gactggtgac cacgttggtg tectetgtga caacctgtcc gagactgtcg acaggagctct gccaccacc gacatgtcc eggagactccc acaccccga gactggtgac cacgttggtg tectetgtga caacctgtcc gagactgtcg acaggagctct gacccgacta tettgtatcc eggacactta etteteteg cacgacaga aagaaggacgg tactcccatc tettettete tgccccccc ettccetec tgcaacctg gaaccgctct gacccgatac gcctgcctcc tetettetec caagaagtct gcccgagaacctgg gaaccgctct gacccgatac gcctgcctcc tetettetec caagaagtct gctctcgttg etctggcac cacgcctcc gacccaccag aggetgageg actcaagcac etcgcctctc ccgctggcaa ggacgagtac tecaagtggg ttgtcgagtc ccaagcgatct etgctcgagg teatgccaa ggacgagtac tecaagtggg ttgtcgagtc caagcgatct etgctcgagg teatgccaa ggacgagtac tecaagtggg ttgtcgagtc caagcgatct etgctcgag gtctcccacc gccagatct tactccatc etctteccc caagaggaccc etgggggggggggggggggggggggggggggggggg

50

55 <220>

<210> 30 <211> 1446

<212> DNA <213> Artificial sequence

<223> UGT1 optimized for expression in Y. lipolitica

	<400> 30							
		tggccaccac	cgagaagaag	ccccacgtca	tcttcatccc	cttccccgcc	60	
-	cagtcccaca	tcaaggccat	gctcaagctc	gcccagctcc	tccaccacaa	gggcctccag	120	
5	atcacctttg	tcaacaccga	cttcatccac	aaccagttcc	tcgagtcctc	cggccccac	180	
	tgtctggacg	gtgctcccgg	tttccgattt	gagactatcc	ccgatggtgt	ctcccactcc	240	
10	cccgaggcct	ccatccccat	ccgagagtct	ctgctccgat	ccattgagac	taacttcctc	300	
	gaccgattca	ttgatctcgt	caccaagctc	cccgatcctc	ccacctgtat	catctccgac	360	
	ggtttcctgt	ccgttttcac	cattgatgct	gccaagaagc	tcggtatccc	cgtcatgatg	420	
15	tactggactc	tggctgcctg	tggtttcatg	ggtttctacc	acatccactc	tctgatcgag	480	
	aagggctttg	ctcctctcaa	ggacgcctcc	tacctcacca	acggttacct	cgacaccgtc	540	
	attgactggg	tccccggtat	ggagggtatc	cgactcaagg	acttccccct	cgactggtcc	600	
20	accgacctca	acgacaaggt	tctcatgttc	accaccgagg	ctccccagcg	atcccacaag	660	
	gtttcccacc	acatcttcca	caccttcgac	gagctcgagc	cctccatcat	caagactctg	720	
	tctctgcgat	acaaccacat	ctacaccatt	ggccccctcc	agctcctcct	cgaccagatc	780	
25	cccgaggaga	agaagcagac	cggtatcacc	tctctgcacg	gctactctct	cgtcaaggaa	840	
	gagcccgagt	gcttccagtg	gctccagtcc	aaggagccca	actccgttgt	ctacgtcaac	900	
30	tttggctcca	ccaccgtcat	gtctctcgag	gacatgaccg	agtttggctg	gggtctggcc	960	
	aactccaacc	actacttcct	gtggatcatc	cgatccaacc	tcgtcattgg	cgagaacgcc	1020	
	gttctgcctc	ccgagctcga	ggagcacatc	aagaagcgag	gcttcattgc	ctcttggtgc	1080	
35	tcccaggaga	aggttctcaa	gcacccctcc	gtcggtggtt	tcctgaccca	ctgcggctgg	1140	
	ggctccacca	ttgagtctct	gtccgctggt	gtccccatga	tctgctggcc	ctactcctgg	1200	
	gaccagctca	ccaactgccg	atacatctgc	aaggagtggg	aggttggtct	ggagatgggt	1260	
40	accaaggtca	agcgagatga	ggtcaagcga	ctcgtccagg	agctcatggg	cgagggtggt	1320	
	cacaagatgc	gaaacaaggc	caaggactgg	aaggagaagg	cccgaattgc	cattgcccc	1380	
	aacggctctt	cttctctcaa	cattgacaag	atggtcaagg	agatcactgt	tctcgctcga	1440	
45	aactaa						1446	
50	<210> 31 <211> 1419 <212> DNA <213> Arts	9 ificial sequ	ience					
55	<223> UGT2 variant optimized for expression in Y. lipolitica							
-	<400> 31 atggccacct	ccgactccat	tgttgacgac	cgaaagaagc	tccacattgt	catgttcccc	60	

