(11) **EP 4 035 784 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 03.08.2022 Bulletin 2022/31

(21) Application number: 20892652.7

(22) Date of filing: 18.05.2020

(51) International Patent Classification (IPC): **B08B** 3/02 (2006.01) **E02B** 7/20 (2006.01)

(86) International application number: **PCT/CN2020/090859**

(87) International publication number:WO 2021/103438 (03.06.2021 Gazette 2021/22)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 29.11.2019 CN 201911210063

(71) Applicants:

 China Nuclear Power Technology Research Institute Co., Ltd
 Shenzhen Guangdong 518029 (CN)

- China General Nuclear Power Corporation Shenzhen, Guangdong 518029 (CN)
- CGN Power Co., Ltd Shenzhen Guangdong 518029 (CN)
- (72) Inventors:
 - ZHU, Jianlin Shenzhen, Guangdong 518029 (CN)

 ZHAO, Apeng Shenzhen, Guangdong 518029 (CN)

• WU, Yu Shenzhen, Guangdong 518029 (CN)

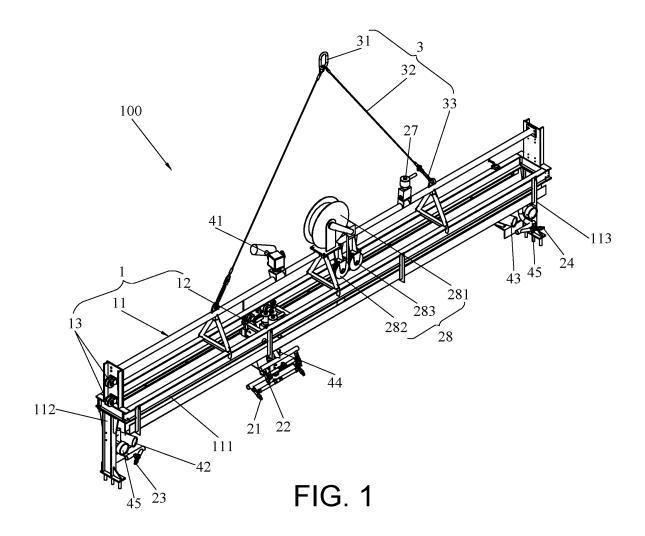
 ZHOU, Guofeng Shenzhen, Guangdong 518029 (CN)

 LIU, Gang Shenzhen, Guangdong 518029 (CN)

 LI, Zhi Shenzhen, Guangdong 518029 (CN)

 ZHANG, Meiling Shenzhen, Guangdong 518029 (CN)

CHEN, Jiajie
 Shenzhen, Guangdong 518029 (CN)
 CHEN, Jiajie
 Shenzhen, Guangdong 518029 (CN)
 CHEN, Jiajie
 Shenzhen, Guangdong 518029 (CN)


 YU, Bing Shenzhen, Guangdong 518029 (CN)

(74) Representative: Mewburn Ellis LLP
Aurora Building
Counterslip
Bristol BS1 6BX (GB)

(54) UNDERWATER CLEANING DEVICE FOR MARINE LIFE ON SEALING SURFACE OF GATE, AND DEVICE COMBINATION AND CLEANING METHOD

(57) An underwater cleaning device (100) for marine life on the sealing surface of a gate, the device being used for cleaning marine life attached to the sealing surface of a gate of a building structure (200). The cleaning device comprises a main structure (1), a cleaning structure installed on the main structure (1) and a rigging structure (3) fixed to the main structure (1). The rigging structure (3) is used to connect to a lifting device so as to drive the cleaning structure to move to a corresponding position on the sealing surface of the gate. The cleaning structure is used for cleaning the marine life on the sealing

surface of the gate when the cleaning structure moves to the corresponding position on the sealing surface of the gate. The rigging structure (3) is connected to the lifting device, so that when the cleaning device is moved to the corresponding position on the sealing surface of the gate by means of the lifting device, the cleaning structure can clean marine life. Not only are the problems of the efficiency of the cleaning manner of a diver being low and potential personal safety hazards avoided, but the problem of the movement stability of magnetic adsorption being poor is also obsolete.

40

FIELD OF THE INVENTION

[0001] The invention relates to the technical field of marine life cleaning, in particular to an underwater cleaning device for marine life on a sealing surface of a gate, a device combination and a cleaning method thereof.

1

BACKGROUND OF THE INVENTION

[0002] With the passage of time, the sealing surfaces of a gate of a building structure located at water intake of a large seawater culvert will be bred with a large number of marine life, which will affect the sealing effect between the gate and the building structure when the gate is closed, to bring a potential safety hazard. Therefore, the marine life on the sealing surfaces of the gate must be cleaned regularly. The traditional cleaning method is usually manually performed by divers diving into the water with hand-held cleaning tools. Such a method brings problems such as heavy workload and difficulty in ensuring the personal safety of divers, and this method is greatly affected by weather and ocean conditions.

