

(11) EP 4 036 300 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.08.2022 Bulletin 2022/31

(21) Application number: 22164092.3

(22) Date of filing: 02.03.2020

(51) International Patent Classification (IPC):

 D06F 33/76 (2020.01)
 D06F 34/16 (2020.01)

 D06F 58/52 (2020.01)
 D06F 103/24 (2020.01)

 D06F 103/46 (2020.01)
 D06F 105/62 (2020.01)

 D06F 105/48 (2020.01)
 D06F 105/52 (2020.01)

(52) Cooperative Patent Classification (CPC): D06F 33/76; D06F 34/16; D06F 58/52;

D06F 2103/24; D06F 2103/46; D06F 2105/48;

D06F 2105/52; D06F 2105/62

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

20160332.1 / 3 875 661

(71) Applicant: HAIER Germany GmbH 81829 München (DE)

(72) Inventors:

 Martinello, Daniele 90411 Nürnberg (DE)

Bobek, Viktor
 90491 Nürnberg (DE)

 Petracek, Pavol 90482 Nürnberg (DE)

(74) Representative: Rau, Schneck & Hübner Patentanwälte Rechtsanwälte PartGmbB Königstraße 2 90402 Nürnberg (DE)

Remarks:

This application was filed on 24-03-2022 as a divisional application to the application mentioned under INID code 62.

(54) METHOD TO ESTIMATE A LOAD BEHAVIOR IN A LAUNDRY TREATMENT MACHINE

(57) A method to estimate a load behavior in a laundry treatment machine comprises the step of determining an inertia (\hat{J}_t, \hat{J}_t) and/or a load torque caused by a load

depending on a first torque signal (T_{em}^{*1}) , a second

torque signal (T_{em}^{*2}) , a derivative $(\widehat{\dot{\omega}^1})$ of a first an-

gular speed signal and a derivative $(\dot{\omega}^2)$ of a second angular speed signal. These signals are based on a first operation and a second operation of the laundry treatment machine, wherein a controller of the laundry treatment machine is operated with different controller parameters (P₁, P₂). The method enables to estimate the load behavior in an easy, reliable and accurate manner.

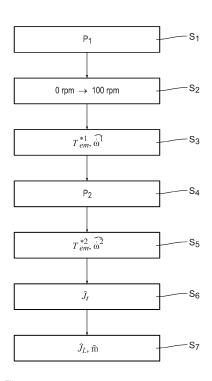


Fig. 5

EP 4 036 300 A1

Description

10

15

20

25

30

35

40

50

55

[0001] The invention relates to a method to estimate a load behavior in a laundry treatment machine. Furthermore, the invention relates to a laundry treatment machine with a control unit to estimate a load behavior. For example, the laundry treatment machine is a washing machine or a drying machine or a combined washing and drying machine.

[0002] The estimation of a load inertia at the beginning of a washing cycle has a key role to set the amount of resources such as water, detergent, bleach and softener and the amount of energy in order to achieve a good washing performance without wasting resources and energy. The load inertia is caused by the laundry within the drum of the laundry treatment machine and varies in a wide range.

[0003] The washing unit is suspended to the cabinet by a set of springs and dampers. This mechanical system is adjusted to have a resonance frequency at a relatively low angular speed between 150 rpm and 300 rpm. During the spinning phase, the angular speed of the drum has to cross this resonance region without interference between the tub and the cabinet. Due to an increase of the drum size and a loading capacity of the laundry treatment machine the available space between the tub and the cabinet decreased. As a consequence, a precise estimation of a load unbalance is required in order to avoid a mechanical impact between the tub and the cabinet when the resonance region is crossed. [0004] US 2005/204482 A1 discloses a method to estimate a load inertia and a load unbalance. The estimation is based on an angular speed signal and a torque signal during an acceleration of the drum or during superimposition of a dither signal to a substantially constant angular speed in order to excite the mechanical system of the laundry treatment

[0005] It is an object of the present invention to provide a method to estimate a load behavior in a laundry treatment machine in an easy, reliable and accurate manner.

[0006] This object is achieved by a method comprising the steps of claim 1. According to the inventive method the inertia and/or the load torque is determined based on two operations of the laundry treatment machine with two different speed controller parameters and bandwidths of the speed controller. The speed controller regulates the angular speed of the drive motor an is part of the speed control loop. The first operation can be described by

$$-\widehat{T}_L + T_{em}^{*1} = \widehat{J}_t \widehat{\dot{\omega}}^1 \tag{1}$$

and the second operation can be described by

$$-\widehat{T}_L + T_{em}^{*2} = \widehat{J}_t \widehat{\dot{\omega}}^2 \tag{2},$$

wherein

 T_{em}^{*1} denotes the first torque signal,

 $\widehat{\dot{\omega}^1}$ denotes the derivative of the first angular speed signal,

 T_{em}^{*2} denotes the second torque signal,

 $\widehat{\dot{\omega}^2}$ denotes the derivative of the second angular speed signal, \hat{T}_I denotes the load torque and

 \hat{J}_t denotes the total inertia of the laundry treatment machine with regard to a rotation around the rotational axis. **[0007]** Based on equations (1) and (2) the total inertia can be evaluated by

$$\hat{J}_t = \frac{T_{em}^{*1} - T_{em}^{*2}}{\hat{\omega}^1 - \hat{\omega}^2} \tag{3}.$$

[0008] The load inertia can be evaluated by

$$\hat{J}_L = \hat{J}_t - J_m \tag{4},$$

5 wherein

15

20

30

35

40

45

55

 \hat{J}_L denotes the load inertia and

 J_m denotes the inertia of the laundry treatment machine.

