Technical Field
[0001] The present disclosure generally relates to an electric tool and a battery pack,
and more particularly relates to an electric tool powered by a battery and a battery
pack.
Background Art
[0002] Patent Literature 1 discloses a rotary tool as a type of electric tool. The housing
of this rotary tool is made up of: a cylinder portion (body portion) that houses a
motor and a driving unit to be driven in rotation by the motor; and a grip portion
provided to protrude from the cylinder portion. A battery pack serving as a power
supply for the rotary tool is attached to the grip portion.
[0003] In a rotary tool of this type, as the weight of the battery pack increases with an
increase in the capacity of the battery pack, the center of mass of the rotary tool
shifts toward the battery pack, thus causing an increase in the reaction applied to
the hand of the user who is holding the grip portion during machining work. This could
cause a decline in the handiness of the rotary tool.
Citation List
Patent Literature
Summary of Invention
[0005] An object of the present disclosure is to provide an electric tool and a battery
pack, both of which may contribute to increasing the degree of handiness.
[0006] An electric tool according to an aspect of the present disclosure includes a body
portion, a grip portion, and a battery pack. The body portion includes: a tool attachment
member to which a tool is attached; a driving unit to drive the tool; and a transmission
unit to transmit driving force of the driving unit to the tool. The grip portion is
provided for the body portion and includes a gripping part designed to be held by
a user with his or her hand. At least part of the battery pack is provided at one
end portion, located opposite from the body portion, of the grip portion. The battery
pack supplies power to the driving unit. The battery pack includes: a connection terminal
portion to be electrically connected to the driving unit when the battery pack is
attached to the grip portion; and a power storage unit. The power storage unit includes
an all-solid-state battery electrically connected to the connection terminal portion.
[0007] A battery pack according to another aspect of the present disclosure is designed
for use in the electric tool described above. The battery pack includes a battery
case to house the power storage unit therein.
Brief Description of Drawings
[0008]
FIG. 1 is a side view of an electric tool according to an exemplary embodiment of
the present disclosure;
FIG. 2 illustrates a state where the electric tool is used;
FIG. 3 is a side view illustrating a state where a battery pack is yet to be attached
to a grip portion of the electric tool;
FIG. 4 is a perspective view of a main part of the electric tool;
FIG. 5 illustrates a state where the electric tool is used;
FIG. 6 is a perspective view of a battery pack included in the electric tool;
FIG. 7 is a side view of another battery pack included in the electric tool;
FIG. 8 is a perspective view of an electric tool according to a variation of the exemplary
embodiment of the present disclosure;
FIG. 9 is a perspective view illustrating a state where a battery pack is yet to be
attached to a grip portion of the electric tool; and
FIG. 10 is a perspective view illustrating a state where the electric tool has been
changed into a straight shape.
Description of Embodiments
(Embodiment)
(1) Overview
[0009] An electric tool 1 according to an exemplary embodiment is a handheld electric tool
as shown in FIGS. 1-3. The electric tool 1 may be implemented as, for example, an
electric screwdriver, an electric drill, an electric wrench, or an electric grinder.
[0010] The electric tool 1 includes a body portion 10, a grip portion 20, and a battery
pack 30.
[0011] The body portion 10 includes: a tool attachment member 1 1 to which a tool 40 is
attached; a driving unit 12 to drive the tool 40; and a transmission unit 13 to transmit
the driving force of the driving unit 12 to the tool 40.
[0012] The grip portion 20 is provided for the body portion 10 and includes a gripping part
21 designed to be held by a user with his or her hand.
[0013] At least part of the battery pack 30 is provided at one end portion 202, located
opposite from the body portion 10, of the grip portion 20. The battery pack 30 supplies
power to the driving unit 12. The battery pack 30 includes: a connection terminal
portion 33 to be electrically connected to the driving unit 12 when the battery pack
30 is attached to the grip portion 20; and a power storage unit 36. The power storage
unit 36 includes an all-solid-state battery 35 electrically connected to the connection
terminal portion 33.
