(11) EP 4 006 457 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 01.06.2022 Bulletin 2022/22

(21) Application number: 20847326.4

(22) Date of filing: 24.07.2020

(51) International Patent Classification (IPC): F25D 11/02 (2006.01) F25D 19/00 (2006.01)

(52) Cooperative Patent Classification (CPC): F25D 23/003; F25D 19/04; F25D 23/00; F25D 2323/00264; F25D 2323/00274

(86) International application number: **PCT/CN2020/104076**

(87) International publication number: WO 2021/018029 (04.02.2021 Gazette 2021/05)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

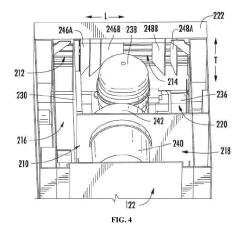
Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 26.07.2019 US 201916522790


(71) Applicants:

 Qingdao Haier Refrigerator Co., Ltd Qingdao, Shandong 266101 (CN)

- Haier Smart Home Co., Ltd.
 Qingdao, Shandong 266101 (CN)
- Haier US Appliance Solutions, Inc. Wilmington, DE 19801 (US)
- (72) Inventors:
 - THOMAS, Ryan Joseph Wilmington, Delaware 19801 (US)
 - CRANE, Scott P.
 Wilmington, Delaware 19801 (US)
- (74) Representative: Lavoix Bayerstraße 83 80335 München (DE)

(54) REFRIGERATOR CAPABLE OF IMPROVING AIR CIRCULATION IN MACHINE CHAMBER

(57)A refrigerator (100), comprising a refrigerator body (110), a louver panel (222), and a plurality of blades (246, 248) spaced apart in the lateral direction. The refrigerator body (110) extends laterally between a first side surface (116) and a second side surface (118), and a refrigerating chamber (128) and a machine chamber (210) are formed in the refrigerator body (110). The machine chamber (210) has an air inlet (212) and an air outlet (214) spaced apart from each other. The louver panel (222) is mounted on the front side of the machine chamber (210). The louver panel (222) is provided with a plurality of lateral holes (224) in the vertical direction at intervals. The lateral holes (224) are in front of the air inlet (212) and the air outlet (214), and first ends (226) of the lateral holes (224) extend laterally to second ends (228). The plurality of blades (246, 248) are provided at the air outlet (214) and extend backwards from the louver panel (222).

EP 4 006 457 A1

Description

FIELD OF THE INVENTION

[0001] The present subject matter relates generally to refrigerator assemblies or appliances, and more particularly to features thereof for improving air circulation through a machine compartment of a refrigerator assembly.

1

BACKGROUND OF THE INVENTION

[0002] Refrigerator assemblies or appliances generally include a cabinet that defines a chilled chamber, such as a fresh food chamber or a freezer chamber, for storing food or other perishable items. In addition, refrigerator appliances also generally include a door rotatably hinged to the cabinet to permit selective access to food items stored in the chilled chamber. Often, refrigerator appliances include a machine compartment in which a compressor or condenser is mounted.

[0003] It is common for typical refrigerators stick out from a wall or cabinet in which they are installed. In order to address this concern, certain refrigerator appliances, such as those commonly referred to as built-in refrigerators, are configured to be installed in a cabinet such that a refrigerator appliance appears to be an integral part of the kitchen or room. Although aesthetically pleasing, this can cause further issues. A machine compartment must often be vertically stacked, for instance, below the chilled chamber. Therefore, it can be difficult to circulate air through the machine compartment for heat exchange. An air inlet and an air outlet must often be located adjacent to each other, for instance, at a front face of the refrigerator. In turn, it is often especially difficult to prevent an intake airflow into the machine compartment from mixing with an output airflow from the machine compartment. [0004] Some existing appliances have attempted to address these circulation concerns by providing a transverse wall or panel that extends outward (i.e., toward a user) from the machine compartment at a front face or lateral panel. Similarly, a wall that extends from a door toward the machine compartment (e.g., when the door is closed) may be provided. Unfortunately, having discontinuous elements or features extending in front of the machine compartment often creates an unseemly appearance. Such a configuration may also provide or create an intrusive surface that can catch fabric, dust, or even a user's foot passing in front of the appliance.

[0005] As a result, further improvements for addressing air circulation of refrigerator assemblies or appliances would be desirable. In particular, it would be useful to provide a refrigerator assembly or appliance having one or more features for preventing the mixing of airflows to/from a machine compartment while still providing a continuous or uninterrupted front surface.

BRIEF DESCRIPTION OF THE INVENTION

[0006] Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.

