

(11) **EP 4 039 844 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 10.08.2022 Bulletin 2022/32

(21) Application number: 20872512.7

(22) Date of filing: 25.09.2020

(51) International Patent Classification (IPC):

C22C 38/04 (2006.01) C22C 38/08 (2006.01)

C22C 38/14 (2006.01) C21D 8/02 (2006.01)

(52) Cooperative Patent Classification (CPC): C21D 8/02; C22C 38/04; C22C 38/08; C22C 38/14

(86) International application number: PCT/KR2020/013062

(87) International publication number: WO 2021/066402 (08.04.2021 Gazette 2021/14)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 01.10.2019 KR 20190121723

(71) Applicant: POSCO
Pohang-si, Gyeongsangbuk-do 37859 (KR)

(72) Inventor: LEE, Hak-Cheol
Pohang-si, Gyeongsangbuk-do 37877 (KR)

(74) Representative: Zech, Stefan Markus Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 86 06 24 81633 München (DE)

(54) HIGH-STRENGTH ULTRA-THICK STEEL WITH EXCELLENT CRYOGENIC STRAIN AGING IMPACT TOUGHNESS AT CORE THEREOF, AND METHOD FOR MANUFACTURING SAME

(57) An aspect of the present invention is to provide high-strength ultra-thick steel with excellent cryogenic strain aging impact toughness at the core thereof, and a method for manufacturing same. An embodiment of the present invention provides high-strength ultra-thick steel with excellent cryogenic strain aging impact toughness at the core thereof, and a method for manufacturing same, the steel comprising, by wt%, 0.02-0.06% of C,

1.8-2.2% of Mn, 0.7-1.1% of Ni, 0.2-0.5% of Mo, 0.005-0.03% of Nb, 0.005-0.018% of Ti, 80 ppm or less of P, 20 ppm or less of S, and the remainder of Fe and other evitable impurities, wherein the average grain size of grains having a high boundary angle of 15 degrees or greater is 15 μ m or less as measured in a range of 3/8t-5/8t in the thickness (t) direction by EBSD.

Description

Technical Field

⁵ **[0001]** The present disclosure relates to a high-strength ultra-thick steel material having excellent cryogenic strain aging impact toughness in a center zone thereof, and a method for manufacturing the same.

Background Art

20

30

35

[0002] Recently, the development of an ultra-thick high-strength steel material has been necessary in the design of structures such as domestic and foreign ships, and when high-strength steel material is used in designing structures, economic benefits due to reductions of weight of the form of the structure may be obtained, and also a thickness of a plate may be reduced, such that ease of processing and welding work may be secured simultaneously. Also, to improve a transport efficiency of ships, there have been attempts to operate a polar route, and in this case, it is expected that demand for a cryogenic toughness guaranteeing high-strength and ultra-thick material which may guarantee impact toughness at -60°C instead of general steel material guaranteeing impact toughness at -40°C could increase.

[0003] However, generally, in the case of high-strength steel material, since sufficient deformation may not occur in an overall structure due to a decrease in the total reduction ratio during the manufacture of a ultra-thick material, a structure may become coarse, and particularly, in the case of a center zone, a coarse austenite structure may be formed, such that hardenability may increase and it may be difficult to guarantee impact toughness of the center zone.

[0004] Also, when a ship is manufactured, as for a steel material, an original plate material form may not be used as is and the steel material may be processed in the form of a hull through deformation. When such deformation is applied to the steel material, impact toughness due to the deformation may degrade. Also, elements such as carbon and nitrogen may enter a dislocation created by the transformation over time after the transformation, and impact toughness may be further deteriorated due to the increase in strength. To guarantee this phenomenon, a strain aging impact test to measure impact toughness after heat treatment at 250°C for 1 hour after strain of 5% may be included in test items for a base material when after a steel material is developed and certified by each classification society. Therefore, in the case of ultra-thick and high-strength steel material for ships which may guarantee cryogenic toughness, basic impact toughness and also deformation aging impact properties may need to be guaranteed, but to guarantee deformation aging impact for even a center zone of an ultra-thick material, it may be necessary to remarkably improve a microstructure of the center zone, which may be problematic.