[0014] The battery pack 30 includes the all-solid-state battery 35, which is lighter in
weight than a liquid battery such as a lithium-ion battery, provided that their capacities
are the same. This reduces the chances of allowing, even when the capacity of the
battery pack 30 is increased, the center of mass of the electric tool 1 to shift toward
the battery pack 30. This makes it easier to keep, even when the capacity of the battery
pack 30 is increased, the center of mass of the electric tool 1 located in the grip
portion 20. Thus, the reaction applied to the hand of the user who grips the grip
portion 20 during machining work may be reduced, compared to a situation where the
center of mass of the electric tool 1 is located outside of the grip portion 20. This
enables providing an electric tool 1 which is easier to handle, and therefore, may
contribute to increasing its handiness. Note that the all-solid-state battery 35 is
a battery in which a solid electrolyte is in charge of conduction of ions between
its anode and cathode. Using the all-solid-state battery 35 reduces the chances of
causing leakage of the electrolyte, compared to using a liquid battery. Consequently,
an electric tool 1 contributing to reducing the risk of causing damage may be provided.
[0015] The battery pack 30 provided for the electric tool 1 includes a battery case 31 to
house the all-solid-state battery 35 therein.
[0016] The battery pack 30 includes the all-solid-state battery 35, which is lighter in
weight than a liquid battery such as a lithium-ion battery, provided that their capacities
are the same. This reduces the chances of allowing, even when the capacity of the
battery pack 30 is increased, the center of mass of the electric tool 1 to shift toward
the battery pack 30. This makes it easier to keep, even when the capacity of the battery
pack 30 is increased, the center of mass of the electric tool 1 located in the grip
portion 20. Thus, the reaction applied to the hand of the user who grips the grip
portion 20 during machining work may be reduced, compared to a situation where the
center of mass of the electric tool 1 is located outside of the grip portion 20. This
enables providing a battery pack 30 which makes the electric tool 1 easier to handle,
and therefore, may contribute to increasing the handiness of the electric tool 1.
(2) Details
[0017] Next, the configuration of an electric tool according to an exemplary embodiment
will be described in detail with reference to FIGS. 1-7. Note that the numerical values,
shapes, materials, positions of constituent elements, relative positions between the
constituent elements, their connection, and other specifics to be described below
are all examples and should not be construed as limiting the scope of the present
disclosure. The drawings to be referred to in the following description of embodiments
are all schematic representations. That is to say, the ratio of the dimensions (including
thicknesses) of respective constituent elements illustrated on the drawings does not
always reflect their actual dimensional ratio. Also, in the following description,
the X-axis direction and Z-axis direction shown in FIGS. 1, 3, and 6 will define the
forward/backward direction and upward/downward direction, respectively, and the Y-axis
direction shown in FIG. 6 will define the rightward/leftward direction. More specifically,
the positive X-axis direction will define the forward direction, the positive Y-axis
direction will define the rightward direction, and the positive Z-axis direction will
define the upward direction. However, these directions are only examples and should
not be construed as limiting the direction in which the electric tool 1 is used. Furthermore,
the arrows shown on the drawings to indicate the respective directions are just given
there as an assistant to description and are insubstantial ones.
[0018] The electric tool 1 includes the body portion 10, the grip portion 20, and the battery
pack 30 as shown in FIGS. 1-7. In this embodiment, the body portion 10 and the grip
portion 20 are provided integrally with each other and a tool body 50 is made up of
the body portion 10 and the grip portion 20.
(2.1) Tool body
[0019] First, the tool body 50 made up of the body portion 10 and the grip portion 20 will
be described.
[0020] The body portion 10 may be, for example, a molded product of a synthetic resin with
electrical insulation properties. The body portion 10 is formed in the shape of a
cylinder extending in the forward/backward direction.
[0021] At the frontend of the body portion 10, provided is the tool attachment member 11,
to which a tool 40 such as a tip tool is attached. Inside the body portion 10, housed
are the driving unit 12 and the transmission unit 13 described above.
[0022] The tool attachment member 11 is provided for the body portion 10 to be rotatable
around a rotational axis aligned with the forward/backward direction. Multiple different
types of tools 40 are provided for various types of machining work to be done using
this electric tool 1. Any desired one of the tools 40 may be selectively attached
to the tool attachment member 11 and used to have an intended type of machining work
done. Examples of such types of tools 40 include a screwdriver bit for fastening a
screw, a drill bit for drilling a hole, and a socket for fastening a nut.
[0023] The driving unit 12 includes an electric motor to be driven with the electric power
supplied from the battery pack 30.
