(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 31.08.2022 Bulletin 2022/35

(21) Application number: 20919172.5

(22) Date of filing: 23.06.2020

(51) International Patent Classification (IPC):

C07K 19/00 (2006.01) C12N 15/09 (2006.01)

A61K 39/215 (2006.01) A61P 31/14 (2006.01)

(86) International application number: **PCT/CN2020/097775**

(87) International publication number: WO 2021/159648 (19.08.2021 Gazette 2021/33)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 10.02.2020 CN 202010085038

(71) Applicant: Institute of Microbiology of Chinese
Academy of Science
Beijing 100101 (CN)

(72) Inventors:

 DAI, Lianpan Beijing 100101 (CN)

 YAN, Jinghua Beijing 100101 (CN) GAO, Fu Beijing 100101 (CN)

LI, Yan
 Beijing 100101 (CN)

 ZHENG, Tianyi Beijing 100101 (CN)

 XU, Kun Beijing 100101 (CN)

 LIU, Mei Beijing 100101 (CN)

 AN, Yaling Beijing 100101 (CN)

SHI, Yi
 Beijing 100101 (CN)

(74) Representative: LLR11 boulevard de Sébastopol75001 Paris (FR)

(54) BETA-CORONAVIRUS ANTIGEN, PREPARATION METHOD THEREFOR AND USE THEREOF

(57)The embodiments of the present disclosure relate to antigens of β -coronaviruses, preparation methods and uses thereof. The amino acid sequence of the antigen of the β-coronavirus includes an amino acid sequence arranged in a (A-B)-(A-B) pattern or an amino acid sequence arranged in a (A-B)-C-(A-B) pattern or an amino acid sequence arranged in a (A-B)-(A-B') pattern or an amino acid sequence arranged in a (A-B)-C-(A-B') pattern. The antigen of the β-coronavirus has a single-chain dimer structure. A single-chain dimer expressed according to examples of the present disclosure is stable in content and has excellent immunogenicity as an antigen of a β-coronavirus, and a vaccine prepared by using the single-chain dimer as an antigen of a β -coronavirus can elicit high-titer neutralizing antibodies in mice.

MERS-CoV-RBD dimer (E367-Y606)



FIG. 8

Description

CROSS-REFERENCE

[0001] This application claims priority to Chinese Patent Application No. CN202010085038.9 filed with China National Intellectual Property Administration, entitled "ANTIGENS OF β - CORONAVIRUSES, PREPARATION METHODS AND USES THEREOF", which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

10

15

20

30

35

40

45

50

55

[0002] The present disclosure relates to the field of biomedical technology, and in particular, to antigens of β -coronaviruses, preparation methods and uses thereof.

BACKGROUND ART

[0003] Coronaviruses, belonging to the coronavirus genera of the family *Coronaviridae*, are positive-strand enveloped RNA viruses, the genome of which is the largest among all RNA viruses. Both animals and humans can be hosts of coronaviruses. Coronaviruses mainly infect the respiratory tracts and digestive tracts of mammals and birds, and seven kinds of coronaviruses are currently known to infect humans, including four (HCoV-229E, HCoV-NL63, OC43 and HKU1) that may cause a mild cold. Globally, there are three kinds of coronaviruses imposing the greatest threats to public health, namely severe acute respiratory syndrome coronavirus (SARS-CoV) that broke out in 2002-2003, Middle East respiratory syndrome coronavirus (MERS-CoV) that erupted in 2012 and persisted to date, and a novel coronavirus that broke out in 2019 (2019-nCoV), all of which are β -coronaviruses.