[0005] Accordingly, in a high-strength steel material of 500 MPa or more, it may be necessary to improve deformation aging impact toughness of a center zone by controlling impact toughness of 1/4t and 1/2t zone base material and also a microstructure of the center zone.

Summary of Invention

Technical Problem

[0006] An aspect of the present disclosure is to provide a high-strength ultra-thick steel material with excellent cryogenic strain aging impact toughness in a center zone thereof, and a method for manufacturing the same.

Solution to Problem

- 45 [0007] An embodiment of the present disclosure provides a high-strength ultra-thick steel material having excellent cryogenic strain aging impact toughness in a center zone thereof including, by wt%, 0.02-0.06% of C, 1.8-2.2% of Mn, 0.7-1.1% of Ni, 0.2-0.5% of Mo, 0.005-0.03% of Nb, 0.005-0.018% of Ti, 80 ppm or less of P, 20 ppm or less of S, and a balance of Fe and inevitable impurities, wherein an average grain size of grains having a high boundary angle of 15 degrees or greater, measured by EBSD, is 15 μm or less in a 3/8t-5/8t zone in a thickness (t) direction.
- [0008] Another embodiment of the present disclosure provides a method for manufacturing a high-strength ultra-thick steel material having excellent cryogenic strain aging impact toughness in a center zone thereof including reheating a steel slab including, by wt%, 0.02-0.06% of C, 1.8-2.2% of Mn, 0.7-1.1% of Ni, 0.2-0.5% of Mo, 0.005-0.03% of Nb, 0.005-0.018% of Ti, 80 ppm or less of P, 20 ppm or less of S, and a balance of Fe and inevitable impurities to a temperature of 1000-1080°C; obtaining a bar by rough-rolling the reheated steel slab at a temperature of 850-1050°C; obtaining a hot-rolled steel material by finish-rolling the bar at a temperature of 700-800°C at a total reduction ratio of more than 60%; and cooling the hot-rolled steel material to a temperature of 500°C or less at a cooling rate of 3°C/s or more.

Advantageous Effects of Invention

[0009] According to an aspect of the present disclosure, high-strength ultra-thick steel material with excellent cryogenic strain aging impact toughness in a center zone thereof which may have yield strength of 500 MPa or more and a transition temperature of -60°C or less during a strain aging impact test for a center zone of a thickness, and a method for manufacturing the same.

Best Mode for Invention

[0010] Hereinafter, an embodiment of steel material of the present disclosure will be described. First, an alloy composition of the present disclosure will be described. The unit of alloy composition described below may be weight % unless otherwise indicated.

C: 0.02-0.06%

15

20

[0011] C may be the most important element for securing basic strength in the present disclosure, and accordingly, C may need to be included in steel within an appropriate range. However, when the content of C exceeds 0.06%, a large amount of C may be fixed to dislocation during a strain aging impact test and strength may increase, such that strain aging impact toughness may decrease, and when the content is less than 0.02%, strength may decrease. Thus, the content of C may be preferably in the range of 0.02-0.06%. A lower limit of C may be more preferably 0.024%, even more preferably 0.028%, and most preferably 0.3%. An upper limit of C may be more preferably 0.058%, even more preferably 0.054%, and most preferably 0.05%.

