Background of the Invention
[0001] The present invention relates generally to crash impact attenuators, and more particularly
to motor vehicle and highway barrier crash impact attenuators comprising fixed systems
protecting leading edges of abutments and other fixed roadside hazards. A prior art
crash attenuator is known from
EP 1 706 544 B1.
[0002] Vehicular accidents on the highway are a major worldwide problem and are undoubtedly
one of the largest causes of economic and human loss and suffering inflicted on the
developed world today. In an effort to alleviate, in particular, the human toll of
these tragic accidents, guardrails, crash cushions, truck-mounted crash attenuators,
crash barrels, and the like have been developed to attenuate the impact of the vehicle
with a rigid immovable obstacle, such as a bridge abutment.
[0003] A crash attenuator of the type described must absorb the vehicle impact energy without
exceeding limits on the vehicle deceleration. In addition, it must accommodate both
heavy and light weight vehicles. The lightest vehicle will set the limit on the maximum
force produced by the attenuator and the heavy vehicle - which will experience a lower
deceleration, and thus will determine the total impact deformation required. The force
cannot exceed the light vehicle limit and therefore the initial force and deceleration
is low, limiting the energy absorption. Increasing crash resistance as the vehicle
"rides down" from its impact speed to zero is a vitally important feature of a crash
attenuator system which meets rigid governmental safety standards. The present invention
accomplishes this objective in an innovative, inexpensive, and very simple, but effective,
manner.
[0004] The invention, together with additional features and advantages thereof, may best
be understood by reference to the following description taken in conjunction with
the accompanying illustrative drawing.
Summary of the Invention
[0005] The present invention comprises, in one exemplary aspect, a crash attenuator system
for deployment in front of a fixed structure, such as a bridge abutment. The system
comprises a rail extending along a length of the crash attenuator system, a plurality
of diaphragms initially disposed in spaced relation along the length of the rail,
each of the plurality of diaphragms having a base end adapted to be movably engaged
with the rail, so that when a front end of the crash attenuator system receives an
impact force from an errant vehicle, a first one of the plurality of diaphragms moves
rearwardly along the rail and impacts a second one of the plurality of diaphragms
so that both the first and second ones of the plurality of diaphragms move further
rearwardly along the rail, this process continuing with additional ones of the plurality
of diaphragms until the impact forces have been fully attenuated. The system further
comprises a tearing member on the crash attenuator system which is adapted to engage
material forming a tearable member of the crash attenuator system, the tearing member
and the tearable member being relatively movable when an impact force strikes the
crash attenuator system so that the tearing member tears the tearable member, thereby
increasing attenuation of the impact force.
[0006] The tearing member comprises a bolt, and is disposed on one of the plurality of diaphragms,
such as on a base end of the first one of the plurality of diaphragms. The tearing
member may comprise a plurality of tearing members.
[0007] The center rail extends along at least a portion of the length of the crash attenuator
and includes a plurality of holes disposed therein, the plurality of holes extending
along a length of the center rail and spaced lengthwise from one another. The bolt
is engaged with one of the plurality of holes so that when an impact force is applied
to the crash attenuator, relative motion occurs between the tearable member and the
tearing member so that the relative motion causes the bolt to tear the material between
adjacent ones of the plurality of holes, thereby creating a continuous slot, the tearing
of the material functioning to attenuate the impact force.
[0008] In some embodiments of the invention, the holes are not evenly spaced along the length
of the tearable member having the plurality of holes disposed therein. For example,
adjacent ones of the plurality of holes nearer to one of the front and back ends of
the crash attenuator may be more closely spaced than adjacent ones of the plurality
of holes closer to the other of the front and back ends of the crash attenuator. In
some circumstances, the plurality of holes are not uniform in size, respective to
one another. For example, in the illustrated embodiment, the frontmost ones of the
plurality of holes may be larger and more elongated than those of the plurality of
holes which are located closer to the back end of the crash attenuator, though the
directional orientation may be reversed depending upon application and desired attenuation
characteristics.
[0009] In still other variants, the material forming the tearable member may be thinner
toward one of the front and back ends of the crash attenuator, and thicker toward
the other of the front and back ends of the crash attenuator. In any or all of the
embodiments and variants discussed above, which may be utilized singly or in various
combinations, the tearable member may comprise a plurality of stages as it extends
from one of the front and back ends of the crash attenuator toward the other end of
the front and back ends of the crash attenuator, wherein a first stage toward one
of the front and back ends of the crash attenuator is softer than a second stage toward
the other of the front and back ends of the crash attenuator.
