(11) EP 4 024 606 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **06.07.2022 Bulletin 2022/27**

(21) Application number: 19797318.3

(22) Date of filing: 24.09.2019

(51) International Patent Classification (IPC):

H01Q 1/08 (2006.01) H01Q 1/12 (2006.01)

H01Q 15/16 (2006.01) H01Q 1/28 (2006.01)

(52) Cooperative Patent Classification (CPC): H01Q 1/288; H01Q 1/08; H01Q 1/1235; H01Q 15/161

(86) International application number: **PCT/ES2019/070635**

(87) International publication number: WO 2021/058838 (01.04.2021 Gazette 2021/13)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

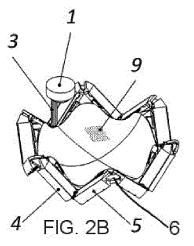
Designated Validation States:

KH MA MD TN

(71) Applicant: Airbus Defence and Space, S.A. 28022 Madrid (ES)

(72) Inventors:

- PLAZA MORA, José Luis 28022 Madrid (ES)
- CESPEDOSA CASTÁN, Fernando José 28022 Madrid (ES)
- (74) Representative: Elzaburu S.L.P.
 Edificio Torre de Cristal
 Paseo de la Castellana 259 C, planta 28
 28046 Madrid (ES)


(54) **DEPLOYABLE ASSEMBLY FOR ANTENNAS**

- (57) Deployable assembly for antennae, comprising:
- a structure comprising:
- n pairs of segments (4, 5), each pair of segments (4, 5) corresponding to one side of a deployed polygonal shape,
- n hinge joints between the two segments (4,5) of a side, and
- n hinged angular links (6) between every two adjacent sides.

such that the structure is able to change from a stowed position with a substantially cylindrical shape into a deployed position with a substantially planar polygonal shape with n sides, and

- a reflective surface (9), wherein the deployable assembly additionally compris-
- a deployable boom (3) between two segments (4, 5), wherein the deployable boom (3) lays stowed between the two segments (4, 5) before being deployed, the deployable boom (3) ending in a feeder (1) that electromagnetically feeds the antenna and that comprises a clamping element (2) for keeping the structure closed when stowed, such that the feeder (1) plays the role of structural support element when stowed and electromagnetic feeder for the antenna when deployed,

- a set of tensor elements (8) protruding from the back of the segments (4, 5), and
- a cable network (7) that can shape the reflective surface (9), such that the corresponding cables are held by the tensor elements (8).

EP 4 024 606 A1

Field of the invention

[0001] The present invention relates to a deployable assembly for antennae, mainly used in space systems, particularly to a deployable assembly to deploy large parabolic reflectors. The assembly is suitable for multiple purposes not only to deploy large reflectors but also to build large antennas for Earth observation and telecom, to build foldable clusters of satellites and even to build space debris capture systems.

1

Background

[0002] There are many deployable reflector antenna structures already known in the state of the art.

[0003] US 4030102 A, referred to a "Deployable reflector structure", discloses a supporting structure that deployed resembles a spoked wheel which is retractable into a compact volume by virtue of hinged rim and reelable spokes that is an efficient and stable structure for storing, deploying and supporting surfaces such as radar and communications antennas, shielding, earth sensing, solar cell arrays and solar energy reflectors.

[0004] US 3617113 A discloses a deployable reflector assembly comprising a deployable reflector, a series of deployable panels surrounding and operatively connected to said deployable reflector, said series of deployable panels comprising a first deployable array of panels interconnected to form substantially an open cylinder upon deployment and a second deployable array of panels operatively connected to said first deployable array of panels, said second array of panels being interconnected to form a substantially flat ring upon being deployed that lies in a plane that is substantially perpendicular to the central axis of said cylinder formed by said deployed first array of panels and deploying means operatively connected to said series of deployable panels for deploying said series of deployable panels.

[0005] WO 2009153454 A2 discloses a hinged folding structure consisting of an assembly of elements hinged together by hinge means, where each of the elements has at each end a hinge enabling it to be connected to the end of another element across a hinge axis (X, Y), all the pivot pins of the hinges being so constructed that the structure can adopt two extreme positions, namely an unfolded position where the elements are more or less continuous with each other to form an ellipse, and a folded position where the elements are brought together and approximately parallel with each other. The elements and the hinges are connected both to means for controlling the unfolding of the elements, and to assistance means for ensuring simultaneity of the unfolding or folding of the elements.

