

(11) EP 4 043 736 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.08.2022 Bulletin 2022/33

(21) Application number: 22156825.6

(22) Date of filing: 15.02.2022

(51) International Patent Classification (IPC):

F04D 29/16 (2006.01) F04D 29/42 (2006.01)

F04D 17/10 (2006.01) F16J 15/447 (2006.01)

F01D 11/02 (2006.01)

(52) Cooperative Patent Classification (CPC): F04D 29/162; F01D 11/02; F04D 17/10; F04D 29/4206; F16J 15/447; F05D 2250/183; F05D 2250/185

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 16.02.2021 US 202117176606

(71) Applicant: Hamilton Sundstrand Corporation Charlotte, NC 28217-4578 (US)

(72) Inventor: HIMMELMANN, Richard A. Beloit, 53511 (US)

(74) Representative: Dehns St. Bride's House 10 Salisbury Square London EC4Y 8JD (GB)

(54) EROSION MITIGATING LABYRINTH SEAL MATING RING

(57) A compressor assembly includes an impeller (14) rotatable about a central axis and a seal assembly. The seal assembly includes a labyrinth seal (32) defining a seal interface with a sealing element of the impeller (14) and a seal support ring into which the labyrinth seal (32) is installed. The seal support includes a deflector ramp (54) fluidly downstream of the seal interface. The

deflector ramp (54) is configured to turn an airflow leaking through the seal interface radially inwardly toward the central axis. A plurality of tortuous pathways are formed in a downstream surface of the seal support ring and are configured to diffuse a tangential component of the airflow.

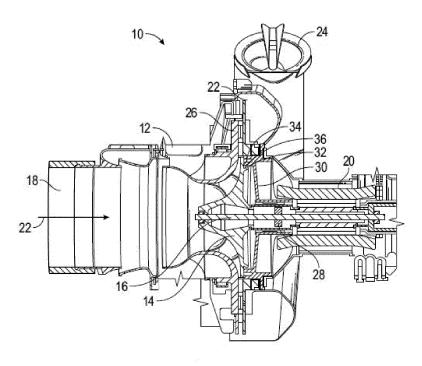


FIG. 1

BACKGROUND

[0001] Exemplary embodiments pertain to the art of environmental control units for, for example, aircraft.

[0002] On some aircraft, the cabin and/or other areas are pressurized by an electrically-driven cabin air compressor (CAC). The CAC takes in air flow at atmospheric pressure from outside the aircraft and compresses the airflow to a comfortable pressure for the aircraft cabin. This compressed air flow is then directed into the cabin. [0003] In some operating conditions, erosion damage occurs to a bearing support housing downstream of the compressor impeller. This erosion damage occurs when foreign object particles bypass a labyrinth seal between the impeller and the bearing support housing and subsequently impact the bearing support housing. Such erosion of the bearing support housing shortens the service life of the bearing support housing specifically and the cabin air compressor in general.

BRIEF DESCRIPTION

[0004] In one embodiment, a compressor assembly includes an impeller rotatable about a central axis and a seal assembly. The seal assembly includes a labyrinth seal defining a seal interface with a sealing element of the impeller and a seal support ring into which the labyrinth seal is installed. The seal support includes a deflector ramp fluidly downstream of the seal interface. The deflector ramp is configured to turn an airflow leaking through the seal interface radially inwardly toward the central axis. A plurality of tortuous pathways are formed in a downstream surface of the seal support ring and are configured to diffuse a tangential component of the airflow.

[0005] Additionally or alternatively, in this or other embodiments the plurality of tortuous pathways is circumferentially spaced.

[0006] Additionally or alternatively, in this or other embodiments a tortuous pathway of the plurality of tortuous pathways includes a pathway inlet and a pathway outlet. The pathway inlet is located radially inboard of the pathway outlet.

[0007] Additionally or alternatively, in this or other embodiments a tortuous pathway of the plurality of tortuous pathways is one of S-shaped, multiple S-shaped or Z-shaped.

[0008] Additionally or alternatively, in this or other embodiments the labyrinth seal is formed from a first, relatively soft material and the seal support ring is formed from a second, relatively hard material.

[0009] Additionally or alternatively, in this or other embodiments a shaft is operably connected to the impeller, and a bearing assembly includes a bearing supportive of the shaft and a bearing support housing into which the bearing assembly is installed. The seal support ring is

located axially between the impeller and the bearing support housing.

[0010] Additionally or alternatively, in this or other embodiments the deflector ramp deflects the airflow from impacting on the bearing support housing.

[0011] Additionally or alternatively, in this or other embodiments the seal support ring is installed to the bearing support housing.