[0004] Middle East Respiratory Syndrome (MERS) is a disease caused by Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection. In June 2012, the first MERS case was found in Saudi Arabia, and a novel coronavirus was isolated from a sputum sample of the case. This virus was subsequently named MERS-CoV by the coronavirus group of the International Committee on Taxonomy of Viruses. The virus spread in the Middle East and spread to Asia, Africa, Europe and North America. According to WHO statistics, as of October 6, 2015, there were 1,589 infections and 567 deaths worldwide, with a mortality rate of 35.6% (http://www.who.int/entity/emergencies/mers-cov/en/). In particular, the MERS epidemic imported from the Middle East to South Korea in May and June 2015 resulted in 186 infections and 36 deaths. Even one MERS case was imported into China. It brought a serious threat to the global public health system. MERS-CoV virus and SARS virus broke out in 2003 belong to β-Coronavirus subgenus, but they have a higher lethality rate than SARS-CoV. MERS-CoV may spread in the form of aerosol, and thus is difficult to prevent and control. Neutralizing antibodies to MERS-CoV can be detected in the serum of dromedarycamels in many countries in the Middle East, suggesting that dromedary camel, which is an important vehicle in Middle East countries, is an intermediate host for MERS-CoV Therefore, the sporadic MERS-CoV infection of humans in the Middle East has happened frequently since the discovery of MERS-CoV in 2012. As a result, with the increasing frequency of international communications, the risk of MERS spreading around the world has always existed. At present, there are still no vaccines and effective treatments in the world. Thus, it is urgent and important to develop a safe and effective vaccine against MERS-CoV.

[0005] In 2019, there was a case of pneumonia of unknown cause, which was identified as a coronavirus by using an electron microscope, and was temporarily named 2019 novel coronavirus (2019-nCoV), and later named SARS-CoV-2. The novel coronavirus can be transmitted from person to person through respiratory tracts and droplets, as well as through the air and digestive tracts. The source of infection is mainly patients infected with the novel coronavirus, but it is not ruled out that the asymptomatic cases are also the source of transmission. The disease may not occur immediately after infection of the virus, and the incubation period of the virus is relatively long, 1-14 days, which makes it difficult to prevent and control the disease. After entering a human body, the novel coronavirus, enters cells through angiotensin converting enzyme 2 (ACE 2) to infect the human body, causing the patient to have clinical symptoms such as fever, dry cough and muscle pain. Besides, a few of patients may have symptoms such as nasal obstruction, pharyngalgia and diarrhea and severe symptoms in some patients may rapidly progress to acute respiratory distress syndrome, septic shock, metabolic acidosis which is difficult to correct, and coagulation dysfunction, causing life danger. There is no specific drug or vaccine for the moment to prevent this virus, and only symptomatic support treatment is available.

[0006] In addition, some other coronaviruses also cause many serious animal diseases, especially posing a serious threat to agricultural livestock and pets. For instance, transmissible gastroenteritis virus (TGEV) can cause severe diarrhea in pigs with extremely high mortality, and its deletion mutant virus porcine respiratory coronavirus (PRCV) can cause severe respiratory diseases in pigs; feline infectious peritonitis virus (FIPV) can cause peritonitis and ascites aggregation in cats with high mortality; canine coronavirus (CCoV) can cause gastroenteritis symptoms in dogs to varying degrees, which spreads quickly and is difficult to control; and porcine epidemic diarrhea virus (PEDV) causes intestinal diseases such as porcine epidemic diarrhea, which is easy to spread in pigs with high mortality rate. There are also

murine, bovine and other coronaviruses. These coronaviruses pose a serious threat to human and animal health. Therefore, it is of great significance to develop vaccines against coronaviruses.

[0007] The surface spike protein (S protein) is the major neutralizing antigen of a coronavirus. The receptor binding domains (RBD) of the spike proteins (S proteins) of MERS-CoV, SARS-CoV and 2019-nCoV are considered as the most important antigen target domains to induce a body to produce neutralizing antibodies. The RBDs, as vaccines, can focus the neutralizing antibodies generated by body stimulation on the receptor binding of viruses, which can improve the immunogenicity and immune efficiency of the vaccines. MERS-CoV invades a cell by RBD binding to the host cell's receptor (CD26, also known as DPP4). In addition, both SARS-CoV and 2019-nCoV were found to enter a cell via their RBD binding to the host cell receptor hACE2.

[0008] The information disclosed herein is merely intended to provide a better understanding of the general background of the present disclosure and should not be construed as an acknowledgement or an implication in any form that the information constitutes the prior art that is already known to a person skilled in the art.

