Background of the invention
[0001] The invention relates to a heat exchange apparatus and/or method, in particular to
cool a process fluid by means of a heat exchanger in which an air flow removes heat
from the process fluid.
[0002] Specifically, but not exclusively, the invention can be applied to a process fluid
consisting of a liquid, a gas, a condensing cooler, or any other fluid to which heat
must be removed.
[0003] In particular, reference is made to an apparatus and/or a method in which a heat
exchanger includes a pipe system in which a process fluid to be cooled flows and in
which, when the temperature of gas usable for cooling (generally air at ambient temperature)
is greater than the temperature at which the process fluid is required to cool, it
is provided the use of at least one evaporative body (generally a body made of a cellulose
material, in particular formed in a shape of a panel) which is placed in the air flow
before the heat exchanger and which is supplied with an evaporative liquid (water)
in order to humidify and cooling the air, in particular to bring the ambient air to
the wet bulb temperature.
[0004] Patent publication
EP 1698847 A1 discloses a system for extracting heat from a process fluid, in which at low temperatures
heat is extracted in a first heat exchange section with dry forced convection, and
at higher temperatures an evaporative liquid is dispensed over a second heat exchange
section in which the air flow is first saturated adiabatically with the evaporative
liquid, so as to cool the air below its dry bulb temperature before entering the first
heat exchange section, and in which the evaporative liquid flow is controlled by a
humidity/temperature sensor that controls the air conditions before entering the first
heat exchange section after passing through the second heat exchange section (adiabatic
section).
[0005] Patent publication
WO 2018/148460 A1 discloses an adiabatic cooling device with a water dispensing system, a discharge
water sensor and a controller that controls a modulation valve to adjust the amount
of water dispensed based on the aforementioned sensor.
[0006] Patent publication
WO 2015/108603 A1 discloses an adiabatic cooler or condenser, with an adiabatic pad supplied with water
to cool the ambient air before entering a condensation or cooling battery, with a
temperature or humidity sensor upstream of the pad and a temperature or humidity sensor
downstream of the pad and before the battery, and with a controller that controls
the amount of water supplied to the adiabatic pad. Patent publication
EP 3306247 A1 discloses an air-water heat exchanger comprising at least one heat exchange finned
battery and at least one adiabatic unit with means for spraying water on the battery
so as to cause water to evaporate, while non-evaporated water is continuously recovered,
circulated and sprayed on the adiabatic unit.
Each of US 2017/082370 A1, EP 1035396 A2 and CN 205066503 U discloses an apparatus as in the preamble of claim 1.
Summary of the invention
[0007] An aim of the invention is to provide a heat exchange apparatus and/or method that
is alternative with respect to those in the prior art.
[0008] An aim of the invention is to make available an alternative solution to the problem
of cooling a process fluid in an air heat exchanger even when ambient air temperature
is higher than the desired temperature at which it is required to cool the process
fluid.
[0009] An advantage is to realize a heat exchange apparatus and/or method of in which a
compromise can be achieved between saving energy for moving air used to cool the process
fluid and saving water for wetting the evaporative means used to humidify the air.
[0010] An advantage is to provide a heat exchange apparatus, in particular a dry cooler,
which is constructively simple and inexpensive.
[0011] These aims and advantages, and still others, are achieved by an apparatus and/or
a method according to one or more of the claims below.
[0012] A heat exchange apparatus according to the invention comprises a heat exchanger for
cooling a process fluid, ventilation means for generating a cooling gas flow to the
heat exchanger, at least one evaporative body that is traversed by the flow before
the heat exchanger, supply means for supplying an evaporative liquid to wet the evaporative
body, a temperature sensor for measuring the process fluid temperature at the outlet
of the heat exchanger, and control means for controlling the evaporative liquid supply
means based on the temperature measured by the temperature sensor.
[0013] The control means are configured, in particular, to receive a lower limit of the
cooling gas flow and to control the ventilation means and the evaporative liquid supply
means based on the temperature measured by the temperature sensor so that, when the
cooling gas flow is higher than the aforementioned lower limit and the evaporative
liquid flow is not null, if the measured temperature is less than or equal to a predetermined
value, then the cooling gas flow is lowered without lowering the evaporative liquid
flow.
[0014] The control means are configured, in particular, to receive a lower limit of the
cooling gas flow and to control the ventilation means and the evaporative liquid supply
means based on the temperature measured by the temperature sensor so that, when the
cooling gas flow is equal to the aforementioned lower limit and the supply flow of
the evaporative liquid is not null, if the measured temperature is less than or equal
to a predetermined value, then the evaporative liquid flow is lowered without lowering
the cooling gas flow.
Brief description of the drawings
[0015] The invention will be better understood and implemented with reference to the accompanying
drawings which illustrate a non-limiting embodiment, in which:
Figure 1 is a perspective view of an example of a heat exchange apparatus made according
to the present invention;
Figure 2 shows a diagram of a section of the Figure 1 apparatus performed according
to a vertical section plane.
Detailed description
[0016] With reference to the aforementioned figures, a heat exchange apparatus has been
indicated as a whole with 1. The heat exchange apparatus 1 includes, in particular,
a dry cooler, or air cooler.
[0017] The apparatus 1 is configured, in particular, to cool a process fluid by means of
a cooling gas flow. The process fluid may comprise, in particular, a liquid, a gas,
a condensation cooler, or any other fluid to which heat must be removed. The cooling
gas may comprise, in particular, air, for example air taken from the ambient.
[0018] The heat exchange apparatus 1 includes, in particular, at least one heat exchanger
2 including tube means provided with at least one inlet 3 of the process fluid to
be cooled and at least one outlet 4 of the cooled process fluid. The air-cooled heat
exchanger 2 removes heat from the process fluid, or working fluid, transferring heat
to the air. The heat exchanger 2 tune means may include, in particular, at least two
tube batteries arranged in a V-shape. The tube means may include, in particular, tube
means provided with fins.
[0019] In particular, the tube means may include, as in the specific example, at least one
tube battery, for example finned, (in the specific example a right battery and a left
battery arranged in a V-shape), at least one inlet manifold 5 (for example, an inlet
manifold for each battery), at least one outlet manifold 6 (for example, an outlet
manifold for each battery), at least one inlet connection 7 (for example, an inlet
connection for each battery), at least one outlet connection 8 (for example, an outlet
connection for each battery).
[0020] The tube means may be made, in particular, of copper, aluminum, stainless steel,
or other metals covered with special anti-corrosion paints. The tube means fins may
be made, in particular, of copper, aluminum, or other materials which can be painted,
or provided with particular treatments to resist corrosion (for example salt corrosion).
[0021] The heat exchange apparatus 1 includes, in particular, ventilation means 9 configured
to generate a flow of a cooling gas (air) which passes through the tube means. The
ventilation means 9 may comprise, in particular, at least one fan. In the specific
example, the ventilation means 9 comprises four fans. However, it is possible to provide
for the use of ventilation means with a different number of fans.
[0022] In use, hot process fluid flows inside the heat exchanger 2 tube means. Cooling gas
(air) is passed between the heat exchanger 2 tube means, moved by the ventilation
means 9, removing heat from the process fluid.
[0023] The heat exchange apparatus 1 comprises, in particular, adiabatic means that is configured
to receive (and be wetted by) an evaporative liquid and is arranged to be traversed
by the cooling gas flow before the heat exchanger 2. The adiabatic means comprise,
in particular, at least one evaporative body 10 arranged before the heat exchanger
2 to be traversed by the cooling gas flow. The adiabatic means may comprise, in particular,
two or more evaporative bodies 10, for example at least one evaporative body for each
tube battery. Each evaporative body 10 may comprise, in particular, a body made of
cellulosic material, or aluminum (aluminum mesh), or another material, for example
a body made of paper or cardboard, in particular a body comprising an open mesh structure
to receive the flow of cooling gas (air). Each evaporative body 10 may comprise, in
particular, a body permeable to the flow of cooling gas (air). Each evaporative body
10 may comprise, in particular, an adiabatic pad. Each evaporative body 10 may comprise,
in particular, a body in a form of a slab or panel (adiabatic panel), that is with
a dimension (thickness) much lower than the other two dimensions. In the specific
example, the evaporative bodies 10, in the form of panels, are arranged in a vertical
position.