	tggetegeet	ttggccacat	Catecectat	etegagettt	ccaageteat	tgcccagaag	120
	ggccacaagg	tttccttcct	ctccaccacc	aagaacattg	accgactctc	ctcccacatc	180
5	tctccctca	tcaactttgt	caagctcacc	ctccccgag	tccaggagct	gcccgaggac	240
	gccgaggcca	ccactgatgt	ccaccccgag	gatatcccct	acctcaagaa	ggcctccgac	300
	ggcctccagc	ccgaggtcac	tgagttcctc	gagcagcact	ctcccgactg	gatcatctac	360
10	gactacaccc	actactggct	ccccgagatt	gccaagtctc	tcggtgtctc	tcgagcccac	420
	ttctccgtca	ccaccccctg	ggccattgct	tacatgggtc	ccactgccga	tgccatgatc	480
15	aacggttccg	actaccgaac	cgagcttgag	gacttcaccg	tccctcccaa	gtggttcccc	540
	ttccccacca	ccgtctgctg	gcgaaagcac	gatctggccc	gactcgtccc	ctacaaggct	600
	cccggtatct	ccgacggtta	ccgaatgggc	ctcgtcatca	agggctgcga	ctgtctgctc	660
20	tccaagacct	accacgagtt	cggtactcag	tggctccgac	ttctcgagga	gctgcaccga	720
	gtccccgtca	tccccgttgg	tctgctccct	ccctccatcc	ccggctctga	caaggacgac	780
	tcttgggttt	ccatcaagga	gtggctcgac	ggccaggaga	agggctccgt	tgtctacgtt	840
25	gctctcggtt	ccgaggttct	cgtcacccag	gaagaggttg	tcgagcttgc	tcacggtctg	900
	gagctgtccg	gtctgccctt	cttctgggcc	taccgaaagc	ccaagggtcc	cgccaagtcc	960
20	gactccgtcg	agcttcccga	tggtttcgtc	gagcgagtcc	gagatcgagg	tctggtctgg	1020
30	acctcttggg	ctccccagct	ccgaatcctc	tcccacgagt	ccgttgctgg	tttcctcacc	1080
	cactgcggtt	ccggctccat	tgtcgagggc	ctcatgttcg	gccaccctct	catcatgctc	1140
35	cccatcttcg	gtgaccagcc	cctcaacgcc	cgactccttg	aggacaagca	ggtcggtatc	1200
	gagatccccc	gaaacgagga	agatggttct	ttcacccgag	actctgttgc	cgagtctctg	1260
	cgactcgtca	tggtcgagga	agagggtaag	atctaccgag	agaaggccaa	ggagatgtcc	1320
40	aagctctttg	gcgacaagga	cctccaggac	cagtacgtcg	acgactttgt	cgagtacctc	1380
	cagaagcacc	gacgagctgt	tgccattgac	cacgaaagc			1419
45	<210> 32 <211> 1383 <212> DNA <213> Arti	3 ificial sequ	ience				
50	<220> <223> UGT3	3 optimized	for express	sion in Y.]	lipolitica		
	<400> 32 atggccgagc	agcagaagat	caagaagtct	ccccacgttc	tgctcatccc	cttccctctg	60
55	cagggccaca	tcaacccctt	catccagttc	ggcaagcgac	tcatctccaa	gggtgtcaag	120
55	200201010	+02002000+		2201002010	+ 022 002 0+ 0	annanaan	190