[0006] EP 2482378 A1 discloses a deployable antenna which has a larger aperture diameter by four-side links provided in at least three stages and which includes: six

deployment link mechanisms arranged radially from a central shaft so as to support an outer edge portion of a flexible reflector mirror surface; and one deployment driving mechanism arranged at a lower portion of a center of arrangement of the six deployment link mechanisms, for unfolding the six deployment link mechanisms. Each of the six deployment link mechanisms includes a first four-side link, a second four-side link, and a third four-side link arranged in an order from a position of the central shaft, around which the six deployment link mechanisms are arranged, toward an outer side of the each of the six deployment link mechanisms so that the each of the six deployment link mechanisms is structured to be foldable in three stages.

[0007] WO 2013135298 A1 discloses a mechanical support ring structure for supporting a deployable space reflector antenna. The mechanical support ring structure is convertible from a folded state into a deployed state and comprises a ring-shaped pantograph having a plurality of circumferentially arranged pantograph sections which are deployable for converting the mechanical support ring structure from the folded state into the deployed state, and a plurality of circumferentially arranged support rods, each pantograph section being arranged between a respective pair of support rods, wherein each pantograph section comprises one or more pairs of pantograph rods which intersect crosswise with each other at a respective crossing position.

[0008] EP 2768077 A1 discloses a space deployable structure able to change from a substantially cylindrical configuration into a substantially planar polygonal configuration having n sides, comprising: n pairs of segments, each pair of segments being formed by two single segments, forming one side of the polygon of the deployed structure, such that the single segments have a lower base substantially vertical having a prismatic shape, the segments being substantially symmetric between them with respect to the mentioned lower base. having their longest direction parallel to the side of the polygon formed in the deployed configuration of the structure; 2n joints that join the segments between them by their extremes; and a deployment system based in the simultaneous folding of all of the segments forming the structure with respect to their contiguous segments, over the corresponding joints, in such a way that the hinge axis and the cone axis stay parallel to the plane of the polygon in deployed configuration, the deployment angles being always kept the same between the same type of joints.

[0009] These prior art configurations provide deployable structures able to work satisfactorily. However, they have some drawbacks, like the high number of devices necessary to keep the structure folded during launch, the high number of articulations and moving assemblies and the very limited number of flight configurations and applications.

15

20

25

30

35

4

Summary of the invention

[0010] Thus, it is an object of the invention to provide a deployable assembly for reflectors used in space systems that is able to overcome the mentioned drawbacks.

[0011] The invention provides a deployable assembly for antennae, comprising:

- a structure comprising:
 - n pairs of segments, each pair of segments corresponding to one side of a deployed polygonal shape,
 - n hinge joints between the two segments of a side, and
 - n hinged angular links between every two adjacent sides,

such that the structure is able to change from a stowed position with a substantially cylindrical shape into a deployed position with a substantially planar polygonal shape with n sides, and

a reflective surface,

that additionally comprises:

- a deployable boom between two segments, wherein
 the deployable boom lays stowed between the two
 segments before being deployed, the deployable
 boom ending in a feeder that electromagnetically
 feeds the antenna and that comprises a clamping
 element for keeping the structure closed when
 stowed, such that the feeder plays the role of structural support element when stowed and electromagnetic feeder for the antenna when deployed,
- a set of tensor elements protruding from the back of the segments, and
- a cable network that can shape the reflective surface, such that the corresponding cables are held by the tensor elements.

[0012] The main advantages of the configuration of the invention versus the known configurations are:

- Simplified geometric configuration for a deployable parabolic reflector.
- It provides a reduced volume of the stowed assembly in the launch configuration, compatible with existing launchers whilst maximizing aperture ratio.
- It allows accommodating within segments of the hexagonal structure, some of the subsystems of the plat-

form, ultimately arriving at a design in which all subsystems of the satellite platform and the instrument are included in the hexagonal structure.