SUMMARY

10

15

20

30

35

40

50

OBJECTS OF THE DISCLOSURE

[0009] The present disclosure aims to provide antigens of β -coronaviruses, preparation methods and uses thereof. In examples of the present disclosure, based on the conclusion that MERS RBD-dimer protein could better elicit neutralizing antibodies than RBD-monomer protein, it was tried to link two nucleotide sequences encoding the identical or substantially identical RBD-monomer protein in tandem directly or via a linker fragment and to link the two expressed identical or substantially identical RBD-monomer proteins in tandem through the N-terminal and C-terminal flexible regions, and the results showed that the method could realize good expression of a single-chain RBD-dimer. Compared with a non-single-chain RBD-dimer protein formed by simply binding two RBD-monomers through cysteines therein with disulfide bonds, the single-chain RBD-dimer protein obtained in the examples of the present disclosure would not render the content of the RBD-dimer protein unstable in the production process due to unstable formation of the disulfide bonds. That is to say, the expression of most RBD-monomers and few RBD-dimers could be avoided, so that the dimeric RBD could be stably expressed and uniform in form with a greatly improved yield. Compared with the RBD-dimer protein formed by simply binding two RBD monomers through cysteines therein with disulfide bonds, the single-chain dimer expressed in the examples of the present disclosure had equivalent immunogenicity as an antigen of a β -coronavirus, and a vaccine prepared by using the single-chain dimer as the antigen of a β -coronavirus could elicit high-titer neutralizing antibodies in mice.

SOLUTION

[0010] In order to achieve the purpose of the present disclosure, examples of the present disclosure provide the following technical solution:

[0011] An antigen of a β -coronavirus, its amino acid sequence comprises an amino acid sequence arranged in a (A-B)-(A-B) pattern or an amino acid sequence arranged in a (A-B)-C-(A-B) pattern or an amino acid sequence arranged in a (A-B)-C-(A-B') pattern, where A-B represents a partial amino acid sequence or the entire amino acid sequence of a receptor binding domain of a surface spike protein of the β -coronavirus; C represents an amino acid linker sequence; and A-B' represents an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence of A-B. A protein encoded by A-B' has the identical or substantially identical immunogenicity as a protein encoded by A-B, and the antigen of the β -coronavirus has a single-chain dimer structure. Alternatively, the partial amino acid sequence of the receptor binding domain of the surface spike protein of the β -coronavirus is at least 50%, 60%, 70%, 80%, 90%, 95%, or 99% of the entire amino acid sequence of the receptor binding domain of the surface spike protein of the receptor binding domain of the surface spike protein of the receptor binding domain of the surface spike protein of the receptor binding domain of the surface spike protein of the β -coronavirus.

[0012] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, the β -coronavirus includes severe respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and 2019 novel coronavirus (also known as 2019-nCoV or SARS-CoV-2).

[0013] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, the amino acid linker sequence includes a (GGS)_n linker sequence, where n represents the number of GGSs, which is an integer more than or equal to 1; alternatively, n is an integer selected from 1 to 10, and further, an integer selected from 1 to 5; and GGS represents amino acids G, G and S.

[0014] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, when the β -coronavirus is the Middle East respiratory syndrome coronavirus, the partial or entire amino acid sequence of the receptor binding domain of the surface spike protein of the β -coronavirus is any one selected from the group consisting of the following amino acid sequences:

(1) SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3; and

5

10

15

20

25

30

35

40

55

(2) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence (1), where a protein encoded by the amino acid sequence has the identical or substantially identical immunogenicity as a protein encoded by the amino acid sequence (1).

[0015] Alternatively, the partial amino acid sequence of the receptor binding domain of the surface spike protein of the β -coronavirus includes SEQ ID NO: 2.

[0016] The sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 are all derived from a part of the MERS-CoV S protein (GenBank: AFS88936.1 on NCBI), which are E367-Y606 region, E367-N602 region, and V381-L588 region of the RBD of the MERS-CoV S protein, respectively.