[0012] Additionally or alternatively, in this or other embodiments the sealing element of the impeller is located at a sealing flange of the impeller extending axially from the impeller.

[0013] In another embodiment, a cabin air compressor includes a compressor housing having an inlet and an outlet, and an impeller located in the housing. The impeller is rotatable about a central axis and is configured to compress an airflow directed through the inlet and direct the compressed airflow to the outlet. A seal assembly includes a labyrinth seal defining a seal interface with a sealing element of the impeller and a seal support ring into which the labyrinth seal is installed. The seal support includes a deflector ramp fluidly downstream of the seal interface. The deflector ramp is configured to turn an airflow leaking through the seal interface radially inwardly toward the central axis. A plurality of tortuous pathways are formed in a downstream surface of the seal support ring and configured to diffuse a tangential component of the airflow.

[0014] Additionally or alternatively, in this or other embodiments the plurality of tortuous pathways is circumferentially spaced.

[0015] Additionally or alternatively, in this or other embodiments a tortuous pathway of the plurality of tortuous pathways includes a pathway inlet and a pathway outlet. The pathway inlet is located radially inboard of the pathway outlet.

[0016] Additionally or alternatively, in this or other embodiments a tortuous pathway of the plurality of tortuous pathways is one of S-shaped, multiple S-shaped or Z-shaped.

[0017] Additionally or alternatively, in this or other embodiments the labyrinth seal is formed from a first, relatively soft material and the seal support ring is formed from a second, relatively hard material.

[0018] Additionally or alternatively, in this or other embodiments a shaft is operably connected to the impeller. A bearing assembly includes a bearing supportive of the shaft and a bearing support housing into which the bearing assembly is installed. The seal support ring is located axially between the impeller and the bearing support housing.

[0019] Additionally or alternatively, in this or other embodiments the deflector ramp deflects the airflow from impacting on the bearing support housing.

[0020] Additionally or alternatively, in this or other embodiments the seal support ring is installed to the bearing support housing.

[0021] Additionally or alternatively, in this or other em-

40

bodiments an electrical motor is operably connected to the shaft to drive rotation of the impeller about the central axis.

3

[0022] Additionally or alternatively, in this or other embodiments the sealing element of the impeller is located at a sealing flange of the impeller extending axially from the impeller.

[0023] Additionally or alternatively, in this or other embodiments the compressed airflow is directed from the outlet to a cabin of an aircraft.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:

FIG. 1 is a schematic illustration of an embodiment of a cabin air compressor;

FIG. 2 is a perspective view of an embodiment of a labyrinth seal mating ring of a cabin air compressor;

FIG. 3 is a partial cross-sectional view of an embodiment of a labyrinth seal ring installed into a cabin air compressor;

FIG. 4 is a perspective view of an embodiment of a downstream side of a labyrinth seal ring; and

FIG. 5 is another perspective view of an embodiment of a downstream side of a labyrinth seal ring.

DETAILED DESCRIPTION

[0025] A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.

[0026] Referring now to FIG. 1, illustrated is a schematic illustration of an embodiment of a cabin air compressor 10. The cabin air compressor 10 includes a compressor housing 12 in which a compressor impeller 14 is located. The compressor impeller 14 is driven by a shaft 16. The shaft 16, in turn, is driven by a power source, which in some embodiments is an electric motor 20. Airflow 22 at ambient pressure enters the cabin air compressor 10 at an inlet 18 and is urged across the compressor impeller 14 and compressed. The compressed airflow 22 then is directed through an outlet 24 to a selected location, for example, aircraft cabin 26. The shaft 16 and compressor impeller 14 are supported by a bearing 28, which is installed in a bearing support housing 30 located in the compressor housing 12. A labyrinth seal 32 is located at an impeller outer perimeter 34 to prevent airflow from leaking past the impeller outer perimeter 34. The labyrinth seal 32 is installed in and supported by a labyrinth seal mating ring 36 installed to the bearing support housing 30. As will be discussed in greater detail below, this labyrinth seal mating ring 36 includes features to prevent erosion of the bearing support housing 30.

[0027] Referring now to FIG. 2, the labyrinth seal mating ring 36 is shown in more detail. The labyrinth seal mating ring 36 is a ring structure, having a ring outer surface 38, which mates to the bearing support housing 30. While illustrated as a complete ring, in some embodiments the labyrinth seal mating ring 36 may be a circumferentially segmented structure. The labyrinth seal 32 is located at a ring inner surface 42, substantially opposite to the ring outer surface 38. In some embodiments, the labyrinth seal mating ring 36 is formed from a relatively hard material, while the labyrinth seal 32 is formed from a relatively soft material.