[0024] The transmission unit 13 transmits the driving force of the driving unit 12 to the
tool attachment member 11. The transmission unit 13 is coupled to an output shaft
of the driving unit 12 and transmits the rotational force of the driving unit 12 to
the tool attachment member 11, thereby rotating the tool attachment member 11. Optionally,
the transmission unit 13 may include a speed reducer mechanism, a clutch mechanism,
and an impact mechanism, for example.
[0025] The grip portion 20 extends downward from a part of the peripheral surface of the
body portion 10. The longitudinal axis of the grip portion 20 is aligned with the
upward/downward direction. At the middle of the grip portion 20 in the upward/downward
direction (at the middle of its length), provided is the gripping part 21 to be held
by the user with his or her hand 110 (see FIG. 2). The part surrounded with the two-dot
chain L1 (see FIG. 1) of the grip portion 20 is the gripping part 21. The grip portion
20 includes two end portions 201, 202, the upper one 201 of which is located opposite
from the lower one 202 with respect to the gripping part 21. The upper end portion
201 is connected to the body portion 10. At the lower end portion 202, provided is
a battery attachment portion 22 to which the battery pack 30 is attached.
[0026] A trigger 23 is provided on a front portion of the gripping part 21 of the grip portion
20 to be located adjacent to the end portion 201 connected to the body portion 10.
The trigger 23 is an operating member that accepts an operating command entered by
the user to control the rotation of the driving unit 12. The trigger 23 may be operated
by the user with the index finger, for example, of his or her hand 110 holding the
grip portion 20.
[0027] The battery attachment portion 22 is provided integrally with the lower end portion
202 of the grip portion 20. The battery attachment portion 22 is formed to protrude
perpendicularly to the upward/downward direction from the lower end portion 202 of
the grip portion 20. The battery attachment portion 22 is formed in the shape of a
box, of which the dimension in the upward/downward direction is smaller than its dimension
in the forward/backward direction and its dimension in the rightward/leftward direction.
To the bottom of the battery attachment portion 22, the battery pack 30 is attached
removably. The lower surface of the battery attachment portion 22 is provided with
a recess into which an upper portion of the battery pack 30 is inserted. That is to
say, in this embodiment, out of the two end portions 201, 202, interposing the gripping
part 21 between themselves, of the grip portion 20, the body portion 10 is connected
to one end portion 201 and the battery pack 30 is attached to the other end portion
202.
[0028] In this embodiment, a control unit 14 (see FIG. 1), including a circuit board on
which a circuit for controlling the driving unit 12 and other components are mounted,
is housed inside the battery attachment portion 22. In response to the operation of
pulling the trigger 23, the control unit 14 may switch the ON/OFF states of the driving
unit 12. In addition, according to the manipulative variable of the operation of pulling
the trigger 23 (i.e., depending on how deep the trigger 23 has been pulled), the control
unit 14 also controls the rotational velocity of the driving unit 12 (i.e., the rotational
velocity of the tool 40 attached to the tool attachment member 11).
[0029] In addition, a suspension fitting 25 (see FIG. 4) for use to suspend the electric
tool 1 from, for example, a working belt 120 (see FIG. 5) of the user 100 of the electric
tool 1 is attached to the battery attachment portion 22. The suspension fitting 25
includes a fixing portion 251 to be inserted into a hole 24 provided through a side
surface of the battery attachment portion 22 and fixed to the battery attachment portion
22 with a screw, for example, and a U-hook 252, one end portion of which is coupled
to the fixing portion 251. Hooking the hook 252 on his or her working belt 120, for
example, allows the user 100 to move or do some type of work other than the machining
work that requires the use of the electric tool 1, while suspending the electric tool
1 from the working belt 120.
[0030] Furthermore, if the suspension fitting 25 came off the working belt 120 to cause
the electric tool 1 to fall off to the ground as shown in FIG. 5 in a situation where
the electric tool 1 is suspended from the working belt 120, then significant impact
could be applied to the battery pack 30 of the electric tool 1 that has fallen. Nevertheless,
the battery pack 30 according to this embodiment includes the power storage unit 36
including the all-solid-state batteries 35, thus reducing the chances of causing liquid
leakage that would happen if the battery pack 30 included liquid batteries and thereby
reducing the risk of causing damage.
[0031] In this embodiment, the suspension fitting 25 is provided for the grip portion 20.
Alternatively, the suspension fitting 25 may be attached to the body portion 10. That
is to say, the electric tool 1 may include the suspension fitting 25 which is attached
to at least one of the body portion 10 or the grip portion 20 to suspend the electric
tool 1 from an object. This allows the electric tool 1 to be held suspended from the
object.