[0024] The heat exchange apparatus 1 comprises, in particular, supply means for supplying
an evaporative liquid for wetting the evaporative body(s) 10 so as to humidify the
cooling gas flow passing through the wet evaporative body 10.
[0025] The supply means may include, in particular, an evaporative liquid supplying circuit
11 and/or at least one inlet 12 of the evaporative liquid and/or at least one outlet
13 of the evaporative liquid. The supply means may include, in particular, dispensing
means including, for example, at least one evaporative liquid dispenser 14 operatively
associated with a respective evaporative body 10. The supply means may include, in
particular, flow rate control means configured to control the evaporative liquid flow
rate in the supplying circuit. The flow rate control means may comprise, in particular,
at least one flow control valve 15 arranged to adjust the flow of the evaporative
liquid which is supplied to the dispensing means. It is possible to provide, in other
embodiments not shown, flow rate control means that includes a pump, for example a
variable delivery pump. The use of a pump may be provided, in particular, in a supply
circuit (in not shown examples) which includes an evaporative liquid recirculation
system.
[0026] Each evaporative body 10 may be wet and/or saturated by dripping evaporative liquid
(for example falling from the dispensing means) on one end (in particular, upper end)
of the evaporative body 10.
[0027] Air taken from ambient may be passed through the adiabatic means, thereby air will
come into contact with the water which adiabatic means are impregnated of, and will
increase its humidity, for example up to a saturation degree determined by the adiabatic
means, so that the air downstream of adiabatic means will have a higher humidity than
ambient air. This enables to obtain an adiabatic operation mode in which air, passing
through the adiabatic means, decreases its temperature, in particular down to the
wet bulb temperature relative to the humidity transferred by the adiabatic means,
and then passes through the tube means, thereby the heat exchanger can use cooling
air at a lower temperature than ambient air temperature.
[0028] The heat exchange apparatus 1 comprises, in particular, at least one temperature
sensor 16 arranged to measure the temperature Tout of the (cooled) process fluid at
the outlet of the tube means. The temperature sensor 16 may be arranged, for example,
at or near an outlet connection 8, or an outlet manifold 6, or at the outlet 4 of
the process fluid. It is possible to provide, in other examples, the use of two or
more temperature sensors arranged, in particular, in two or more different points
of the path of the process fluid.
[0029] The heat exchange apparatus 1 includes, in particular, control means 17 configured
to control the various actuators of the apparatus itself. The control means 17 may
include, in particular, programmable electronic control means. The control means 17
may include, for example, a CPU. The control means 17 may be configured, in particular,
to control the evaporative liquid supply means based on the temperature Tout measured
by the temperature sensor 16. The control means 17 may be configured, in particular,
by computer program instructions. The control means 17 may comprise, in particular,
feedback control means. The type of control may include, in particular, a PID, or
PI, or other type of control.
[0030] The supply means 15 may be configured so as to be able to assume two or more configurations
in which it supplies, respectively, two or more not null values, different from each
other, of an evaporative liquid flow rate. The control means 17 may be configured,
in particular, to modulate the supply means 15 corresponding to the aforementioned
two or more configurations.
[0031] The heat exchange apparatus 1 may comprise, in particular, first sensor means 18
for measuring the cooling gas humidity before passing through the evaporative body
10. The first sensor means 18 may include, in particular, at least one humidity sensor
arranged to detect the cooling gas humidity upstream of the adiabatic means. The first
sensor means 18 may be configured, in particular, to measure relative humidity and/or
absolute humidity and/or specific humidity. In the specific example, the first sensor
means 18 comprises at least one sensor arranged to measure the ambient air relative
humidity.
[0032] The control means 17 may be configured, in particular, to control the evaporative
liquid supply means on the basis of the humidity measured by the first sensor means
18 so that the evaporative liquid flow rate is null if humidity measured by the first
sensor means 18 is greater than or equal to a predetermined maximum value.
[0033] The heat exchange apparatus 1 may comprise, in particular, second sensor means 19
for measuring the cooling gas humidity between the adiabatic means (evaporative body(s)
10) and the tube means. The second sensor means 19 may comprise, in particular, at
least one humidity sensor arranged to detect cooling gas humidity downstream of the
adiabatic means and upstream of the tube means. The second sensor means 19 may be
configured, in particular, to measure relative humidity and/or absolute humidity and/or
specific humidity. In the specific example the second sensor means 19 comprises a
sensor for measuring relative humidity of the air which has passed through the adiabatic
means and has not yet crossed the tube means.
[0034] The control means 17 may be configured, in particular, to control the evaporative
liquid supply means based on the humidity measured by the second sensor means 19,
for example so as to act on the evaporative liquid flow rate (in particular to block
the flow, or to prevent it from increasing, or to decrease it, or to nullify it) if
the humidity measured by the second sensor means 19 is greater than or equal to a
predetermined value.
[0035] To remove heat from the process fluid, process fluid temperature must be greater
than cooling gas temperature. The greater the difference in temperature between cooling
gas and process fluid, the lower the cooling gas flow rate required to remove heat,
cooling gas flow rate provided by the ventilation means 9, so, consequently, the less
will be the power absorbed by the ventilation means 9.
[0036] The control means 17 may be configured, in particular, by inserting a set point value
Tset of the process fluid temperature at the heat exchanger outlet. The control means
17 may be configured, in particular, so as to vary the speed of the ventilation means
9, thus varying the cooling gas flow rate, based on the comparison between the value
Tout measured by the temperature sensor 16 and the set point value Tset.
Example of "dry" operation
[0037] Inlet temperature of the hot process fluid is, for example, 40 °C. The desired set
point value Tset of the outlet temperature is, for example, 35 °C. The ambient air
temperature is, for example, 20 °C. The control means 17 adjusts the ventilation means
9, for example, at 40% of ventilation means 9 maximum power. Process fluid flows inside
the tube means which is traversed by a flow of air at 20 °C, thereby the process fluid
can be cooled down to the desired temperature of 35 °C.
[0038] If ambient air temperature increases, the temperature sensor Tout will detect an
increase in the process fluid temperature at the outlet of the heat exchanger, for
example 36 °C. The control means 17, consequently, will increase the air flow rate
moved by the ventilation means 9 (for example by adjusting the ventilation means 9
to 60% of maximum power thereof). The temperature Tout detected by the process fluid
output temperature sensor 16 will be restored to the set point value of 35 °C.
[0039] It is possible to provide the "dry" operation as long as the ambient temperature
is lower than the set point value. If the ambient air temperature reaches 35 °C it
is no longer possible to cool the process fluid in a "dry" mode. In an example of
operation, dry air, that is, without the use of the evaporative liquid, is used for
cooling the process fluid as long as possible, and then, only when it is no longer
possible to use dry air for cooling the process fluid, the use of evaporative liquid
is provided (transition to "adiabatic" mode).
Examples of "adiabatic" operation
[0040] In these examples the process fluid can be cooled even if the ambient air temperature
is higher than the set point temperature, in particular by bringing air to the wet
bulb temperature.
[0041] The first sensor means 18 (ambient air humidity sensor) allows to activate the adiabatic
mode only if the ambient humidity URamb is lower than a certain value URtg (target
value), so that this mode is advantageous. It is understood that the activation of
the adiabatic mode actually takes place when the supply flow rate of the evaporative
liquid (water) to the adiabatic means, that is, to at least one evaporative body 10
(adiabatic panel or pad) is non-zero. The activation of the adiabatic mode essentially
means that at least one evaporative body 10 is wetted with evaporative liquid.
[0042] Activation of the adiabatic mode can take place, in particular, only when the ambient
humidity URamb is less than or equal to the preset value URtg. In addition to or alternatively
to the aforementioned condition (URamb < URtg), activation of the adiabatic mode can
take place, in particular, only when ambient air temperature Tamb is greater than
or equal to a predetermined value Ttrs (threshold value, for example Ttrs = 15 °C).
In addition to or alternatively to one and/or the other of the aforementioned conditions
(URamb < URtg and/or Tamb > Ttrs), it is possible to provide that the activation of
the adiabatic mode can take place only when the set point temperature Tset of the
process fluid at the outlet of the heat exchanger 2 is greater than or equal to a
predetermined maximum value Tmax, where Tmax may be, for example, a value set by the
manufacturer, or a value that can be set by the user.