[0003] Chinese patent ZL201611189296.1 discloses a cleaning robot for cleaning marine life on the outer surface of pipeline, which adopts a magnetic adsorption wheel to position the robot on the outer surface of the pipeline and movable axially to clean the marine life on the outer surface. This method has the following defects however. First, the magnetic adsorption is unsuitable for stainless steel material and the concrete surface. Second, as for the magnetic adsorption wheel driving, the cleaning robot will be difficult to stably move along the pipeline when the surface of the pipeline is uneven due to the large number of marine life attached on the surface. Meanwhile, the underwater carrier with adsorption wheel is unable to adapt to sharp edges and corners, and multiplane operations. Furthermore, such a cleaning robot is unsuitable for large-scale configuration and has a small cleaning range and limited movement, which leads to an extremely low cleaning efficiency of large vertical gantry steel structure.

SUMMARY OF THE INVENTION

[0004] An aspect of the invention is to provide an underwater cleaning device for marine life on sealing surfaces of a gate, which has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device.

[0005] Another aspect of the invention is to provide an underwater cleaning device combination for marine life on sealing surfaces of a gate, which has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device

[0006] Still an aspect of the invention is to provide an

underwater cleaning method for marine life on sealing surfaces of a gate, which has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device.

[0007] To achieve the above-mentioned objectives, the present invention provides an underwater cleaning device for marine life on sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure, the underwater cleaning device including a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure. The rigging structure is configured to connect with a lifting device to drive the cleaning structure to move to a corresponding position on the sealing surfaces of the gate, and the cleaning structure is configured to clean the marine life on the sealing surfaces of the gate when the cleaning structure moves to the corresponding position on the sealing surfaces of the gate.

[0008] Preferably, opposite sides of the main structure are respectively provided with a guide member for slidably matching with a guide rail that is extended in a vertical direction and provided on both sides of the sealing surfaces of the gate.

[0009] Preferably, the cleaning structure includes a nozzle structure and a delivery pipe configured to provide jetting fluid to the nozzle structure.

[0010] Preferably, the nozzle structure is configured to jet fluid in a direction angled at 30-40 degrees relative to the sealing surfaces of the gate.

[0011] Preferably, the nozzle structure is a cavitation nozzle structure.

[0012] Preferably, the nozzle structure includes a first nozzle for cleaning an upper sealing surface of the sealing surfaces and a second nozzle for cleaning a lower sealing surface of the sealing surfaces, and the main structure includes a truss arranged laterally and a moving carrier slidably provided on the truss, and the first nozzle and the second nozzle are mounted on the moving carrier.

[0013] Preferably, the nozzle structure further includes a third nozzle and a fourth nozzle respectively for cleaning a left sealing surface and a right sealing surface of the sealing surfaces, and the third nozzle and the fourth nozzle are mounted on left and right sides of the moving carrier respectively.

[0014] Preferably, the cleaning structure further includes a first valve for controlling fluid discharge of the first nozzle, a second valve for controlling fluid discharge of the second nozzle, and a third valve for control fluid discharge of the third nozzle and the fourth nozzle.

[0015] Preferably, the cleaning structure further includes a reel device mounted on the truss, and the reel device is configured to release or rewind the delivery pipe with movements of the moving carrier.

[0016] Preferably, the device further includes a vision system, the vision system includes a camera device for collecting underwater image information and at least two

fill light devices for providing light sources to the camera device, the fill light devices are respectively installed on left and right sides of the truss; the camera device includes a panoramic camera installed in a middle of the truss, a left camera and a right camera installed on the left and right sides of the truss, and a moving camera installed on the moving carrier.

[0017] Preferably, the rigging structure includes a lifting ring for connecting with the lifting device, a plurality of lifting ropes connected with the lifting ring, and a draw rod connected to a lower end of the lifting rope, the draw rod is connected with the main structure and has an adjustable length.

[0018] The present invention further provides an underwater cleaning device combination for marine life on sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure, the underwater cleaning device combination including an underwater cleaning device for marine life on sealing surfaces of a gate and two guide rails, the guide rails being installed side by side on both sides of the sealing surfaces of the gate. The underwater cleaning device includes a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure, opposite sides of the main structure are respectively provided with a guide member for matching with the guide rails, the rigging structure is configured to connect with a lifting device to drive the cleaning structure to move to a corresponding position on the sealing surfaces of the gate, and the cleaning structure is configured to clean the marine life on the sealing surfaces of the gate when the cleaning structure moves to the corresponding position on the sealing surfaces of the gate.

[0019] In comparison with the prior art, a new marine life cleaning device is provided in the present invention, the main structure is fixed with the rigging structure, the cleaning structure is installed on the main structure, and the rigging structure is connected to the lifting device. In such an arrangement, the underwater cleaning device can be driven by the lifting device to move along the building structure to the position corresponding to the sealing surfaces of the gate, and then clean the marine life on the sealing surfaces by means of the cleaning structure, which has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device, and is applicable to the cleaning of marine life on the sealing surfaces of large gates. In addition, the cleaning device of the present invention is applicable to sealing surfaces of different gates with various sizes and various materials, without any material restriction of the building structure, to obtain good applicability. Furthermore, there is no need to move the main structure on the cleaning structure, which is applicable to perform cleanup on sharp edges and corners, and multiple planes.