(2.2) Battery pack
[0032] The battery pack 30 serving as a power supply for the electric tool 1 will be described
with reference to FIGS. 1-7.
[0033] The battery pack 30 serves as a power supply that allows the electric tool 1 to operate.
[0034] The battery pack 30 includes the power storage unit 36 including the all-solid-state
batteries 35 and the battery case 31 to house the power storage unit 36 therein. The
battery case 31 is a molded product of a synthetic resin having electrical insulation
properties and is formed in the shape of a box.
[0035] In the upper part of the battery case 31, a rectangular parallelepiped fitting portion
32, which is raised by one step with respect to right and left side portions, is provided
along a centerline in the rightward/leftward direction as shown in FIG. 6. At the
frontend of the fitting portion 32, three slits 321 are provided to be spaced apart
from each other in the rightward/leftward direction. Each slit 321 is provided through
the front and upper surfaces of the fitting portion 32 and extends in the forward/backward
direction. Inside each slit 321, provided is a connection terminal portion 33 to be
electrically connected to a feeder connection terminal provided in a lower part of
the grip portion 20. Each connection terminal portion 33 is electrically connected
to the power storage unit 36 housed inside the battery case 31. In addition, on the
upper surface of the fitting portion 32, provided is a second connector 34 to be electrically
connected to a first connector for transmitting signals, which is provided in the
lower part of the grip portion 20. The second connector 34 is electrically connected
to, for example, a circuit board 39 (see FIG. 1) housed inside the battery case 31.
The circuit board 39 acquires battery information about the battery pack 30 (such
as the voltage value and temperature of the power storage unit 36) and outputs the
battery information to the control unit 14 provided inside the battery attachment
portion 22. Furthermore, the right and left side surfaces of the fitting portion 32
have a plurality of insert grooves 37, to which a plurality of hook pieces 26 (see
FIG. 4) provided inside a recess on the lower surface of the battery attachment portion
22 are respectively inserted.
[0036] In this embodiment, to attach the battery pack 30 to the battery attachment portion
22, the tool body 50 is moved downward (as indicated by the arrow A1 in FIG. 3) from
over the battery pack 30 as shown in FIG. 3, thereby inserting the fitting portion
32 of the battery pack 30 into the recess on the lower surface of the battery attachment
portion 22. Thereafter, sliding the tool body 50 forward (as indicated by the arrow
A2 in FIG. 3) with respect to the battery pack 30 allows the hook pieces 26 of the
battery attachment portion 22 to be inserted into the insert grooves 37. A lock piece
38 is disposed behind the frontmost one of the plurality of insert grooves 37. The
lock piece 38 is biased upward by an elastic member such as a spring. When the battery
pack 30 is attached to the battery attachment portion 22, the lock piece 38 is pressed
downward by the hook piece 26, thus allowing the hook piece 26 to move inside the
insert groove 37. Thereafter, when the hook piece 26 reaches the deepest part of the
insert groove 37, the lock piece 38 is pressed by the spring to move upward and reach
the vicinity of the rear opening of the insert groove 37. As a result, attempting
to slide the tool body 50 backward with respect to the battery pack 30 brings the
hook piece 26 inserted into the front insert groove 37 into contact with the lock
piece 38, thus regulating the backward slide of the tool body 50. This allows the
battery pack 30 to be kept attached to the battery attachment portion 22.
[0037] In a state where the battery pack 30 is attached to the battery attachment portion
22, the connection terminal portion 33 is electrically connected to the connection
terminals of the battery attachment portion 22 and power required for operation is
supplied from the power storage unit 36 to the control unit 14, the driving unit 12,
and other components. In addition, the second connector 34 is electrically connected
to the first connector of the battery attachment portion 22, the circuit board 39
housed in the battery case 31 and the control unit 14 are also electrically connected
to each other, and the battery information is output from the circuit board 39 to
the control unit 14.
[0038] On the other hand, to remove the battery pack 30 from the battery attachment portion
22, an operating member provided for the battery case 31 is operated to move the lock
piece 38 downward and make the hook pieces 26 ready to move out of the insert grooves
37. In this state, the tool body 50 is slid backward (i.e., in the direction opposite
from the one indicated by the arrow A2 in FIG. 3) with respect to the battery pack
30 to move the hook pieces 26 out of the insert grooves 37. Then, moving the tool
body 50 upward (i.e., in the direction opposite from the one indicated by the arrow
A1 in FIG. 3) with respect to the battery pack 30 allows the battery pack 30 to be
removed from the tool body 50.