	accacctcca	tcgagatcca	ggccatctcc	gacggctgtg	acgagggtgg	tttcatgtct	240
	gctggtgagt	cttacctcga	gactttcaag	caggtcggtt	ccaagtctct	ggctgacctc	300
5	atcaagaagc	tccagtccga	gggtaccacc	attgacgcca	tcatctacga	ctccatgacc	360
	gagtgggttc	tcgatgtcgc	catcgagttt	ggtattgacg	gtggctcctt	cttcacccag	420
	gcctgtgtcg	tcaactctct	ctactaccac	gtccacaagg	gtctgatctc	tetgeceete	480
10	ggcgagactg	tctccgtccc	cggtttcccc	gttctgcagc	gatgggagac	tcctctcatt	540
	ctccagaacc	acgagcagat	ccagtccccc	tggtcccaga	tgctcttcgg	ccagttcgcc	600
	aacattgacc	aggcccgatg	ggttttcacc	aactccttct	acaagctcga	ggaagaggtc	660
15	attgagtgga	cccgaaagat	ctggaacctc	aaggtcattg	gccccaccct	cccctccatg	720
	tacctcgaca	agcgactcga	tgacgacaag	gacaacggtt	tcaacctcta	caaggccaac	780
20	caccacgagt	gcatgaactg	gctcgacgac	aagcccaagg	agtccgttgt	ctacgttgcc	840
20	tttggctctc	tggtcaagca	cggccccgag	caggttgagg	agatcacccg	agctctgatt	900
	gactccgatg	tcaacttcct	gtgggtcatc	aagcacaagg	aagagggtaa	gctccccgag	960
25	aacctgtccg	aggtcatcaa	gaccggcaag	ggcctcattg	ttgcctggtg	caagcagctc	1020
	gacgttctcg	cccacgagtc	cgtcggctgc	tttgtcaccc	actgcggttt	caactccacc	1080
	ctcgaggcta	tctctctcgg	tgtccccgtt	gttgccatgc	cccagttctc	cgaccagacc	1140
30	accaacgcca	agctcctcga	tgagattctc	ggtgtcggtg	tccgagtcaa	ggctgacgag	1200
	aacggtattg	tccgacgagg	taacctggct	tcttgtatca	agatgatcat	ggaggaagag	1260
	cgaggtgtca	tcatccgaaa	gaacgccgtc	aagtggaagg	atctggccaa	ggttgctgtc	1320
35	cacgagggtg	gctcttccga	caacgacatt	gtcgagtttg	tctccgagct	catcaaggcc	1380
	taa						1383
40	<210> 33 <211> 1377 <212> DNA <213> Arti	7 ificial sequ	1ence				
45	<220> <223> UGT4	1 optimized	for express	sion in Y. I	lipolitica		
	<400> 33 atggagaaca	agaccgagac	taccgtccga	cgacgacgac	gaatcattct	cttccccqtc	60
				cagetegeca	_	_	120
50			_	aacaagccca	-		180
				ccccaggacg	-		240
			-	cccatcatca		_	300
55				qcctccqaaq			360
							200