[0007] In one exemplary aspect of the present disclosure, a refrigerator assembly is provided. The refrigerator assembly may include a cabinet, a louver panel, and a plurality of laterally-spaced vanes. The cabinet may extend along a lateral direction between a first lateral side and a second lateral side. The cabinet may define a chilled chamber and a machine compartment. The machine compartment may have an air inlet and an air outlet separate from the air inlet. The louver panel may be mounted to the cabinet in front of the machine compartment. The louver panel may define a plurality of lateral apertures spaced apart along a vertical direction. The plurality of lateral apertures may extend along the lateral direction in front of the air inlet and the air outlet from a first end to a second end. The plurality of laterally-spaced vanes may extend rearward from the louver panel at the air outlet.

[0008] In another exemplary aspect of the present disclosure, a refrigerator assembly is provided. The refrigerator assembly may include a cabinet, a louver panel, and a plurality of laterally-spaced vanes. The cabinet may extend along a lateral direction between a first lateral side and a second lateral side. The cabinet may define a chilled chamber and a machine compartment. The machine compartment may have an air inlet and an air outlet separate from the air inlet. The louver panel may be mounted to the cabinet in front of the machine compartment. The louver panel may define a plurality of lateral apertures spaced apart along a vertical direction. The plurality of lateral apertures may extend along the lateral direction in front of the air inlet and the air outlet from a first end to a second end. The plurality of laterally-spaced vanes may extend rearward from the louver panel at the air outlet. The plurality of laterally-spaced vanes may be directed away from the panel inlet.

[0009] These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.

FIG. 1 provides an elevation view of a refrigerator

40

assembly according to exemplary embodiments of the present disclosure.

FIG. 2 provides an elevation view of the exemplary refrigerator assembly of FIG. 1, wherein the door is shown in an open position.

FIG. 3 provides a section view of a machine compartment of the exemplary refrigerator assembly of FIG. 1, taken along the line 3-3, as shown in FIG. 2. FIG. 4 provides a rear perspective view of a machine compartment of a refrigerator assembly according to exemplary embodiments of the present disclosure.

FIG. 5 provides a front perspective view of a machine compartment of a refrigerator assembly according to exemplary embodiments of the present disclosure.

FIG. 6 provides a front perspective view of the exemplary machine compartment of FIG. 4, wherein a front louver panel has been removed for clarity.

FIG. 7 provides an elevation view of a refrigerator assembly according to exemplary embodiments of the present disclosure, wherein one door is shown in an open position.

DETAILED DESCRIPTION

[0011] Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents. [0012] As used herein, the term "or" is generally intended to be inclusive (i.e., "A or B" is intended to mean "A or B or both"). The terms "first," second, and "third" may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms "upstream" and "downstream" refer to the relative flow direction with respect to fluid flow in a fluid pathway. For example, "upstream" refers to the flow direction from which the fluid flows, and "downstream" refers to the flow direction to which the fluid flows. Terms such as "inner" and "outer" refer to relative directions with respect to the interior and exterior of a refrigerator assembly. For example, "inner" or "inward" refers to the direction towards the interior of the refrigerator appliance. Terms such as "left,""right,""front,""forward,""back,""rearward,""top," or "bottom" are used with reference to the perspective of a user accessing the refrigerator appliance. For example, a user stands in front of the refrigerator to open the doors

and reaches into the chilled chamber(s) to access items therein.

[0013] Referring now to FIGS. 1 through 3, multiple perspective views are provided of an exemplary refrigerator assembly 100. A refrigerator assembly 100 according to an embodiment of the present disclosure defines a vertical direction V, a lateral direction L, and a transverse direction T (FIG. 3), each mutually perpendicular to one another. As may be seen, the refrigerator appliance 100 includes a housing or cabinet 110 that extends between a top 112 and a bottom 114 along the vertical direction V, between a left (e.g., first lateral) side 116 and a right (e.g., second lateral) side 118 along the lateral direction L, and between a front end or side 120 (FIG. 3) and a rear end or side 122 (FIG. 3) along the transverse direction T.

[0014] The cabinet 110 generally defines one or more chilled chambers 128 (e.g., fresh food or freezer chambers) for receipt of food items for storage. Specifically, the chilled chamber 128 is positioned between the left side 116 and the right side 118. In some embodiments, the chilled chamber 128 is positioned at or adjacent the top 112 of the cabinet 110. Nonetheless, it should be appreciated, that, except as otherwise indicate, the chilled chamber 128 may be positioned at any suitable location within the refrigerator assembly 100. Moreover, although a single chilled chamber 128 is shown, it is understood that alternative embodiments may include any suitable number or shape of chilled chambers 128 (e.g., to be maintained at separate or discrete temperatures). [0015] The refrigerator assembly 100 may include one or more refrigerator doors 124 rotatably mounted to the cabinet 110, for example, such that the refrigerator door 124 permits selective access to at least a portion of the chilled chamber 128. In some embodiments, the refrigerator door 124is rotatably mounted to the cabinet 110 at one side (e.g., the right side 118) of the cabinet 110. A handle 130 may be positioned on the refrigerator door 124 to facilitate movement of the door 124 between a closed position (FIG. 1) that restricts access to the chilled chamber 128 (e.g., by extending across the chilled chamber 128) and an open position (FIG. 3) that permits access to the chilled chamber 128 (e.g., by being spaced apart from the chilled chamber 128).