[0039] As can be seen, according to this embodiment, the battery pack 30 is attachable to,
and removable from, the grip portion 20 (of the tool body 50). Thus, when the battery
level of the battery pack 30 becomes low, the user just needs to remove the battery
pack 30 from the grip portion 20 and attach a charged battery pack 30 as a replacement
to the grip portion 20. This allows the user to continue his or her machining work
using the electric tool 1.
[0040] Furthermore, the battery pack 30 is attached to the end portion 202 of the grip portion
20 which is located adjacent to the little finger 111 of the user 100 who grips the
grip portion 20 as shown in FIG. 2. Thus, the end portion 201, located adjacent to
the thumb of the user 100, of the grip portion 20 is connected to the body portion
10, thus achieving the address of allowing the user 100 to focus on the target more
easily with his or her eyes while he or she is doing machining work with the tool
40 brought into contact with the workpiece.
[0041] The power storage unit 36 is made up of a plurality of all-solid-state batteries
35, each of which is formed in a sheet shape as shown in FIGS. 1 and 6. The plurality
of all-solid-state batteries 35 are connected in either series or parallel according
to the voltage or capacity required. In this embodiment, the power storage unit 36
includes five all-solid-state batteries 35 which are connected together in series.
However, the number and connection mode (which is either series or parallel) of the
all-solid-state batteries 35 that form the power storage unit 36 may be changed as
appropriate according to the voltage or capacity required.
[0042] In this embodiment, the respective weights of the body portion 10 and the battery
pack 30 are set such that the center of mass P1 (see FIG. 1) of the electric tool
1 is located in the grip portion 20. Recently, as electric motors have had their size
reduced and their output increased, attempts have been made to reduce the weight of
the body portion 10 that houses the driving unit 12. Meanwhile, there have been increasing
demands for increasing the capacity of the battery pack 30 to extend the maximum operating
hours. As the capacity of the battery pack 30 has been increased to meet such demands,
the battery pack 30 tends to increase its weight. In this manner, as the battery pack
30 increases its weight while the body portion 10 has its weight reduced, the center
of mass of the electric tool 1 could shift toward the battery pack 30. If the center
of mass of the electric tool 1 is located in the vicinity of the battery pack 30,
the reaction applied to the hand 110 of the user who is holding the grip portion 20
during the machining work increases. In this embodiment, the power storage unit 36
includes the all-solid-state battery 35 which is lighter in weight than a liquid battery
such as a lithium-ion battery, thus reducing an increase in the weight of the battery
pack 30 while contributing to increasing the capacity, compared to a situation where
the power storage unit 36 includes a liquid battery. This enables, even when the capacity
of the battery pack 30 is increased, keeping the center of mass PI of the electric
tool 1 located in the gripping part 21 of the grip portion 20 and thereby reducing
the reaction applied to the hand of the user who is holding the grip portion 20 during
the machining work. Consequently, this embodiment contributes to increasing the handiness
of the electric tool 1.
[0043] As described above, out of the two end portions 201, 202, interposing the gripping
part 21 between them, of the grip portion 20, the body portion 10 is connected to
one end portion 201 and the battery pack 30 is attached to the other end portion 202.
The electric tool 1 of this type may stand by itself in its entirety (i.e., including
the body portion 10, grip portion 20, and battery pack 30 thereof) with the bottom
surface 311, opposite from the grip portion 20, of the battery pack 30 put on the
ground 2 (mounting surface) as shown in FIG. 1. The battery pack 30 includes the connection
terminal portion 33 to be electrically connected to the driving unit 12 when the battery
pack 30 is attached to the grip portion 20 and the power storage unit 36 electrically
connected to the connection terminal portion 33. The power storage unit 36 includes
a plurality of all-solid-state batteries 35, each of which is formed in a sheet shape,
and which are stacked one on top of another. In this case, if impact force is applied
to the power storage unit 36 perpendicularly to the direction in which the all-solid-state
batteries 35 are stacked one on top of another, then peeling or misalignment will
occur between the plurality of all-solid-state batteries 35 that are stacked one on
top of another, thus possibly causing instability in electrical connection between
the plurality of all-solid-state batteries 35. On the other hand, if impact force
is applied to the power storage unit 36 in the direction in which the all-solid-state
batteries 35 are stacked one on top of another, then peeling or misalignment will
rarely occur between the plurality of all-solid-state batteries 35 that are stacked
one on top of another, thus reducing the chances of causing instability in electrical
connection between the plurality of all-solid-state batteries 35. In this embodiment,
the direction in which the plurality of all-solid-state batteries 35 are stacked one
on top of another is aligned with the line that connects together the two end portions
201, 202, interposing the gripping part 21 between them, of the grip portion 20 (i.e.,
the Z-axis direction). This reduces the damage to be done to the power storage unit
36 by the impact applied to the power storage unit 36 in the direction aligned with
the Z-axis direction.