Mn: 1.8-2.2%

25

[0012] Mn may be a useful element for improving strength through solid solution strengthening and hardenability improvement, and accordingly, 1.8% or more of Mn may need to be added to satisfy yield strength of 500 MPa or more to be obtained in the present disclosure. However, when the content exceeds 2.2%, hardenability may excessively increase such that the formation of coarse upper bainite and martensite may be facilitated such that strain aging impact toughness of a center zone may greatly degrade. Thus, the Mn content may be in the range of 1.8-2.2% preferably. A lower limit of Mn may be more preferably 1.83%, even more preferably 1.86%, and most preferably 1.9%. An upper limit of Mn may be more preferably 2.17%, even more preferably 2.14%, and most preferably 2.1%

Ni: 0.7-1.1%

35

40

50

30

[0013] Ni may facilitate cross slip of dislocation and may improve impact toughness and hardenability, and accordingly, Ni may be an important element to improve strength. To improve strain aging impact toughness of the center zone in high-strength steel having yield strength of 500 MPa or more, Ni may be added by 0.7% or more. However, when the content exceeds 1.1%, hardenability may excessively increase, and a large amount of low-temperature transformation phase may be formed, such that toughness may decrease, and manufacturing costs may increase, which may be problematic. Accordingly, the Ni content may be preferably in the range of 0.7-1.1%. The Mn content may be preferably in the range of 1.8-2.2%. A lower limit of Ni may be more preferably 0.73%, even more preferably 0.76%, and most preferably 0.8%. An upper limit of Ni may be more preferably 1.07%, even more preferably 1.03%, and most preferably 1%.

45 Mo: 0.2-0.5%

[0014] Mo may be an important element for improving strength by improving hardenability, and may be an alloying element having less reduction in toughness as compared to strength improvement, preferably, 0.2% or more of Mo may be added to secure high-strength steel having yield strength of 500 MPa or more. However, when the content exceeds 0.5%, hardenability may excessively increase, and a large amount of low-temperature transformation phase may be formed, such that toughness may decrease. Therefore, the Mo content may be preferably in the range of 0.2-0.5%. A lower limit of Mo may be more preferably 0.23%, even more preferably 0.26%, and most preferably 0.3%. An upper limit of Mo may be more preferably 0.48%, even more preferably 0.44%, and most preferably 0.4%.

55 Nb: 0.005-0.03%

[0015] Nb may be precipitated in the form of NbC or NbCN and may improve strength of a base material. Also, Nb dissolved during reheating to a high temperature may be very finely precipitated in the form of NbC during rolling, may

prevent recrystallization of austenite, and may refine the structure. To obtain the above effect, Nb may be added 0.005% or more preferably. However, when Nb exceeds 0.03%, brittle cracks may be created in corners of the steel material, and there may be problems of deterioration of toughness due to formation of excessive precipitate and formation of a large amount of martensite. Therefore, the Nb content may be preferably in the range of 0.005-0.03%. A lower limit of Nb may be more preferably 0.008%, even more preferably 0.011%, and most preferably 0.015%. An upper limit of Nb may be more preferably 0.028%, even more preferably 0.026%, and most preferably 0.025%.

Ti: 0.005-0.018%

[0016] Ti may be precipitated as TiN during reheating and may prevent growth of grains in a base material and a welding heat-affected zone such that low-temperature toughness may greatly improve, and Ti may be added by 0.005% or more to effectively precipitate TiN. However, when the content exceeds 0.018%, coarse TiN crystallization may occur such that low-temperature toughness may degrade, which may be problematic. Accordingly, the Ti content may be preferably in the range of 0.005-0.018%. A lower limit of Ti may be more preferably 0.006%, even more preferably 0.008%, and most preferably 0.01%. An upper limit of Ti may be more preferably 0.017%, even more preferably 0.016%, and most preferably 0.015%.

P: 80ppm or less

[0017] P may be an element which may cause brittleness at grain boundaries or may form coarse inclusions, which may lead to brittleness, and to improve brittle crack propagation resistance, the content thereof may be preferably limited to 80 ppm or less.

S: 20ppm or less

25

30

35

40

50

[0018] S may be an element which may cause brittleness at grain boundaries or may form coarse inclusions, which may lead to brittleness. To improve brittle crack propagation resistance, the content thereof may be preferably limited to 20 ppm or less.

[0019] A remainder of the present disclosure may be iron (Fe). However, in a general manufacturing process, inevitable impurities may be inevitably added from raw materials or an ambient environment, and thus, impurities may not be excluded. A person skilled in the art of a general manufacturing process may be aware of the impurities, and thus, the descriptions of the impurities may not be provided in the present disclosure.