[0009] The inertia J_m of the laundry treatment machine is known from construction data or can be measured by running a test without a distributed load inside the drum.

[0010] Furthermore, in case that the load inertia is evaluated according to equation (4), the load torque can be determined, for example according to equation (1) and/or equation (2) and/or by means of a load observer as soon as the total inertia \hat{J}_t is estimated according to equation (3) and the load torque observer is parametrized accordingly.

[0011] The load torque observer enables an accurate and continuous estimation of the load torque. The load torque observer can be easily implemented into a control unit of a laundry treatment machine. Additional hardware components, like sensors, are not required.

[0012] The advantages of the inventive method are as follows:

The load inertia and the total inertia can be evaluated at a constant angular speed, for example at 100 rpm, in order to avoid the use of an acceleration ramp and to avoid the risk of a mechanical impact between the tub and the cabinet. The same applies for the estimation of a load unbalance based on the load torque. The method can be used to estimate the dry load at the beginning of the washing cycle without using an acceleration ramp in order to set the amount of resources and energy. In case of a combined washing and drying machine or a drying machine the inertia estimation can be used to stop the drying cycle at a desired moisture retention. Furthermore, the inventive method can be used to estimate the wet load at the end of the washing cycle without using an acceleration ramp. The estimated load torque and an estimation of the load unbalance based thereon can be automatically adapted with the estimated total inertia. The inventive method can be used in a laundry treatment machine with a large drum and can be easily implemented in existing control units. The estimation of the inertia and/or the load torque is not affected by friction or by the speed controller setting. Furthermore, the estimation of the inertia and/or the load torque just requires an operation of the laundry treatment machine at a constant angular speed without the need of an acceleration ramp such that the inertia and/or the load torque can be estimated in an easy and quick manner.

[0013] A method according to claim 2 ensures an easy, reliable and accurate estimation of the load behavior. The desired angular speed or the target speed is constant. The resulting speed fluctuations or speed oscillations depend on the bandwidth of the speed controller and/or on the controller parameters of the speed controller, on the mass of the load and on the total inertia. A change of the speed controller parameters that changes the bandwidth of the speed controller at a constant desired angular speed results in a change of the speed oscillations and of the drive torque. The angular speed oscillations about the constant desired angular speed could be, as example, within +- 10 rpm, or within +- 5 rpm, or within +- 2 rpm.

[0014] A method according to claim 3 ensures an easy, reliable and accurate estimation of the load behavior. The mass of the load can be estimated in an easy and accurate manner depending on the load torque. The unbalance mass can be estimated by

$$\widehat{m} = \frac{\max(\widehat{T}_L)}{q \cdot r} \tag{5},$$

wherein

 \hat{m} denotes the mass of the load which corresponds to the unbalance mass, $\max(\hat{T}_L)$ denotes the maximum of the load torque,

g denotes the gravitational acceleration and

r denotes the drum radius.

[0015] A method according to claim 4 ensures an easy, reliable and accurate estimation of the load behavior. The angular load position can be estimated by solving

$$\hat{T}_L = -\hat{m} g r \sin(\hat{\theta} + \hat{\sigma}) \tag{6},$$

5 wherein

10

15

25

30

35

50

55

denotes the angular drum position in relation to a reference position,

denotes the angular relative load position inside the drum,

 \hat{T}_{l} denotes the load torque,

 \hat{m} denotes the mass of the load which corresponds to the unbalance mass,

g denotes the gravitational acceleration and

r denotes the drum radius.

[0016] The angular load position can be described by

 $\hat{\alpha} = \hat{\theta} + \hat{\sigma}$

20 wherein

 $\overset{\ \, {}^{}}{\alpha}$ denotes the angular position of the load in relation to the reference position

such that

 $\widehat{T}_L = -\widehat{m} g r \cos(\widehat{\alpha})$

since the load torque has a maximum value, if $\alpha = 90^\circ$.

[0017] A method according to claim 5 ensures an easy, reliable and accurate estimation of the load behavior. The total inertia can be easily estimated according to equation (3). Furthermore, the load inertia can be easily estimated according to equation (4).

[0018] A method according to claim 6 ensures an easy, reliable and accurate estimation of the load behavior. The signals are transformed into a frequency domain, in particular by computing a Fourier Transformation (FT). This transformation enables to determine respective first harmonics of the signals. The first harmonics are used for the subsequent determination of the inertia and/or the load torque. The determination of the inertia and/or the load torque is not affected by noise signals. The first harmonics comprise information about the frequency, the amplitude and the phase of the signals. At least one of the frequency, the amplitude and the phase are used for the subsequent estimation of the inertia and/or the load torque.

[0019] A method according to claim 7 ensures an easy, reliable an accurate estimation of the load behavior. By using the first harmonics of the signals the estimation of the inertia and/or the load torque is not affected by noise signals. The first harmonics of the signals are calculated for example by a Fourier Transformation (FT). The first harmonics comprise information about the frequency, the amplitude and the phase of the signals. At least one of the frequency, the amplitude and the phase are used for the subsequent estimation of the inertia and/or the load torque.

[0020] A method according to claim 8 ensures an easy, reliable and accurate estimation of the load behavior. The angular position and/or the drive torque of the drive motor can either be measured or estimated. The angular position is used to calculate an observer error.