- Stable structure despite its size, which ensures that errors due for example to fluctuations caused by satellite maneuvers, are minimum.
- Large sections of the segments and joints of hinges and cones allowing to obtain high angular precision between the segments in the deployed configuration
- Ability to meet easily a wide range of performances with minor modifications in the system (larger reflector's diameter can be met varying just the length of the segments, and circular to elliptical reflector contour can be achieved varying just the angles among the segments).
- Kinematics of the segments during deployment makes their centers of gravity follow a lineal straight pattern, easing the validation by test with a gravity compensation device. The global center of mass does not move during deployment, they can be fixed or deployable.
- Feeder structural support is an integral part of the stowed structure and, when the invention is deployed and used as a reflector antenna, it plays the role of feeder in the focal position.
- Placing everything away from the FoV of the instrument, behind the reflector to enhance mission performances.
- Guarantee the accuracy of the reflecting deployable surface with respect to the target paraboloid.
- It provides the optimal geometric configuration for an interferometric radiometer improving radio frequency interference (RFI) and resolution and reducing noise.
- 45 [0013] The deployable assembly of the invention provides superior performance to those found to date in conventional systems known in the art.

[0014] Two clamping mechanisms (could be clamp bands) hold the folded assembly during launch and till deployment.

[0015] The folded assembly is very compact and robust, enabling a small size of the system inside the launcher available volume.

[0016] The design of the deployed structure can be easily accommodated to different sizes for bigger or smaller reflectors and satellites.

[0017] Although description is made for a hexagonal configuration, it can be adapted to a different number of

25

30

35

sides.

[0018] This structure is suitable for multiple purposes, not only to deploy large reflectors but also to build large antennas for Earth observation and telecom, build clusters of foldable satellites coordinated and launched together and even build space debris capture systems. The deployable structure of the invention is also self-supporting, so no auxiliary elements are needed in order to obtain stiffness, guidance and shape during deployment.

5

[0019] Other features and advantages of the present invention will become apparent from the following detailed description of an illustrative embodiment and not limiting its purpose in connection with the accompanying figures.

Description of figures

[0020]

FIG.1 is an isometric view of a prior art large deployable reflector attached to a satellite.

FIGS.2A, 2B and 2C are schematic overviews of the object of the invention in the stowed, deploying and fully deployed (operative) positions, respectively.

FIG.3 is a more detailed view of the stowed assembly, in the launch configuration within the available volume of the fairing.

FIG.4 shows the deployed assembly in the operative arrangement.

FIG.5 is a simplified view of the stowed and the deployed assembly (feeder, boom, cable network and reflective surface not represented).

FIGS. 6A to 6F show the main steps of the deployment of the structure and the assembly.

FIG. 7 shows the deployable assembly of the invention in an intermediate position of the deployment process.

Detailed description of the invention

[0021] Figures 2A, 2B and 2C show the deployable assembly for antennae of the invention in several stages. Figure 2A shows the stowed position, figure 2B shows an intermediate position in which the assembly is being deployed, and figure 2C shows the fully deployed position.

[0022] Figures 6A to 6F also show the deployable assembly for antennae of the invention in several stages, with more intermediate positions.

[0023] Figure 7 is a detailed view of the deployable assembly of the invention in an intermediate position of the deployment process, in which all of its elements can

be seen.

[0024] The deployable assembly for antennae shown in these figures comprises:

- a structure comprising:
 - n pairs of segments 4, 5, each pair of segments
 4, 5 corresponding to one side of a deployed polygonal shape,
 - n hinge joints between the two segments 4, 5 of a side, and
 - n hinged angular links 6 between every two adjacent sides, and
 - a reflective surface 9.

[0025] The structure is able to change from a stowed position with a substantially cylindrical shape into a deployed position with a substantially planar polygonal shape with n sides, as it can be seen in figure 5.

[0026] The deployable assembly for antennae also comprises:

- a deployable boom 3 between two segments 4, 5, wherein the deployable boom 3 lays stowed between the two segments 4, 5 before being deployed, the deployable boom 3 ending in a feeder 1 that electromagnetically feeds the antenna and that comprises a clamping element 2 for keeping the structure closed when stowed, such that the feeder 1 plays the role of structural support element when stowed and electromagnetic feeder for the antenna when deployed,
- a set of tensor elements 8 protruding from the back of the segments 4, 5, and
- a cable network 7 that can shape the reflective surface 9, such that the corresponding cables are held by the tensor elements 8.

[0027] Preferably, the deployable boom 3 is placed between two segments 4, 5 of the same side of the polygonal shape, as it can be seen, for instance, in figures 6B to 6F. The deployable boom 3 lies stowed, clamped and protected between two segments 4,5 before being deployed to meet the focal distance. Figures 6A to 6D show the successive steps for the formation of the polygonal shape with n sides, and figures 6D to 6F show the deployment of the boom 3. In figure 6F the deployable assembly for antennae of the invention is completely deployed.