[0020] In the steel material of the present disclosure, an average grain size of grains having a high boundary angle of 15 degrees or more, measured by EBSD, in the 3/8t-5/8t zone in a thickness (t) direction may be 15 μ m or less, preferably. When the average grain size of grains having a high boundary angle of 15 degrees or more, measured by EBSD, in the 3/8t-5/8t zone in the thickness (t) direction exceeds 15 μ m, an effective grain size due to grain size coarsening may increase, such that an impact transition temperature may increase, and deformation aging impact toughness may degrade, which may be problematic.

[0021] Meanwhile, a microstructure of the steel material of the present disclosure may be a mixed structure including acicular ferrite, granular bainite, upper bainite.

[0022] The steel material of the present disclosure may have a thickness of 5-90mm.

[0023] The steel material of the present disclosure provided as described above may have yield strength of 500 MPa or more. Also, after 5% of strain and performing heat treatment at 250°C for 1 hour, a transition temperature may be -60°C or less in the strain aging impact test.

[0024] Hereinafter, a method for manufacturing a steel material according to an embodiment of the present disclosure will be described.

[0025] First, a steel slab may be reheated to a temperature of 1000-1080°C. In the reheating of the steel material of the present disclosure, the heating temperature may be preferably 1000°C or higher so as to allow carbonitride of Ti and/or Nb formed during casting to be solid solute. Also, to sufficiently allow carbonitride of Ti and/or Nb to be solid solute, the heating may be performed to 1030°C or higher. However, when the reheating is performed to an excessively high temperature, austenite in the center zone may be coarsened, and thus, the reheating temperature may be preferably 1080 °C or less, and more preferably 1070°C or less.

[0026] The reheated steel slab may be rough-rolled at a temperature of 850-1050°C, thereby obtaining a bar. Rough-rolling may be performed to the reheated slab as above to adjust the shape thereof. Through the rough-rolling, destruction of a cast structure such as dendrites formed during casting and also the effect of reducing the grain size through the recrystallization of coarse austenite may be obtained. Meanwhile, to refine the structure by sufficient recrystallization, a total reduction ratio during rough-rolling may be 40% or more preferably.

[0027] The bar may be finish-rolled at a temperature of 700-800°C at a total reduction of more than 60%, thereby

obtaining a hot-rolled steel material. In the present disclosure, finish-rolling may be performed to pancake an austenite structure of the bar and to obtain dislocation. The finish-rolling may be preferably performed at a temperature of 700-800°C such that the deformation applied to the center zone may be maintained as much as possible. When the finish-rolling temperature is less than 700°C, ferrite may be precipitated during deformation and both strength and toughness may be reduced, which may be disadvantageous. When the temperature exceeds 800°C, the particle size may increase, such that impact toughness may deteriorate and sufficient strength may not be secured, which may be disadvantageous. A lower limit of the finish-rolling temperature may be more preferably 720°C, even more preferably 740°C. An upper limit of the finish-rolling temperature may be more preferably 780°C, even more preferably 760°C. In the present disclosure, to refine the particle size of the center zone during the finish-rolling, a total reduction ratio of more than 60% may be applied preferably. The total reduction ratio during the finish-rolling may be more preferably 61% or more, and even more preferably 62%.

[0028] The hot-rolled steel material may be cooled to a temperature of 500°C or less at a cooling rate of 3°C/s or more. When the cooling rate is lower than 3°C/s or the cooling stop temperature is more than 500°C, fine grains may not be properly formed in the present disclosure, such that it may be likely that yield strength may be 500 MPa or less.

Mode for Invention

10

15

20

30

35

40

45

50

[0029] Hereinafter, the present disclosure will be described in greater detail through examples. However, it is necessary to note that the following examples are only for describing the present disclosure by examples and not for limiting the scope of the present disclosure. This is because the scope of the present disclosure is determined by the matters described in the claims and matters reasonably inferred therefrom.