[0016] As shown in FIG. 2, various storage components may be mounted within the food storage chamber 100 to generally facilitate storage of food items. In certain embodiments, the storage components include bins 132, drawers 134, and shelves 136 that are mounted within the chilled chamber 128. The bins 132, drawers 134, and shelves 136 are configured for receipt of food items (e.g., beverages or solid food items) and may assist with organizing such food items.

[0017] Generally, a sealed system is provided to cool air within chilled chamber **128** (e.g., at least in part by circulating a refrigerant as part of a refrigeration cycle). For instance, one or more components of the sealed system (e.g., a compressor **238** or condenser **240**) may be

20

housed or within a machine compartment 210 defined by cabinet 110 (e.g., below or directly beneath chilled chamber 128). In some such embodiments, the machine compartment 210 is selectively covered or blocked by the door 124 (e.g., in the closed position). In particular, the machine compartment210 may be positioned rearward from the door 124. Relative to the vertical direction V, one or more openings (e.g., lateral apertures 224) to the machine compartment 210 may be positioned above a bottom edge 126 of the door 124. Thus, when closed, the door 124 may hide one or more (e.g., all) lateral apertures 126 from the view of a user standing in front of the assembly 100.

[0018] Turning especially to FIGS. 3 through 6, various views are provided of the machine compartment 210 (e.g., at the bottom 114 of cabinet110). In certain embodiments, the machine compartment 210 spans the cabinet 110 along the lateral direction L from the left side 116 to the right side 118. In additional or alternative embodiments, the machine compartment 210 spans the cabinet 110 along the transverse direction T from the front end 120 to the rear end 122.

[0019] Generally, the machine compartment 210 includes an air inlet 212 (e.g., at the front end 120) to permit air to enter the machine compartment 210 and an air outlet 214 (e.g., at the front end 120) to permit air to exit the machine compartment 210. In certain embodiments, the air inlet 212 and the air outlet 214 are laterally adjacent to each other. For instance, the air inlet 212 and the air outlet 214 may be defined or located at discrete lateral positions. In some embodiments, the air inlet 212 is located proximal to the right side 118 (i.e., distal to the left side 116) while the air outlet 214 is located proximal to the left side 116 (i.e., distal to the right side 118). Within the machine compartment 210, the machine compartment 210 includes one or more air channels (e.g., intake channel 216, 218 or output channel 220) to direct air through the machine compartment 210 from the air inlet 212 to the air outlet 214.

[0020] A louver panel 222 is mounted to the cabinet **110** in front of the machine compartment **210**. In particular, the louver panel 222 may be positioned in front of an opening that defines, at least in part, the air inlet 212 and the air outlet 214 (e.g., below the chilled chamber **128-FIG.** 2). In some embodiments, the louver panel **222** extends along the lateral direction L from the left side 116 to the right side 118. Across at least a portion of the louver panel 222, a plurality of lateral apertures 224 are defined. As shown, the plurality of lateral apertures 224 extend along the lateral direction L from a first end 226 to a second end 228. In certain embodiments, the lateral apertures 224 are uninterrupted or free of any discontinuous, interrupting element between the first end 226 and the second end 228. Thus, the plurality of lateral apertures 224 may appear as continuous lines or openings (e.g., at the bottom of the refrigerator assembly 100-FIG. 2). Moreover, the lateral apertures 224 may appear as the only openings below the chilled chamber 128. Each of

the lateral apertures 224 may be spaced (e.g., vertically) apart from each other. In some such embodiments, one or more of the lateral apertures 224 are parallel to each other. When mounted to the cabinet 110, the plurality of lateral apertures 224 extend across the air inlet 212 and the air outlet 214. The air inlet 212 and the air outlet 214 may be restricted or otherwise further defined by the louver panel 222.

[0021] The lateral apertures 224 generally extend along the transverse direction T from the machine compartment 210 to the front 120 of the assembly 100. In optional embodiments, one or more of the lateral apertures 224 extends at an angle (e.g., non-parallel) to the transverse directionT. For instance, one or more lateral apertures 224 may be directed downward from the machine compartment 210 at a negative angle relative to the transverse direction T. Air directed from the machine compartment 210 through the lateral apertures 224 may thus flow forward from the machine compartment 210 and toward the ground (e.g., away from the chilled chamber 128).

