

(11) **EP 4 019 567 A8**

CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

(12)

Corrected version no 1 (W1 A1) Corrections, see Bibliography INID code(s) 54

(48) Corrigendum issued on: **28.12.2022 Bulletin 2022/52**

(43) Date of publication: 29.06.2022 Bulletin 2022/26

(21) Application number: 21020612.4

(22) Date of filing: 03.12.2021

(51) International Patent Classification (IPC):

C08G 73/06 (2006.01) C08L 79/04 (2006.01) C25D 13/06 (2006.01) H01B 1/12 (2006.01)

(52) Cooperative Patent Classification (CPC): C09D 5/4476; C08G 73/0672; C08L 79/04; C09D 5/24; C25D 13/04

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 03.12.2020 PL 43622120

(71) Applicant: University of Wroclaw 50-137 Wroclaw (PL)

(72) Inventors:

Zareba, Aleksandra
58-309 Walbrzych (PL)

 Grzeszczuk, Maria 54-151 Wrocław (PL)

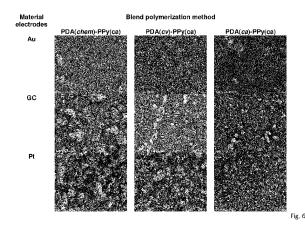
(74) Representative: Witek, Rafal WTS Patent Attorneys Witek, Sniezko & Partners UI. Rudolfa Weigla 12 53-114 Wroclaw (PL)

(54) THE POLYMER BLEND PDA-PPY OF POLYDOPAMINE (PDA) AND POLYPYRROLE (PPY) ON A CONDUCTIVE SUBSTRATE AND THE METHOD OF ITS PREPARATION

(57) The subject of the invention is a blend material consisting of a conductive polydopamine fraction doped with chloride ions and a conductive polypyrrole fraction doped with chloride ions, deposited on a conductive surface (i.e. substrate electrodes).

The essence of the present invention is also the deposition procedure of the PDA-PPy blend, which consists in the fact that the process of potentiodynamic deposition of a polymer layer is carried out preferably on glassy carbon by electrochemical polymerization from a dopamine solution as a functional monomer in the form of a dopamine-containing solution with a concentration of 10⁻¹⁰ M - 1 M in the supporting electrolyte 10⁻³ M - 1 M KCI / NaCI / LiCI, with a potential linearly changed in the range from - 0.8 V to + 0.65 V, preferably in the range from - 0.5 V to + 0.5 V (vs. Ag/AgCl/Cl $_{aq}$ -(3M)). On the prior obtained polydopamine layer on the conductive surface, pyrrole electropolymerization is carried out by potentiostatic method from a solution of pyrrole as a functional monomer in the supporting electrolyte 10⁻³ M to 1 M KCI / NaCI / LiCl, with a constant potential from the range of + 0.45 V to + 1.2 V.

The essence of the present invention is also the deposition procedure of the PDA-PPy blend on the conducting surface. On polydopamine layer on the conducting surface, pyrrole electropolymerization is carried out by a potentiodynamic method from the pyrrole solution as a functional monomer in the supporting electrolyte 10-3 M to 1 M KCI / NaCI / LiCI, with a potential linearly changed in the range from of - 0.8 V do + 1.20 V.


The essence of the present invention is also the deposition procedure of the PDA-PPy blend, which consists in the fact that the process of the potentiostatic deposition of a polymer layer is carried out preferably on glassy carbon by electrochemical polymerization from a dopamine solution as a functional monomer in the form of a dopamine-containing solution with a concentration of 10⁻¹⁰ M - 1 M in the supporting electrolyte 10⁻³ M - 1 M KCI / NaCI / LiCI, with a constant potential from the range of + 0.12 V to + 0.65 V. On the thus obtained polydopamine layer on the conductive surface, pyrrole electropolymerization is carried out by potentiostatic method

from a solution of pyrrole as a functional monomer in the supporting electrolyte 10^{-3} M to 1 M KCl / NaCl / LiCl, with a constant potential from the range of + 0.45 V to + 1.2 V.

The essence of the present invention is also the deposition procedure of the PDA-PPy blend on the conducting surface. On polydopamine layer on the conducting surface, pyrrole electropolymerization is carried out by a potentiodynamic method from the pyrrole solution as a functional monomer in the supporting electrolyte 10⁻³ M to 1 M KCI / NaCI / LiCI, with a potential linearly changed in the range from of - 0.8 V do + 1.20 V.

The essence of the present invention is also the deposition procedure of the PDA-PPy blend, which consists in the fact that the process of deposition of a polymer layer is carried out preferably on glassy carbon by a chemical method, from a solution of dopamine as a functional monomer in the supporting electrolyte 3 M - 0.00001~M~KCI~/~NaCI~/~LiCI. On the thus obtained polydopamine layer on the conductive surface, pyrrole electropolymerization is carried out by potentiostatic method from a solution of pyrrole as a functional monomer in the supporting electrolyte $10^{-3}~M~to~1~M~KCI~/~NaCI~/~LiCI,$ with a constant potential from the range of + 0.45~V~to~+~1.2~V.

The essence of the present invention is also the deposition procedure of the PDA-PPy blend on the conducting surface. On polydopamine layer on the conducting surface, pyrrole electropolymerization is carried out by a potentiodynamic method from the pyrrole solution as a functional monomer in the supporting electrolyte 10⁻³ M to 1 M KCI / NaCI / LiCI, with a potential linearly changed in the range from of - 0.8 V do + 1.20 V.