(Example)

[0030] A steel slab having a thickness of 400mm and an alloy composition listed in Table 1 below was prepared, was reheated to a temperature of 1040-1070°C, was rough-rolled in a temperature range of 930-1020°C, thereby obtaining a bar. The bar was finish-rolled under the conditions listed in Table 2 and a hot-rolled steel material was obtained, and the steel material was cooled to a temperature of 491-342°C at a cooling rate of 3.8-5.4°C/sec. A thickness, an average grain size of grains having a high boundary angle of 15 degrees or more, measured by EBSD, in the 3/8t-5/8t zone in a thickness (t) direction, yield strength, and a strain aging impact transition temperature of the center zone (3/8t-5/8t) were measured and listed in Table 3.

[0031] In this case, the center zone strain aging impact test was carried by taking a sample from the center zone of the steel material, performing a heat treatment at 250°C for 1 hour after 5% of deformation, performing an impact test, and measuring a transition temperature.

[Table 1]

				-				
Stool type			All	oy comp	osition (w	veight%)		
Steel type	С	Mn	Ni	Мо	Nb	Ti	P(ppm)	S(ppm)
Inventive steel 1	0.043	1.96	1.05	0.32	0.023	0.017	39	9
Inventive steel 2	0.038	2.06	0.87	0.31	0.016	0.009	44	8
Inventive steel 3	0.046	1.99	0.79	0.28	0.015	0.013	51	10
Inventive steel 4	0.031	2.13	1.07	0.43	0.011	0.012	37	7
Inventive steel 5	0.052	1.86	0.94	0.39	0.021	0.011	62	13
Comparative steel 1	0.083	2.07	0.86	0.35	0.018	0.013	57	15
Comparative steel 2	0.044	2.49	1.06	0.41	0.019	0.011	48	9
Comparative steel 3	0.016	1.67	0.93	0.39	0.015	0.012	46	13
Comparative steel 4	0.042	1.97	0.59	0.36	0.023	0.017	51	11
Comparative steel 5	0.051	2.03	0.94	0.67	0.019	0.013	38	14
Comparative steel 6	0.039	1.96	0.89	0.33	0.046	0.032	38	14

55

5		Cooling	Stop temperature (°C)	435	488	307	205	416	395	407	453	998	415	467	459	437
10			Rate (°C/s)	3.7	4.6	5.7	6.7	4.4	5.1	4.7	5.3	7.1	12.3	3.8	6.5	5.0
15		olling	Total reduction ratio (%)	62	61	63	61	62	38	49	61	61	63	62	61	62
20 25		Finish-Rolling	Finish temperature (°C)	735	725	713	749	755	769	711	736	744	784	723	733	741
30	[Table 2]	Rough-Rolling	Finish temperature (°C)	953	975	892	888	915	865	806	930	972	901	859	938	968
35 40		Dobostington	(°C)	1065	1072	1054	1049	1079	1026	1043	1055	1067	1037	1012	1059	1038
45 50			Steel type	Inventive steel 1	Inventive steel 2	Inventive steel 3	Inventive steel 4	Inventive steel 5	Inventive steel 2	Inventive steel 3	Comparative steel 1	Comparative steel 2	Comparative steel 3	Comparative steel 4	Comparative steel 5	Comparative steel 6
55			Classification	Inventive example 1	Inventive example 2	Inventive example 3	Inventive example 4	Inventive example 5	Comparative example 1	Comparative example 2	Comparative example 3	Comparative example 4	Comparative example 5	Comparative example 6	Comparative example 7	Comparative example 8

[0032]

40

50

55

[Table 3]