[0020] The present invention further provides an underwater cleaning device combination for marine life on

sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure. The method includes the following steps:

S1, providing an underwater cleaning device for marine life on sealing surfaces of a gate, the underwater cleaning device including a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure;

S2, connecting the rigging structure with a lifting device:

S3, driving the underwater cleaning device by the lifting device to move along the building structure to a position corresponding to the sealing surfaces of the gate; and

S4, cleaning the marine life on the sealing surfaces of the gate through the cleaning structure.

[0021] Preferably, the method further includes installing two guide rails extended vertically on the building structure, the guide rails being located at two sides of the sealing surfaces of the gate; arranging two guide members at opposite sides of the main structure; and moving the guide members along the guide rails while the underwater cleaning device moves downward along the building structure in step S3.

[0022] In comparison with the prior art, a new marine life cleaning method is provided in the present invention, the rigging structure of the underwater cleaning device is connected to a lifting device, and the underwater cleaning device is driven by the lifting device to move along the building structure to a position corresponding to the sealing surfaces of the gate, to clean the marine life on the sealing surfaces of the gate through the cleaning structure. In such a way, it has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device, and is applicable to the cleaning of marine life on the sealing surfaces of large gates. In addition, the cleaning device of the present invention is applicable to sealing surfaces of different gates with various sizes and various materials, without any material restriction of the building structure, to obtain good applicability. Furthermore, there is no need to move the main structure on the cleaning structure, which is applicable to perform cleanup on sharp edges and corners, and multiple planes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023]

45

FIG. 1 is a perspective schematic view of an underwater cleaning device for marine life on sealing surfaces of a gate according to the embodiment of the present invention.

FIG. 2 is a partial structural schematic view of the moving carrier shown in FIG. 1.

FIG. 3 is a schematic view of the underwater cleaning

40

device for marine life on the sealing surfaces of the gate shown in FIG. 1 during cleaning.

FIG. 4 is a flow chart of a method for an underwater cleaning device for marine life on sealing surfaces of a gate according to an embodiment of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

[0024] In order to describe the technical content, structural features, achieved objects and effects of the present invention in detail, the following detailed description is given in conjunction with the embodiments and the accompanying drawings. Obviously, the embodiments described are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.

[0025] In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "left", "right", "vertical", "horizontal", "lateral", etc. is based on that shown in the drawings and is only for the convenience of describing the present invention and simplifying the description, and therefore should not be construed as a limitation on the protection content of the present invention.

[0026] Referring to FIGS. 1-3, the present disclosure provides an underwater cleaning device 100 for marine life on a sealing surface of a gate, which is adapted for connecting with a lifting device (not shown) and is movable in a vertical direction along a building structure 200 under the action of the lifting device, to clean up the marine life adhering to the sealing surface of the gate of the building structure 200. Specifically, the device 100 includes a main structure 1, a cleaning structure installed on the main structure 1, and a rigging structure 3 fixed to the main structure 1. The rigging structure 3 is configured to connect with the lifting device to drive the main structure 1 with the cleaning structure supported to move along the building structure 200 to a corresponding position on the sealing surface of the gate, and the cleaning structure is configured to clean the marine life on the sealing surface of the gate when the cleaning structure moves to the corresponding position on the sealing surface of the gate.

[0027] In an embodiment, the opposite sides of the main structure 1 are respectively provided with a guide member 13 for slidably matching with a guide rail (not shown) that is extended in a vertical direction and provided on both sides of the sealing surface of the gate. When the underwater cleaning device 100 is subjected to the force of the lifting device, the guide member 13 can move in the vertical direction along the guide rail, so that the underwater cleaning device 100 can stably move

in the vertical direction along the building structure 200, without jamming due to the marine life bred on the guide rails. Preferably, the guide member 13 is a guide wheel, which is not limited however.

[0028] It should be noted that, the lateral dimension of the main structure 1 is adapted to those of the building structure 200 and the guide rail, so as to ensure that the underwater cleaning device 100 can operate in a limited space, and transfer a reaction force generated during the cleaning to the guide rails and the building structure 200. The guides 13 are sized to match the guide rails, which is beneficial to transfer the reaction force generated during the cleaning to the guide rails. In specific implementation, the lateral dimension of the main structure 1 can be adjusted adaptively according to the lateral dimension of the sealing surface of the gate to be cleaned, so that the underwater cleaning device 100 can be suitable for cleaning different sealing surfaces of various lateral dimensions, especially for the sealing surfaces of large vertical gantry gates.