[0028] Figure 5 is a simplified view of the deployable assembly of the invention mainly showing the structure, where the feeder 1, the boom 3, the cable network 7 and reflective surface 9 are not represented.

50

[0029] As indicated, the feeder 1 can play the role of:

- a fixation element for the segments 4,5 when stowed, by means of the clamping element 2 (see figure 3, for example), and
- an electromagnetic feeder for the antenna, when the feeder 1 is deployed.

[0030] The clamping element 2 can be, for instance, a clamp band similar to the ones used in similar applications in spacecraft systems.

[0031] The deployed polygonal shape has n sides, corresponding to the n pairs of segments 4, 5. In the figures that show an embodiment of the invention a hexagonal shape has been chosen (see, for example, figure 5). Each pair of segments is formed by two symmetric segments 4, 5, with a hinge joint as a linking element between them. [0032] The deployable ring structure of the invention has enough room inside to hold the necessary spacecraft subsystems. It may contain everything needed to form a complete satellite, like power systems, flight and attitude control and communication with the Earth, though it can also be conceived as a payload, attached to a bigger satellite.

[0033] Figures 5 and 7 also show n hinged angular

links 6 between every two adjacent sides of the polygonal shape, thus placed in each corner of the polygonal shape. The shape can be defined as a regular or non-regular polygon, in order to achieve a circular or elliptical contour of the reflective surface 9. Figures 5 and 7 also show a set of brackets 15 protruding from the back of the segments 4, 5 to shape the contour of the reflective surface 9. [0034] The movement of the deployment of the structure is achieved by motors at each hinged angular link 6. The coordination can be guaranteed by mechanical means and/or position sensors as feedback signals when needed. The final position can be guaranteed by endstops, and the non-reversibility of the final deployed configuration can be ensured with latches, if wished.

[0035] The cable network 7 comprises several tensioning cables to ensure that the reflective surface 9 meets its desired shape when deployed. As it can be seen in figure 7, the tensioning cables can be held by tensor elements 8 protruding from the back of the segments 4, 5, able of tensing the tensioning cables.

[0036] By means of this configuration a tensioned cable network 7 is obtained. Preferably the reflective surface 9 is a paraboloid formed by cables that work by traction, as previously described.

[0037] As for the contour of the reflective surface 9, it can be circular or elliptical.

[0038] The reflective surface 9 is folded, constrained and protected inside the stowed structure during launch (see figures 3 and 6A). The stowed structure protects the reflective surface 9 from contacting and damaging the feeder 1.

[0039] Figure 3 also shows a lower clamping element

10 (for instance, a clamp band) that stays with the launcher after separation. It also shows the available stowed height range 14 within the launcher, which defines the diameter of the reflective surface 9.

[0040] Figure 5 also shows the minor axis 11 and the major axis 12 of the contour of the reflective surface 9 when it is elliptical. It also shows the diameter 13 of the structure in the stowed position.

[0041] The present invention represents a space closed loop deployable assembly with a structure able to change from a substantially cylindrical configuration into a substantially planar polygonal configuration having n sides:

- Holding tightly all the systems from launch till deployment, with the need of just two clamping elements
 10 (could be clamp bands).
- Deploying a wide range of reflector antennae, maintaining the same minimum amount of mechanisms.
- Accommodating all the systems traditionally contained in a service module (such as propulsion, power generation, navigation, etc) inside its deployable segments.
 - Easing the design, analysis, manufacturing and Assembly Integration & Testing (AIT) tasks.
- 30 Suitable for multiple purposes:
 - Earth observation (Large Deployable Reflectors, radiometers, radars)
 - · Telecom
 - Space debris capture
 - Cluster of coordinated satellites launched together to reduce costs and sub-sequent space debris at the end of life.
 - Building segments for larger space structures assembled in space

[0042] Although the present invention has been fully described in connection with preferred embodiments, it is apparent that modifications can be made within the scope, not considering this as limited by these embodiments, but by the content of the following claims.