[0010] In illustrated embodiments, the one of the front and back ends of the crash attenuator
is the front end of the crash attenuator and the other of the first and second ends
of the crash attenuator is the back end of the crash attenuator.
[0011] The first stage may be softer because the material forming the first stage is thinner
than the material forming the second stage. The first stage may also be softer because
the holes of the plurality of holes which are disposed in the first stage are closer
together than the holes of the plurality of holes which are disposed in the second
stage. The first stage may be softer, as well, because the holes of the plurality
of holes which are disposed in the first stage are larger in size than the holes of
the plurality of holes which are disposed in the second stage.
[0012] According to the present invention, the rail comprises first and second outer rails
spaced apart in a widthwise direction, and the tearable member comprises said center
rail. A plurality of fender panels are disposed along each side of the crash attenuator
along its length, wherein frontmost ones of the plurality of fender panels are adapted
to slide alongside of rearmost ones of the plurality of fender panels when the crash
attenuator is impacted by a vehicle. A nose box is disposed at the frontmost end of
the crash attenuator. The tearable member is stationary and the tearing member moves
responsive to the impact force, in particular embodiments, though this may also vary,
depending upon design goals.
[0013] In another aspect of the disclosure, there is provided a crash attenuator system
for deployment in front of a fixed structure, the system comprising a base portion
having a first outer rail extending along a length of the base portion, a second outer
rail spaced from the first outer rail and also extending along a length of the base
portion, and a plurality of spaced cross-members extending across a width of the base
portion and joining the first outer rail to the second outer rail. An upper attenuator
portion comprises a plurality of diaphragms initially disposed in spaced relation
along the length of the base portion. Each of the plurality of diaphragms has a base
end adapted to be movably engaged with each of the first outer rail and the second
outer rail, so that when a front end of the upper attenuator portion receives an impact
force from an errant vehicle, a first one of the plurality of diaphragms moves rearwardly
along the first and second outer rails and impacts a second one of the plurality of
diaphragms, so that both the first and second ones of the plurality of diaphragms
move further rearwardly along the first and second outer rails, this process continuing
with additional ones of the plurality of diaphragms until the impact forces have been
fully attenuated. A tearing member is disposed on the upper attenuator portion, which
is adapted to engage material forming a tearable member of the upper attenuator portion,
the tearing member and the tearable member being relatively movable when an impact
force strikes the crash attenuator system so that the tearing member tears the tearable
member, thereby increasing attenuation of the impact force.
[0014] In yet another aspect of the disclosure, there is disclosed a method of attenuating
a crash impact force imposed by an errant vehicle which would otherwise strike an
immovable object. The method comprises steps of receiving an impact force at a front
end of a crash impact attenuator having a base portion and an upper attenuator portion
and causing one or more members of the upper attenuator portion to move rearwardly
along the base portion responsive to the impact force. A further step is one of causing
a tearing member disposed on the crash impact attenuator to tear tearable material
disposed on the crash impact attenuator as the one or more members of the upper attenuator
portion move rearwardly, wherein tearing of the material acts to attenuate the impact
force.
[0015] In certain variants of the method, the tearing member is a projection disposed on
one of the one or more members of the upper attenuator portion, which is initially
engaged with a hole formed in the tearable material. There are a plurality of holes
in the tearable material, arranged longitudinally in spaced relation, and the tearing
step comprises tearing the tearable material between the initially engaged hole and
an adjacent one of the plurality of holes, to form a slot. The one or more members
of the upper attenuator portion comprise one or more diaphragms, and the tearable
material comprises a rail forming a part of the base portion.
[0016] The invention, together with additional features and advantages thereof, may best
be understood by reference to the following description taken in conjunction with
the accompanying illustrative drawings.
Brief Description of the Drawings
[0017]
Fig. 1 is an isometric view of an exemplary embodiment of a crash attenuator constructed
in accordance with the principles of the present invention, disposed in a deployed
orientation;
Fig. 2 is an isometric view similar to Fig. 1, wherein the crash attenuator is in
a partially compressed orientation, illustrating the crash attenuator with an inventive
tearing member removed so tearing does not occur and the holes or apertures in the
center rail are visible;
Fig. 2a is an isometric view similar to Fig. 2 wherein the inventive tearing member
is present and tearing of the forward apertures 38 has occurred to attenuate the impact
forces;
Fig. 3 is an isometric view similar to Figs. 1 and 2, wherein the crash attenuator
is in a fully compressed orientation, but the inventive tearing member has been removed
so that tearing does not occur and the holes or apertures in the center rail are visible;
Fig. 3a is an isometric view similar to Fig. 3 wherein the inventive tearing member
is present and tearing of the forward apertures 38 has occurred to attenuate the impact
forces; and
Fig. 4 is a rearward looking view from the front end of the crash attenuator.