5	Classification	Thickness (mm)	Average grain size (μm) in 3/8t-5/8t zone	Yield strength (MPa)	Deformation aging impact transition temperature of center zone (°C)
	Inventive example 1	85	13.3	529	-71
10	Inventive example 2	80	14.3	564	-65
	Inventive example 3	90	12.1	542	-7
15	Inventive example 4	85	12.8	572	-73
	Inventive example 5	80	14.5	523	-64
20	Comparative example 1	80	21.2	559	-49
	Comparative example 2	85	18.9	556	-51
25	Comparative example 3	85	13.9	635	-36
	Comparative example 4	90	18.2	693	-31
30	Comparative example 5	80	13.5	449	-62
	Comparative example 6	80	14.3	508	-44
35	Comparative example 7	85	18.7	669	-38
	Comparative example 8	80	13.8	609	-37

[0033] In the case of Inventive Examples 1 to 5 satisfying the alloy composition and manufacturing conditions suggested in the present disclosure, the average grain size of grains of the 3/8t-5/8t zone was 15 μ m or less, and accordingly, yield strength was 500 MPa or more, and the strain aging impact transition temperature was -60°C or less.

[0034] In the case of Comparative Examples 1 and 2, the alloy composition suggested in the present disclosure was satisfied, but the total reduction ratio during finish-rolling was low, such that sufficient deformation was not applied to the center zone, and acicular ferrite which may greatly affect grain size refinement was not sufficiently formed, and a large amount of coarse bainite was formed. Accordingly, it is indicated that the grain size as coarsened, the average grain size of grains of the 3/8t-5/8t zone exceeded $15~\mu m$, and the strain aging impact transition temperature of the center zone exceeded $-60^{\circ} C$.

[0035] In the case of Comparative Example 3, by having a value higher than an upper limit of C suggested in the present disclosure, a large amount of coarse bainite phase was formed due to high hardenability, such that very high yield strength was exhibited, and although the average grain size of grains of the 3/8t-5/8t zone was 15 μ m or less, a large amount of C was fixed to the dislocation during the strain aging impact test, such that the strain aging impact transition temperature exceeded -60°C.

[0036] In the case of Comparative Example 4, by having a value higher than an upper limit of Mn suggested in the present disclosure, a large amount of coarse bainite phase was formed due to high hardenability, such that very high yield strength was exhibited, but the average grain size of grains of the 3/8t-5/8t zone exceeded $15~\mu$ m, and the strain aging impact transition temperature exceeded -60° C.

[0037] In the case of Comparative Example 5, by having a value lower than A lower limit of C and Mn suggested in

the present disclosure, a large amount of soft phase such as polygonal ferrite was formed in the center zone, and accordingly, yield strength was lower than 500Mpa.

[0038] In the case of Comparative Example 6, by having a value lower than an upper limit of Ni suggested in the present disclosure, although the average grain size of grains of the 3/8t-5/8t zone was 15 μ m or less, strain aging impact transition temperature exceeded -60°C due to a decrease in toughness due to the low Ni content.

[0039] In the case of Comparative Example 7, by having a higher value than an upper limit of Mo suggested in the present disclosure, a large amount of coarse bainite phase was formed due to high hardenability, such that very high yield strength was exhibited, but the average grain size of grains of the 3/8t-5/8t exceeded 15 μ m, and the strain aging impact transition temperature exceeded -60°C.

[0040] In the case of Comparative Example 8, by having a value higher than an upper limit of Ti and Nb suggested in the present disclosure, strength increased due to excessive hardenability and the formation of precipitate, and the strain aging impact transition temperature exceeded -60°C due to the decrease in toughness caused by precipitation strengthening.

Claims

10

15

20

25

30

35

40

45

50

55

- 1. A high-strength ultra-thick steel material having excellent cryogenic strain aging impact toughness in a center zone thereof, the steel material comprising:
 - by wt%, 0.02-0.06% of C, 1.8-2.2% of Mn, 0.7-1.1% of Ni, 0.2-0.5% of Mo, 0.005-0.03% of Nb, 0.005-0.018% of Ti, 80 ppm or less of P, 20 ppm or less of S, and a balance of Fe and inevitable impurities, wherein an average grain size of grains having a high boundary angle of 15 degrees or greater, measured by EBSD, is 15 μ m or less in a 3/8t-5/8t zone in a thickness (t) direction.