[0022] Returning briefly to FIGS. 1 and 2, as noted above, the door 124 may be positioned in front of the machine compartment 210. When assembled, the door 124 may further be positioned in front of the louver panel 222. In some embodiments, the lower edge 126 of the door 124 is positioned below a bottom edge or bottommost lateral aperture 224 of the louver panel 222. Thus, in the closed position, the door 124 may cover or hide the louver panel 222. By contrast, in the open position of the door 124, access may be permitted to the louver panel 222 (e.g., such that the louver panel 222 and lateral apertures 224 are visible to a user in front of the refrigerator assembly 100).

[0023] Returning to FIGS. 3 through 6, in exemplary embodiments, a compartment wall 230 is provided within machine compartment 210. As shown, the compartment wall 230 generally extends along the transverse direction T (e.g., rearward relative to the louver panel 222). The compartment wall 230 may be positioned between the air inlet 212 and the air outlet 214 (e.g., relative to the lateral direction L). The compartment wall 230 may help block or define a separate air intake channel (e.g., having a transverse intake portion 216 or a lateral intake portion 218) and air output channel 220. During use, the air output channel 220 is downstream from the air intake channel 216 or 218 within the machine compartment210. In some such embodiments, the compartment wall 230 extends from an upper end 232 to a lower end 234 of the machine compartment 210. Air entering the machine compartment 210 through the air inlet 212 may thus be prevented from immediately intermingling with air to be ejected from the air outlet 214 (e.g., at the front end 120 of the cabinet 110). In further embodiments, the compartment wall 230 is mounted or fixed to a base pan or floor **236** of the cabinet **110** (e.g., defining a lowermost portion of the machine compartment 210).

[0024] In certain embodiments, the compartment wall

230 extends from the front end 120 to a portion of the machine compartment 210 forward from the rear end 122 to define a transverse intake portion 216. Moreover, a transverse gap between the compartment wall 230 and rear end 122 of the cabinet 110 may define a lateral intake portion 218 (e.g., as a continuation or part of intake channel). In some such embodiments, the output channel 220 is defined along the lateral direction L between the left side 116 and the compartment wall 230, while being defined along the transverse direction T between the front end 120 and the air handler 242. At least a portion of the intake channel (e.g., transverse intake portion216) may be defined along the lateral direction L between the right side 118 and the compartment wall 230, while being defined along the transverse direction T between the front end 120 and the lateral intake portion 218. Relative to fluid flow, the lateral intake portion 218 may be located between the transverse intake portion 216 and the output channel 220. During use, air may thus flow, for example, from the transverse intake portion **216** to the lateral intake portion 218 before passing to the output channel 220.

[0025] As noted above, one or more portions of the sealed refrigeration system may be housed within the machine compartment 210. In some embodiments, a compressor 238 configured to compress or motivate a refrigerant through the sealed system is mounted to the cabinet 110 within the machine compartment 210 (e.g., in the output channel 220). In additional or alternative embodiments, a condenser 240 (e.g., in fluid communication with the compressor 238) is housed within the machine compartment 210. For instance, the condenser 240 may be positioned adjacent to the rear end 122 of cabinet 110 (e.g., within intake channel at transverse intake portion 216 or lateral intake portion 218, as shown). In some such embodiments, the condenser 240 is positioned rearward from the compressor 238.

[0026] In some embodiments, an air handler 242, such as a fan or blower, is housed within the machine compartment 210 to motivate or urge an airflow therethrough (e.g., from the air inlet 212 to the air outlet 214). For instance, the air handler 242 may be directed at the compressor 238 or condenser 240 to draw air across portions of the sealed system and facilitate or encourage heat exchange between the sealed system and the ambient environment. In certain embodiments, the air handler 242 is positioned upstream from the compressor 238. In additional or alternative embodiments, the air handler 242 is positioned downstream from the condenser 240. Optionally, the air handler 242 may be positioned between the compressor 238 and the condenser 240 along the transverse direction T. In further additional or alternative embodiments, the air handler 242 is positioned between the output channel 220 and the intake channel 216, 218 (e.g., between the condenser 240 and the compressor 238). The output channel 220 may thus be a positive pressure channel while the intake channel 216, 218 is a negative pressure channel. In optional embodiments, one or more secondary apertures 244 are defined

through the rear end **122** of the cabinet **110** in fluid communication with the air handler **242** to provide supplemental or secondary air to mix with air from the intake channel **216**, **218** (e.g., within the lateral intake portion **218** or output channel **220**).

[0027] As shown, a plurality of laterally-spaced vanes 246, 248 are provided adjacent to the louver panel 222. In some embodiments, the vanes246, 248 are fixed or mounted to the louver panel 222. For instance, one or more adhesives, welds, or mechanical fasteners may secure the vanes246, 248 directly to the louver panel 222. Selective removal or mounting of the louver panel 222 from the cabinet 110, may thus advantageously provide removal or mounting of the vanes 246, 248 within the mechanical compartment.