Description of the Preferred Embodiment
[0018] Referring now more particularly to the drawings, Figs. 1-4 illustrate an exemplary
embodiment of a fixed crash impact attenuator system 10 of the type discussed above,
wherein the design is sacrificial, in that it is intended for a single impact only,
after which it is replaced. Thus, it is designed to be relatively inexpensive and
simple in design and construction, yet highly effective in protecting the occupants
of vehicles striking the attenuator. In the following, one inch corresponds to 2,54
cm and one foot corresponds to 30,48 cm.
[0019] Design considerations for the system 10 are that it meets U.S. federal TL (Test Level)
-3 crash attenuation specifications, that it is narrow in profile, bidirectional capable,
MASH (Manual for Assessing Safety Hardware) compliant, inexpensive, and free-standing
(does not need to butt to rigid object, although it can, of course). The system is
of a simple design and easy to manufacture (materials are standard sizes and shapes
and fender panels are standard Thrie Beam-based), easy to assemble, and ships as a
complete assembly. The base is the drill template, and anchor holes can be drilled
with the unit 10 assembled. The length of the unit is designed, in an exemplary embodiment,
is approximately 20-24 feet. Its width is 32 inches or less, which permits the units
10 to be shipped three-wide on a truck. The height is 32 to 36 inches. The unit 10
may be anchored to concrete, asphalt, or a hybrid of both, and it is anchored using
standard anchors and adhesives. It is suitable for use in temperatures ranging from
-40 degrees to 150+ degrees F.
[0020] In the illustrated exemplary embodiment, the system 10 comprises a base portion 12
having a ladder frame design, comprising a plurality of cross members 14 supporting
first and second outer rails 16 and 18, respectively, as well as a center rail 20.
The cross members 14 include anchor holes 22 for anchoring the base to the ground
using bolt anchors or other suitable mechanical fasteners. In some instances, adhesive
may be used instead or as well. The anchor holes 22, in the illustrated embodiment,
are spaced along a length of each cross member 14, both outside of and within the
first and second outer rails 16, 18.
[0021] The system 10 further includes an upper attenuator portion 24, which comprises a
nose box 26, a plurality of diaphragms 28, and a plurality of fender panels 30. The
nose box 26 may comprise a notice sign 32, and may include a crushable element in
the front, behind the sign 32. The nose box 26 supports loads related to frontal,
side, and angled nose impacts, and is supported on rollers 34, which allow the nose
panel to move rearwardly along the outer rails 16, 18. The rollers 34 are designed
to prevent binding/locking in an angled nose impact. As the nose box 26 moves rearwardly
after a vehicular impact, attenuation may be activated.
[0022] The diaphragms 28 are disposed in spaced relation behind the nose box 26. They are
made from standard shapes and sizes and have cross braces sized for loads. Each cross
brace is positioned for ease of assembly of the fender panels 30. Each diaphragm 28
is slidably mounted at their base ends 36 on each side to the outer rails 16, 18,
as illustrated.
[0023] The fender panels 30 are standard in construction, being a standard Thrie beam panel,
preferably fabricated of 10 or 12-gauge steel. When a vehicular impact occurs, and
the attenuator is compacted, as shown successively in Figs. 2, 2a and 3, 3a, the fender
panels 30 are preferably designed to nest or double over one another in a sliding
pattern, as illustrated in the drawings. The length of the fender panels 30 is determined
by loads in side impacts, and panels are preferably designed to be common and interchangeable
where possible. Bolts secure the foremost fender panel 30 to the nose box 26, and
also secure the fender panels to the diaphragms 28. The rear of the panels 30 are
secured by clips, rather than slots, in illustrated embodiments, though other attachment
methods may be used. The system 10 is designed for standard Thrie beam transition
pieces.
[0024] The steel forming the fender panels may be galvanized, and may be A36, A513, or A517,
for example.
[0025] Various approaches for attenuating the crash/impact forces are within the scope of
the disclosure.