[0021] A method according to claim 9 ensures an easy, reliable and accurate estimation of the load behavior. The observer error is used to estimate and/or correct internal states of the load torque observer. The internal states of the load torque observer are in particular the observed angular position, an observed angular acceleration and the load torque. The observer error is multiplied with observer coefficients or observer gains. The observer coefficients are used to adapt the accuracy and the behavior of the load torque observer.

[0022] A method according to claim 10 ensures an easy, reliable and accurate estimation of the load behavior. The observer error is multiplied with observer coefficients or observer gains in order to calculate observer signals. These observer signals are used to estimate and/or correct the internal states of the observer. A first observer signal is calculated by multiplying a derivative of the observer error with a first observer coefficient. A second observer signal is calculated

by multiplying the observer error with a second observer coefficient. Furthermore, a third observer signal is calculated by multiplying the observer error with a third observer coefficient and by integrating the resulting signal. The load torque depends on the sum of the first observer signal, the second observer signal and the third observer signal.

[0023] A method according to claim 11 ensures an easy, reliable and accurate estimation of the load behavior. An observed angular acceleration and in consequence the observed angular position depends on the total inertia of the laundry treatment machine and the load. The total inertia is estimated according to equation (3). The total inertia can be adapted during the operation of the laundry treatment machine, if necessary. For example, the total inertia increases depending on the wetness of the laundry.

[0024] A method according to claim 12 ensures an easy, reliable and accurate estimation of the load behavior. Sensorless drive motors are well known and do not comprise an angular position sensor and an angular speed sensor. Hence, the angular position of the drive motor is estimated, for example by means of a position and/or speed estimator or a position and/or speed observer. The load torque observer is preferably provided with an estimated angular position of the drive motor.

[0025] A method according to claim 13 ensures an easy, reliable and accurate estimation of the load behavior. The load torque observer is provided with the desired drive torque of the drive motor. An output signal of the speed controller is used to estimate the drive torque. This output signal characterizes the desired electromagnetic drive torque of the drive motor and can be used to estimate the drive torque and/or the load torque which acts on the drum.

[0026] Furthermore, it is an object of the present invention to provide a laundry treatment machine which enables to estimate a load behavior in an easy, reliable and accurate manner.

[0027] This object is achieved by a laundry treatment machine with the features of claim 14. The advantages of the laundry treatment machine according to the invention correspond to the advantages already described in connection with the method according to the invention.

[0028] Further features, advantages and details of the invention will be apparent from the following description of an embodiment which refers to the accompanying drawings.

Fig. 1 shows a schematic view of a laundry treatment machine with a drum, a drive motor and a control unit,

Fig. 2 shows a schematic cross sectional view of the drum with a load located inside the drum,

shows a block diagram of a controller and a load torque observer implemented in the control unit, Fig. 3

Fig. 4 shows a block diagram of the load torque observer in Fig. 3,

Fig. 5 shows a flow chart of a method to estimate a total inertia of the laundry treatment machine and the load with respect to a rotation of the drum around a rotational axis,

Fig. 6 shows a time diagram of an angular speed and a drive torque of the drive motor during a first operation and a second operation of the laundry treatment machine in order to estimate the total inertia according to the flow chart in Fig. 5,

Fig. 7 shows a first torque signal and a first angular acceleration signal during a first operation and a second torque signal and a second angular acceleration signal during a second operation of the laundry treatment machine as well as a torque difference signal and an acceleration difference signal depending on the angular position of the drum in order to estimate the total inertia, and

Fig. 8 shows an estimated load torque depending on an angular position of the drum.

[0029] Fig. 1 shows a laundry treatment machine, namely a washing machine 1 with a cabinet 2 and a washing unit 3. The washing unit 3 comprises a tub 4 and a drum 5. The tub 4 is mounted to the cabinet 2 via dampers 6 and springs 7. [0030] The drum 5 is mounted in a rotatable manner to the tub 4. The drum 5 is connected via a drive shaft 8 with a drive motor 9. The drive motor 9 is mounted at a backside of the tub 4. The drive motor 9 rotates the drum 5 around a horizontal rotational axis 10.

[0031] The washing machine 1 comprises several lifters 11 to move the laundry. The lifters 11 are mounted in equal angular distances to an inner side of the drum 5.

[0032] Furthermore, the washing machine 1 comprises a control unit 12 to control the operation of the washing machine 1. The drive motor 9 has an angular position Θ , an angular speed ω and an angular acceleration ω . Due to the stiff drive shaft 8 the angular position, the angular speed and the angular acceleration of the drum 5 corresponds to the angular position Θ , the angular speed ω and the angular acceleration ω . In case of belt driven motor, the pulley ratio will be used

25

30

35

10

15

20

40

45

50

to evaluate the angular position, the angular speed and the angular acceleration of the drum starting from the angular position, the angular speed and the angular acceleration of the motor.

[0033] The load L, namely the laundry inside the drum 5 produces a load torque T_L . In case that the angular speed of the drum 5 is higher than a satelization speed the load torque T_L can be described by

$$T_L = -mgr\sin(\theta + \sigma) \tag{7},$$

10 wherein

5

15

20

25

30

40

50

m denotes the real mass of the load L,

g denotes the gravitational acceleration,

r denotes the drum radius,

 Θ denotes the angular position of the drum in relation to a reference position Θ_0 , and

σ denotes the angular relative position of the load L inside the drum, namely an angle between the position of the load L and a drum reference position.