Claims

- **1.** Deployable assembly for antennae, comprising:
 - a structure comprising:

15

20

25

35

40

- n pairs of segments (4, 5), each pair of segments (4, 5) corresponding to one side of a deployed polygonal shape,
- n hinge joints between the two segments (4, 5) of a side, and
- n hinged angular links (6) between every two adjacent sides,

such that the structure is able to change from a stowed position with a substantially cylindrical shape into a deployed position with a substantially planar polygonal shape with n sides, and - a reflective surface (9),

characterized in that it additionally comprises:

- a deployable boom (3) between two segments (4, 5), wherein the deployable boom (3) lays stowed between the two segments (4, 5) before being deployed, the deployable boom (3) ending in a feeder (1) that electromagnetically feeds the antenna and that comprises a clamping element (2) for keeping the structure closed when stowed, such that the feeder (1) plays the role of structural support element when stowed and electromagnetic feeder for the antenna when deployed,
- a set of tensor elements (8) protruding from the back of the segments (4, 5), and
- a cable network (7) that can shape the reflective surface (9), such that the corresponding cables are held by the tensor elements (8).
- 2. Deployable assembly for antennae, according to claim 1, wherein the reflective surface is a paraboloid with circular contour.
- 3. Deployable assembly for antennae, according to claim 1, wherein the reflective surface is a paraboloid with elliptical contour.
- 4. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises a set of brackets (15) protruding from the back of the segments (4, 5) to shape the contour of the reflective surface (9).
- 5. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises a lower clamping element (10).
- 6. Deployable assembly for antennae, according to any of the previous claims, wherein the deployable boom (3) is placed between two segments (4, 5) of the same side of the polygonal shape.
- 7. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises

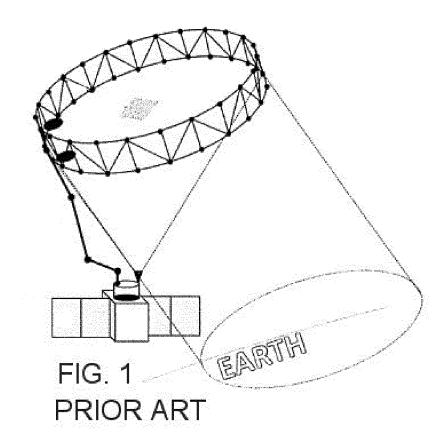
motors at each hinged angular link (6) between every two adjacent sides.

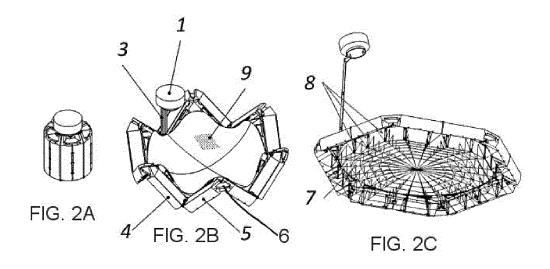
Deployable assembly for antennae, according to any of the previous claims, that additionally comprises latches to ensure the non-reversibility of the final deployed position.

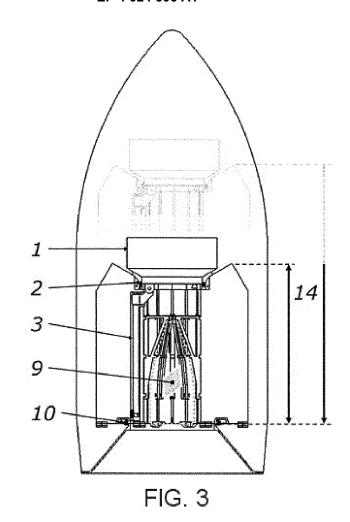
Statement under Art. 19.1 PCT

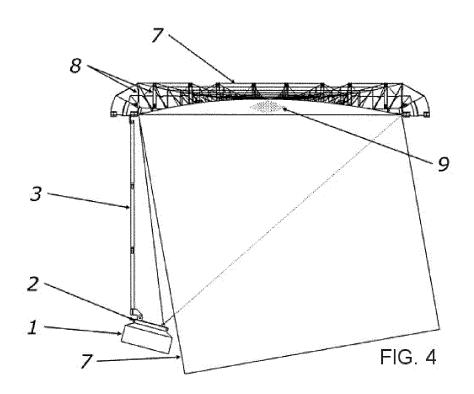
- 1. Deployable assembly for antennae, comprising:
- a structure comprising:
 - n pairs of segments (4, 5), each pair of segments (4, 5) corresponding to one side of a deployed polygonal shape,
 - n hinge joints between the two segments (4, 5) of a side, and
 - n hinged angular links (6) between every two adjacent sides,