[0026] For example, ripper plates may be used, with varied and staged thicknesses and shapes
to stage attenuation, laser/plasma cut patterns to stage attenuation, or a cutter
located on the nose box 26, for example. Shearing bolts may be used, comprising double
shear approaches or a cutter on the nose box 26, for example. Failing wire rope sections,
comprising wire rope loops being pulled to failure, kinking of tube arches, cartridges
with honeycomb (aluminum, steel, or plastic), crushable foam-filled cartridges, sand-filled
cartridges, pea gravel filled cartridges, water-filled cartridges, cartridges filled
with glass beads in oil, drawing a metal strip through offset rollers, a friction
brake on a wire rope, a friction brake on bar stock, or velocity magnetics (magnetic
attenuation) are all potential possibilities.
[0027] An attenuation approach which is illustrated in Figs. 1-4 involves the center rail
20. As illustrated, the rail 20 is fixedly mounted to the cross members 14 of the
base portion 12, in an upright orientation. As shown in Figs. 2a and 3a, a plurality
of holes or apertures 38 are disposed in spaced relation along a length of the rail
20.
[0028] Attenuation occurs as the upper attenuator portion 24 moves rearwardly upon impact
by a vehicle, thus absorbing impact energy from the crash, and this attenuation capability
is greatly enhanced by the employment of one or more inventive shear bolt or tearing
member 40 (Figs. 2b, 3b, and 4), which extends from the attenuator portion 24, and
engages the holes 38. It should be noted, at this point, that Figs. 2a, 3a are illustrated
with the tearing member 40 removed, so that the holes 38 are shown, whereas Figs.
2b, 3b show the crash attenuator with the tearing member 40 in place, as would be
the case in an actual installation. It should also be noted that the terms "tear",
"rip", "shear", "slice", "cut", and the like are used interchangeably throughout this
application to identify any process by which a slit is created in material to dissipate
and attenuate impact energy. The terms "tear", "tearing", "tearable" and the like
are used herein and in the appended claims as stand-ins for any of the above mentioned
terms for creating a lengthwise slit in a crash attenuator component to attenuate
impact energy, and are intended to be broad enough in scope to include any of these
terms.
[0029] In the illustrated embodiment, the tearing member 40 is disposed on the frontmost
diaphragm 28, as shown, but it is within the scope of the invention to employ a plurality
of tearing members 40, spaced widthwise on one diaphragm 28 to tear corresponding
structural members like rail 20, or opposing sides of the rail 20, or, alternatively,
to employ one or more tearing members 40 on more than one of the plurality of diaphragms
28. As shown in Figs. 2b, 3b, as the attenuator portion 24 moves rearwardly, the holes
38 are ripped by the tearing member 40, thus absorbing much of the crash impact forces
by ripping the material forming the rail 20, between the holes 38, creating a slot
42 in the rail 20. The holes 38 may be tuned to optimize the tearing, and thus attenuation
effect, by changing their spacing in different sections of the rail 20, and/or by
changing the size of the holes. For example, the holes 38 may be more closely spaced
in front portions of the rail 20, and may also be more elongated, to make the rail
"softer" when crushed, whereas the holes 38 in more rearward portions of the rail
20 may be smaller and less elongated, and farther spaced apart, in order to make these
portions of the attenuator "harder" when crushed, to attenuate higher forces. Additionally,
if desired, the rail 20 may be made of thinner material (gauge) in the forward sections,
and thicker material (gauge) in the rearward sections, for similar reasons. This adds
to the "tuning" of the rail 20. Also, if desired, the material of the rail itself
might be changed as the attenuator travels along the rail from front to rear, from
one stage to the next. Of course, though in the illustrated embodiment it is desired
that the softer portions be forward and the harder portions be rearward, differing
design considerations may dictate a different orientation, such as softer portions
being rearward and harder portions being forward.
[0030] The diaphragms 28 serve to transfer the load of a side impact from the diaphragm
to the pavement, through the cross members 14 and anchors 22. This anchoring to the
pavement makes the pavement itself a structural member for the attenuator system 10.
[0031] Thus, important features of the present invention include, for example:
- 1) low cost;
- 2) free standing (not an end treatment - not relying on the structure being shielded
for structural support);
- 3) easy assembly - a 20 ft. assembly may be trucked to the site and easily bolted
to the ground - standard material lengths make for easier shipping;
- 4) tunability may be altered to adapt to different crash standards and applications.
[0032] Accordingly, although an exemplary embodiment of the invention has been shown and
described, it is to be understood that all the terms used herein are descriptive rather
than limiting, and that many changes, modifications, and substitutions may be made
by one having ordinary skill in the art without departing from the scope of the appended
claims.