[0034] The angular position α of the load L can be described by

$$\alpha = \Theta + \sigma \tag{8},$$

wherein

 α — denotes the angular position of the load L in relation to the reference position $\theta_0.$

[0035] The angular positions σ and α and the mass m are unknown. The gravitational acceleration g and the drum radius r are known. The load torque T_L has a maximum value if α = 90° such that

$$T_L = -mgr\cos(\alpha).$$

[0036] The drive motor 9 creates a drive torque T_{em} which accelerates the drum 5. The drive torque T_{em} is superimposed by the load torque T_{i} .

[0037] The control unit 12 comprises a speed controller 13, a torque controller 14, a first coordinate transformation 15, a pulse width modulator 16, a position and speed observer 17, a second coordinate transformation 18 and a load torque observer 19.

[0038] The torque controller 14 is part of an inner control loop or a torque control loop to control the drive torque T_{em} of the drive motor 9. For example, the torque controller 14 is a PI controller. The torque controller 14 is provided with a

desired drive torque T_{em}^* and the drive motor currents which are denoted in common with i_{abc} . The drive motor currents i_{abc} are transformed by means of the second coordinate transformation 18 into a dq coordinate system. The corresponding currents are denoted in common with i_{dq} . The torque controller 14 creates in the dq coordinate system desired voltages which are denoted in common with v_{dq}^* . The voltages v_{dq}^* are transformed by means of the first coordinate transformation 15 into desired voltages in an abc coordinate system which are denoted in common with v_{abc} . The voltages v_{abc} are provided to the pulse width modulator 16 which creates via a switch circuit currents i_a , i_b , i_c to operate the drive motor

9 with a torque $T_{\it em}$ which corresponds to the desired torque $T_{\it em}^*$.

[0039] The drive motor 9 is designed sensorless, namely without a speed sensor and a torque sensor. Therefore, the position and speed observer 17 is used to produce an estimated angular position $\widehat{\Theta}$ and an estimated angular speed $\widehat{\omega}$. The position and speed observer 17 is provided with the voltages v_{abc} and the currents i_{abc} . The estimated angular position $\widehat{\Theta}$ is provided to the first coordinate transformation 15 and the second coordinate transformation 18.

[0040] The speed controller 13 is part of an outer control loop or a speed control loop. The speed controller 13 is provided with the difference of a desired angular speed ω^* and the estimated angular speed $\overset{\wedge}{\omega}$. The output signal of the

speed controller 13 is the desired drive torque T_{em}^{st} .

[0041] The load torque observer 19 evaluates an estimated load torque \hat{T}_L . The load torque observer 19 is provided

with the desired drive torque T_{em}^* and the estimated angular position $\hat{\Theta}$ as input signals. The load torque observer 19 calculates an observer error e_{obs} which is the difference of the estimated angular position $\hat{\Theta}$ and an observed angular position Θ_{obs} .

[0042] The load torque observer 19 calculates three observer signals k_1 , k_2 and k_3 . These observer signals can be described by:

$$\mathbf{k}_1 = \mathbf{K} \mathbf{1} \cdot \mathbf{s} \cdot e_{obs} \tag{9},$$

 $k_2 = K2 \cdot e_{obs} \tag{10},$

$$\mathbf{k}_3 = \mathbf{K}3/\mathbf{s} \cdot e_{obs} \tag{11},$$

wherein

5

10

15

20

25

30

35

40

45

55

k₁ denotes a first observer coefficient,

 \mathbf{k}_{2}^{\cdot} denotes a second observer coefficient,

k₃ denotes a third observer coefficient,

s denotes a derivator, and

1/s denotes an integrator.

[0043] The observer coefficients are for example set to

K1 = 64,

K2 = 13, and

K3=5.

[0044] The estimated load torque \hat{T}_L can be calculated by

$$\hat{T}_L = -(k_1 + k_2 + k_3) \tag{12}.$$

[0045] The load torque observer 19 calculates an observed angular acceleration $\dot{\omega}_{obs}$ by

$$\dot{\omega}_{obs} = \frac{1}{\hat{I}_t} \cdot (T_{em}^* - \hat{T}_L) \tag{13},$$

50 wherein

 \hat{J}_t is the total inertia of those parts of the washing machine 1 which rotate around the rotational axis 10, in particular of the drum 5 with the balancers 11, of the drive shaft 8, of the drive motor 9, and of the load L. The total inertia can be described by

$$\hat{J}_t = \hat{J}_L + J_m \tag{14},$$

5 wherein

20

25

30

35

40

45

50

55

 \hat{J}_L denotes the load inertia and J_m denotes the inertia of the washing machine 1. The inertia of the washing machine 1 is known from construction data.

[0046] The load torque observer 19 calculates an observed angular speed ω_{obs} by integrating the observed angular acceleration ω_{obs} . Furthermore, the load torque observer 19 calculates the observed angular position Θ_{obs} by integrating the observed angular speed ω_{obs} .

[0047] In the following the estimation of the total inertia \hat{J}_t is described in detail:

In step S_1 the speed controller 13 is parametrized with first controller parameters P_1 . For example, the speed controller 13 is a PI controller.

[0048] In a second step S_2 the drum 5 is accelerated by means of the drive motor 9 as example from 0 rpm to 100 rpm.