2. The steel material of claim 1, wherein the steel material has a microstructure including acicular ferrite, granular bainite, and upper bainite.

3. The steel material of claim 1, wherein the steel material has a thickness of 5-90mm.

4. The steel material of claim 1, wherein the steel material has yield strength of 500 MPa or more.

- 5. The steel material of claim 1, wherein, after a heat treatment is performed on the steel material at 250°C for 1 hour after deformation of 5%, a transition temperature is -60°C or less in a strain aging impact test.
- **6.** A method for manufacturing a high-strength ultra-thick steel material having excellent cryogenic strain aging impact toughness in a center zone thereof, the method comprising:
 - reheating a steel slab including, by wt%, 0.02-0.06% of C, 1.8-2.2% of Mn, 0.7-1.1% of Ni, 0.2-0.5% of Mo, 0.005-0.03% of Nb, 0.005-0.018% of Ti, 80 ppm or less of P, 20 ppm or less of S, and a balance of Fe and inevitable impurities to a temperature of 1000-1080°C;
 - obtaining a bar by rough-rolling the reheated steel slab at a temperature of 850-1050°C;
 - obtaining a hot-rolled steel material by finish-rolling the bar at a temperature of 700-800°C at a total reduction ratio of more than 60%; and
- cooling the hot-rolled steel material to a temperature of 500°C or less at a cooling rate of 3°C/s or more.
- 7. The method of claim 6, wherein a total reduction ratio during the rough-rolling is 40% or more.

8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/KR2020/013062

5		SSIFICATION OF SUBJECT MATTER 38/04(2006.01)i; C22C 38/08(2006.01)i; C22C 38/14	4(2006.01)i; C21D 8/02 (2006.01)i	
	According to	International Patent Classification (IPC) or to both na	tional classification and IPC	
10	B. FIEL	DS SEARCHED		
10	Minimum do	cumentation searched (classification system followed	by classification symbols)	
	C22C	38/04(2006.01); B21B 3/00(2006.01); B21B 3/02(200	06.01); C21D 8/02(2006.01); C22C 38/00(2	2006.01)
	Documentati	on searched other than minimum documentation to the	e extent that such documents are included in	n the fields searched
15		a zzutility models and applications for utility models: se utility models and applications for utility models: I		
	Electronic da	ta base consulted during the international search (name	e of data base and, where practicable, search	ch terms used)
		[PASS (KIPO internal) & keywords: 후방산란전자회 ling), 압연(rolling), 충격인성(impact toughness)	회절패턴분석(EBSD), 폐라이트(ferrite),	베이나이트(bainite), 냉
	C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
20	Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.
		KR 10-2014-0023787 A (POSTECH RESEARCH AND B	USINESS DEVELOPMENT FOUNDATION)	
	Y	27 February 2014 (2014-02-27) See paragraphs [0055]-[0066], claims 1, 3, 5 and	1 11 and tables 2-3.	1-7
25		KR 10-2009-0070484 A (POSCO) 01 July 2009 (2009-07-	01)	
	Y	See paragraph [0109] and claim 3.		1-7
		JP 06-004903 B2 (NIPPON STEEL CORP.) 19 January 19	94 (1994-01-19)	······
	A	See claims 1 and 5.		1-7
30	A	KR 10-2014-0098900 A (HYUNDAI STEEL COMPANY) See claims 1-5.	11 August 2014 (2014-08-11)	1-7
	A	JP 2006-257499 A (SUMITOMO METAL IND., LTD.) 28 See paragraphs [0093]-[0100] and claim 1.	September 2006 (2006-09-28)	1-7
35				
	Further d	ocuments are listed in the continuation of Box C.	See patent family annex.	
40	"A" documen	ategories of cited documents: t defining the general state of the art which is not considered articular relevance	"T" later document published after the intern date and not in conflict with the application principle or theory underlying the invention	on but cited to understand the
	"D" documen	t cited by the applicant in the international application plication or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be considered	laimed invention cannot be I to involve an inventive step
	filing dat "L" documen	t which may throw doubts on priority claim(s) or which is	when the document is taken alone "Y" document of particular relevance; the c	
	special re	establish the publication date of another citation or other ason (as specified)	considered to involve an inventive st combined with one or more other such d	ocuments, such combination
45	means	t referring to an oral disclosure, use, exhibition or other	being obvious to a person skilled in the a "&" document member of the same patent far	
		t published prior to the international filing date but later than ty date claimed		
	Date of the act	ual completion of the international search	Date of mailing of the international search	report
		05 January 2021	05 January 202	1
50		ling address of the ISA/KR	Authorized officer	
	Governme	tellectual Property Office ent Complex-Daejeon Building 4, 189 Cheongsa- , Daejeon 35208		
	Facsimile No.	+82-42-481-8578	Telephone No.	