	ctgatcaccg	atgctctgtg	gtactttgcc	cagtccgtcg	ccgactctct	caacctgcga	420
	cgactcgttc	tcatgacctc	ctctctgttc	aacttccacg	cccacgtttc	tctgccccag	480
5	tttgacgagc	teggttacct	cgaccccgat	gacaagaccc	gactcgagga	gcaggcttcc	540
	ggtttcccca	tgctcaaggt	caaggacatc	aagtccgcct	actccaactg	gcagattctc	600
	aaggagattc	tcggcaagat	gatcaagcag	accaaggcct	cctccggtgt	catctggaac	660
10	tccttcaagg	agctcgagga	gtccgagctc	gagactgtca	tccgagagat	ccccgctccc	720
	tctttcctca	teeecetgee	caagcacctc	accgcttcct	cctcttctct	gctcgaccac	780
15	gaccgaaccg	tctttcagtg	gctcgaccag	cagccccctt	cctccgtcct	ctacgtttcc	840
	ttcggctcca	cctccgaggt	cgacgagaag	gacttcctcg	agattgctcg	aggcctcgtt	900
	gactccaagc	agtccttcct	gtgggttgtc	cgacccggct	ttgtcaaggg	ctccacctgg	960
20	gttgagcccc	tgcccgatgg	tttcctcggt	gagcgaggcc	gaattgtcaa	gtgggtcccc	1020
	cagcaggaag	ttctggccca	cggtgccatt	ggtgccttct	ggacccactc	cggctggaac	1080
	tccactctcg	agtccgtctg	cgagggtgtc	cccatgatct	tctccgactt	tggcctcgac	1140
25	cagcccctca	acgcccgata	catgtccgat	gttctcaagg	tcggtgtcta	cctcgagaac	1200
	ggctgggagc	gaggtgagat	tgccaacgcc	atccgacgag	tcatggtcga	cgaggaaggt	1260
	gagtacatcc	gacagaacgc	ccgagtcctc	aagcagaagg	ccgatgtctc	tctcatgaag	1320
30	ggtggttctt	cttacgagtc	tctcgagtct	ctcgtttcct	acatctcttc	tttgtaa	1377
35	<220>	ificial sequ			a in V line		
10	<223> 0GT2	2 variant og	otimized for	expression	in in i. lipo	olitica	
		ccgactccat	tgtcgacgac	cgaaagaagc	tccacattgt	catgttcccc	60
	tggctcgcct	ttggccacat	cattccctac	ctcgagcttt	ccaagctcat	tgcccagaag	120
1 5	ggccacaagg	tttctttcct	ctccaccacc	aagaacattg	accgactctc	ctcccacatc	180
	tctcctctca	tcaacgttgt	ccagctcacc	ctccccgag	tccaggagct	gcccgaggac	240
-0	gccgaggcca	ccaccgatgt	ccaccccgag	gatatcccct	acctcaagaa	ggcctccgac	300
50	ggtctgcagc	ccgaggtcac	cgagttcctc	gagcagcact	ctcccgactg	gatcatctac	360
	gactacaccc	actactggct	ccctccatt	gccaccaagc	acggtgtctc	tcgagcccac	420
55	ttctccgtca	ccaccccctg	ggccattgcc	tacatgggcc	ccactgctga	cgccatgatc	480
	aacggttccg	atggccgaac	cacccccgag	gacttcactg	tccctcccaa	gtggttcccc	540

	tteeceacea	aggrergerg	gegaaageae	gatetggeee	gactegttee	ctacaaggee	800
	cccggtatct	ccgacggcta	ccgaatgggt	ctggtcatca	agggctgcga	ctgtctgctc	660
5	tccaagacct	accacgagtt	tggcacccag	tggctccgac	tcctcgagac	tctccaccga	720
	aagcccgtca	tccccgtcgg	tctgctccct	ccctccatcc	ccggctccga	caaggacgac	780
10	tcttgggttt	ccatcaagga	gtggctcgac	ggccaggaga	agggetetgt	tgtctacgtt	840
	gctctcggtt	ccgaggttct	cgtcacccag	gacgaggttg	ttgagctggc	ccacggtctg	900
	gagctgtccg	gcctcccctt	cgtctgggct	taccgaaacc	ccaagggtcc	cgccaagtcc	960
15	gactccgtcg	agcttcccga	tggtttcgtc	gagcgagtcc	gagatcgagg	tctggtctgg	1020
	acctcttggg	ctccccagct	ccgaatcctc	tcccacgagt	ccgtctgtgg	tttcctcacc	1080
	cactgcggtt	ccggctccat	cgtcgagggt	ctgatgttcg	gccaccccct	catcatgctc	1140
20	cccatcttcg	gtgaccagcc	cctcaacgcc	cgactccttg	aggacaagca	ggtcggtatc	1200
	gagatccccc	gaaacgaaga	ggacggttcc	ttcacccgag	actctgttgc	tgagtctctc	1260
25	cgactcgtca	tggtcgagga	agagggtaag	atctaccgag	agaaggccaa	ggagatgtcc	1320
	aagctgttcg	gtgacaagga	tctccaggac	cagtacgtcg	acgactttgt	cgagtacctc	1380
	cagaagcacc	gacgagctgt	tgccattgac	cacgagtct			1419