[0049] Afterwards, in a third step S_3 the drum 5 is rotated with an essentially constant drum speed ω . During the third

step S $_3$ the control unit 12 transforms the desired drive torque T_{em}^* and the estimated angular speed $\hat{\omega}$ into the

frequency domain by calculating a Fourier Transformation. The first harmonic of the desired drive torque T_{em}^* is stored

in the control unit 12 and is denoted T_{em}^{*1} . Furthermore, the first harmonic information, for example the frequency, the amplitude and the phase, of the estimated angular speed $\hat{\omega}$ are used to get an estimated angular acceleration which is

denoted $\widehat{\dot{\omega}^1}$. The estimated angular acceleration $\widehat{\dot{\omega}^1}$ is stored in the control unit 12.

[0050] Afterwards, in a step S_4 the speed controller 13 is parametrized with second controller parameters P_2 .

[0051] Afterwards, in a fifth step S_5 the drum 5 is rotated with an essentially constant drum speed ω . During the step

 ${
m S_5}$ the control unit 12 transforms the desired drive torque T^*_{em} and the estimated angular speed $\hat{_{0}}$ into the frequency domain by calculating a Fourier Transformation. The first harmonic of the desired drive torque T^*_{em} is stored in the

control unit 12 and is denoted T_{em}^{*2} . Furthermore, the first harmonic information, for example the frequency, the amplitude and the phase, of the estimated angular speed $\hat{\omega}$ are used to get an estimated angular acceleration which is

denoted $\widehat{\dot{\omega}^2}$. The estimated angular acceleration $\widehat{\dot{\omega}^2}$ is stored in the control unit 12.

[0052] In a subsequent sixth step S6 the total inertia can be calculated by

$$\hat{J}_t = \frac{T_{em}^{*1} - T_{em}^{*2}}{\hat{\omega}^1 - \hat{\omega}^2}$$
 (15).

[0053] The estimated total inertia \hat{J}_t is used to parametrize the load torque observer 19. Equation (15) is illustrated in fig. 7.

[0054] After parameterization the load torque observer 19 can be used in a seventh step to observe and estimate the load torque $\hat{\tau}_L$. Furthermore, the load inertia can be calculated by

$$\hat{J}_L = \hat{J}_t - J_m \tag{16},$$

and the estimated mass $\stackrel{\wedge}{m}$ of the load or the unbalance mass can be calculated by

$$\widehat{m} = \frac{\max(\widehat{T}_L)}{gr} \tag{17}.$$

[0055] The angular position $\hat{\Theta}$ of the load L is already known. Fig. 8 illustrates the estimated load torque \hat{T}_L . **[0056]** The load inertia \hat{J}_L , the load torque \hat{T}_L , the mass \hat{m} and the angular load position $\hat{\Theta}$ characterize the behavior of the load L and can be used for several purposes, for example to adapt the maximum spinning speed, to compensate the load L by filling the balancers 11 with water, to estimate the dry load at the beginning of the washing cycle and to set properly the required amount of water and/or detergent, to estimate the wet load at the beginning of the spinning cycle and to estimate the remaining moisture retention during a drying process.

Claims

5

10

15

20

25

30

35

40

45

- 1. Method to estimate a load behavior in a laundry treatment machine with the steps of:
 - providing a laundry treatment machine (1) with a drum (5), a drive motor (9) to rotate the drum (5) around a rotational axis (10) and a controller (13) to regulate an angular speed of the drive motor (9),
 - performing a first operation of the laundry treatment machine (1) with a load (L) inside the drum (5), wherein the controller (13) is operated with first controller parameters (Pi),
 - determining a first torque signal (T_{em}^{*1}) and a derivative $(\dot{\omega}^{\hat{1}})$ of a first angular speed signal of the drive motor (9) based on the first operation,
 - performing a second operation of the laundry treatment machine (1) with the load (L) inside the drum (5), wherein the controller (13) is operated with second controller parameters (P_2) ,
 - determining a second torque signal (T_{em}^{*2}) and a derivative $(\dot{\omega}^2)$ of a second angular speed signal of the drive motor (9) based on the second operation, and
 - determining an inertia (\hat{J}_t,\hat{J}_L) and/or a load torque (\hat{T}_L) caused by the load (L) depending on the first torque

signal (T_{em}^{*1}) , the second torque signal (T_{em}^{*2}) , the derivative $(\widehat{\omega}^1)$ of the first angular speed signal and

the derivative $(\dot{\omega}^2)$ of the second angular speed signal, wherein the load torque (\hat{T}_L) is determined by means of a load torque observer (19).

- 2. Method according to claim 1, characterized in
- that at least one of the first operation and the second operation is performed at a constant desired target angular speed (ω^*), while in particular a real speed (ω) oscillates according to the controller parameters (P₁, P₂) and the load (L).
- 3. Method according to claim 1 or 2, **characterized** by the step of determining a mass (\hat{m}) of the load (L) depending on the load torque (\hat{T}_L) .
- **4.** Method according to at least one of the preceding claims, **characterized by** the step of determining an angular load position (\hat{a}) of the load (L) depending on the load torque (\hat{T}_L) .
- 5. Method according to at least one of the preceding claims, **characterized** by the step of determining a total inertia (\hat{J}_t) of the laundry treatment machine (1) and the load (L), wherein in particular a load inertia (\hat{J}_t) is the difference between the total inertia (\hat{J}_t) and a machine inertia (\hat{J}_m) .
 - 6. Method according to at least one of the preceding claims, characterized in
- that the first torque signal (T_{em}^{*1}) , the second torque signal (T_{em}^{*2}) the first angular speed signal and the second angular speed signal are transformed into a frequency domain.