1. A crash attenuator system (10) for deployment in front of a fixed structure, the system
comprising:
first and second outer rails (16, 18) spaced apart in a widthwise direction and extending
along a length of the crash attenuator system;
a center rail (20); and
a plurality of diaphragms (28) initially disposed in spaced relation along the length
of the first and second outer rails, each of the plurality of diaphragms having a
base end (36) adapted to be movably engaged with the first and second outer rails,
so that when a front end of the crash attenuator system receives an impact force from
an errant vehicle, a first one of the plurality of diaphragms moves rearwardly along
the first and second outer rails and impacts a second one of the plurality of diaphragms
so that both the first and second ones of the plurality of diaphragms move further
rearwardly along the first and second outer rails, this process continuing with additional
ones of the plurality of diaphragms until the impact forces have been fully attenuated;
and characterized in that the system comprises:
a bolt (40) on one of the plurality of diaphragms which is adapted to engage material
forming the center rail (20) of the crash attenuator system, the bolt and the center
rail being relatively movable when an impact force strikes the crash attenuator system
so that the bolt tears the center rail, thereby increasing attenuation of the impact
force, the center rail being tuned to optimize the tearing of the center rail;
wherein the center rail extends along at least a portion of the length of the crash
attenuator and includes a plurality of holes (38) disposed therein, the plurality
of holes extending along a length of the center rail and spaced lengthwise from one
another, the bolt being engaged with one of the plurality of holes so that when an
impact force is applied to the crash attenuator, relative motion occurs between the
center rail and the bolt so that the relative motion causes the bolt to tear the material
between adjacent ones of the plurality of holes, thereby creating a continuous slot
(42), the tearing of the material functioning to attenuate the impact force.
2. The crash attenuator system as recited in Claim 1, wherein the bolt is disposed on
a base end of the first one of the plurality of diaphragms.
3. The crash attenuator as recited in Claim 1, wherein the bolt comprises a plurality
of bolts.
4. The crash attenuator as recited in Claim 1, wherein the center rail is tuned by arranging
the plurality of holes so that the plurality of holes are not evenly spaced along
the length of the center rail.
5. The crash attenuator as recited in Claim 1, wherein adjacent ones of the plurality
of holes nearer to one of the front and back ends of the crash attenuator are more
closely spaced than adjacent ones of the plurality of holes closer to the other of
the front and back ends of the crash attenuator.
6. The crash attenuator as recited in Claim 1, wherein the center rail is tuned by arranging
the holes so that the plurality of holes are not uniform in size, respective to one
another.
7. The crash attenuator as recited in Claim 5, wherein ones of the plurality of holes
nearer to the one of the front and back ends of the crash attenuator are larger and
more elongated than those of the plurality of holes which are located closer to the
other of the front and back ends of the crash attenuator.
8. The crash attenuator as recited in Claim 1, wherein the center rail is tuned so that
the material forming the center rail is thinner toward one of the front and back ends
of the crash attenuator, and thicker toward the other of the front and back ends of
the crash attenuator.
9. The crash attenuator as recited in Claim 1, wherein the center rail is tuned by comprising
the center rail of a plurality of stages as it extends from one of the front and back
ends of the crash attenuator toward the other of the first and second ends of the
crash attenuator, wherein a first stage toward the one of the front and back ends
of the crash attenuator is softer than a second stage toward the other of the first
and second ends of the crash attenuator.
10. The crash attenuator as recited in Claim 9, wherein the one of the front and back
ends of the crash attenuator is the front end of the crash attenuator and the other
of the first and second ends of the crash attenuator is the back end of the crash
attenuator.
11. The crash attenuator as recited in Claim 9, wherein the first stage is softer because
the material forming the first stage is thinner than the material forming the second
stage.
12. The crash attenuator as recited in Claim 9, wherein the first stage is softer because
the holes of the plurality of holes which are disposed in the first stage are closer
together than the holes of the plurality of holes which are disposed in the second
stage.
13. The crash attenuator as recited in Claim 9, wherein the first stage is softer because
the holes of the plurality of holes which are disposed in the first stage are larger
in size than the holes of the plurality of holes which are disposed in the second
stage.
14. The crash attenuator as recited in Claim 1, and further comprising a plurality of
fender panels (30) disposed along each side of the crash attenuator along its length,
wherein frontmost ones of the plurality of fender panels are adapted to slide alongside
of rearmost ones of the plurality of fender panels when the crash attenuator is impacted
by a vehicle.
15. The crash attenuator as recited in Claim 1, wherein the center rail is stationary
and the tearing member moves responsive to the impact force.