[0017] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, when the β -coronavirus is the Middle East respiratory syndrome coronavirus, the amino acid sequence of the antigen of the β -coronavirus includes any one selected from the group consisting of the following amino acid sequences:

- (1) two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by a GGSGGS linker sequence, namely E367-Y606-GGSGGS-E367-Y606;
 - (2) two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by a GGS linker sequence, namely E367-Y606-GGS-E367-Y606;
 - (3) two repeated amino acid sequences of SEQ ID NO: 1 linked directly in tandem, namely E367-Y606-E367-Y606.
 - (4) two repeated amino acid sequences of SEQ ID NO: 2 linked in tandem by a GGS linker sequence, namely E367-N602-GGS-E367-N602;
 - (5) two repeated amino acid sequences of SEQ ID NO: 2 linked directly in tandem by a GGS linker sequence, namely E367-N602-E367-N602;

 - (7) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGSGGSGSGS linker sequence, namely V381-L588-GGSGSGSGSGSGSV381-L588;
 - (8) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGSGGSGGS linker sequence, namely V381-L588-GGSGGSGS-V381-L588;
 - (9) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGS linker sequence, namely V381-L588-GGS-V381-L588; and
 - (10) two repeated amino acid sequence of SEQ ID NO: 3 linked directly in tandem, namely V381-L588-V381-L588;

[0018] Alternatively, the amino acid sequence of the antigen of the β -coronavirus includes two repeated amino acid sequences of SEQ ID NO: 2 linked directly in tandem, namely E367-N602-E367-N602.

[0019] In one possible embodiment of the above-mentioned antigen of the β -coronavirus, when the β -coronavirus is the 2019 novel coronavirus, the partial or entire amino acid sequence of the receptor binding domain of the surface spike protein of the β -coronavirus is any one selected from the group consisting of the following amino acid sequences:

- (1) SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 7; and
- (2) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids to the amino acid sequence (1), where the protein encoded by the amino acid sequence has the identical or substantially identical immunogenicity as the protein encoded by (1).
- 45 [0020] Alternatively, the partial amino acid sequence of the receptor binding domain of the surface spike protein of the β-coronavirus includes SEQ ID NO: 6.
 - **[0021]** The sequences of SEQ ID NO: 5, SEQ ID NO: 6, and SEQ ID NO: 7 are all derived from a part of the S protein sequence of the WH01 strain of 2019-nCoV (GenBank on NCBI: QHR63250), which are R319-S530 region, R319-K537 region, and R319-F541 region of the RBD of the 2019-nCoV S protein, respectively.
- [0022] In one possible embodiment of the above-mentioned antigen of a β-coronavirus, when the β-coronavirus is the 2019 novel coronavirus, the amino acid sequence of the antigen of β-coronavirus includes any one selected from the group consisting of the following amino acid sequences:

two repeated amino acid sequences of SEQ ID NO: 5 linked directly in tandem, namely R319-S530-R319-S530; two repeated amino acid sequences of SEQ ID NO: 6 linked directly in tandem, namely R319-K537-R319-K537; and two repeated amino acid sequences of SEQ ID NO: 7 linked directly in tandem, namely R319-F541-R319-F541.

[0023] Alternatively, the amino acid sequence of the antigen of the β -coronavirus includes two repeated amino acid

sequences of SEQ ID NO: 6 linked directly in tandem, namely R319-K537-R319-K537.

[0024] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, when the β -coronavirus is the severe respiratory syndrome coronavirus, the partial or entire amino acid sequence of the receptor binding domain of the surface spike protein of the β -coronavirus is any one selected from the group consisting of the following amino acid sequences:

(1) SEQ ID NO: 8; and

5

10

15

20

25

30

35

40

45

50

(2) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence (1), where a protein encoded by the amino acid sequence has the identical or substantially identical immunogenicity as a protein encoded by the amino acid sequence (1).

[0025] The sequence of SEQ ID NO: 8 is derived from a part of the S protein sequence of SARS-CoV (GenBank on NCBI: AAR07630), which is R306-Q523 region of the RBD of the SARS-CoV S protein.