7. Method according to at least one of the preceding claims, characterized in that a respective first harmonic of the first torque signal $(T_{\it em}^{*1})$, of the second torque signal $(T_{\it em}^{*2})$, of the first angular speed signal and of the second angular speed signal are used to determine the inertia $(\hat{J}_{t}, \hat{J}_{L})$ and/or the 5 load torque (\hat{T}_t) . Method according to at least one of the preceding claims, characterized in that the load torque observer (19) is provided with an angular position ($\stackrel{\frown}{\Theta}$) of the drive motor (9) and/or a drive torque (T_{em}^*) of the drive motor (9). 10 9. Method according to at least one of the preceding claims, characterized in **that** the load torque observer (19) determines an observer error (e_{obs}) depending on an angular position $(\hat{\Theta})$ of the drive motor (9) and an observed angular position (Θ_{obs}). 15 10. Method according to at least one of the preceding claims, characterized in that the load torque observer (19) determines observer signals (ki, k₂, k₃) depending on an observer error (e_{obs}) and observer coefficients (K1, K2, K3) to determine the load torque (\hat{T}_L) and/or an observed angular position (Θ_{obs}) . 20 11. Method according to at least one of the preceding claims, characterized in that the load torque observer (19) determines an observed angular position (Θ_{obs}) depending on a total inertia (\hat{J}_t) of the laundry treatment machine (1) and the load (L). 12. Method according to at least one of claims 8 to 11, characterized in that the drive motor (9) is designed sensorless 25 and the angular position (Θ) of the drive motor (9) is estimated, in particular by means of a position observer (17). 13. Method according to at least one of claims 8 to 12, characterized in that the drive torque (T_{em}^*) of the drive motor (9) is estimated and/or is the desired drive torque (T_{em}^*) and the output of the controller (13). 30 14. Laundry treatment machine with - a drum (5), - a drive motor (9) to rotate the drum (5) around a rotational axis (10), and 35 - a control unit (12) to estimate a load behavior with a controller (13) to regulate an angular speed of the drive motor (9), wherein the control unit (12) is designed such that -- a first operation of the laundry treatment machine (1) with a load (L) inside the drum (5) is performed, wherein the controller (13) is operated with first controller parameters (Pi), 40 -- a first torque signal (T_{em}^{*1}) and a derivative $(\widehat{\dot{\omega}^1})$ of a first angular speed signal of the drive motor (9) are determined based on the first operation, -- a second operation of the laundry treatment machine (1) with the load (L) inside the drum (5) is performed, wherein the controller (13) is operated with second controller parameters (P2), 45 – a second torque signal (T_{em}^{*2}) and a derivative $(\dot{\omega}^2)$ of a second angular speed signal of the drive motor (9) are determined based on the second operation, and -- an inertia (\hat{J}_t, \hat{J}_L) and/or a load torque (\hat{T}_L) caused by the load (L) is determined depending on the first 50 torque signal (T_{em}^{*1}) , the second torque signal (T_{em}^{*2}) , the derivative $(\dot{\omega}^1)$ of the first angular speed

termined by means of a load torque observer (19).

55

signal and the derivative $(\dot{\omega}^2)$ of the second angular speed signal, wherein the load torque (\hat{T}_L) is de-