Claims

30

35

40

50

1. A recombinant host capable of producing glycosylated diterpene comprising a recombinant nucleic acid sequence encoding a polypeptide comprising:

a. the amino acid sequence set forth in SEQ ID NO: 4 or an amino acid sequence having at least about 30% sequence identity thereto:

- b. the amino acid sequence set forth in SEQ ID NO: 2 or an amino acid sequence having at least about 30% sequence identity thereto;
- c. the amino acid sequence set forth in SEQ ID NO: 3 or an amino acid sequence having at least about 30% sequence identity thereto; or
- d. the amino acid sequence set forth in SEQ ID NO: 1 or an amino acid sequence having at least about 30% sequence identity thereto.
- 45 2. A recombinant host according to claim 1 which comprises one or more recombinant nucleotide sequence(s) encoding:
 - a polypeptide having ent-copalyl pyrophosphate synthase activity;
 - a polypeptide having ent-Kaurene synthase activity;
 - a polypeptide having ent-Kaurene oxidase activity; and
 - a polypeptide having kaurenoic acid 13-hydroxylase activity.
 - 3. A recombinant host according to any one of the preceding claims, which comprises a recombinant nucleic acid sequence encoding a polypeptide having NADPH-cytochrome p450 reductase activity.
- 55 4. A recombinant host according to any one of the preceding claims which comprises a recombinant nucleic acid sequence encoding one or more of:
 - (i) a polypeptide having UGT74G1 activity (UGT3 activity);

- (ii) a polypeptide having UGT85C2 activity (UGT1 activity); and
- (iii) a polypeptide having UGT76G1 activity (UGT4 activity).

5

10

15

20

25

30

35

40

45

50

55

- **5.** A recombinant host according to any one of the preceding claims which comprises a recombinant nucleic acid sequence encoding an additional polypeptide having UGT2 activity.
 - **6.** A recombinant host according to any one of the preceding claims, wherein the host belongs to one of the genera Saccharomyces, Aspergillus, Pichia, Kluyveromyces, Candida, Hansenula, Humicola, Issatchenkia, Trichosporon, Brettanomyces, Pachysolen, Yarrowia, Yamadazyma or Escherichia.
 - **7.** A recombinant host according to claim 6, wherein the recombinant host is a Saccharomyces cerevisiae cell, a *Yarrowia lipolytica* cell, a *Candida krusei* cell, an *Issatchenkia orientalis* or an *Escherichia coli* cell.
 - **8.** A recombinant host according to any one of the preceding claims, wherein the ability of the host to produce geranylgeranyl diphosphate (GGPP) is upregulated.
 - **9.** A recombinant host according to any one of the preceding claims, comprising one or more recombinant nucleic acid sequence(s) encoding hydroxymethylglutaryl-CoA reductase, farnesyl-pyrophosphate synthetase and geranylgeranyl diphosphate synthase.
 - 10. A recombinant host according to any one of the preceding claims which comprises a nucleic acid sequence encoding one or more of:
 - a polypeptide having hydroxymethylglutaryl-CoA reductase activity;
 - a polypeptide having farnesyl-pyrophosphate synthetase activity;
 - a polypeptide having geranylgeranyl diphosphate synthase activity.
 - 11. A process for the preparation of a glycosylated diterpene which comprises fermenting a recombinant host according to any one of claims 2 to 10 in a suitable fermentation medium, and optionally recovering the glycosylated diterpene.
 - 12. A method for converting a first glycosylated diterpene into a second glycosylated diterpene, which method comprises:
 - contacting said first glycosylated diterpene with a recombinant host according to any one of claims 1 to 10, a
 cell free extract derived from such a recombinant host or an enzyme preparation derived from either thereof;
 thereby to convert the first glycosylated diterpene into the second glycosylated diterpene.
 - **13.** A method according to claim 12, wherein the second glycosylated diterpene is: steviol-19-diside, steviolbioside, stevioside, 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester. Reb E or Reb D.
 - **14.** A method according to claim 13, wherein the first glycosylated diterpene is steviol-13-monoside, steviol-19-monoside, rubusoside, stevioside, Rebaudioside A or 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester and the second glycosylated diterpene is steviol-19-diside, steviolbioside, stevioside, 13-[(β-D-Glucopyranosyl)oxy)kaur-16-en-18-oic acid 2-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester, Reb E or Reb D.