[0043] The aforementioned reference value URtg for air humidity may include, in particular,
a saturation maximum value which air can have after having been treated by adiabatic
means (evaporative body(s) 10). URtg value may be, in particular, a constant value
defined by the manufacturer, for example a value equal to an 80% of relative humidity.
[0044] If humidity URamb read by the first sensor means 18 is lower than the URtg value
(target value or reference value), if ventilation V supplied by the ventilation means
9 is greater than or equal to a threshold value Vsup (upper ventilation threshold),
if temperature Tout of the process fluid read by the temperature sensor 16 is greater
than or equal to a predetermined threshold value Tsup (upper evaporator threshold),
then the control means 17 controls activation of the evaporative liquid supply means
(that is, in this specific case, the opening of the flow control valve 15). In particular,
the evaporative liquid supply means may be activated so as to perform a step control
of the evaporative liquid flow rate, even if it is possible to provide a type of control
of another type (for example a PID type, or PI type, or other type feedback control).
In the specific case, the supply means is controlled so as to dispense a first flow
rate step.
[0045] For ventilation V it may be understood, in particular, a parameter indicative of
the cooling gas flow rate supplied by the ventilation means 9, such as, for example,
the operating speed of the supply means 9 and/or the power absorbed by the ventilation
means 9 and/or the actual flow rate of the cooling gas passing through the heat exchanger
2, and so on. Therefore, in the present description the term "ventilation" V indicates
any parameter indicative of the cooling gas flow rate generated by the ventilation
means 9.
[0046] The aforementioned threshold value Vsup (ventilation upper threshold) may be, in
particular, less than or equal to the maximum ventilation value, corresponding to
the value of maximum speed and/or absorbed power of the ventilation means 9 (that
is, in particular, the maximum rotation speed value of blade-holder rotors of the
fans).
[0047] When the evaporative liquid supply means (flow rate adjustment means or flow control
valve 15) receives the activation control (valve 15 opening), then it is controlled
so as to supply a flow rate value corresponding to the first step, by flowing the
evaporative liquid (water) to the adiabatic means (evaporative bodies 10).
[0048] External ambient air passes through the adiabatic means (evaporative bodies 10) and
humidifies. The second sensor means 19 (internal humidity sensor URint) will detect
a humidity higher than external ambient air humidity URamb.
[0049] It is possible to provide, in particular, that the control means 17 be configured
so as to send an anomaly signal if the second sensor means 19 (internal humidity sensor
URint) does not detect an increase in humidity with respect to the external ambient
air humidity URamb after a set time period. In this case, in fact, the adiabatic means
(evaporative bodies 10) could be consumed with use. The anomaly signal emitted by
the control means 17 could comprise, for example, a warning or alarm signal, in particular
a signal on a user interface (for example a display) to indicate to an operator the
need to perform maintenance of the adiabatic means (for example cleaning or replacing
an evaporative body 10). The anomaly signal emitted by the control means 17 could
include, for example, a control signal for controlling the evaporative liquid supply
means, for example to interrupt the supplying, by closing the flow control valve 15.
[0050] It is possible to provide, in particular, that the control means 17 controls the
supply means (flow control valve 15) so that the evaporative liquid flow rate to be
introduced into the adiabatic means is as little as possible to maintain the temperature
Tout of the process fluid equal to the desired value Tset. To this end, the control
means 17 is configured in such a way that, if after a predetermined period of time
ΔT (for example ΔT > 1 min., or ΔT > 5 min., or ΔT > 10 min., or ΔT >20 min.), the
temperature Tout is still greater than or equal to Tset value, or to Tsup value (evaporator
upper threshold), then the supply means (valve 15) is controlled to increase the evaporative
liquid flow by another step.
[0051] This control action (gradual increase in flow rate, for example by one step at a
time) is repeated if the temperature Tout remains above a predetermined value (for
example Tset or Tsup), possibly until a maximum supply flow rate is reached (valve
15 full open). The number of adjustment steps of the evaporative liquid flow rate
may be greater than 5, or greater than 4, or greater than 3, or greater than 2, or
greater than 1.
[0052] If, during the adiabatic phase (in which evaporative liquid flow rate is non-zero),
the process fluid temperature Tout drops below a predetermined value (for example
the set point temperature Tset or a Tinf ≤ Tset value), then it is possible to provide
a decrease in ventilation V (slowing down of ventilation rotor(s)) down to a certain
ventilation lower threshold value Vinf, so as to facilitate a precise control of process
fluid temperature.
[0053] The control means 17 may be configured, in particular, so that, when the ventilation
V reaches the (ventilation lower threshold) value Vinf and the process fluid temperature
Tout, read by the sensor, drops below a predetermined value, for example below Tset
or below the Tinf value (evaporator lower threshold), then the evaporative liquid
supply means is controlled so as to gradually reduce (for example by one step) the
evaporative liquid flow rate.
[0054] If, after a predetermined time period ΔT (equal for example to the aforementioned
time period ΔT), the temperature Tout read by the temperature sensor still remains
lower than a predetermined value (for example Tset, or Tinf = evaporator lower threshold),
then the evaporative liquid supply means is controlled to further decrease (for example
by another step) the evaporative liquid flow rate.
[0055] This control action (gradual reduction of the flow rate, for example by one step
at a time) is repeated if the temperature Tout remains below a predetermined value
(for example Tset, or Tinf), possibly down to zero supply flow rate (valve 15 full
closed).
[0056] It is possible to provide that, in the active adiabatic mode, if the process fluid
temperature Tout is lower than a predetermined value (for example Tset or Tinf), then
the ventilation means 9 is slowed down to decrease ventilation V to lower threshold
value Vinf. When the ventilation V reaches the lower threshold value Vinf, then the
control means 17 stops slowing down and the ventilation V is kept constant at the
value Vinf, while the evaporative liquid supply means is controlled to decrease the
evaporative liquid flow rate. If Tout remains lower than a predetermined value (for
example Tset or Tinf), then the evaporative liquid flow rate may be nullified (valve
15 full closed), thus ceasing the adiabatic mode. If Tout is still lower than the
preset value (Tset or Tinf) even after the adiabatic mode has ceased (that is, with
no evaporative liquid flow rate), then the control means 17 may further decrease the
ventilation V below the minimum threshold value Vinf.
[0057] The value of Tsup (evaporator upper threshold) may be, in particular, greater than
the value of Tinf (evaporator lower threshold). It is however possible to provide
that the value of Tsup is equal to the value of Tinf.
[0058] The value of Tsup (evaporator upper threshold) may be, in particular, greater than
or equal to the set point value Tset. The value of Tinf (evaporator lower threshold)
may be, in particular, less than or equal to the set point value Tset.
[0059] It is possible to provide, in specific examples, Tsup = Tset + 1 °C and Tinf = Tset
- 1 °C, or Tsup = Tset and Tinf = Tset - 2 °C, or Tsup = Tset + 2 °C and Tinf = Tset,
or Tsup = Tset + 2 °C and Tinf = Tset - 2 °C, or Tsup = Tset and Tinf = Tset - 4 °C,
or Tsup = Tset + 4 °C and Tinf = Tset, etc.
[0060] As mentioned, the flow control valve 15 opens and closes with stepped movements,
but it could also operate through an opening and closing system with fine adjustment,
controlled for example by a feedback adjustment system, for example PID, or PI, or
PD, or other adjustment systems.
[0061] Moreover, when the humidity value URint measured by the second sensor means 19 reaches
a predetermined humidity value URtg (target value), then the control means 17 may
be configured to control the evaporative liquid supply means so as to prevent the
evaporative liquid flow rate from increasing, in particular so as to interrupt opening
of the valve 15 (valve 15 blocked), so as not to waste evaporative liquid (water).
[0062] Furthermore, if, during the adiabatic operation, the first sensor means 18 (ambient
humidity sensor) measures a humidity URamb greater than the value of URtg, then the
control means 17 may control the evaporative liquid supply means to interrupt, or
in any case, not to dispense evaporative liquid (valve 15 closed), in order not to
wet the adiabatic means (evaporative body(s) 10) if the surrounding environment is
already sufficiently damp.