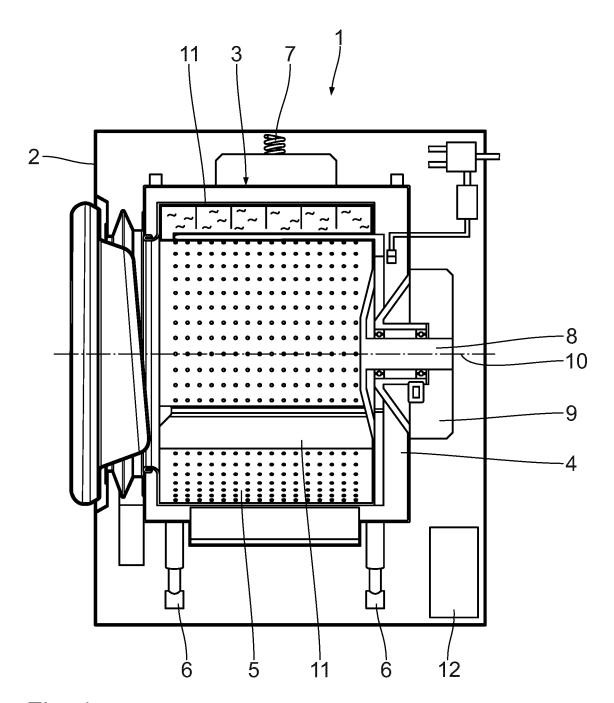


Fig. 1

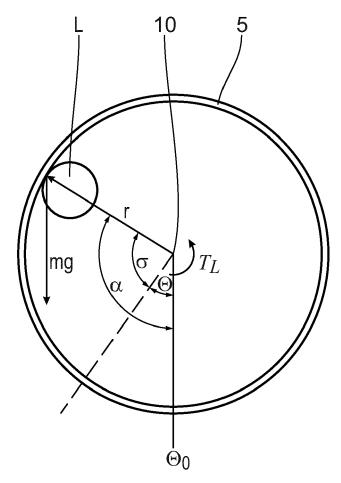
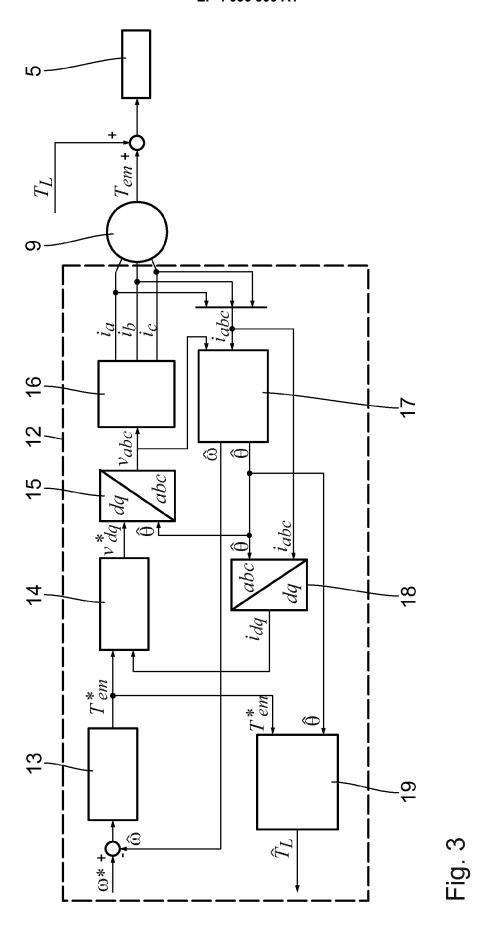
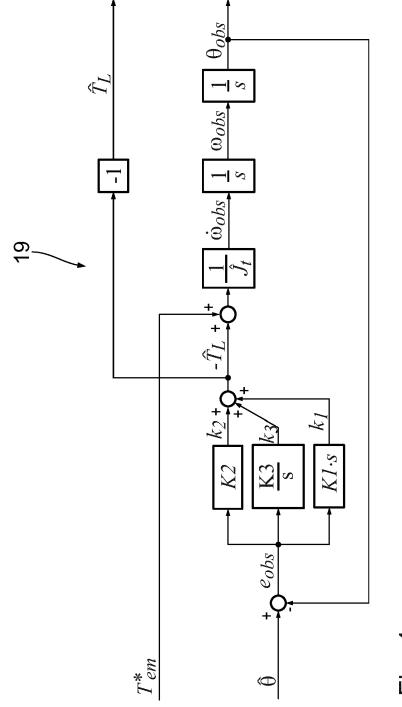




Fig. 2

T 0 7

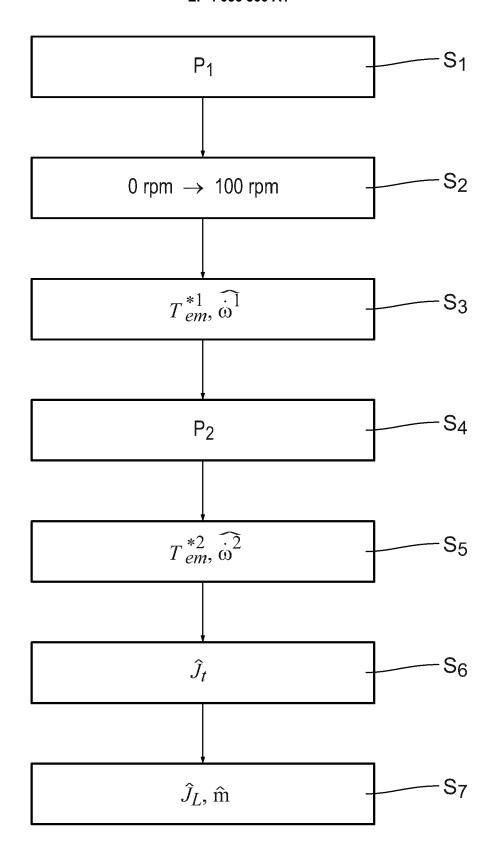
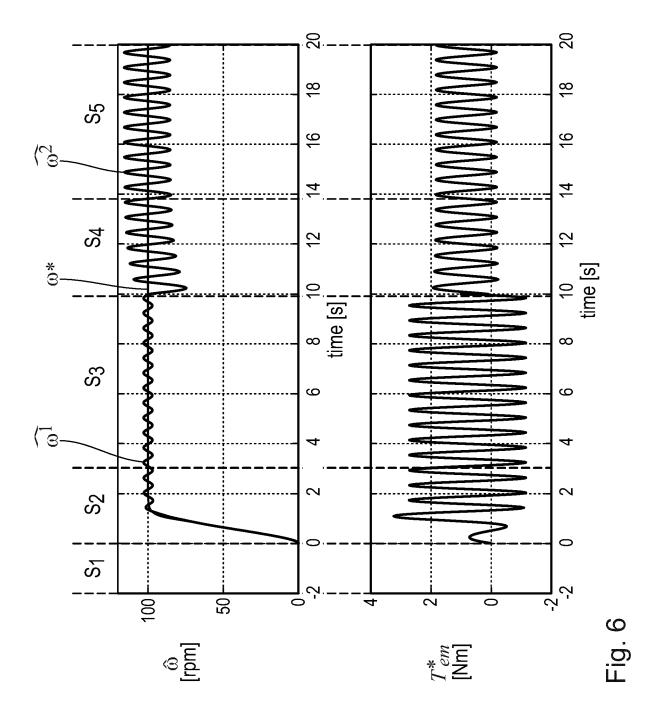
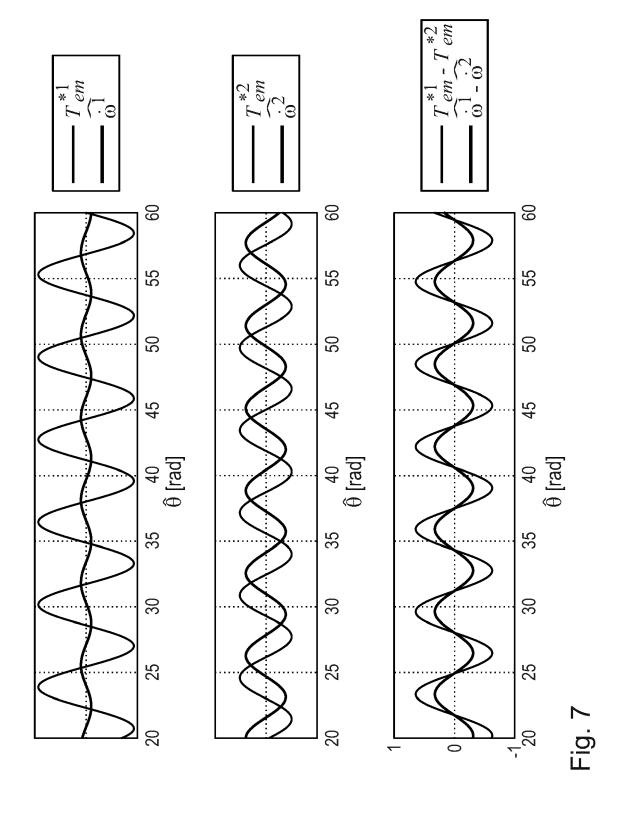
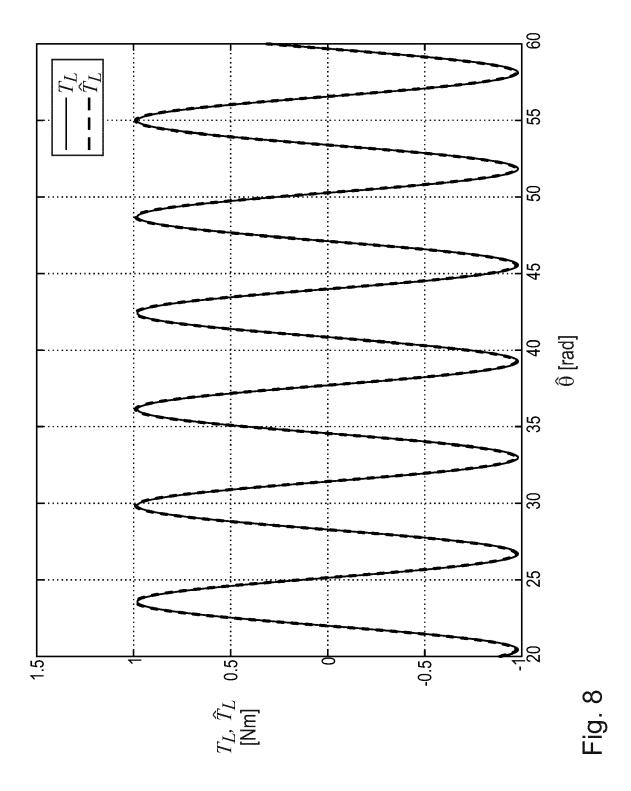