1. Aufpralldämpfersystem (10) zum Einsatz vor einer festen Struktur, wobei das System
Folgendes umfasst:
eine erste und zweite äußere Schiene (16, 18), die in einer Breitenrichtung beabstandet
sind und sich entlang einer Länge des Aufpralldämpfersystems erstrecken;
eine Mittelschiene (20); und
eine Vielzahl von Membranen (28), die anfänglich in einer beabstandeten Beziehung
entlang der Länge der ersten und zweiten äußeren Schiene angeordnet sind, wobei jede
der Vielzahl von Membranen ein Basisende (36) aufweist, das angepasst ist, um bewegbar
mit der ersten und zweiten äußeren Schiene in Eingriff zu treten, sodass, wenn ein
vorderes Ende des Aufpralldämpfersystems eine Aufprallkraft von einem fehlgeleiteten
Fahrzeug empfängt, sich eine erste aus der Vielzahl von Membranen entlang der ersten
und zweiten äußeren Schiene nach hinten bewegt und auf eine zweite aus der Vielzahl
von Membranen trifft, sodass sich sowohl die erste als auch die zweite aus der Vielzahl
von Membranen entlang der ersten und zweiten äußeren Schiene weiter nach hinten bewegen,
wobei dieser Prozess mit zusätzlichen aus der Vielzahl von Membranen fortgesetzt wird,
bis die Aufprallkräfte vollständig gedämpft wurden; und dadurch gekennzeichnet, dass das System Folgendes umfasst:
einen Bolzen (40) an einer der Vielzahl von Membranen, der angepasst ist, um in Material
einzugreifen, das die Mittelschiene (20) des Aufpralldämpfersystems bildet, wobei
der Bolzen und die Mittelschiene relativ bewegbar sind, wenn eine Aufprallkraft auf
das Aufpralldämpfersystem auftrifft, sodass der Bolzen die Mittelschiene zerreißt,
wodurch die Dämpfung der Aufprallkraft erhöht wird, wobei die Mittelschiene abgestimmt
ist, um das Zerreißen der Mittelschiene zu optimieren;
wobei sich die Mittelschiene entlang mindestens eines Abschnitts der Länge des Aufpralldämpfers
erstreckt und eine Vielzahl von darin angeordneten Löchern (38) beinhaltet, wobei
sich die Vielzahl von Löchern entlang einer Länge der Mittelschiene erstreckt und
in Längsrichtung voneinander beabstandet ist, wobei der Bolzen mit einem aus der Vielzahl
von Löchern in Eingriff steht, sodass, wenn eine Aufprallkraft auf den Aufpralldämpfer
aufgebracht wird, eine relative Bewegung zwischen der Mittelschiene und dem Bolzen
auftritt, sodass die relative Bewegung bewirkt, dass der Bolzen das Material zwischen
benachbarten aus der Vielzahl von Löchern zerreißt, wodurch ein kontinuierlicher Schlitz
(42) erzeugt wird, wobei das Zerreißen des Materials dazu dient, die Aufprallkraft
zu dämpfen.
2. Aufpralldämpfersystem nach Anspruch 1, wobei der Bolzen an einem Basisende der ersten
der Vielzahl von Membranen angeordnet ist.
3. Aufpralldämpfer nach Anspruch 1, wobei der Bolzen eine Vielzahl von Bolzen umfasst.
4. Aufpralldämpfer nach Anspruch 1, wobei die Mittelschiene durch Anordnen der Vielzahl
von Löchern abgestimmt ist, sodass die Vielzahl von Löchern nicht gleichmäßig entlang
der Länge der Mittelschiene beabstandet ist.
5. Aufpralldämpfer nach Anspruch 1, wobei benachbarte der Vielzahl von Löchern, die sich
näher an einem von dem vorderen und hinteren Ende des Aufpralldämpfers befinden, enger
beabstandet sind als benachbarte der Vielzahl von Löchern, die sich näher an dem anderen
von dem vorderen und hinteren Ende des Aufpralldämpfers befinden.
6. Aufpralldämpfer nach Anspruch 1, wobei die Mittelschiene durch Anordnen der Löcher
abgestimmt ist, sodass die Vielzahl von Löchern jeweils bezogen aufeinander keine
gleichmäßige Größe aufweist.
7. Aufpralldämpfer nach Anspruch 5, wobei einzelne der Vielzahl von Löchern, die sich
näher an dem einen von dem vorderen und hinteren Ende des Aufpralldämpfers befinden,
größer und ausgedehnter sind als diejenigen der Vielzahl von Löchern, die sich näher
an dem anderen von dem vorderen und hinteren Ende des Aufpralldämpfers befinden.