[0029] Referring to FIG. 1, the rigging structure 3 includes a lifting ring 31 for connecting with the lifting device, a plurality of lifting ropes 32 connected with the lifting ring 31, and a draw rod 33 connected to a lower end of the lifting rope 32, the draw rod 33 is connected with the main structure 1, and has an adjustable length. By adjusting the length of the draw rod 33, the force balance of the rigging structure 3 is ensured, so that the underwater cleaning device 100 can move stably along the guide rails under the action of the lifting device. More specifically, the lifting rope 32 is a stainless steel wire rope, and the draw rod 33 is a basket draw rod.

[0030] Referring to FIGS. 2-3, the cleaning structure includes a nozzle structure (not shown) and a delivery pipe (not shown) configured to provide jetting fluid to the nozzle structure. Preferably, the nozzle structure is a cavitation nozzle structure, which uses strong force of microjet and shock waves generated by cavitation jet technology to remove the marine life. Such a structure is simple, which is suitable to effectively remove large-area marine life on the sealing surfaces of the gate.

[0031] Specifically, the sealing surfaces of the gate includes an upper sealing surface 210 matching with the lintel of the gate, a lower sealing surface 220 matching with the bottom of the gate, and a left sealing surface and a right sealing surface located on opposite sides of the upper sealing surface 210 and the lower sealing surface 220 (the four surfaces are formed like a door frame structure). Since the upper sealing surface 210 (vertical surface), the lower sealing surface 220 (horizontal surface), the left sealing surface (vertical surface) and the right sealing surface (vertical surface) are located in different planes, in this embodiment, different nozzles with different spray directions are applied to clean the four sealing surfaces, so that everywhere of the sealing surfaces of the gate may be cleaned without dead corners, thereby ensuring the cleaning effect of the sealing surfaces of the gate. Specifically, the nozzle structure includes a first

45

50

nozzle 21, a second nozzle 22, a third nozzle 23 and a fourth nozzle 24. The first nozzle 21 is configured to clean the marine life on the upper sealing surface 210, and the second nozzle 22 is configured to clean the marine life on the lower sealing surface 220, the third nozzle 23 is configured to clean the marine life on the left sealing surface, and the fourth nozzle 24 is configured to clean the marine life on the right sealing surface. Specifically, the first nozzle 21 is configured to jet fluid in a direction angled at 30-40 degrees relative to the upper sealing surface 210, the second nozzle 22 is configured to jet fluid in a direction angled at 30-40 degrees relative to the lower sealing surface 220, the third nozzle 23 is configured to jet fluid in a direction angled at 30-40 degrees relative to the left sealing surface, and the fourth nozzle 24 is configured to jet fluid in a direction angled at 30-40 degrees relative to the right sealing surface, so as to optimized the cleaning effect.

[0032] Please refer to FIG. 1 and FIG. 2, specifically, the main structure 1 includes a truss 11 arranged laterally and a moving carrier 12 slidably arranged on the truss 11. The first nozzle 21 and the second nozzle 22 are installed on the moving carrier 12. When the main body structure 1 is driven by an external lifting device to reach the upper sealing surface 210 or the lower sealing surface 220, the first nozzle 21 and the second nozzle 22 carried by the moving carrier 12 to move laterally along the truss 11, so that the upper sealing surface 210 and the lower sealing surface 220 can be cleaned fully, to ensure the cleaning effect. The truss 11 includes a truss beam 111, a left end beam 112 installed on the left side of the truss beam 111, and a right end beam 113 installed on the right side of the truss beam 111. The third nozzle 23 is installed on the left end beam 112, and the fourth nozzle 24 is installed on the right end beam 113, when the underwater cleaning device 100 moves in the vertical direction along the guide rail under the action of the lifting device, the third nozzle 23 and the fourth nozzle 24 clean marine life on the left sealing surface and the left sealing surface respectively.

[0033] It is worth noting that, in this embodiment, the moving carrier 12 will simultaneously drive the first nozzle 21 and the second nozzle 22 to move laterally along the truss 11 when moving laterally along the truss 11. In other embodiments, the moving carrier 12 may also include a plurality of independent moving parts that can move laterally along the truss 11, and the first nozzle 21 and the second nozzle 22 are independently installed on different moving parts, in such an arrangement, the first nozzle 21 and the second nozzle 22 can be driven by the moving parts respectively, so as to move laterally along the truss 11

[0034] More specifically, the moving carrier 12 includes a main body 121, a wheel 122 mounted on the main body 121, a driving assembly 123, a lateral limiting wheel 124 and a vertical limiting wheel 125. The main body 121 is a welded structure, which is connected to the first nozzle 21 and the second nozzle 22 by bolts.

The wheel 122 is connected to the output end of the drive assembly 123 and driven to move laterally along the truss beam 111. In this embodiment, in the drive assembly 123, dynamic and static technology is adopted, a motor is wrapped in the sealed cavity, and at the same time, compressed air is input into the sealed cavity, so that the sealed cavity maintains a slight positive pressure relative to the external environment. In such a way, the motor in the driving assembly 123 is ensured to be worked normally in an environment with a water depth of 15 meters, to drive the wheels 122 normally. The lateral limiting wheel 124 is configured to realize the lateral limit of the wheel 122, and the vertical limit wheel 125 is configured to realize the vertical limit of the wheel 122. In this embodiment, moving carrier 12 is engaged with the truss beam 111 by gear rack, which is not limited thereto.