[0028] Generally, the vanes 246, 248 extend rearward from the louver panel 222 (e.g., at the air outlet 214). Thus, when assembled, the vanes246, 248 are positioned opposite a front-facing surface of the louver panel 222 and are advantageously hidden from a user's view or contact. Each of the vanes 246, 248 is laterally spaced apart from the others along the lateral direction L. Separate air paths may thus be defined between adjacent vanes 246, 248. When assembled, the vanes 246, 248 may be positioned within at least a portion of the output channel 220 (e.g., proximal to the front end 120). In optional embodiments, the vanes 246, 248 may be positioned in front of the compressor 238 or air handler **242**(e.g., along or relative to the transverse direction T). [0029] In certain embodiments, one or more vanes (e.g., of a first vane set 246) are directed away from the right side 118 or the air inlet 212. For instance, one or more vanes 246A, 246B may be non-parallel to the transverse direction T. At least one vane 246, 248 may define a flow angle $\theta \textbf{1} (\text{e.g.}, \, \text{relative to the transverse direction}$ T) directed away from, for instance, the second end 228. Optionally, multiple vanes 246 may define flow angles θ 1 directed away from the second end 228. In some such embodiments, separate vanes 246 define separate flow angles θ **1**. For instance, the flow angles θ **1** may generally and sequentially increase relative to the transverse direction T as the lateral distance between discrete vanes 246increases relative to the second end 228 or air inlet **212.** Thus, the flow angle θ **1** defined by a first vane **246**A proximal to the second end 228 may be less than the flow angle θ **1** defined by a second vane **246**B distal from the second end 228 (i.e., distal in comparison to the first vane 246A). Advantageously, air from the air outlet 214 may be substantially prevented from mixing with air entering machine compartment 210 (e.g., through air inlet

[0030] In additional or alternative embodiments, one or more vanes (e.g., of a second vane set **248**) are directed away from the left side **116**. For instance, one or more vanes **248** may be non-parallel to the transverse direction T. At least one vane **248** may define a flow angle θ **2** (e.g., relative to the transverse direction T) directed away from, for instance, the first end **226**. Optionally,

multiple vanes **248** may define flow angles θ **2** directed away from the first end **226**. In some such embodiments, separate vanes **248** define separate flow angles θ **2**. For instance, the flow angles θ **2** may generally and sequentially increase relative to the transverse direction T as the lateral distance between discrete vanes **248** increases relative to the first end **226**. Thus, the flow angle θ **2** defined by a first vane **248**A proximal to the first end **226** may be less than the flow angle θ **2** defined by a second vane **248**B distal from the first end **226** (i.e., distal in comparison to the first vane **248**A).

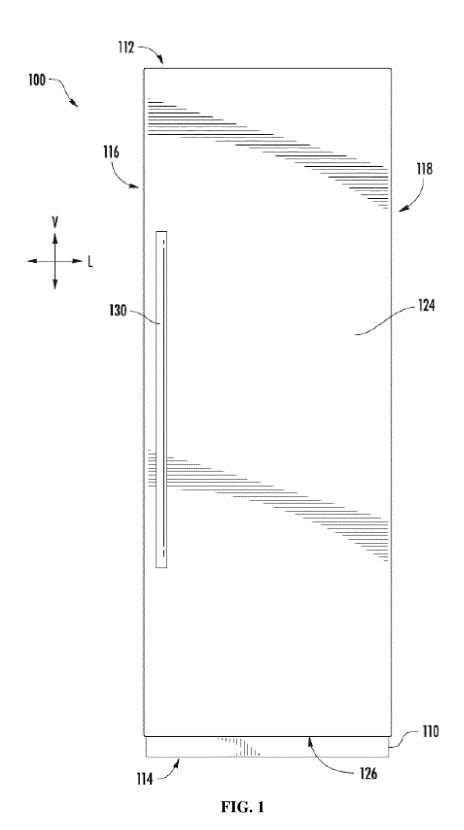
[0031] In optional embodiments, both a first set of vanes 246 (e.g., directed toward the left side 116) and a second set of vanes 248 (e.g., directed toward the right side 118) are provided. In some such embodiments, the first set of vanes 246 is further directed toward the second set of vanes248, and vice versa. Thus, air directed from the first set of vanes 246 may be guided to merge with air from the second set of vanes 248 in front of the cabinet 110. Moreover, the first set of vanes 246 may be positioned proximal to the right side 118 while the second set of vanes 248 is positioned proximal to the left side 116. [0032] Turning now briefly to FIG. 7, a further exemplary embodiment of refrigerator assembly 100 is provided. As shown, refrigerator assembly 100 includes a discrete primary cabinet 110 and secondary cabinet 310. Generally, it is understood that the primary cabinet 110 may include a machine compartment 210, including one or more of the above-described features. Secondary cabinet 310 may include one or more similar features. For instance, the secondary cabinet 310 may extend along the lateral direction L between a left side (e.g., first lateral) side 316 and a right side (e.g., second lateral) side 318 to define a chilled chamber 324 and a machine compartment 410 (e.g., below the chilled chamber 324). The machine compartment 410 of the secondary cabinet 310 may include a separate air inlet 412 and air outlet 414. As described above within the context of machine compartment 210, the air inlet 412 may be positioned proximal to the right side 318 while the air outlet 414 may be positioned proximal to the left side 320. In optional embodiments, the door 324 of the secondary cabinet 310 may be rotatably attached at an opposite side from the door 124 of the primary cabinet 110 (e.g., the left side 316).