[0063] The heat exchange apparatus 1 may comprise, in particular, at least one discharge
valve 20 which is controlled by the control means 17 so as to be open when the evaporative
liquid flow rate is zero (flow control valve 15 closed) and, conversely, it is controlled
to be closed when the evaporative liquid flow rate is non-zero (flow control valve
15 open). In this way, when the adiabatic mode is not used, pipes that supply the
adiabatic means are discharged, since the evaporative liquid present in the pipes
can be discharged (by falling) through the discharge valve 20, to avoid liquid stagnation
and reduce risk of presence and formation of bacteria (such as the legionella bacterium).
[0064] In the heat exchange apparatus 1, the evaporative liquid (water) used to wet the
adiabatic means (evaporative body(s) 10) may be supplied, in particular, with a "lose"
system, that is, it may not be provided recovering and recirculating the exhaust liquid,
which is discharged and no longer reused, so as not to have to perform any treatment
on the exhaust liquid. It is however possible to provide that the apparatus 1 is provided
with an evaporative liquid recirculation system.
[0065] The control means 17 may be configured, in particular, to receive a lower limit of
the cooling gas flow (the value of the cooling gas flow may be correlated, for example,
to the value of the ventilation V, since the operation of the ventilation means is
closely related to the cooling gas flow, thereby the aforementioned lower limit of
the cooling gas flow could be, for example, the aforementioned Vinf value) and to
control the ventilation means 9 and the evaporative liquid supply means based on the
temperature Tout measured by the temperature sensor 16 so that, when the flow rate
V of the cooling gas is higher than the aforementioned lower limit Vinf and the evaporative
liquid flow rate is non-zero, if the measured temperature Tout is less than or equal
to a predetermined minimum value (for example Tset or Tint), then the cooling gas
flow V is lowered, while the flow rate of the evaporative liquid supply is not lowered.
[0066] The control means 17 may be configured, in particular, to receive a lower limit Vinf
of the cooling gas flow and to control the ventilation means 9 and the evaporative
liquid supply means based on the temperature Tout measured by the temperature sensor
16 so that, when the cooling gas flow V is equal to the aforementioned lower limit
Vinf and the flow rate of the evaporative liquid supply is non-zero, if the measured
temperature Tout is less than or equal to a predetermined minimum value (for example
Tset or Tinf), then the flow rate of the evaporative liquid supply is lowered, while
the cooling gas flow V is not lowered.
[0067] The aforementioned lower limit Vinf may be, in particular, a value of the cooling
gas flow V greater than zero, in particular a value greater than 50% of the maximum
value of the cooling gas flow, that is, the value V corresponding to the maximum power
of the ventilation means 9. The correlation between the cooling gas flow and the ventilation
power may be determined, for example, empirically.
[0068] The control means 17 are configured, in particular, to receive an upper limit of
the cooling gas flow (the aforementioned upper limit of the cooling gas flow could
be, for example, the above mentioned Vsup value) and to control the ventilation means
9 and the evaporative liquid supply means based on the temperature Tout measured by
the temperature sensor 16 so that, when the cooling gas flow V is lower than the aforementioned
upper limit Vsup, if the measured temperature Tout is greater than or equal to a predetermined
maximum value (for example Tset or Tsup), then the cooling gas flow V is increased,
while the liquid supply flow rate is not increased.
[0069] The control means 17 may be configured, in particular, to receive an upper limit
Vsup of the cooling gas flow and to control the ventilation means 9 and the evaporative
liquid supply means based on the temperature Tout measured by the sensor temperature
16 so that, when the cooling gas flow V reaches the aforementioned upper limit Vsup,
if the measured temperature Tout is greater than or equal to a predetermined maximum
value (for example Tset or Tsup), then the evaporative liquid flow rate is increased,
while the cooling gas flow rate is not increased.
[0070] The control means 17 may be configured, in particular, to control the evaporative
liquid supply means so as to increase the evaporative liquid flow rate if the measured
temperature Tout is greater than or equal to a predetermined maximum value (for example
Tset or Tsup) and/or so as to decrease the evaporative liquid flow rate if the measured
temperature Tout is less than or equal to a predetermined minimum value (for example
Tset or Tinf).
[0071] The control means 17 may be configured, in particular, to receive the upper limit
Vsup of the cooling gas flow (where the upper limit Vsup may be, in particular, lower
than the maximum value of the flow which can be dispensed by the ventilation means
9 to its maximum power), and to increase the cooling gas flow V when it is verified
that: the cooling gas flow V is equal to the upper limit Vsup; the evaporative liquid
flow rate is equal to a maximum flow rate value dispensable by the supply means (for
example valve 15 full open); the measured temperature Tout is greater than or equal
to a predetermined value (for example Tset or Tsup).
[0072] The control means 17 may be configured, in particular, to increase the evaporative
liquid flow rate, without increasing the cooling gas flow V, when it is verified that:
the cooling gas flow V is equal to the upper limit Vsup (where, as already mentioned,
the upper limit Vsup of the cooling gas flow is lower than the maximum value of the
flow that can be dispensed by the ventilation means 9); the evaporative liquid flow
rate is zero; the measured temperature Tout is greater than or equal to a predetermined
value (for example Tset or Tsup).
[0073] The control means 17 may be configured, in particular, to decrease the supplying
of the evaporative liquid (for example, decreasing by a predetermined step, or by
means of a PID or PI algorithm) when, for a predetermined period T (for example, T
> 1 min., or T > 5 min., or T > 10 min.), it is verified that: the evaporative liquid
flow rate is equal to a maximum flow rate value that can be delivered by the supply
means 15; the cooling gas flow V is greater than or equal to the upper limit Vsup
(where Vsup may be, as mentioned, lower than the maximum value that can be supplied
by the ventilation means 9); and the temperature Tout measured by the temperature
sensor 16 remains between a predetermined upper value (for example Tsup) and a predetermined
lower value (for example Tinf). After another predetermined period of time T (for
example T > 1 min., or T > 5 min., or T > 10 min.) from the aforementioned decrease
in the evaporative liquid flow rate, the control means 17 may be configured, in particular,
to check if the temperature Tout measured by the temperature sensor 16 remains between
a predetermined upper value (for example Tsup) and a predetermined lower value (for
example Tinf): if Tinf < Tout < Tsup, that means that, effectively, a certain saving
of water has already been obtained, and possibly, and it is possible to provide reiterating
the aforementioned action of reducing the evaporative liquid flow rate; if Tout ≥
Tsup, then the supply means 15 is controlled so as to increase the flow rate of the
evaporative liquid; if Tout ≤ Tinf then the ventilation means 9 will be controlled
so as to decrease the ventilation V.
1. Heat exchange apparatus (1), comprising:
- at least one heat exchanger (2) comprising tube means provided with at least one
inlet (3) of a process fluid to be cooled and at least one outlet (4) of the cooled
process fluid;
- ventilation means (9) for generating a flow of a cooling gas passing through said
tube means;
- at least one evaporative body (10) arranged to be traversed by said flow before
said heat exchanger (2);
- supply means (15) for supplying an evaporative liquid to wet said evaporative body
(10) to humidify said flow;
- at least one temperature sensor (16) for measuring the temperature (Tout) of the
process fluid at the outlet of said tube means;
- control means (17) configured to control said evaporative liquid supply means (15)
based on the temperature (Tout) measured by said temperature sensor (16)
characterized in that said control means (17) is configured to receive a lower limit (Vinf) and an upper
limit (Vsup) of the cooling gas flow and to control said ventilation means (9) and
said supply means (15) based on the temperature (Tout) measured by said temperature
sensor (16) so that, when the flow (V) of the cooling gas is higher than said lower
limit (Vinf) and lower than said upper limit (Vsup) and the supply flow of the evaporative
liquid is non-zero, if the measured temperature (Tout) is less than or equal to a
predetermined value, then the flow (V) of the cooling gas is lowered while the supply
flow of the evaporative liquid is not lowered
, and so that, when the flow (V) of the cooling gas is equal to said lower limit (Vinf)
and the supply flow of the evaporative liquid is non-zero, if the measured temperature
(Tout) is less than or equal to a predetermined value, then the supply flow of the
evaporative liquid is lowered while the flow (V) of the cooling gas is not lowered
, and so that, when the flow (V) of the cooling gas is lower than said upper limit (Vsup)
and higher than said lower limit (Vinf) and the supply flow of the evaporative liquid
is non-zero, if the measured temperature (Tout) is greater than or equal to a predetermined
value, then the flow (V) of the cooling gas is increased, while the supply flow of
the evaporative liquid is not increased,
and so that, when the flow (V) of the cooling gas is equal to said upper limit (Vsup)
and the flow rate of the evaporative liquid is non-zero, if the measured temperature
(Tout) is greater than or equal to a predetermined value, then the supply flow of
the evaporative liquid is increased, while the flow (V) of the cooling gas is not
increased.