[0035] Specifically, the cleaning structure further includes a first valve 25 and a second valve 26 installed on the moving carrier 12, and a third valve 27 installed on the truss 11. More specifically, the first valve 25 is configured to control the liquid outlet of the first nozzle 21, the second valve 26 is configured to control the fluid discharge of the second nozzle 22, and the third valve 27 is configured to control the fluid discharge of the third nozzle 23 and the fourth nozzle 24. That is to say, the first nozzle 21 and the second nozzle 22 are separately controlled by the first valve 25 and the second valve 26, and the third nozzle 23 and the fourth nozzle 24 are simultaneously controlled by the third valve 27, which is convenient for cleaning the left and the right sealing surfaces. Preferably, the first valve 25, the second valve 26 and the third valve 27 are all electromagnetic valves, which is not limited thereto however.

[0036] Referring to FIG.1, specifically, the cleaning structure further includes a reel device 28 mounted on the truss beam 111, and the reel device 28 is configured to release or rewind the delivery pipe with the movement of the moving carrier 12. Specifically, the reel device 28 uses a spring drive mechanism to realize the retraction of the delivery pipe. In this embodiment, the reel device 28 includes a reel body 281, a left guide wheel 282 and a right guide wheel 283. The delivery pipe is wound on the reel body 281 and is located between the left guide wheel 282 and the right guide wheel 283. In such a way, a desired delivery pipe can be ensured due to the reel body 281, and the delivery pipe can be bent to the left or right with a proper bending radius by means of the left guide wheel 282 and the right guide wheel 283, and further the delivery pipe will not interfere with the main structure 1.

[0037] Please continue to refer to FIG. 1, specifically, the underwater cleaning device 100 further includes a vision system having a camera device and a fill light device 45 for providing a light source to the camera device. More specifically, the camera device includes a panoramic camera 41 mounted on the middle position of the truss beam 111, a left camera 42 mounted on the left end beam 112, a right camera 43 mounted on the right end

beam 113, and a moving camera 44 mounted on the moving carrier 12. The moving camera 44 is configured to move laterally on the truss beam 111 with the moving carrier 12, collect underwater image information by each camera 41, 42, 43, 44, and transmit such information to an onshore monitor (not shown) through network cables, so that the operator can judge the underwater position of the underwater cleaning device 100, observe the marine life on the sealing surfaces of the gate, and check the jet state of the underwater cleaning device 100. Two fill light devices 45 is provided on the left end beam 112 and the right end beam 113 respectively, so as to establish a full coverage light field, thereby realizing all-round high-definition monitoring of each sealing surface of the gate. Of course, in other embodiments, the two fill light devices 45 may also be installed at other positions of the truss 11, and the left camera 42 and the right camera 43 are not limited to be installed on the left end beam 112 and the right end beam 113.

[0038] The present invention also provides an underwater cleaning device combination for marine life on the sealing surfaces of the gate, which is adapted for cleaning the marine life attached to the sealing surfaces of the gate of the building structure 200. The device combination includes the underwater cleaning device 100 and two guide rails installed side by side on both sides of the sealing surfaces of the gate. The underwater cleaning device 100 includes a main structure 1, a cleaning structure installed on the main structure 1 for cleaning marine life, and a rigging structure fixed to the main structure 1. Two guide members 13 are arranged at opposite sides of the main structure 1 for matching with the guide rails. The rigging structure 3 is configured to connect with a lifting device to drive the cleaning structure to move to a corresponding position on the sealing surfaces of the gate, and the cleaning structure 1 is configured to clean the marine life on the sealing surfaces when the cleaning structure moves to the corresponding position on the sealing surfaces of the gate. Specifically, the structures of the underwater cleaning device 100 are as described above, and are not repeated here.

[0039] Hereinafter, the operation process of the underwater cleaning device 100 for marine life on the sealing surfaces of the gate according to the present invention will be described with reference to the specific embodiments shown in FIGS. 1-3.

[0040] Firstly, the lifting ring 31 of the underwater cleaning device 100 is hung on the hook of the lifting device, so that the underwater cleaning device 100 is lifted and transferred above (on the water) the gate of the building structure 200 to be cleaned. Next, the structural integrity of the underwater cleaning device 100 is checked, after that, the underwater cleaning device 100 is lowered into the water at a low speed, and the vision system is turned on to monitor the underwater image information; sequentially, the underwater cleaning device 100 is continued to be lowered at a low speed to reach the bottom of the gate, during such a process, the