54

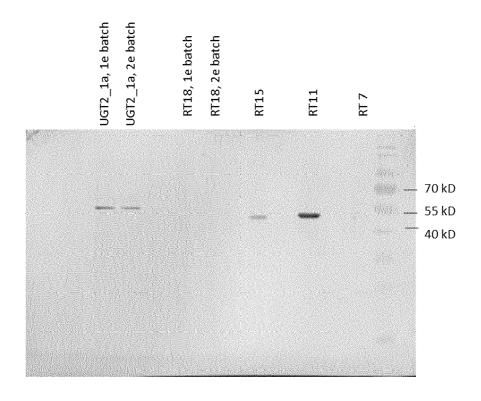


Fig. 1

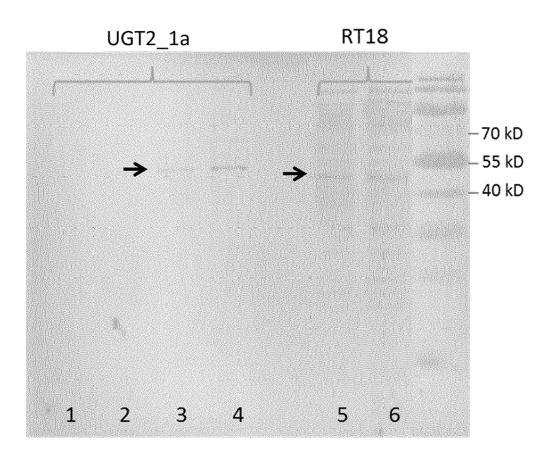


Fig. 2

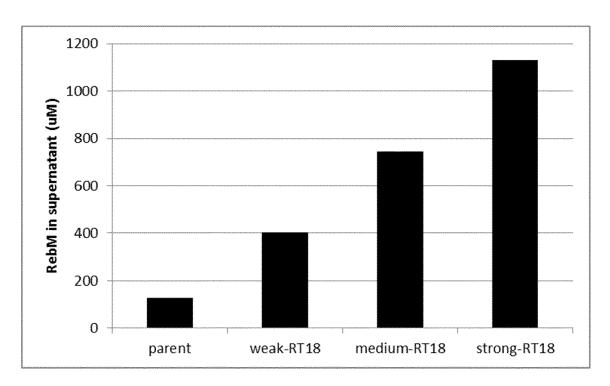


Fig. 3

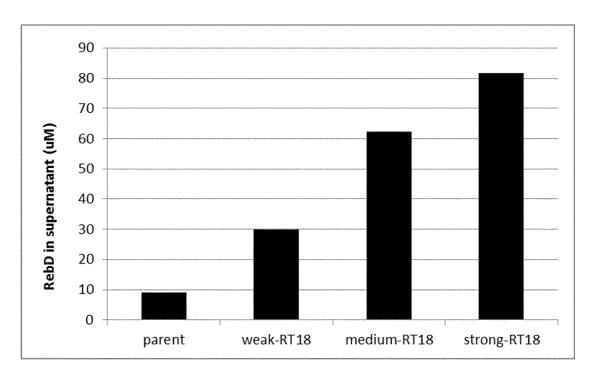


Fig. 4

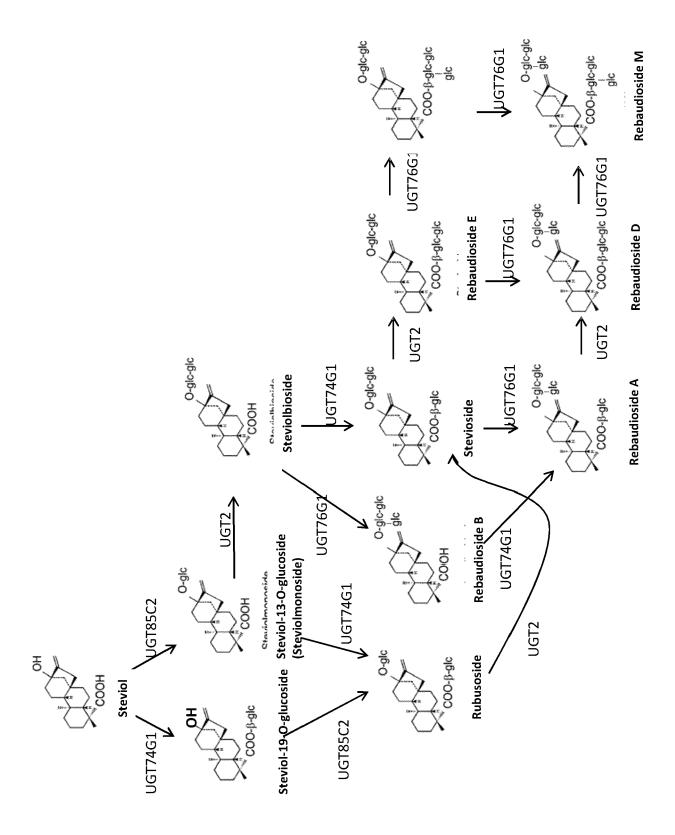


Fig. 5

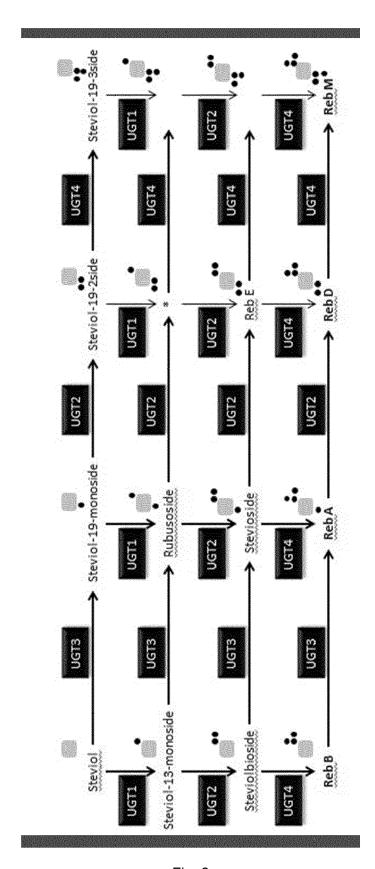


Fig. 6

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2013110673 A [0006] [0165] [0168]
- WO 2015007748 A [0006] [0050] [0054] [0058] [0060] [0076] [0165] [0168]
- EP 0635574 A [0043]
- WO 9846772 A [0043]
- WO 9960102 A [0043]
- WO 0037671 A [0043]

- US 518188 [0088]
- WO 03062430 A [0090]
- WO 06009434 A [0090]
- EP 1499708 B1 [0090]
- WO 2006096130 A [0090]
- WO 04099381 A [0090]

Non-patent literature cited in the description

- SAMBROOK; RUSSEL. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0043]
- F. AUSUBEL et al. Current protocols in molecular biology. Green Publishing and Wiley Interscience, 1987 [0043]
- HUMPHREY et al. Plant Molecular Biology, 2006, vol. 61, 47-62 [0062]
- MOHAMED et al. J. Plant Physiology, 2011, vol. 168, 1136-1141 [0062]
- ALEXOPOULOS, C. J. Introductory Mycology. John Wiley & Sons, Inc, 1962 [0085]

- NEEDLEMAN, S. B.; WUNSCH, C. D. J. Mol. Biol., 1970, vol. 48, 443-453 [0136]
- RICE,P.; LONGDEN, I.; BLEASBY,A. EMBOSS: The European Molecular Biology Open Software Suite. *Trends in Genetics*, 2000, vol. 16 (6), 276-277, http://emboss.bioinformatics.nl [0136]
- ALTSCHUL et al. J. Mol. Biol., 1990, vol. 215, 403-10 [0138]
- ALTSCHUL et al. *Nucleic Acids Res.*, 1997, vol. 25 (17), 3389-3402 [0138]