2. Apparatus according to claim 1, wherein said lower limit (Vinf) is a value greater
than zero of the flow (V) of the cooling gas, in particular a value greater than 50%
of the maximum value of the flow (V) of the cooling gas, that is the value at the
maximum power of the ventilation means (9).
3. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to control said supply means (15) so as to increase the supply
flow rate of the evaporative liquid if the measured temperature (Tout) is greater
or equal to a predetermined value, and/or so as to decrease the supply flow rate of
the evaporative liquid if the measured temperature (Tout) is less than or equal to
a predetermined value; said supply means (15) being able, in particular, to assume
two or more configurations in which it supplies, respectively, two or more non-zero
evaporative liquid flow rate values different from each other, said control means
(17) being configured, in particular, to modulate said supply means (15) corresponding
to said two or more configurations.
4. Apparatus according to any one of the preceding claims, comprising first sensor means
(18) for measuring the humidity (URamb) of the cooling gas before passing through
said evaporative body (10), said control means (17) being configured to control said
supply means (15) based on the humidity (URamb) measured by said first sensor means
(18) so that the flow rate of the evaporative liquid is zero if the measured humidity
(URamb) is greater than or equal to a predetermined value.
5. Apparatus according to any one of the preceding claims, comprising second sensor means
(19) for measuring the humidity (URint) of the cooling gas between said evaporative
body (10) and said tube means, said control means (17) being configured to control
said supply means (15) based on the humidity (URint) measured by said second sensor
means (19) so as to block the supply flow rate of the evaporative liquid, or to prevent
an increase thereof, or to decrease it, or to nullify it, if the measured humidity
(URint) is greater than or equal to a predetermined value.
6. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to control said supply means (15) so that the supply flow rate
of the evaporative liquid is zero if a set point temperature (Tset) of the process
fluid at the outlet of said heat exchanger (2) is less than or equal to a predetermined
value (Tmax).
7. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive a limit value (Vinf) of the cooling gas flow and to
control said ventilation means (9) so that the flow (V) of the cooling gas is greater
than or equal to said limit value (Vinf) if:
- the temperature (Tout) of the process fluid at the outlet of said heat exchanger
(2) is higher than a set point temperature (Tset), and
- the flow rate of the evaporative liquid is greater than zero.
8. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive a limit value (Vinf) of the cooling gas flow and to
control said ventilation means (9) so that the flow (V) of the cooling gas is less
than said limit value (Vinf) if:
- the temperature (Tout) of the process fluid at the outlet of said heat exchanger
(2) is lower than a set point temperature (Tset), and
- the flow rate of the evaporative liquid is equal to zero.
9. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive a lower limit (Vinf) and an upper limit (Vsup) of the
cooling gas flow and to control said ventilation means (9) and said supply means (15)
based on the temperature (Tout) measured by said temperature sensor (16) so that,
when the flow (V) of the cooling gas is higher than said lower limit (Vinf), and lower
than said upper limit (Vsup), and the supply flow rate of the evaporative liquid is
zero, if the measured temperature (Tout) is greater than a predetermined value, then
the flow (V) of the cooling gas is increased.
10. Apparatus according to any one of the preceding claims, comprising first sensor means
(18) for measuring the humidity (URamb) of the cooling gas before passing through
said evaporative body (10), and second sensor means (19) for measuring the humidity
(URint) of the cooling gas between said evaporative body (10) and said tube means,
said control means (17) being configured to send an anomaly signal if the flow rate
of the evaporative liquid supplied by said supply means (15) is greater than zero
and said second sensor means (19) does not detect an increase in humidity with respect
to humidity (URamb) measured by said first sensor means (18) after a predetermined
period of time.
11. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive an upper limit (Vsup) of the cooling gas flow, said
upper limit (Vsup) being lower than a maximum value of the flow that can be dispensed
by said ventilation means (9), said control means (17) being configured to control
said ventilation means (9) and said supply means (15) based on the temperature (Tout)
measured by said temperature sensor (16) so that, when the flow (V) of the cooling
gas is equal to said upper limit (Vsup) and the flow rate of the evaporative liquid
is equal to a maximum flow rate value dispensable from said supply means (15), if
the measured temperature (Tout) is greater than or equal to a predetermined value,
then the flow (V) of the cooling gas is increased.
12. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive an upper limit (Vsup) of the cooling gas flow, said
upper limit (Vsup) being lower than a maximum value of the flow that can be dispensed
from said ventilation means (9), said control means (17) being configured to control
said ventilation means (9) and said supply means (15) based on the temperature (Tout)
measured by said temperature sensor (16) so that, when the flow (V) of the cooling
gas is equal to said upper limit (Vsup) and the supply flow rate of the evaporative
liquid is zero, if the measured temperature (Tout) is greater than or equal to a predetermined
value, then the supply flow rate of the evaporative liquid is increased without increasing
the flow (V) of the cooling gas.
13. Apparatus according to any one of the preceding claims, wherein said control means
(17) is configured to receive an upper limit (Vsup) of the cooling gas flow, said
upper limit (Vsup) being lower than a maximum value of the flow which can be dispensed
from said ventilation means (9), said control means (17) being configured to control
said supply means (15) so as to decrease the supply of the evaporative liquid when,
for a predetermined period of time, a situation occurs wherein: (i) the supply flow
rate of the evaporative liquid is equal to a maximum flow rate that can be dispensed
by said supply means (15); (ii) the flow (V) of the cooling gas is greater than or
equal to said upper limit (Vsup); and (iii) the temperature (Tout) measured by said
temperature sensor (16) remains between a predetermined upper value (Tsup) and a predetermined
lower value (Tinf).
14. Apparatus according to claim 13, wherein said control means (17) is configured to receive, after a predetermined
period of time from said decreasing in the supply of the evaporative liquid, the temperature
(Tout) measured by said temperature sensor (16), and to: (i) further decrease the
evaporative liquid supply if the measured temperature (Tout) is still between the
upper value (Tsup) and the lower value (Tint); and/or (ii) increase the evaporative
liquid supply if the measured temperature (Tout) is greater than or equal to the upper
value (Tsup); and/or (iii) decrease the flow (V) of the cooling gas without changing
the evaporative liquid supply if the temperature (Tout) measured is less than or equal
to the lower value (Tinf).
15. Heat exchange method, comprising the steps of providing a heat exchange apparatus
(1) according to any one of the preceding claims and controlling the supply means
(15) of said apparatus based on the temperature (Tout) measured by the sensor temperature
(16) of said apparatus.