[0033] As shown, the right side 318 of the secondary cabinet 310 may be positioned against the left side 116 of the primary cabinet 110. The air inlet 412 of the machine compartment 410 of the secondary cabinet 310 may be located proximal to the air outlet 214 of the machine compartment210 of the primary cabinet 110. In some such embodiments, a plurality of vanes (e.g., second set 148-FIG. 3) within machine compartment 210 is directed toward the right side 118. Advantageously, air output from the machine compartment 210 may thus be directed away from the air inlet 412of the machine compartment 410.

[0034] This written description uses examples to dis-

close the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

15 Claims


20

25

- 1. A refrigerator assembly defining a mutually-orthogonal vertical direction, lateral direction, and transverse direction, wherein the refrigerator assembly comprising:a cabinet extending along the lateral direction between a first lateral side and a second lateral side, the cabinet defining a chilled chamber and a machine compartment, the machine compartment having an air inlet and an air outlet separate from the air inlet; a louver panel mounted to the cabinet in front of the machine compartment, the louver panel defining a plurality of lateral apertures spaced apart along the vertical direction, the plurality of lateral apertures extending along the lateral direction in front of the air inlet and the air outlet from a first end to a second end; and a plurality of laterallyspaced vanes extending rearward from the louver panel at the air outlet.
- 2. The refrigerator assembly of claim 1, wherein the refrigerator assembly further comprising door rotatably mounted on the cabinet forward from the louver panel, the door being movable between on open position and a closed position, the open position permitting access to the chilled chamber and the louver panel, the closed position restricting access to the chilled chamber and covering the louver panel.
 - The refrigerator assembly of claim 1, wherein the refrigerator assembly further comprising a compartment wall extending along the transverse direction within the machine compartment between the air inlet and the air outlet.
 - 4. The refrigerator assembly of claim 1, wherein the refrigerator assembly further comprising compressor housed within the machine compartment to motivate a refrigerant through a sealed system.
- 55 5. The refrigerator assembly of claim 4, wherein the refrigerator assembly further comprisingan air handler housed within the machine compartment to motivate an airflow from the air inlet to the air outlet.

- 6. The refrigerator assembly of claim 5, wherein the refrigerator assembly further comprising a condenser in fluid communication with the compressor as part of the sealed system, the condenser being housed within the machine compartment behind the compressor and the air handler, wherein the air handler is positioned between condenser and the compressor along the transverse direction.
- 7. The refrigerator assembly of claim 1, wherein the air inlet is located proximal to the second end, wherein the air outlet is located proximal to the first end, and wherein at least one vane of the plurality of laterally-spaced vanes defines a flow angle directed away from the second end.
- 8. The refrigerator assembly of claim 1, wherein the air inlet is located proximal to the second end, wherein the air outlet is located proximal to the first end, and wherein at least one vane of the plurality of laterally-spaced vanes defines a flow angle directed away from the first end.
- **9.** The refrigerator assembly of claim 1, wherein the chilled chamber extends along the lateral direction above the louver panel, between the first lateral side and the second lateral side.
- 10. The refrigerator assembly of claim 1, wherein the cabinet is a primary cabinet, the refrigeration assembly further comprises: a secondary cabinet extending along the lateral direction between a first lateral side and a second lateral side, the secondary cabinet defining a chilled chamber and a machine compartment, the machine compartment of the secondary cabinet having an air inlet and an air outlet separate from the air inlet of the secondary cabinet, wherein the second lateral side of the secondary cabinet is positioned against the first lateral side of the primary cabinet, and wherein the air inlet of the machine compartment of the secondary cabinet is located proximal to the air outlet of the machine compartment of the primary cabinet.
- **11.** The refrigerator assembly according to any one of claim 1 to 10, wherein the plurality of laterally-spaced vanes being directed away from the panel inlet.