8. Aufpralldämpfer nach Anspruch 1, wobei die Mittelschiene abgestimmt ist, sodass das
Material, das die Mittelschiene bildet, in Richtung eines von dem vorderen und hinteren
Ende des Aufpralldämpfers dünner und in Richtung des anderen von dem vorderen und
hinteren Ende des Aufpralldämpfers dicker ist.
9. Aufpralldämpfer nach Anspruch 1, wobei die Mittelschiene abgestimmt ist, indem sie
die Mittelschiene einer Vielzahl von Stufen umfasst, wenn sie sich von einem von dem
vorderen und hinteren Ende des Aufpralldämpfers in Richtung des anderen von dem ersten
und zweiten Ende des Aufpralldämpfers erstreckt, wobei eine erste Stufe in Richtung
des einen von dem vorderen und hinteren Ende des Aufpralldämpfers weicher ist als
eine zweite Stufe in Richtung des anderen von dem ersten und zweiten Ende des Aufpralldämpfers.
10. Aufpralldämpfer nach Anspruch 9, wobei das eine von dem vorderen und hinteren Ende
des Aufpralldämpfers das vordere Ende des Aufpralldämpfers ist und das andere von
dem ersten und zweiten Ende des Aufpralldämpfers das hintere Ende des Aufpralldämpfers
ist.
11. Aufpralldämpfer nach Anspruch 9, wobei die erste Stufe weicher ist, da das die erste
Stufe bildende Material dünner als das die zweite Stufe bildende Material ist.
12. Aufpralldämpfer nach Anspruch 9, wobei die erste Stufe weicher ist, da die Löcher
der Vielzahl von Löchern, die in der ersten Stufe angeordnet sind, näher beieinander
liegen als die Löcher der Vielzahl von Löchern, die in der zweiten Stufe angeordnet
sind.
13. Aufpralldämpfer nach Anspruch 9, wobei die erste Stufe weicher ist, da die Löcher
der Vielzahl von Löchern, die in der ersten Stufe angeordnet sind, größer sind als
die Löcher der Vielzahl von Löchern, die in der zweiten Stufe angeordnet sind.
14. Aufpralldämpfer nach Anspruch 1, und ferner umfassend eine Vielzahl von Kotflügelplatten
(30), die entlang jeder Seite des Aufpralldämpfers entlang seiner Länge angeordnet
sind, wobei die vordersten der Vielzahl von Kotflügelplatten angepasst sind, um entlang
der hintersten der Vielzahl von Kotflügelplatten zu gleiten, wenn ein Fahrzeug auf
den Aufpralldämpfer auftrifft.
15. Aufpralldämpfer nach Anspruch 1, wobei die Mittelschiene stationär ist und sich das
Aufreißelement als Reaktion auf die Aufprallkraft bewegt.
1. Système d'atténuateur de collision (10) destiné à être déployé devant une structure
fixe, le système comprenant :
des premier et second rails externes (16, 18) espacés dans une direction de la largeur
et s'étendant le long d'une longueur du système d'atténuateur de collision ;
un rail central (20) ; et
une pluralité de diaphragmes (28) initialement disposés en relation espacée sur la
longueur des premier et second rails externes, chacun de la pluralité de diaphragmes
possédant une extrémité de base (36) adaptée pour être en prise de manière mobile
avec les premier et second rails externes, afin que lorsqu'une extrémité avant du
système d'atténuateur de collision reçoit une force d'impact d'un véhicule errant,
un premier diaphragme de la pluralité de diaphragmes se déplace vers l'arrière le
long des premier et second rails externes et impacte un second diaphragme de la pluralité
de diaphragmes afin que les premier et second diaphragmes de la pluralité de diaphragmes
se déplacent davantage vers l'arrière le long des premier et second rails externes,
ce processus se poursuivant avec des diaphragmes supplémentaires de la pluralité de
diaphragmes jusqu'à ce que les forces d'impact aient été complètement atténuées ;
et caractérisé en ce que le système comprend :
un boulon (40) sur l'un de la pluralité de diaphragmes qui est adapté pour se mettre
en prise avec le matériau formant le rail central (20) du système d'atténuateur de
collision, le boulon et le rail central étant relativement mobiles lorsqu'une force
d'impact frappe le système d'atténuateur de collision afin que le boulon déchire le
rail central, augmentant ainsi l'atténuation de la force d'impact, le rail central
étant réglé pour optimiser la déchirure du rail central ;
ledit rail central s'étendant sur au moins une partie de la longueur de l'atténuateur
de collision et comprenant une pluralité de trous (38) disposés dans celui-ci, la
pluralité de trous s'étendant sur une longueur du rail central et espacés longitudinalement
les uns des autres, le boulon étant en prise avec l'un de la pluralité de trous afin
que lorsqu'une force d'impact est appliquée à l'atténuateur de collision, un mouvement
relatif se produise entre le rail central et le boulon afin que le mouvement relatif
amène le boulon à déchirer le matériau entre des trous adjacents de la pluralité de
trous, créant ainsi une fente continue (42), la déchirure du matériau fonctionnant
pour atténuer la force d'impact.