1. Wärmeaustauschvorrichtung (1), die umfasst:
- mindestens einen Wärmetauscher (2) mit einer Rohreinrichtung, die mit mindestens
einem Einlass (3) für ein zu kühlendes Prozessfluid und mindestens einem Auslass (4)
für das gekühlte Prozessfluid versehen ist;
- eine Belüftungseinrichtung (9) zum Erzeugen einer Strömung eines Kühlgases, das
durch die Rohreinrichtung hindurchgeht;
- mindestens einen Verdampfungskörper (10), der so angeordnet ist, dass er von der
Strömung vor dem Wärmetauscher (2) durchquert wird;
- eine Zufuhreinrichtung (15) zum Zuführen einer Verdampfungsflüssigkeit, um den Verdampfungskörper
(10) zu benetzen, um die Strömung zu befeuchten;
- mindestens einen Temperatursensor (16) zum Messen der Temperatur (Tout) des Prozessfluids
am Auslass der Rohreinrichtung;
- eine Steuereinrichtung (17), die dazu eingerichtet ist, die Verdampfungsflüssigkeitszufuhreinrichtung
(15) auf der Basis der durch den Temperatursensor (16) gemessenen Temperatur (Tout)
zu steuern,
dadurch gekennzeichnet, dass
die Steuereinrichtung (17) dazu eingerichtet ist, eine untere Grenze (Vinf) und eine
obere Grenze (Vsup) der Kühlgasströmung zu empfangen und die Belüftungseinrichtung
(9) und die Zufuhreinrichtung (15) auf der Basis der durch den Temperatursensor (16)
gemessenen Temperatur (Tout) zu steuern, so dass, wenn die Strömung (V) des Kühlgases
höher als die untere Grenze (Vinf) und niedriger als die obere Grenze (Vsup) ist und
die Zufuhrströmung der Verdampfungsflüssigkeit von null verschieden ist, falls die
gemessene Temperatur (Tout) geringer als oder gleich einem vorbestimmten Wert ist,
dann die Strömung (V) des Kühlgases gesenkt wird, während die Zufuhrströmung der Verdampfungsflüssigkeit
nicht gesenkt wird, und so dass, wenn die Strömung (V) des Kühlgases gleich der unteren
Grenze (Vinf) ist und die Zufuhrströmung der Verdampfungsflüssigkeit von null verschieden
ist, falls die gemessene Temperatur (Tout) geringer als oder gleich einem vorbestimmten
Wert ist, dann die Zufuhrströmung der Verdampfungsflüssigkeit gesenkt wird, während
die Strömung (V) des Kühlgases nicht gesenkt wird,
und so dass, wenn die Strömung (V) des Kühlgases niedriger als die obere Grenze (Vsup)
und höher als die untere Grenze (Vinf) ist und die Zufuhrströmung der Verdampfungsflüssigkeit
von null verschieden ist, falls die gemessene Temperatur (Tout) größer als oder gleich
einem vorbestimmten Wert ist, dann die Strömung (V) des Kühlgases erhöht wird, während
die Zufuhrströmung der Verdampfungsflüssigkeit nicht erhöht wird, und so dass, wenn
die Strömung (V) des Kühlgases gleich der oberen Grenze (Vsup) ist und die Durchflussrate
der Verdampfungsflüssigkeit von null verschieden ist, falls die gemessene Temperatur
(Tout) größer als oder gleich einem vorbestimmten Wert ist, dann die Zufuhrströmung
der Verdampfungsflüssigkeit erhöht wird, während die Strömung (V) des Kühlgases nicht
erhöht wird.
2. Vorrichtung nach Anspruch 1, wobei die untere Grenze (Vinf) ein Wert, der größer ist
als null, der Strömung (V) des Kühlgases, insbesondere ein Wert von größer als 50
% des Maximalwerts der Strömung (V) des Kühlgases, das heißt des Werts bei der maximalen
Leistung der Belüftungseinrichtung (9), ist.
3. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, die Zufuhreinrichtung (15) zu steuern, um die Zufuhrdurchflussrate
der Verdampfungsflüssigkeit zu erhöhen, falls die gemessene Temperatur (Tout) größer
als oder gleich einem vorbestimmten Wert ist, und/oder um die Zufuhrdurchflussrate
der Verdampfungsflüssigkeit zu verringern, falls die gemessene Temperatur (Tout) geringer
als oder gleich einem vorbestimmten Wert ist; wobei die Zufuhreinrichtung (15) insbesondere
zwei oder mehr Konfigurationen annehmen kann, in denen sie jeweils zwei oder mehr
von null verschiedene Verdampfungsflüssigkeitsdurchflussratenwerte, die voneinander
verschieden sind, zuführt, wobei die Steuereinrichtung (17) insbesondere dazu eingerichtet
ist, die Zufuhreinrichtung (15) entsprechend den zwei oder mehr Konfigurationen zu
modulieren.
4. Vorrichtung nach einem der vorangehenden Ansprüche mit einer ersten Sensoreinrichtung
(18) zum Messen der Feuchtigkeit (URamb) des Kühlgases vor dem Durchgang durch den
Verdampfungskörper (10), wobei die Steuereinrichtung (17) dazu eingerichtet ist, die
Zufuhreinrichtung (15) auf der Basis der Feuchtigkeit (URamb) zu steuern, die durch
die erste Sensoreinrichtung (18) gemessen wird, so dass die Durchflussrate der Verdampfungsflüssigkeit
null ist, falls die gemessene Feuchtigkeit (URamb) größer als oder gleich einem vorbestimmten
Wert ist.
5. Vorrichtung nach einem der vorangehenden Ansprüche mit einer zweiten Sensoreinrichtung
(19) zum Messen der Feuchtigkeit (URint) des Kühlgases zwischen dem Verdampfungskörper
(10) und der Rohreinrichtung, wobei die Steuereinrichtung (17) dazu eingerichtet ist,
die Zufuhreinrichtung (15) auf der Basis der Feuchtigkeit (URint) zu steuern, die
durch die zweite Sensoreinrichtung (19) gemessen wird, um die Zufuhrdurchflussrate
der Verdampfungsflüssigkeit zu blockieren oder eine Zunahme davon zu verhindern, oder
sie zu verringern oder auf null zu bringen, falls die gemessene Feuchtigkeit (URint)
größer als oder gleich einem vorbestimmten Wert ist.
6. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, die Zufuhreinrichtung (15) so zu steuern, dass die Zufuhrdurchflussrate
der Verdampfungsflüssigkeit null ist, falls eine Sollwerttemperatur (Tset) des Prozessfluids
am Auslass des Wärmetauschers (2) geringer als oder gleich einem vorbestimmten Wert
(Tmax) ist.
7. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, einen Grenzwert (Vinf) der Kühlgasströmung zu empfangen und
die Belüftungseinrichtung (9) so zu steuern, dass die Strömung (V) des Kühlgases größer
als oder gleich dem Grenzwert (Vinf) ist, falls:
- die Temperatur (Tout) des Prozessfluids am Auslass des Wärmetauschers (2) höher
ist als die Sollwerttemperatur (Tset), und
- die Durchflussrate der Verdampfungsflüssigkeit größer ist als null.
8. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, einen Grenzwert (Vinf) der Kühlgasströmung zu empfangen und
die Belüftungseinrichtung (9) so zu steuern, dass die Strömung (V) des Kühlgases geringer
ist als der Grenzwert (Vinf), falls:
- die Temperatur (Tout) des Prozessfluids am Auslass des Wärmetauschers (2) niedriger
ist als eine Sollwerttemperatur (Tset), und
- die Durchflussrate der Verdampfungsflüssigkeit gleich null ist.
9. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, eine untere Grenze (Vinf) und eine obere Grenze (Vsup) der
Kühlgasströmung zu empfangen und die Belüftungseinrichtung (9) und die Zufuhreinrichtung
(15) auf der Basis der durch den Temperatursensor (16) gemessenen Temperatur (Tout)
zu steuern, so dass, wenn die Strömung (V) des Kühlgases höher als die untere Grenze
(Vinf) und niedriger als die obere Grenze (Vsup) ist, und die Zufuhrdurchflussrate
der Verdampfungsflüssigkeit null ist, falls die gemessene Temperatur (Tout) größer
ist als ein vorbestimmter Wert, dann die Strömung (V) des Kühlgases erhöht wird.
10. Vorrichtung nach einem der vorangehenden Ansprüche mit einer ersten Sensoreinrichtung
(18) zum Messen der Feuchtigkeit (URamb) des Kühlgases vor dem Durchgang durch den
Verdampfungskörper (10) und einer zweiten Sensoreinrichtung (19) zum Messen der Feuchtigkeit
(URint) des Kühlgases zwischen dem Verdampfungskörper (10) und der Rohreinrichtung,
wobei die Steuereinrichtung (17) dazu eingerichtet ist, ein Anomaliesignal zu senden,
falls die Durchflussrate der Verdampfungsflüssigkeit, die durch die Zufuhreinrichtung
(15) zugeführt wird, größer ist als null und die zweite Sensoreinrichtung (19) keine
Zunahme der Feuchtigkeit mit Bezug auf die Feuchtigkeit (URamb), die durch die erste
Sensoreinrichtung (18) gemessen wird, nach einer vorbestimmten Zeitdauer detektiert.
11. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, eine obere Grenze (Vsup) der Kühlgasströmung zu empfangen,
wobei die obere Grenze (Vsup) niedriger ist als ein Maximalwert der Strömung, die
durch die Belüftungseinrichtung (9) abgegeben werden kann, wobei die Steuereinrichtung
(17) dazu eingerichtet ist, die Belüftungseinrichtung (9) und die Zufuhreinrichtung
(15) auf der Basis der durch den Temperatursensor (16) gemessenen Temperatur (Tout)
zu steuern, so dass, wenn die Strömung (V) des Kühlgases gleich der oberen Grenze
(Vsup) ist und die Durchflussrate der Verdampfungsflüssigkeit gleich einem maximalen
Durchflussratenwert ist, der aus der Zufuhreinrichtung (15) abgegeben werden kann,
falls die gemessene Temperatur (Tout) größer als oder gleich einem vorbestimmten Wert
ist, dann die Strömung (V) des Kühlgases erhöht wird.
12. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, eine obere Grenze (Vsup) der Kühlgasströmung zu empfangen,
wobei die obere Grenze (Vsup) niedriger ist als ein Maximalwert der Strömung, die
aus der Belüftungseinrichtung (9) abgegeben werden kann, wobei die Steuereinrichtung
(17) dazu eingerichtet ist, die Belüftungseinrichtung (9) und die Zufuhreinrichtung
(15) auf der Basis der durch den Temperatursensor (16) gemessenen Temperatur (Tout)
zu steuern, so dass, wenn die Strömung (V) des Kühlgases gleich der oberen Grenze
(Vsup) ist und die Zufuhrdurchflussrate der Verdampfungsflüssigkeit null ist, falls
die gemessene Temperatur (Tout) größer als oder gleich einem vorbestimmten Wert ist,
dann die Zufuhrdurchflussrate der Verdampfungsflüssigkeit erhöht wird, ohne die Strömung
(V) des Kühlgases zu erhöhen.
13. Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Steuereinrichtung (17)
dazu eingerichtet ist, eine obere Grenze (Vsup) der Kühlgasströmung zu empfangen,
wobei die obere Grenze (Vsup) niedriger ist als ein Maximalwert der Strömung, die
aus der Belüftungseinrichtung (9) abgegeben werden kann, wobei die Steuereinrichtung
(17) dazu eingerichtet ist, die Zufuhreinrichtung (15) zu steuern, um die Zufuhr der
Verdampfungsflüssigkeit zu verringern, wenn für eine vorbestimmte Zeitdauer eine Situation
auftritt, in der: (i) die Zufuhrdurchflussrate der Verdampfungsflüssigkeit gleich
einer maximalen Durchflussrate ist, die durch die Zufuhreinrichtung (15) abgegeben
werden kann; (ii) die Strömung (V) des Kühlgases größer als oder gleich der oberen
Grenze (Vsup) ist; und (iii) die durch den Temperatursensor (16) gemessene Temperatur
(Tout) zwischen einem vorbestimmten oberen Wert (Tsup) und einem vorbestimmten unteren
Wert (Tinf) bleibt.
14. Vorrichtung nach Anspruch 13, wobei die Steuereinrichtung (17) dazu eingerichtet ist,
nach einer vorbestimmten Zeitdauer von der Verringerung der Zufuhr der Verdampfungsflüssigkeit
die durch den Temperatursensor (16) gemessene Temperatur (Tout) zu empfangen und:
(i) die Verdampfungsflüssigkeitszufuhr weiter zu verringern, falls die gemessene Temperatur
(Tout) immer noch zwischen dem oberen Wert (Tsup) und dem unteren Wert (Tinf) liegt;
und/oder (ii) die Verdampfungsflüssigkeitszufuhr zu erhöhen, falls die gemessene Temperatur
(Tout) größer als oder gleich dem oberen Wert (Tsup) ist; und/oder (iii) die Strömung
(V) des Kühlgases ohne Änderung der Verdampfungsflüssigkeitszufuhr zu verringern,
falls die gemessene Temperatur (Tout) geringer als oder gleich dem unteren Wert (Tinf)
ist.
15. Wärmeaustauschverfahren mit den Schritten der Bereitstellung einer Wärmeaustauschvorrichtung
(1) nach einem der vorangehenden Ansprüche und der Steuerung der Zufuhreinrichtung
(15) der Vorrichtung auf der Basis der durch den Temperatursensor (16) der Vorrichtung
gemessenen Temperatur (Tout).
1. Appareil d'échange de chaleur (1), comprenant :
- au moins un échangeur de chaleur (2) comprenant des moyens à tube pourvus d'au moins
une entrée (3) d'un fluide de traitement à refroidir et d'au moins une sortie (4)
du fluide de traitement refroidi ;
- des moyens de ventilation (9) pour générer un écoulement d'un gaz de refroidissement
passant à travers lesdits moyens à tube ;
- au moins un corps d'évaporation (10) arrangé pour être traversé par ledit écoulement
avant ledit échangeur de chaleur (2) ;
- des moyens d'alimentation (15) pour alimenter en un liquide d'évaporation ledit
corps d'évaporation (10) humide pour humidifier ledit écoulement ;
- au moins un capteur de température (16) pour mesurer la température (Tout) du fluide
de traitement à la sortie desdits moyens à tube ;
- des moyens de commande (17) configurés pour commander lesdits moyens d'alimentation
en liquide d'évaporation (15) sur la base de la température (Tout) mesurée par ledit
capteur de température (16) ;
caractérisé en ce que lesdits moyens de commande (17) sont configurés pour recevoir une limite inférieure
(Vinf) et une limite supérieure (Vsup) de l'écoulement de gaz de refroidissement et
pour commander lesdits moyens de ventilation (9) et lesdits moyens d'alimentation
(15) sur la base de la température (Tout) mesurée par ledit capteur de température
(16) de sorte que quand l'écoulement (V) du gaz de refroidissement est supérieur à
ladite limite inférieure (Vinf) et inférieur à ladite limite supérieure (Vsup) et
que l'écoulement d'alimentation du liquide d'évaporation est non nul, si la température
(Tout) mesurée est inférieure ou égale à une valeur prédéterminée, alors l'écoulement
(V) du gaz de refroidissement est abaissé tandis que l'écoulement d'alimentation du
liquide d'évaporation n'est pas abaissé, et de sorte que quand l'écoulement (V) du
gaz de refroidissement est égal à ladite limite inférieure (Vinf) et que l'écoulement
d'alimentation du liquide d'évaporation est non nul, si la température (Tout) mesurée
est inférieure ou égale à une valeur prédéterminée, alors l'écoulement d'alimentation
du liquide d'évaporation est abaissé tandis que l'écoulement (V) du gaz de refroidissement
n'est pas abaissé, et de sorte que quand l'écoulement (V) du gaz de refroidissement
est inférieur à ladite limite supérieure (Vsup) et supérieur à ladite limite inférieure
(Vinf) et que l'écoulement d'alimentation du liquide d'évaporation est non nul, si
la température (Tout) mesurée est supérieure ou égale à une valeur prédéterminée,
alors l'écoulement (V) du gaz de refroidissement soit augmenté tandis que l'écoulement
d'alimentation du liquide d'évaporation ne soit pas augmenté, et de sorte que quand
l'écoulement (V) du gaz de refroidissement est égal à ladite limite supérieure (Vsup)
et que le débit du liquide d'évaporation est non nul, si la température (Tout) mesurée
est supérieure ou égale à une valeur prédéterminée, alors l'écoulement d'alimentation
du liquide d'évaporation soit augmenté tandis que l'écoulement (V) du gaz de refroidissement
ne soit pas augmenté.
2. Appareil selon la revendication 1, dans lequel ladite limite inférieure (Vinf) est
une valeur supérieure au zéro de l'écoulement (V) du gaz de refroidissement, en particulier
une valeur supérieure à 50 % de la valeur maximum de l'écoulement (V) du gaz de refroidissement,
c'est-à-dire la valeur à la puissance maximum des moyens de ventilation (9).
3. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour commander lesdits moyens d'alimentation
(15) de manière à augmenter le débit d'alimentation du liquide d'évaporation si la
température (Tout) mesurée est supérieure ou égale à une valeur prédéterminée, et/ou
de manière à réduire le débit d'alimentation du liquide d'évaporation si la température
(Tout) mesurée est inférieure ou égale à une valeur prédéterminée; lesdits moyens
d'alimentation (15) étant apte, en particulier, à adopter deux ou plus configurations
dans lesquelles ils fournissent, respectivement, deux ou plus valeurs de débit de
liquide d'évaporation non nulles différentes les unes des autres, lesdits moyens de
commande (17) étant configurés, en particulier, pour moduler lesdits moyens d'alimentation
(15) correspondant auxdites deux ou plus configurations.