50

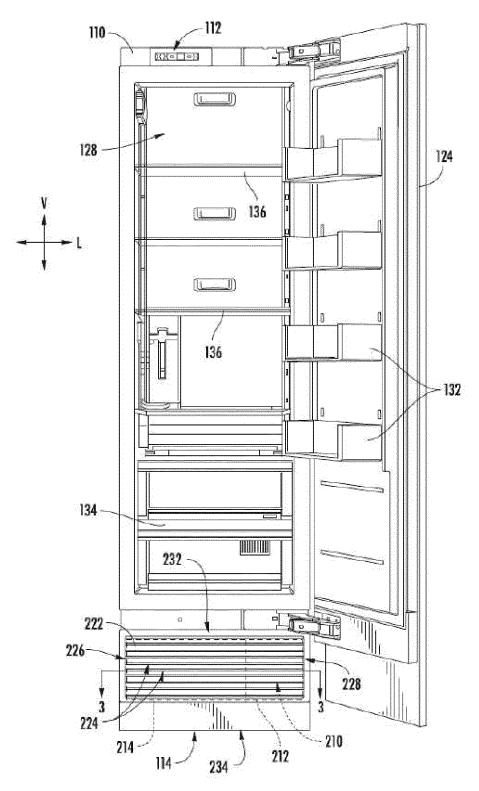
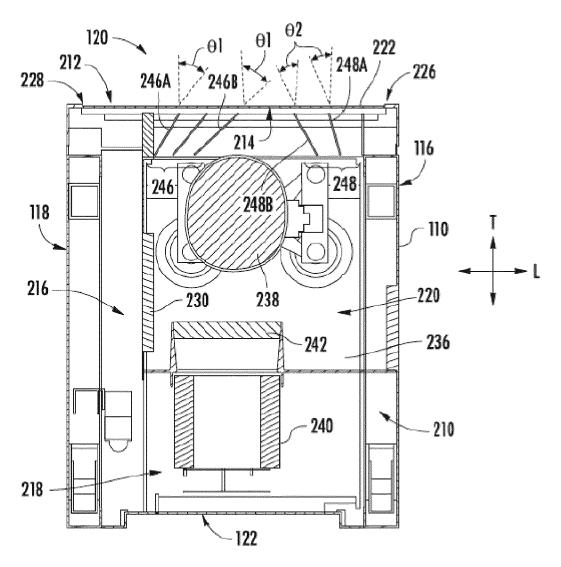
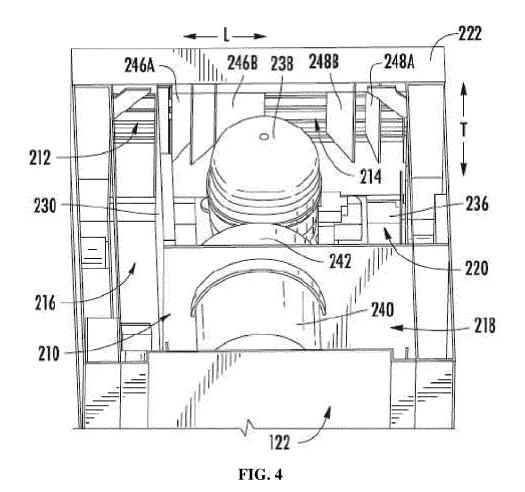
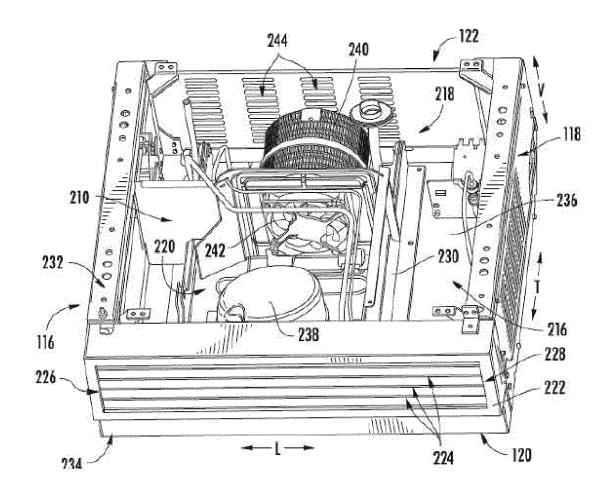
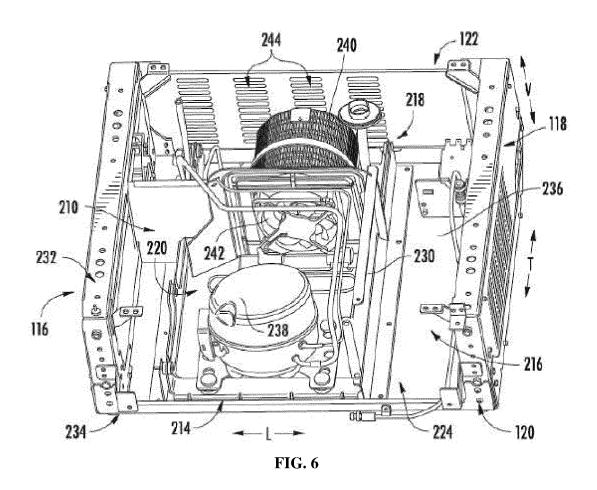