[0044] Furthermore, in this embodiment, the direction in which the plurality of all-solid-state
batteries 35 are stacked one on top of another is aligned with a direction perpendicular
to the bottom surface 311 of the battery pack 30. As used herein, the "direction perpendicular
to the bottom surface 311" refers to the direction perpendicular to the mounting surface
(e.g., the floor surface 2) on which the electric tool 1 is mounted (i.e., the upward/downward
direction) and is the Z-axis direction shown in FIG. 1. Therefore, if the electric
tool 1 is put with impetus onto the mounting surface, then impact force is applied
in the direction in which the plurality of all-solid-state batteries 35 are stacked
one on top of another, thus reducing the chances of causing peeling or misalignment
between the plurality of all-solid-state batteries 35 that are stacked one on top
of another. This may reduce the chances of causing deterioration in the electrical
performance of the battery pack 30.
[0045] Also, in this battery pack 30, the number, area, and connection mode of the all-solid-state
batteries 35 that form the power storage unit 36 may be changed as appropriate according
to the voltage and capacity required. The voltage value of the power storage unit
36 depends on, for example, the voltage values of the respective all-solid-state batteries
35 and the number of the all-solid-state batteries 35 that are connected together
in series. The capacity of the power storage unit 36 depends on, for example, the
respective areas of the all-solid-state batteries 35 and the number of the all-solid-state
batteries 35 that are connected together in parallel. For example, FIG. 7 is a side
view of a battery pack 30B including a power storage unit 36 in which eight all-solid-state
batteries 35 are connected together in series. In this battery pack 30B, a larger
number of all-solid-state batteries 35 are connected together in series than in the
battery pack 30 described above, and therefore, the voltage when the battery pack
30B is fully charged is set at a higher voltage than in the battery pack 30. Note
that the number of the battery packs of different types does not have to be two. Rather,
multiple different types of battery packs 30, of which respective voltage values and/or
capacities are different from each other, are suitably prepared. In that case, one
battery pack 30, selected from the multiple different types of battery packs 30, may
be attached to the grip portion 20 (of the tool body 50). This allows the electric
tool 1 to be used with a battery pack 30 with any desired voltage value or capacity
attached to the grip portion 20.
[0046] Furthermore, each of the plurality of all-solid-state batteries 35 has a rectangular
sheet shape. As shown in FIG. 6, the longitudinal axis of the plurality of all-solid-state
batteries 35 is aligned with the orientation of the tool 40 attached to the tool attachment
member 11 (i.e., the forward/backward direction in this embodiment). That is to say,
the plurality of all-solid-state batteries 35 are arranged such that their longer
side 35A is aligned with the X-axis direction and their shorter side 35B is aligned
with the Y-axis direction. This enables reducing, compared to a situation where the
plurality of all-solid-state batteries 35 are arranged such that their longer side
35A is perpendicular to the orientation of the tool 40 (i.e., the forward/backward
direction), the width of the battery pack 30 as measured perpendicularly to the orientation
of the tool 40 with the tool 40 pointed at the workpiece.
(2.3) Method of use
[0047] The electric tool 1 according to this embodiment is made usable by attaching the
battery pack 30 to the battery attachment portion 22 of the grip portion 20. Note
that a tool 40 suitable for the type of the machining work that the user 100 is going
to do is attached by the user 100 to the tool attachment member 11.
[0048] When the user 100 has not pulled the trigger 23 yet, the control unit 14 keeps the
driving unit 12 deactivated and does not rotate the tool attachment member 11.