4. Appareil selon l'une quelconque des revendications précédentes, comprenant des premiers
moyens capteurs (18) pour mesurer l'humidité (URamb) du gaz de refroidissement avant
le passage à travers ledit corps d'évaporation (10), lesdits moyens de commande (17)
étant configurés pour commander lesdits moyens d'alimentation (15) sur la base de
l'humidité (URamb) mesurée par lesdits premiers moyens capteurs (18) de sorte que
le débit du liquide d'évaporation soit de zéro si l'humidité mesurée (URamb) est supérieure
ou égale à une valeur prédéterminée.
5. Appareil selon l'une quelconque des revendications précédentes, comprenant des deuxièmes
moyens capteurs (19) pour mesurer l'humidité (URint) du gaz de refroidissement entre
le corps d'évaporation (10) et lesdits moyens à tube, lesdits moyens de commande (17)
étant configurés pour commander lesdits moyens d'alimentation (15) sur la base de
l'humidité (URint) mesurée par lesdits deuxièmes moyens capteurs (19) de manière à
bloquer le débit d'alimentation du liquide d'évaporation, ou à empêcher une augmentation
de celui-ci, ou à le réduire, ou à le rendre nul, si l'humidité (URint) mesurée est
supérieure ou égale à une valeur prédéterminée.
6. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour commander lesdits moyens d'alimentation
(15) de sorte que le débit d'alimentation du liquide d'évaporation soit de zéro si
une température de consigne (Tset) du fluide de traitement à la sortie dudit échangeur
de chaleur (2) est inférieure ou égale à une valeur prédéterminée (Tmax).
7. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une valeur limite (Vint) de
l'écoulement du gaz de refroidissement et pour commander lesdits moyens de ventilation
(9) de sorte que l'écoulement (V) du gaz de refroidissement soit supérieur ou égal
à ladite valeur limite (Vinf) si :
- la température (Tout) du fluide de traitement à la sortie dudit échangeur de chaleur
(2) est supérieure à une température de consigne (Tset), et
- le débit du liquide d'évaporation est supérieur à zéro.
8. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une valeur limite (Vint) de
l'écoulement du gaz de refroidissement et pour commander lesdits moyens de ventilation
(9) de sorte que l'écoulement (V) du gaz de refroidissement soit inférieur à ladite
valeur limite (Vinf) si :
- la température (Tout) du fluide de traitement à la sortie dudit échangeur de chaleur
(2) est inférieure à une température de consigne (Tset), et
- le débit du liquide d'évaporation est égal à zéro.
9. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une limite inférieure (Vinf)
et une limite supérieure (Vsup) de l'écoulement de gaz de refroidissement et pour
commander lesdits moyens de ventilation (9) et lesdits moyens d'alimentation (15)
sur la base de la température (Tout) mesurée par ledit capteur de température (16)
de sorte que quand l'écoulement (V) du gaz de refroidissement est supérieur à ladite
limite inférieure (Vinf), et inférieur à ladite limite supérieure (Vsup), et que le
débit d'alimentation du liquide d'évaporation est de zéro, si la température (Tout)
mesurée est supérieure à une valeur prédéterminée, alors l'écoulement (V) du gaz de
refroidissement est augmenté.
10. Appareil selon l'une quelconque des revendications précédentes, comprenant des premiers
moyens capteurs (18) pour mesurer l'humidité (URamb) du gaz de refroidissement avant
le passage à travers ledit corps d'évaporation (10), et des deuxièmes moyens capteurs
(19) pour mesurer l'humidité (URint) du gaz d'écoulement entre ledit corps d'évaporation
(10) et lesdits moyens à tube, lesdits moyens de commande (17) étant configurés pour
envoyer un signal d'anomalie si le débit du liquide d'évaporation fourni par lesdits
moyens d'alimentation (15) est supérieur à zéro et si les deuxièmes moyens capteurs
(19) ne détectent pas d'augmentation d'humidité par rapport à l'humidité (URamb) mesurée
par lesdits premiers moyens capteurs (18) après une certaine période de temps prédéterminée.
11. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une limite supérieure (Vsup)
de l'écoulement du gaz de refroidissement, ladite limite supérieure (Vsup) étant inférieure
à une valeur maximum de l'écoulement qui peut être dispensée par lesdits moyens de
ventilation (9), lesdits moyens de commande (17) étant configurés pour commander lesdits
moyens de ventilation (9) et lesdits moyens d'alimentation (15) sur la base de la
température (Tout) mesurée par ledit capteur de température (16) de sorte que, quand
l'écoulement (V) du gaz de refroidissement est égal à ladite limite supérieure (Vsup)
et que le débit du liquide d'évaporation est égal à une valeur de débit maximum dispensable
depuis lesdits moyens d'alimentation (15), si la température (Tout) mesurée est supérieure
ou égale à une valeur prédéterminée, alors l'écoulement (V) du gaz de refroidissement
est augmenté.
12. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une limite supérieure (Vsup)
de l'écoulement du gaz de refroidissement, ladite limite supérieure (Vsup) étant inférieure
à une valeur maximum de l'écoulement qui peut être dispensée depuis lesdits moyens
de ventilation (9), lesdits moyens de commande (17) étant configurés pour commander
lesdits moyens de ventilation (9) et lesdits moyens d'alimentation (15) sur la base
de la température (Tout) mesurée par ledit capteur de température (16) de sorte que,
quand l'écoulement (V) du gaz de refroidissement est égal à ladite limite supérieure
(Vsup) et que le débit d'alimentation du liquide d'évaporation est de zéro, si la
température (Tout) mesurée est supérieure ou égale à une valeur prédéterminée, alors
le débit d'alimentation du liquide d'évaporation est augmenté sans augmenter l'écoulement
(V) du gaz de refroidissement.
13. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdits
moyens de commande (17) sont configurés pour recevoir une limite supérieure (Vsup)
de l'écoulement de gaz de refroidissement, ladite limite supérieure (Vsup) étant inférieure
à une valeur maximum de l'écoulement qui peut être dispensée depuis lesdits moyens
de ventilation (9), lesdits moyens de commande (17) étant configurés pour commander
lesdits moyens d'alimentation (15) de manière à réduire l'alimentation en liquide
d'évaporation quand, pendant une période temps prédéterminée, il se produit une situation
dans laquelle : (i) le débit d'alimentation en liquide d'évaporation est égal au débit
maximum qui peut être dispensé par lesdits moyens d'alimentation (15) ; (ii) l'écoulement
(V) du gaz de refroidissement est supérieur ou égal à ladite limite supérieure (Vsup)
; et (iii) la température (Tout) mesurée par ledit capteur de température (16) reste
entre une valeur supérieure prédéterminée (Tsup) et une valeur inférieure prédéterminée
(Tint).
14. Appareil selon la revendication 13, dans lequel lesdits moyens de commande (17) sont
configurés pour recevoir, après une période de temps prédéterminée, depuis ladite
réduction de l'alimentation en liquide d'évaporation, la température (Tout) mesurée
par ledit capteur de température (16), et pour: (i) réduire encore l'alimentation
en liquide d'évaporation si la température (Tout) mesurée est toujours entre la valeur
supérieure (Tsup) et la valeur inférieure (Tint) ; et/ou (ii) augmenter l'alimentation
en liquide d'évaporation si la température (Tout) mesurée est supérieure ou égale
à la valeur supérieure (Tsup) ; et/ou (iii) réduire l'écoulement (V) du gaz de refroidissement
sans changer l'alimentation en liquide d'évaporation si la température (Tout) mesurée
est inférieure ou égale à la valeur inférieure (Vint).
15. Procédé d'échange de chaleur, comprenant les étapes de prévoir un appareil d'échange
de chaleur (1) selon l'une quelconque des revendications précédentes et de commander
lesdits moyens d'alimentation (15) dudit appareil sur la base de la température (Tout)
mesurée par le capteur de température (16) dudit appareil.