FIG. 2

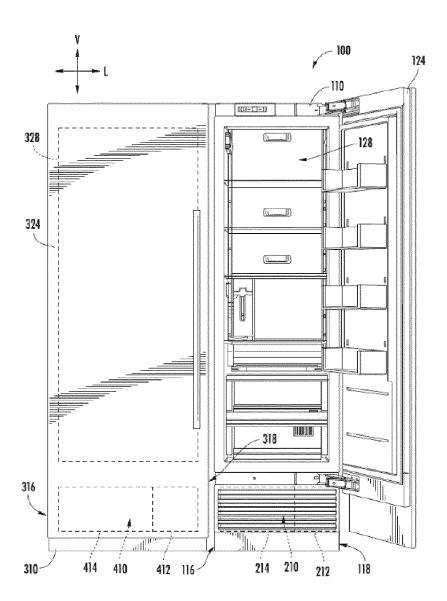

FIG. 3

FIG. 5

FIG. 7

EP 4 006 457 A1

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2020/104076 CLASSIFICATION OF SUBJECT MATTER F25D 11/02(2006.01)i; F25D 19/00(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC В. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) F25D11 F25D17 F25D19 F25D23 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS, CNTXT, CNKI, DWPI: 机器 机械 压缩机 压机 室 腔舱 仓 进风口 出风口 百叶 格栅 machine mechan+compressor room chamber cabin compartment inlet outlet grill DOCUMENTS CONSIDERED TO BE RELEVANT C. Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 2019078828 A1 (BSH HAUSGERAETE GMBH) 14 March 2019 (2019-03-14) 1-11 Y description paragraph [0034] and figure 1 Y CN 1247303 A (SANYO ELECTRIC CO., LTD.) 15 March 2000 (2000-03-15) 1-11 description page 2 line 27 to page 3 line 26 and figures 1-3Α CN 1467465 A (LG ELECTRONICS INC.) 14 January 2004 (2004-01-14) 1-11 entire document EP 1970656 A3 (SAMSUNG ELECTRONICS CO., LTD.) 10 August 2011 (2011-08-10) 1-11 Α entire document US 2012137721 A1 (CHAE SU NAM et al.) 07 June 2012 (2012-06-07) 1-11 Α entire document Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents document defining the general state of the art which is not considered to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier application or patent but published on or after the international filing date "E" filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other "L" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19 November 2020 24 September 2020 Name and mailing address of the ISA/CN Authorized officer

Form PCT/ISA/210 (second sheet) (January 2015)

Facsimile No. (86-10)62019451

CN

100088 China

China National Intellectual Property Administration (ISA/

No. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing

5

10

15

20

25

30

35

40

45

50

55

Telephone No.

EP 4 006 457 A1

5

10

15

20

25

30

35

40

45

50

55

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2020/104076 Publication date Publication date Patent document Patent family member(s) cited in search report (day/month/year) (day/month/year) 14 March 2019 21 March 2019 US 2019078828 **A**1 TR 201713310 A2 CN 1247303 A 15 March 2000 SG 83146 18 September 2001 A1JP 2000088438 A 31 March 2000 CN C 1171059 13 October 2004 ΑU 4743299 16 March 2000 Α MY 123911 30 June 2006 A ΑU 757025 B2 30 January 2003 CN 1467465 14 January 2004 CN 100593679 C 10 March 2010 EP 1378717 **B**1 01 September 2010 US 6776000 B2 17 August 2004 DE 14 October 2010 60333972 D1US 2004003618 08 January 2004 **A**1 ΕP 1378717 **A**1 07 January 2004 ΕP 1970656 10 August 2011 ΕP 17 September 2008 A3 1970656 A2 KR 101176459 **B**1 30 August 2012 04 September 2019 EP 1970656 В1 KR 20080083537 Α 18 September 2008 US B2 7987684 02 August 2011 US 2008223063 18 September 2008 **A**1 07 June 2012 WO 29 March 2012 US 2012137721 A3 **A**1 2011021799 KR 20110019075 A 25 February 2011 US B2 24 February 2015 8959945 WO 2011021799 A2 24 February 2011

Form PCT/ISA/210 (patent family annex) (January 2015)