[0028] Referring now to FIG. 3, when installed, the labyrinth seal 32 is located at a corresponding impeller sealing surface 44 of the compressor impeller 14. In some embodiments, the impeller sealing surface 44 is located at a sealing flange 46 extending from a downstream side 48 of the compressor impeller 14 opposite an upstream side 50 relative to the location of the inlet 18. The labyrinth seal 32 and the impeller sealing surface 44 define a seal interface 52. The labyrinth seal mating ring 36 includes a deflector ramp 54 extending radially inboard from the ring inner surface 42. The deflector ramp 54 also extends radially inboard of a radial location of the seal interface 52. In some embodiments, the deflector ramp 54 is curvilinear such as shown in FIG. 3, while in other embodiments, the deflector ramp 54 may be another shape, such as linear or some combination of curvilinear and linear. [0029] In operation, air flow 22 that leaks past the seal interface 52 as leakage airflow 56 is diverted radially inwardly by the deflector ramp 54, to reduce impact of the leakage airflow 56 and any included particles or foreign objects on a support wall 58 of the bearing support housing 30. Such diversion of the leakage airflow 56 by the deflector ramp 54 reduces erosion of the bearing support housing 30.

[0030] The leakage airflow 56 typically has a significant tangential or circumferential velocity component due to rotation of the compressor impeller 14. Referring now to FIG. 4 and FIG. 5, illustrated is a downstream side 60 of the labyrinth seal mating ring 36. The downstream side 60 includes a plurality of tortuous pathways 62 formed into the downstream side 60. The plurality of tortuous pathways 62 are circumferentially spaced along the downstream side 60, and in some embodiments are equally circumferentially spaced. The tortuous pathways 62 each have a pathway inlet 64 and a pathway outlet 66, and in some embodiments the pathway inlet 64 is located radially inboard of the pathway outlet 66. The tortuous pathway 62 extends between the pathway inlet 64 and the pathway outlet 66, with in some embodiments an S-shape, a multiple S-shape, a Z-shape, or the like. [0031] In operation, the leakage airflow 56 at the downstream side 60 encounters the tortuous pathways 62,

and at least a portion of the leakage airflow 56 is diverted

15

20

25

40

45

into the tortuous pathways 62 via the pathway inlets 64. Along the tortuous pathway 62, the leakage airflow 56 is slowed and diffused such that the velocity of the leakage airflow 56 is greatly reduced as the leakage airflow 56 exits the tortuous pathways 62 at their respective pathway outlets 66.

5

[0032] The tortuous pathways 62 thereby reduce the tangential velocity component of the leakage airflow 56 to reduce the erosion of the bearing support housing 30. [0033] The labyrinth seal mating ring 36 described herein reduces erosion of the bearing support housing 30 of the cabin air compressor 10, thus extending the service life of the bearing support housing 30 and the cabin air compressor 10 overall. Further, the labyrinth seal mating ring 36 is configured to be retrofittable into existing cabin air compressors 10, without the need to modify surrounding components.

[0034] The term "about" is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application.

[0035] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.

[0036] While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.

Claims

1. A compressor assembly, comprising:

an impeller (14) rotatable about a central axis; and a seal assembly including:

a labyrinth seal (32) defining a seal interface

with a sealing element of the impeller (14); a seal support ring into which the labyrinth seal (32) is installed, the seal support including a deflector ramp (54) fluidly downstream of the seal interface, the deflector ramp (54) configured to turn an airflow leaking through the seal interface radially inwardly toward the central axis; and a plurality of tortuous pathways formed in a downstream surface of the seal support ring and configured to diffuse a tangential component of the airflow.

- The compressor assembly of claim 1, wherein the plurality of tortuous pathways is circumferentially spaced.
- 3. The compressor assembly of claim 1 or 2, wherein a tortuous pathway of the plurality of tortuous pathways includes a pathway inlet and a pathway outlet, the pathway inlet disposed radially inboard of the pathway outlet, or wherein a tortuous pathway of the plurality of tortuous pathways is one of S-shaped, multiple S-shaped or Z-shaped.
- 4. The compressor assembly of any preceding claim, wherein the labyrinth seal (32) is formed from a first, relatively soft material and the seal support ring is formed from a second, relatively hard material.
- **5.** The compressor assembly of claim 1, further com-

a shaft operably connected to the impeller (14); and

a bearing assembly including:

a bearing supportive of the shaft; and a bearing support housing into which the bearing assembly is installed, the seal support ring disposed axially between the impeller (14) and the bearing support housing.