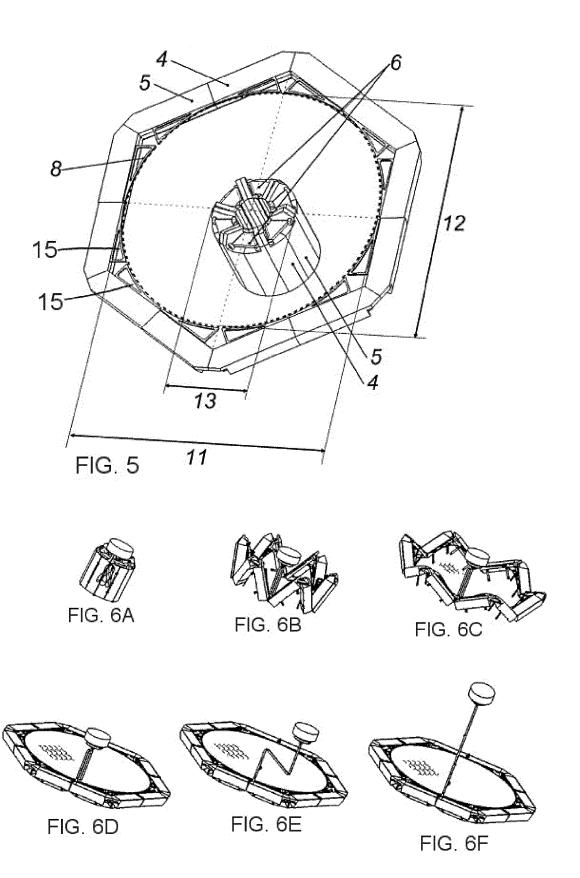
such that the structure is configured to change from a stowed position with a substantially cylindrical shape into a deployed position with a substantially planar polygonal shape with n sides, and

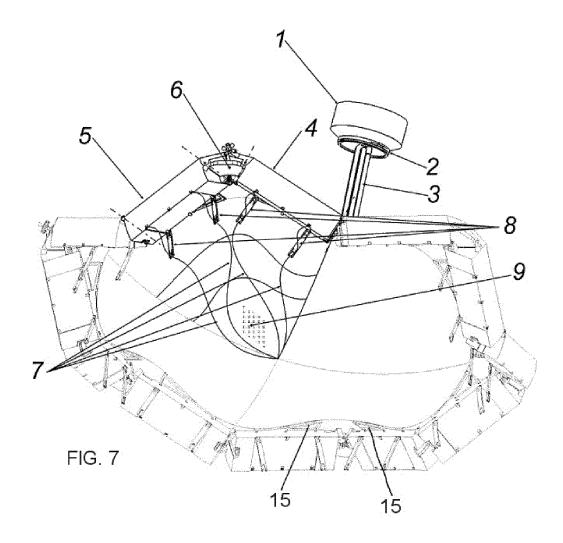

a reflective surface (9),


characterized in that it additionally comprises:


- a deployable boom (3) between two segments (4, 5), wherein the deployable boom (3) lays stowed between the two segments (4, 5) in the stowed position,
- a feeder (1) on an end of the deployable boom (3), the feeder (1) being configured to electromagnetically feeds the antenna and that comprises a clamping element (2) for keeping the structure closed when stowed, such that the feeder (1) plays the role of structural support element when stowed and elec-45 tromagnetic feeder for the antenna when deployed,
 - a set of tensor elements (8) protruding from the back of the segments (4, 5), and
- 50 a cable network (7) that can shape the reflective surface (9), such that the corresponding cables are held by the tensor elements (8).
 - 2. Deployable assembly for antennae, according to claim 1, wherein the reflective surface is a paraboloid with circular contour.
 - 3. Deployable assembly for antennae, according to claim 1, wherein the reflective surface is a paraboloid


with elliptical contour.


- 4. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises a set of brackets (15) protruding from the back of the segments (4, 5) to shape the contour of the reflective surface (9).
- 5. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises a lower clamping element (10).
- 6. Deployable assembly for antennae, according to any of the previous claims, wherein the deployable boom (3) is placed between two segments (4, 5) of the same side of the polygonal shape.
- 7. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises motors at each hinged angular link (6) between every two adjacent sides.
- 8. Deployable assembly for antennae, according to any of the previous claims, that additionally comprises latches to ensure the non-reversibility of the final deployed position.