[0049] On the other hand, when the user 100 pulls the trigger 23, the control unit 14 starts
driving the driving unit 12 in rotation, thereby turning the tool 40 attached to the
tool attachment member 11. At this time, the control unit 14 controls, based on the
manipulative variable of the operation of pulling the trigger 23, the rotational velocity
of the driving unit 12 (i.e., the rotational velocity of the tool attachment member
11). This allows the user 100 to have any desired type of machining work done using
the electric tool 1 by performing the operation of pulling the trigger 23.
(3) Variations
[0050] Next, variations of the exemplary embodiment described above will be enumerated one
after another. Note that the variations to be described below may be adopted in combination
as appropriate.
[0051] The electric tool 1 according to the exemplary embodiment described above is a so-called
"gun type" electric tool. However, this is only an example and should not be construed
as limiting. Alternatively, the present disclosure may also be implemented as a stick-type
electric tool 1A as shown in FIGS. 8-10. In the following description, any constituent
element of the stick-type electric tool 1A, having the same function as a counterpart
of the gun-type electric tool 1 described above, will be designated by the same reference
numeral as that counterpart's, and illustration and description thereof will be omitted
herein.
[0052] In the stick-type electric tool 1A, a cylindrical body portion 10A including the
tool attachment member 11 at the tip and a grip portion 20A including the gripping
part 21 are coupled to each other via a hinge portion 15. In this variation, a tool
body 50A is formed by the body portion 10A and the grip portion 20A and a battery
pack 30A is attached to the tool body 50A.
[0053] The grip portion 20A is configured to be rotatable around the hinge portion 15 with
respect to the body portion 10A. This allows the user to use the electric tool 1A
selectively either in the shape in which the body portion 10A and the grip portion
20A are extended in straight line (see FIG. 10) or in the shape in which the grip
portion 20A is bent to form a predetermined angle with respect to the body portion
10A (see FIG. 8).
[0054] In the stick-type electric tool 1A, the grip portion 20A is formed in a cylindrical
shape.
[0055] The battery pack 30A is attached to the grip portion 20A. As shown in FIG. 8, the
battery case 31A of the battery pack 30A includes a square tube portion 312 to be
inserted into the cylinder of the grip portion 20A and the power storage unit 36 is
provided in the square tube portion 312. The power storage unit 36 includes a plurality
of all-solid-state batteries 35, each of which is formed in a sheet shape, and which
are stacked one on top of another in the rightward/leftward direction, for example.
[0056] This battery pack 30 is attached to the grip portion 20A with the square tube portion
312 inserted into the cylinder of the grip portion 20A. In the battery pack 30A attached
to the grip portion 20A, a lower portion of the battery pack 30A is exposed out of
the bottom of the grip portion 20A. That is to say, at the end portion 202, located
opposite from the body portion 10, of the grip portion 20A, at least part of the battery
pack 30A is provided. In addition, in the battery pack 30A attached to the grip portion
20A, the connection terminal portion of the battery pack 30A is electrically connected
to a feeder connection terminal provided inside the cylinder of the grip portion 20A
so that power is supplied from the power storage unit 36 of the battery pack 30A to
the driving unit 12, the control unit 14, and other components.
[0057] Note that the gun-type electric tool 1 and the stick-type electric tool 1A are only
exemplary shapes of the electric tool according to the present disclosure. That is
to say, the shape of the electric tool may be modified as appropriate.
[0058] Optionally, in the exemplary embodiment and variations described above, a buffer
member made of synthetic rubber, for example, may be provided between the inner surface
of the battery case 31, 31A and the power storage unit 36 to reduce the impact applied
to the power storage unit 36.
[0059] Furthermore, in the exemplary embodiment and variations described above, the battery
pack 30 may or may not be one of the constituent elements of the electric tool 1.
(Recapitulation)
[0060] As can be seen from the foregoing description, an electric tool (1) according to
a first aspect includes a body portion (10), a grip portion (20), and a battery pack
(30). The body portion (10) includes: a tool attachment member (11) to which a tool
(40) is attached; a driving unit (12) to drive the tool (40); and a transmission unit
(13) to transmit driving force of the driving unit (12) to the tool (40). The grip
portion (20) is provided for the body portion (10) and includes a gripping part (21)
designed to be held by a user (100) with his or her hand (110). At least part of the
battery pack (30) is provided at one end portion (202), located opposite from the
body portion (10), of the grip portion (20). The battery pack (30) supplies power
to the driving unit (12). The battery pack (30) includes: a connection terminal portion
(33) to be electrically connected to the driving unit (12) when the battery pack (30)
is attached to the grip portion (20); and a power storage unit (36). The power storage
unit (36) includes an all-solid-state battery (35) electrically connected to the connection
terminal portion (33).