- The compressor assembly of claim 5, wherein the deflector ramp (54) deflects the airflow from impacting on the bearing support housing, or wherein the seal support ring is installed to the bearing support housing.
- 7. The compressor assembly of any preceding claim, wherein the sealing element of the impeller (14) is disposed at a sealing flange of the impeller (14) extending axially from the impeller (14).
- **8.** A cabin air compressor, comprising:

a compressor housing having an inlet and an outlet;

5

20

25

35

40

45

an impeller (14) disposed in the housing, the impeller (14) rotatable about a central axis and configured to compress an airflow directed through the inlet and direct the compressed airflow to the outlet; and a seal assembly including:

a labyrinth seal (32) defining a seal interface with a sealing element of the impeller (14); a seal support ring into which the labyrinth seal (32) is installed, the seal support including a deflector ramp (54) fluidly downstream of the seal interface, the deflector ramp (54) configured to turn an airflow leaking through the seal interface radially inwardly toward the central axis; and a plurality of tortuous pathways formed in a downstream surface of the seal support ring and configured to diffuse a tangential component of the airflow.

- **9.** The cabin air compressor of claim 8, wherein the plurality of tortuous pathways is circumferentially spaced.
- 10. The cabin air compressor of claim 8 or 9, wherein a tortuous pathway of the plurality of tortuous pathways includes a pathway inlet and a pathway outlet, the pathway inlet disposed radially inboard of the pathway outlet, or wherein a tortuous pathway of the plurality of tortuous pathways is one of S-shaped, multiple S-shaped or Z-shaped.
- **11.** The cabin air compressor of any of claims 8 to 10, wherein the labyrinth seal (32) is formed from a first, relatively soft material and the seal support ring is formed from a second, relatively hard material.
- **12.** The cabin air compressor of any of claims 8 to 11, further comprising:

a shaft operably connected to the impeller (14); and

a bearing assembly including:

a bearing supportive of the shaft; and a bearing support housing into which the bearing assembly is installed, the seal support ring disposed axially between the impeller (14) and the bearing support housing.

13. The cabin air compressor of claim 12, wherein the deflector ramp (54) deflects the airflow from impacting on the bearing support housing, or wherein the seal support ring is installed to the bearing support housing, or further comprising an electrical motor operably connected to the shaft to drive rotation of the impeller (14) about the central axis.

- **14.** The cabin air compressor of any of claims 8 to 13, wherein the sealing element of the impeller (14) is disposed at a sealing flange of the impeller (14) extending axially from the impeller (14).
- **15.** The cabin air compressor of any of claims 8 to 14, wherein the compressed airflow is directed from the outlet to a cabin of an aircraft.