2. Système d'atténuateur de collision selon la revendication 1, ledit boulon étant disposé
sur une extrémité de base du premier diaphragme de la pluralité de diaphragmes.
3. Atténuateur de collision selon la revendication 1, ledit boulon comprenant une pluralité
de boulons.
4. Atténuateur de collision selon la revendication 1, ledit rail central étant réglé
en agençant la pluralité de trous afin que la pluralité de trous ne soient pas espacés
uniformément sur la longueur du rail central.
5. Atténuateur de collision selon la revendication 1, lesdits trous adjacents de la pluralité
de trous plus proches de l'une des extrémités avant et arrière de l'atténuateur de
collision étant plus étroitement espacés que les trous adjacents de la pluralité de
trous plus proches de l'autre des extrémités avant et arrière de l'atténuateur de
collision.
6. Atténuateur de collision selon la revendication 1, ledit rail central étant réglé
en agençant les trous afin que la pluralité de trous ne soient pas de taille uniforme,
les uns par rapport aux autres.
7. Atténuateur de collision selon la revendication 5, lesdits trous de la pluralité de
trous plus proches de l'une des extrémités avant et arrière de l'atténuateur de collision
étant plus grands et plus allongés que ceux de la pluralité de trous qui sont situés
plus proches de l'autre des extrémités avant et arrière de l'atténuateur de collision.
8. Atténuateur de collision selon la revendication 1, ledit rail central étant réglé
afin que le matériau formant le rail central soit plus mince vers l'une des extrémités
avant et arrière de l'atténuateur de collision, et plus épais vers l'autre des extrémités
avant et arrière de l'atténuateur de collision.
9. Atténuateur de collision selon la revendication 1, ledit rail central étant réglé
en comprenant le rail central d'une pluralité d'étages tandis qu'il s'étend à partir
de l'une des extrémités avant et arrière de l'atténuateur de collision vers l'autre
des première et seconde extrémités de l'atténuateur de collision, un premier étage
vers l'une des extrémités avant et arrière de l'atténuateur de collision étant plus
tendre qu'un second étage vers l'autre des première et seconde extrémités de l'atténuateur
de collision.
10. Atténuateur de collision selon la revendication 9, l'une des extrémités avant et arrière
de l'atténuateur de collision étant l'extrémité avant de l'atténuateur de collision
et l'autre des première et seconde extrémités de l'atténuateur de collision étant
l'extrémité arrière de l'atténuateur de collision.
11. Atténuateur de collision selon la revendication 9, ledit premier étage étant plus
tendre parce que le matériau formant le premier étage est plus mince que le matériau
formant le second étage.
12. Atténuateur de collision selon la revendication 9, ledit premier étage étant plus
tendre parce que les trous de la pluralité de trous qui sont disposés dans le premier
étage sont plus proches les uns des autres que les trous de la pluralité de trous
qui sont disposés dans le second étage.
13. Atténuateur de collision selon la revendication 9, ledit premier étage étant plus
tendre parce que les trous de la pluralité de trous qui sont disposés dans le premier
étage sont plus grands que les trous de la pluralité de trous qui sont disposés dans
le second étage.
14. Atténuateur de collision selon la revendication 1, et comprenant en outre une pluralité
de panneaux de protection (30) disposés le long de chaque côté de l'atténuateur de
collision sur sa longueur, lesdits panneaux de protection les plus à l'avant de la
pluralité de panneaux de protection étant adaptés pour glisser le long des panneaux
de protection les plus à l'arrière de la pluralité de panneaux de protection lorsque
l'atténuateur de collision est heurté par un véhicule.
15. Atténuateur de collision selon la revendication 1, ledit rail central étant fixe et
ledit élément de déchirure se déplaçant en réponse à la force d'impact.