growth of marine life on the sealing surfaces of the gate may be observed by the visual system. Then, the underwater cleaning device 100 is lifted to the upper sealing surface 210 and stopped, the first valve 25 is turned on to control the moving carrier 12 to move laterally on the truss 11, and the first nozzle 21 sprays to clean the marine life on the upper sealing surface 210. Then, the moving carrier 12 is controlled to rest in the middle of the truss 11, and the first valve 25 is turned off. Then, the third valve 27 is turned on, and the underwater cleaning device 100 is lowered down at a low speed, and the third nozzle 23 and the fourth nozzle 24 spray to clean the marine life on the left sealing surface and the right sealing surface until the underwater cleaning device 100 is moved down to the lower sealing surface 220. Then, the third valve 27 is turned off, and the second valve 26 is turned on to control the moving carrier 12 to move laterally on the truss 11, so that the second nozzle 22 spray to clean the marine life on the lower sealing surface 220. After the cleaning is completed, the second valve 26 is turned off and the moving carrier 12 is controlled to rest in the middle of the truss 11. Finally, the underwater cleaning device 100 is lifted to move up the water surface along the track. Once the marine life are formed for a period of time, the underwater cleaning device 100 will be lowered down into the water again to clean and the visual system will check the cleaning effect.

[0041] Referring to FIG. 4, the present invention also discloses an underwater cleaning method for marine life on the sealing surfaces of the gate, for cleaning the marine life attached to the sealing surfaces of the gate of the building structure, including the following steps:

S1, providing an underwater cleaning device 100 for marine life on sealing surfaces of a gate, wherein the underwater cleaning device 100 includes a main structure 1, a cleaning structure installed on the main structure 1, and a rigging structure 3 fixed to the main structure 1;

S2, connecting the rigging structure 3 with a lifting device;

S3, driving the underwater cleaning device 100 by the lifting device to move along the building structure 200 to a position corresponding to the sealing surfaces of the gate; and

S4, cleaning the marine life on the sealing surfaces of the gate through the cleaning structure.

[0042] Specifically, the underwater cleaning method further includes: installing two guide rails extended vertically on the building structure, the guide rails being located at two sides of the sealing surfaces of the gate; arranging two guide members 13 at opposite sides of the main structure 1; and moving the guide members 13 along the guide rails while the underwater cleaning device 100 moves downward along the building structure 200 in step S3. With the cooperation of the guide rail and the guiding member, the underwater cleaning device 100

35

40

15

20

25

30

45

50

55

can stably move in the vertical direction along the building structure 200, without jamming due to the marine life bred on the guide rails. Preferably, the guide member 13 is a guide wheel, which is not limited thereto however.

[0043] Compared with the prior art, a new marine life cleaning device 100 is provided, the main structure 1 is fixed with the rigging structure 3, the cleaning structure is installed on the main structure 1, and the rigging structure 3 is connected to the lifting device. In such an arrangement, the underwater cleaning device 100 can be driven by the lifting device to move along the building structure 200 to the position corresponding to the sealing surfaces of the gate, and then clean the marine life on the sealing surfaces by means of the cleaning structure. which has neither the inefficiency of the traditional cleaning method by divers nor the problems of poor movement stability of the cleaning device, and is applicable to the cleaning of marine life on the sealing surfaces of large gates. In addition, the underwater cleaning device 100 of the present invention is applicable to sealing surfaces of different gates with various sizes and various materials, without any material restriction of the building structure 200, to obtain good applicability. Furthermore, there is no need to move the main structure 1 on the cleaning structure, which is applicable to perform cleanup on sharp edges and corners, and multiple planes.

[0044] While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.

Claims

- 1. An underwater cleaning device for marine life on sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure, the underwater cleaning device comprising a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure, characterized in that, the rigging structure is configured to connect with a lifting device to drive the cleaning structure to move to a corresponding position on the sealing surfaces of the gate, and the cleaning structure is configured to clean the marine life on the sealing surfaces of the gate when the cleaning structure moves to the corresponding position on the sealing surfaces of the gate.
- 2. The underwater cleaning device according to claim 1, wherein opposite sides of the main structure are respectively provided with a guide member for slidably matching with a guide rail that is extended in a vertical direction and provided on both sides of the

sealing surfaces of the gate.