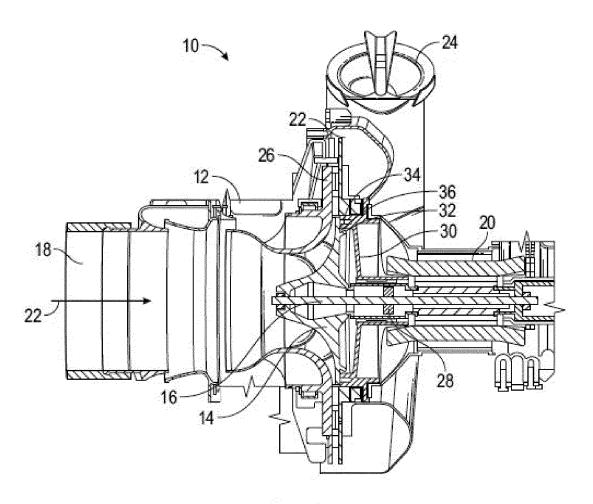


FIG. 1

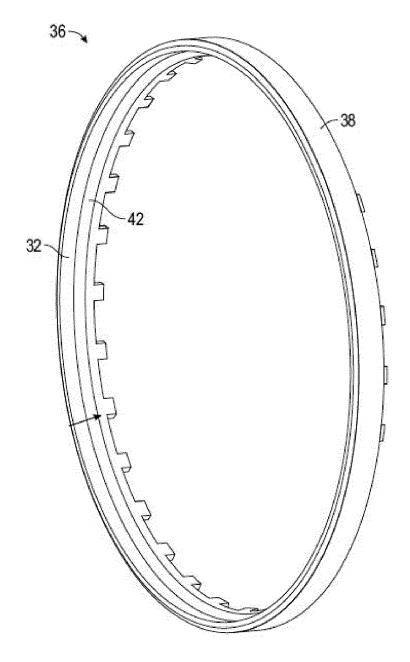
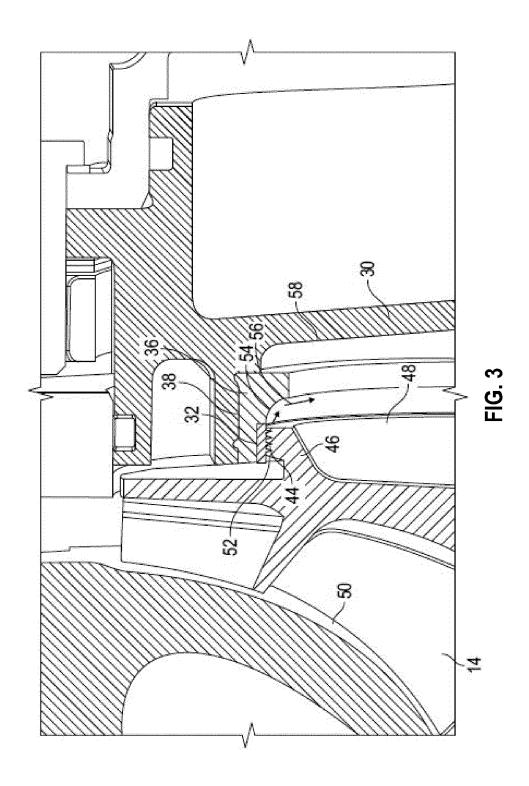



FIG. 2

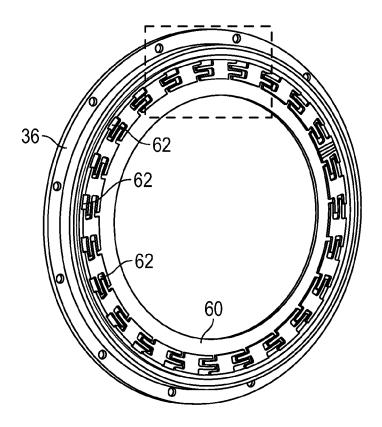


FIG. 4

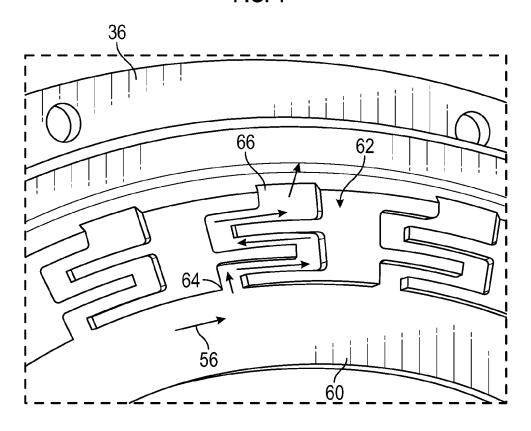


FIG. 5

DOCUMENTS CONSIDERED TO BE RELEVANT

EP 3 992 467 A1 (HAMILTON SUNDSTRAND CORP

Citation of document with indication, where appropriate,

of relevant passages

Category

Е

EUROPEAN SEARCH REPORT

Application Number

EP 22 15 6825

CLASSIFICATION OF THE APPLICATION (IPC)

INV.

to claim

1-15

5

10

15

20

25

30

35

40

45

50

55

X:p Y:p dt O:r P:ii	The present search report has been place of search The Haque	n drawn up for all claims Date of completion of the search 30 June 2022	Lov	Examiner
				TECHNICAL FIELDS SEARCHED (IPC) F04D F16J F01D
x	JP 6 777400 B2 (MITSU MITSUBISHI HEAVY IND 28 October 2020 (2020 * abstract * * figure 5 *	COMPRESSOR CORP)	1	
x	US 4 152 092 A (SWEAR 1 May 1979 (1979-05-0 * column 2, line 65 - * figures 1-2 *	1)	1,2,4-9, 11-15	F16J15/447 F01D11/02
	[US]) 4 May 2022 (202 * paragraph [0025] - ; * figures 1-5 *			F04D29/16 F04D29/42 F04D17/10

EP 4 043 736 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 22 15 6825

5

55

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-06-2022

Publication

date

04-05-2022

05-05-2022

24-06-1980

01-05-1979

28-10-2020 17-08-2017

24-06-2021

17-08-2017

10		Patent document cited in search report			Publication date	Patent family member(s)			
		EP	3992467	A 1	04-05-2022	EP US	3992 4 67 2022136516		
15		us	4152092	А	01-05-1979	CA US			
20		JP	6777400	B2	28-10-2020		6777400 : 2017141691 : 2021190077 :	A A1	
25									
30									
35									
40									
45									
50									
	1 P0459								

On the European Patent Office, No. 12/82

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82