[0061] According to this aspect, the battery pack (30) includes an all-solid-state battery
(35), which is lighter in weight than a liquid battery, provided that their capacities
are the same. This reduces the chances of allowing, even when the capacity of the
battery pack (30) is increased, the center of mass of the electric tool (1) to shift
toward the battery pack (30). This makes it easier to keep, even when the capacity
of the battery pack (30) is increased, the center of mass of the electric tool (1)
located in the grip portion (20). Thus, the reaction applied to the hand of the user
who grips the grip portion (20) during machining work may be reduced, compared to
a situation where the center of mass of the electric tool (1) is located outside of
the grip portion (20). This enables providing an electric tool (1) that may contribute
to increasing its handiness.
[0062] In an electric tool (1) according to a second aspect, which may be implemented in
conjunction with the first aspect, the battery pack (30) is attachable to, and removable
from, the grip portion (20).
[0063] This aspect enables attaching the battery pack (30) to the grip portion (20) provided
for the body portion (10).
[0064] In an electric tool (1) according to a third aspect, which may be implemented in
conjunction with the first or second aspect, the grip portion (20) includes: a first
end portion (201); and a second end portion (202) located opposite from the first
end portion (201) with respect to the gripping part (21) and serving as the one end
portion (202). The body portion (10) is connected to the first end portion (201).
The battery pack (30) is attached to the second end portion (202).
[0065] This aspect provides an electric tool (1) in which the body portion (10) is connected
to the first end portion (201) of the grip portion (20) and the battery pack (30)
is attached to the second end portion (202) of the grip portion (20).
[0066] In an electric tool (1) according to a fourth aspect, which may be implemented in
conjunction with any one of the first to third aspects, a center of mass of the electric
tool (1) is located in the grip portion (20).
[0067] This aspect may reduce the reaction applied to the hand (110) of the user who grips
the grip portion (20) during machining work, compared to a situation where the center
of mass of the electric tool (1) is located outside of the grip portion (20).
[0068] In an electric tool (1) according to a fifth aspect, which may be implemented in
conjunction with any one of the first to fourth aspects, the battery pack (30) is
attached to the one end portion (202) of the grip portion (20). The one end portion
(202) is located adjacent to a little finger (111) of the user (100) who grips the
grip portion (20).
[0069] According to this aspect, the first end portion (201), located adjacent to the thumb
of the user (100), of the grip portion (20) is connected to the body portion (10),
thus allowing the user (100) to focus on the target more easily with his or her eyes
while he or she is doing machining work with the tool (40) brought in contact with
the workpiece.
[0070] A battery pack (30) according to a sixth aspect is designed for use in the electric
tool (1) according to any one of the first to fifth aspects. The battery pack (30)
includes a battery case (31) to house the power storage unit (36) therein.
[0071] According to this aspect, the battery pack (30) includes an all-solid-state battery
(35), which is lighter in weight than a liquid battery, provided that their capacities
are the same. This reduces the chances of allowing, even when the capacity of the
battery pack (30) is increased, the center of mass of the electric tool (1) to shift
toward the battery pack (30). This makes it easier to keep, even when the capacity
of the battery pack (30) is increased, the center of mass of the electric tool (1)
located in the grip portion (20). Thus, the reaction applied to the hand of the user
who grips the grip portion (20) during machining work may be reduced, compared to
a situation where the center of mass of the electric tool (1) is located outside of
the grip portion (20). This enables providing a battery pack (30) that may contribute
to increasing the handiness of the electric tool (1).
[0072] Note that the constituent elements according to the second to fifth aspects are not
essential constituent elements for the electric tool (1) but may be omitted as appropriate.
Reference Signs List
[0073]
- 1
- Electric Tool
- 10
- Body Portion
- 11
- Tool Attachment Member
- 12
- Driving Unit
- 13
- Transmission Unit
- 20
- Grip Portion
- 21
- Gripping Part
- 30
- Battery Pack
- 31
- Battery Case
- 33
- Connection Terminal Portion
- 35
- All-Solid-State Battery
- 36
- Power Storage Unit
- 40
- Tool
- 100
- User
- 110
- Hand
- 111
- Little Finger
- 201, 202
- End Portion