- 3. The underwater cleaning device according to claim 1 or claim 2, wherein the cleaning structure comprises a nozzle structure and a delivery pipe configured to provide jetting fluid to the nozzle structure.
- 4. The underwater cleaning device according to claim 3, wherein the nozzle structure is configured to jet fluid in a direction angled at 30-40 degrees relative to the sealing surfaces of the gate.
- The underwater cleaning device according to claim 3, wherein the nozzle structure is a cavitation nozzle structure.
- 6. The underwater cleaning device according to claim 3, wherein the nozzle structure comprises a first nozzle for cleaning an upper sealing surface of the sealing surfaces and a second nozzle for cleaning a lower sealing surface of the sealing surfaces, and the main structure comprises a truss arranged laterally and a moving carrier slidably provided on the truss, and the first nozzle and the second nozzle are mounted on the moving carrier.
- 7. The underwater cleaning device according to claim 6, wherein the nozzle structure further comprises a third nozzle and a fourth nozzle respectively for cleaning a left sealing surface and a right sealing surface of the sealing surfaces, and the third nozzle and the fourth nozzle are mounted on left and right sides of the moving carrier respectively.
- 35 8. The underwater cleaning device according to claim 7, wherein the cleaning structure further comprises a first valve for controlling fluid discharge of the first nozzle, a second valve for controlling fluid discharge of the second nozzle, and a third valve for control fluid discharge of the third nozzle and the fourth nozzle.
 - 9. The underwater cleaning device according to claim 6, wherein the cleaning structure further comprises a reel device mounted on the truss, and the reel device is configured to release or rewind the delivery pipe with movements of the moving carrier.
 - 10. The underwater cleaning device according to claim 6, further comprising a vision system, wherein the vision system comprises a camera device for collecting underwater image information and at least two fill light devices for providing light sources to the camera device, the fill light devices are respectively installed on left and right sides of the truss; the camera device comprises a panoramic camera installed in a middle of the truss, a left camera and a right camera installed on the left and right sides of the

truss, and a moving camera installed on the moving carrier

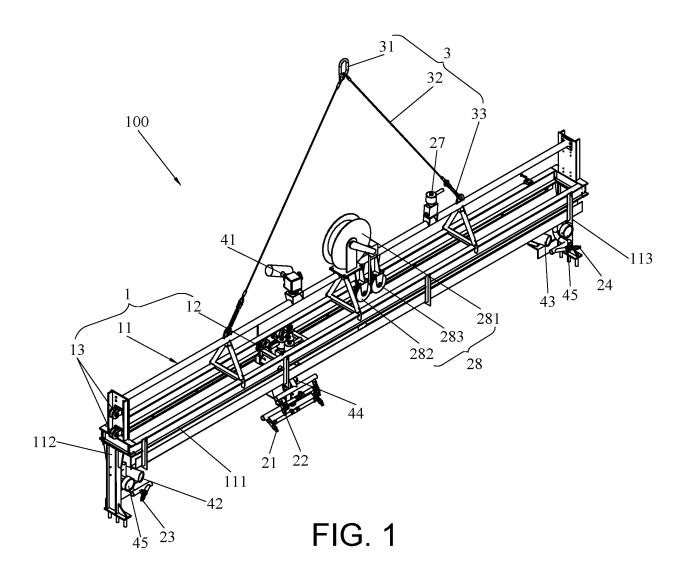
- 11. The underwater cleaning device according to claim 1, wherein the rigging structure comprises a lifting ring for connecting with the lifting device, a plurality of lifting ropes connected with the lifting ring, and a draw rod connected to a lower end of the lifting rope, the draw rod is connected with the main structure and has an adjustable length.
- 12. An underwater cleaning device combination for marine life on sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure, the underwater cleaning device combination comprising an underwater cleaning device for marine life on sealing surfaces of a gate and two guide rails, the guide rails being installed side by side on both sides of the sealing surfaces of the gate, wherein the underwater cleaning device comprises a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure, opposite sides of the main structure are respectively provided with a guide member for slidably matching with the guide rails, the rigging structure is configured to connect with a lifting device to drive the cleaning structure to move to a corresponding position on the sealing surfaces of the gate, and the cleaning structure is configured to clean the marine life on the sealing surfaces of the gate when the cleaning structure moves to the corresponding position on the sealing surfaces of the gate.
- 13. An underwater cleaning method for marine life on sealing surfaces of a gate, adapted for cleaning marine life attached to sealing surfaces of a gate of a building structure, the under cleaning method comprising steps of:

S1, providing an underwater cleaning device for marine life on sealing surfaces of a gate, the underwater cleaning device comprising a main structure, a cleaning structure installed on the main structure, and a rigging structure fixed to the main structure;

S2, connecting the rigging structure with a lifting device:

S3, driving the underwater cleaning device by the lifting device to move along the building structure to a position corresponding to the sealing surfaces of the gate; and

S4, cleaning the marine life on the sealing surfaces of the gate through the cleaning structure.


14. The underwater cleaning method according to claim 13, further comprising:

installing two guide rails extended vertically on the building structure, the guide rails being located at two sides of the sealing surfaces of the gate;

arranging two guide members at opposite sides of the main structure; and

moving the guide members along the guide rails while the underwater cleaning device moves downward along the building structure in step S3.