Form PCT/ISA/210 (second sheet) (July 2019)

55

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

	PC	T/KI	R202	20/01	3062
--	----	------	------	-------	------

KR 10-2014-0023787 A 27 February 2014 KR 10-1465088 B1 26 November 20 KR 10-2009-0070484 A 01 July 2009 KR 10-0957970 B1 17 May 2010 JP 06-004903 B2 19 January 1994 JP 61-235534 A 20 October 198 KR 10-2014-0098900 A 11 August 2014 None CA 2601052 A1 21 September 20 JP 2006-257499 A 28 September 2006 CA 2601052 C 05 June 2012 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012								
KR 10-2009-0070484 A 01 July 2009 KR 10-0957970 B1 17 May 2010 JP 06-004903 B2 19 January 1994 JP 61-235534 A 20 October 198 KR 10-2014-0098900 A 11 August 2014 None CA 2601052 A1 21 September 20 JP 2006-257499 A 28 September 2006 CA 2601052 A1 21 September 20 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012					Pat	ent family member	r(s)	Publication date (day/month/year
JP 06-004903 B2 19 January 1994 JP 61-235534 A 20 October 198 KR 10-2014-0098900 A 11 August 2014 None CA 2601052 A1 21 September 20 JP 2006-257499 A 28 September 2006 CA 2601052 C 05 June 2012 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012	KR	10-2014-0023787	A	27 February 2014	KR	10-1465088	B1	26 November 201
JP 06-004903 B2 19 January 1994 JP 61-235534 A 20 October 198 KR 10-2014-0098900 A 11 August 2014 None CA 2601052 A1 21 September 20 JP 2006-257499 A 28 September 2006 CA 2601052 C A1 21 September 20 CN 101163807 A A 16 April 2008 CN 101163807 B B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012	KR	10-2009-0070484	A	01 July 2009	KR	10-0957970	В1	17 May 2010
JP 2006-257499 A 28 September 2006 CA 2601052 A1 21 September 20 CA 2601052 C 05 June 2012 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012	JP		В2		JP			20 October 1986
JP 2006-257499 A 28 September 2006 CA 2601052 A1 21 September 20 CA 2601052 C 05 June 2012 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012	KR	10-2014-0098900	Α	11 August 2014				
CA 2601052 C 05 June 2012 CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012				•••••	CA		A1	21 September 200
CN 101163807 A 16 April 2008 CN 101163807 B 06 April 2011 EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012				•				-
EP 1860204 A1 28 November 20 EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012							A	16 April 2008
EP 1860204 B1 10 May 2017 JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012					CN	101163807	В	
JP 4696615 B2 08 June 2011 US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012					EP	1860204	A 1	28 November 200
US 2009-0297872 A1 03 December 20 US 8177925 B2 15 May 2012					EP	1860204	B1	10 May 2017
US 8177925 B2 15 May 2012					JP	4696615	B2	08 June 2011
					US		A1	03 December 200
WO 2006-098198 A1 21 September 20								
					WO	2006-098198	A 1	21 September 20

Form PCT/ISA/210 (patent family annex) (July 2019)