INTERNATIONAL SEARCH REPORT

International application No PCT/ES2019/070635

5	A. CLASSIFICATION OF SUBJECT MATTER INV. H01Q1/08 H01Q1/12 H01Q15/16 H01Q1/28 ADD.	
	According to International Patent Classification (IPC) or to both national classification and IPC	
	B. FIELDS SEARCHED	
10	Minimum documentation searched (classification system followed by classification symbols) H01Q B64G	
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields so	earched
15	Electronic data base consulted during the international search (name of data base and, where practicable, search terms us EPO-Internal, WPI Data	eed)
	C. DOCUMENTS CONSIDERED TO BE RELEVANT	
20	Category* Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
25	A EP 2 768 077 A1 (EADS CASA ESPACIO S L [ES]) 20 August 2014 (2014-08-20) cited in the application page 3, paragraph 17 page 3, paragraph 26 - page 4, paragraph 26; figures 3-6	1-8
30	A US 2009/057492 A1 (HARRIS MARK A [US]) 5 March 2009 (2009-03-05) page 2, paragraph 30; figures 9, 10	1
	A EP 3 480 885 A1 (ELTA SYSTEMS LTD [IL]) 8 May 2019 (2019-05-08) page 4, paragraph 17; figure 1	1
35	A JP 6 556583 B2 (TECHNOSOLVER CORP ET AL.) 7 August 2019 (2019-08-07) figures 3b, 5-11	1
40	-/	
	X Further documents are listed in the continuation of Box C. * Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *T* later document published after the interest date and not in conflict with the applitude to be of particular relevance	cation but cited to understand
45	"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document of particular relevance; the considered to involve an inventive st considered to involve an inventive st combined with one or more other sue being obvious to a person skilled in t	dered to involve an inventive me claimed invention cannot be ep when the document is sh documents, such combination he art
50	Date of the actual completion of the international search Date of mailing of the international search	,
50	27 May 2020 09/06/2020	
	Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040,	
55	Fax: (+31-70) 340-2040, Fax: (+31-70) 340-3016 Blech, Marcel	

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
PCT/ES2019/070635

_	C(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	101/132013/0/0033
5	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
10	A	CN 107 248 620 A (UNIV XIDIAN) 13 October 2017 (2017-10-13) abstract; figure 1	1
15			
20			
25			
30			
35			
40			
45			
50			
55	E DOTION OF		

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/ES2019/070635

EP 2768077 A1 20-08-2014 EP 2768077 A1 20-08-201 US 2009057492 A1 05-03-2009 AU 2008311240 A1 16-04-200 CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 WO 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 CN 107248620 A 13-10-2017 NONE	W0 2013053956 A1 18-04-201 US 2009057492 A1 05-03-2009 AU 2008311240 A1 16-04-200	W0 2013053956 A1 18-04-201 US 2009057492 A1 05-03-2009 AU 2008311240 A1 16-04-200 CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 W0 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	W0 2013053956 A1 18-04-201 US 2009057492 A1 05-03-2009 AU 2008311240 A1 16-04-200 CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 W0 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE		atent document d in search report		Publication date		Patent family member(s)		Publication date
CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 WO 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 WO 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 WO 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	CA 2694328 A1 16-04-200 EP 2193570 A2 09-06-201 JP 5372934 B2 18-12-201 JP 2010537880 A 09-12-201 US 2009057492 A1 05-03-200 WO 2009048678 A2 16-04-200 EP 3480885 A1 08-05-2019 EP 3480885 A1 08-05-201 US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	EP	2768077	A1	20-08-2014				
US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201 JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	US 2019131714 A1 02-05-201 JP 6556583 B2 07-08-2019 JP 6556583 B2 07-08-201	US	2009057492	A1	05-03-2009	CA EP JP JP US	2694328 2193570 5372934 2010537880 2009057492	A1 A2 B2 A A1	16-04-200 09-06-201 18-12-201 09-12-201 05-03-200
JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	JP 2017069921 A 06-04-201 CN 107248620 A 13-10-2017 NONE	EP	3480885	A1	08-05-2019				
				JP	6556583	B2	07-08-2019				
				CN	107248620	 A	13-10-2017	NONE			

Form PCT/ISA/210 (patent family annex) (April 2005)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4030102 A [0003]
- US 3617113 A [0004]
- WO 2009153454 A2 **[0005]**

- EP 2482378 A1 [0006]
- WO 2013135298 A1 **[0007]**
- EP 2768077 A1 [0008]