55

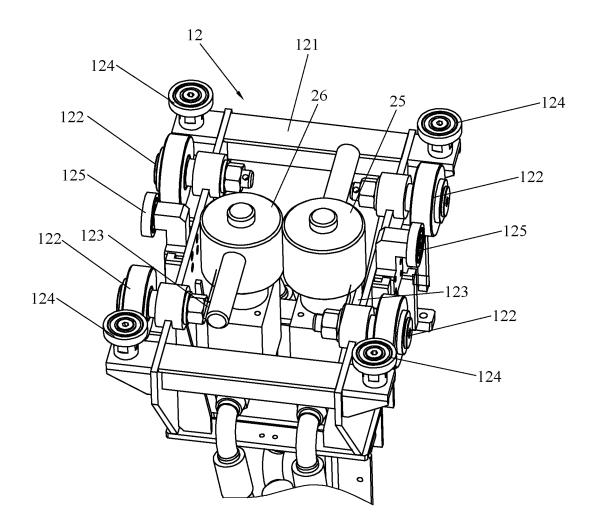


FIG. 2

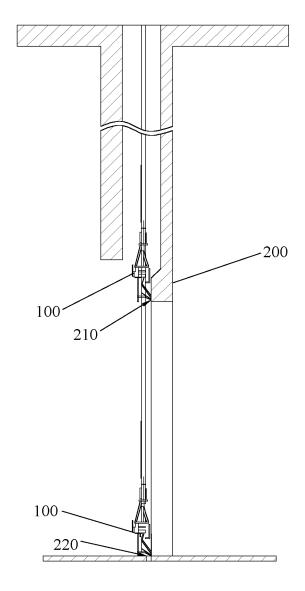


FIG. 3

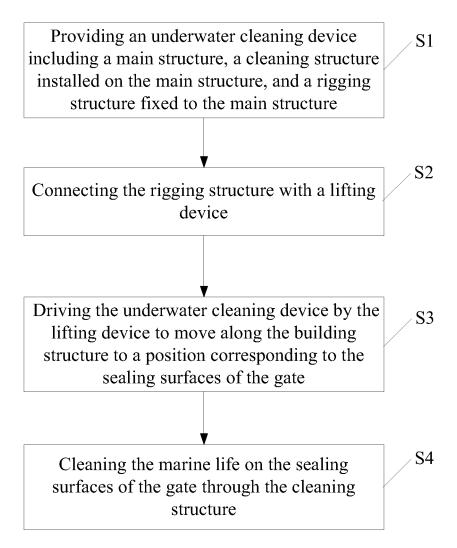


FIG. 4

International application No.

INTERNATIONAL SEARCH REPORT

PCT/CN2020/090859 5 CLASSIFICATION OF SUBJECT MATTER B08B 3/02(2006.01)i; E02B 7/20(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) B08B3; E02B7; B08B13; B66C1; B08B1; E02F5; B08B9 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNPAT, CNKI, WPI, EPODOC 清理, 清洁, 清除, 闸门, 门, 水下, 海, 密封, 喷嘴, 导轨, 导向, 绳索CLEAN+, GATE, SEA, UNDERWATER, SEAL+, NOZZLE, SPRAY, RAIL+, GUID+, RIG+ C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. 20 Category* Citation of document, with indication, where appropriate, of the relevant passages PX CN 111112180 A (CHINA GENERAL NUCLEAR POWER CO., LTD. et al.) 08 May 2020 1-14 (2020-05-08) claims 1-14 X CN 106269623 A (JILIN UNIVERSITY) 04 January 2017 (2017-01-04) 1-14 description paragraphs [0002], [0062]-[0084], figures 1-9 25 CN 207436018 U (YANGZHOU TIANLANG WATER EQUIPMENT CO., LTD.) 01 June Α 1-14 2018 (2018-06-01) entire document CN 109985850 A (SHANDONG JIAOTONG UNIVERSITY) 09 July 2019 (2019-07-09) 1-14 Α entire document 30 CN 107100222 A (WUHAN UNIVERSITY) 29 August 2017 (2017-08-29) 1-14 Α entire document Α CN 106475364 A (CHINA NATIONAL OFFSHORE OIL CORPORATION et al.) 08 March 1-14 2017 (2017-03-08) entire document 35 JP H01310009 A (MARUSEI JUKOGYO) 14 December 1989 (1989-12-14) 1-14 Α entire document Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered 40 to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other 45 document published prior to the international filing date but later than document member of the same patent family the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 03 September 2020 05 August 2020 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/ No. 6, Xitucheng Road, Jimenqiao Haidian District, Beijing 100088 China Facsimile No. (86-10)62019451 Telephone No. 55

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2020/090859 5 C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP H11188320 A (OKUMURA CORP.) 13 July 1999 (1999-07-13) entire document 1-14 10 15 20 25 30 35 40 45 50

Form PCT/ISA/210 (second sheet) (January 2015)

International application No.

INTERNATIONAL SEARCH REPORT

Information on patent family members PCT/CN2020/090859 5 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) 111112180 08 May 2020 CN None A CN 106269623 04 January 2017 CN 106269623 В 06 July 2018 A 207436018 CN U 01 June 2018 None 10 CN 109985850 09 July 2019 None A 107100222 29 August 2017 CN A None 106475364 08 March 2017 106475364 26 October 2018 CN CNВ A JP H01310009 14 December 1989 JP H0776446 В2 16 August 1995 A JP H11188320 13 July 1999 JP 3318249 В2 26 August 2002 A 15 20 25 30 35 40 45 50

Form PCT/ISA/210 (patent family annex) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN ZL201611189296 [0003]