Fig. 5

DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, of relevant passages

Category

EUROPEAN SEARCH REPORT

Application Number

EP 22 16 4092

CLASSIFICATION OF THE APPLICATION (IPC)

Relevant to claim

1	0	

5

15

20

25

30

35

40

45

50

1

55

EPO FORM 1503 03.82 (P04C01)	Munich
	CATEGORY OF CITED DOCUMENT
	X : particularly relevant if taken alone Y : particularly relevant if combined with and document of the same category A : technological background O : non-written disclosure P : intermediate document

	or relevant passag	00	to daim	(11.7)
x	EP 2 607 535 A2 (WHIP 26 June 2013 (2013-06 * figures 1, 3 * * paragraph [0037] -	6–26)	1-3,14	INV. D06F33/76 D06F34/16 D06F58/52
х	US 2019/112745 A1 (CF 18 April 2019 (2019-0 * figures 2, 12 * * paragraph [0059] * * paragraph [0087] *	04-18)	1,14	ADD. D06F103/24 D06F103/46 D06F105/62 D06F105/48 D06F105/52
A	DE 10 2008 055091 A1 HAUSGERAETE [DE]) 24 June 2010 (2010-06) * figures 8-10 * * paragraph [0028] *	6–24)	1-14	
				TECHNICAL FIELDS SEARCHED (IPC)
				DOGF
	The present search report has been place of search	en drawn up for all claims Date of completion of the search		Examiner
	Munich	22 June 2022	Wer	ner, Christopher
X : par Y : par doc A : tec O : noi	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if tombined with another nument of the same category hnological background 1-written disclosure rmediate document	L : document cited for	cument, but publi e n the application or other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 22 16 4092

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-06-2022

10		Patent document ted in search report		Publication date		Patent family member(s)		Publication date
	EF	2607535	A2	26-06-2013	EP PL	2607535 2607535		26-06-2013 31-05-2017
15					US	2013152311 2015315735	A1	20-06-2013 05-11-2015
	US	20191127 4 5	A1		AU	2018250396		02-05-2019
					CN	109667103 3473763		23-04-2019
20					EP US	2019112745	A1	24-04-2019 18-04-2019
	DE	E 102008055091	A1	24-06-2010	DE	102008055091	A1	24-06-2010
					EP	2379786		26-10-2011
					PL WO			30-04-2013 01-07-2010
25								
30								
35								
40								
45								
45								
50								
	66							
	FORM P0459							
55	FOR							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2005204482 A1 [0004]