[0026] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, when the β -coronavirus is the severe respiratory syndrome coronavirus, the amino acid sequence of the antigen of the β -coronavirus includes two repeated amino acid sequences of SEQ ID NO: 8 linked directly in tandem, namely R306-Q523-R306-Q523.

[0027] In one possible embodiment of the above-mentioned antigen of a β -coronavirus, the nucleotide sequence encoding two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by the GGSGGS linker sequence is shown as SEQ ID NO: 9;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 1 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 10;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 1 linked directly in tandem is shown as SEQ ID NO: 11;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 2 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 12;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 2 linked directly in tandem is shown as SEQ ID NO: 13;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGGS linker sequence is shown as SEQ ID NO: 14;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGI linker sequence is shown as SEQ ID NO: 15;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked in tandem by the GGSGGSGGS linker sequence is shown as SEQ ID NO: 16;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 17;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked directly in tandem is shown as SEQ ID NO: 18;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 5 linked directly in tandem is shown as SEQ ID NO: 19;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 6 linked directly in tandem is shown as SEQ ID NO: 20;

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 7 linked directly in tandem is shown as SEQ ID NO: 21; and

the nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 8 linked directly in tandem is shown as SEQ ID NO: 23.

[0028] The present disclosure also provides a method for preparing the above-mentioned antigen of a β -coronavirus, which includes the following steps: adding a sequence encoding a signal peptide to the 5'-terminal of a nucleotide sequence encoding the antigen of the β -coronavirus, adding a terminator codon to the 3'-terminal for cloning and expression, screening correct recombinants, transfecting the expression system cell for expression, collecting cell supernatants after expression, and purifying to obtain the antigen of the β -coronavirus.

[0029] In one possible embodiment of the above method, the cells of the expression system include mammalian cells, insect cells, yeast cells or bacterial cells. Alternatively, the mammalian cells include 293T cells or CHO cells, and the bacterial cells include *Escherichia coli* cells.

[0030] The present disclosure further provides a nucleotide sequence for encoding the above-mentioned antigen of a β -coronavirus, a recombinant vector including the nucleotide sequence, and an expression system cell including the recombinant vector.

[0031] The present disclosure further provides use of the above-mentioned antigen of a β -coronavirus, the nucleotide sequence encoding the antigen of the β -coronavirus, the recombinant vector including the nucleotide sequence, and the expression system cell including the recombinant vector in the preparation of a vaccine against the β -coronavirus. [0032] The present disclosure further provides a vaccine against a β -coronavirus, which includes the above-mentioned

antigen of a β -coronavirus and an adjuvant.

[0033] In one possible embodiment of the above-mentioned vaccine against a β -coronavirus, the adjuvant is selected from an aluminum adjuvant, an MF59 adjuvant or an MF59-like adjuvant. The present disclosure further provides a DNA vaccine against a β -coronavirus, which includes a recombinant vector including a DNA sequence encoding the above-mentioned antigen of a β -coronavirus.

The present disclosure further provides an mRNA vaccine against a β-coronavirus, which includes a recombinant vector including an mRNA sequence encoding the above-mentioned antigen of a β-coronavirus.

The present disclosure further provides a viral vector vaccine against a β -coronavirus, which includes a recombinant viral vector including a nucleotide sequence encoding the above-mentioned antigen of a β -coronavirus. Alternatively, the viral vector is one or more selected from the group consisting of an adenovirus vector, a poxvirus vector, an influenza virus vector and an adeno-associated virus vector.

Beneficial effects

[0034]

Loos

15

20

25

30

35

40

45

50

- (1) In the antigen of a β -coronavirus of an example of the present disclosure, based on the conclusion that MERS RBD-dimer protein could better elicit neutralizing antibodies than RBD-monomer protein, it was found that the MERS RBD-dimer protein could form an end-to-end dimer by further analyzing the crystal structure of the MERS-CoV RBDdimer protein. Therefore, the inventor tried to link two nucleotide sequences encoding the identical or substantially identical RBD-monomer proteins directly in tandem or via a linker fragment and to link two obtained identical or substantially identical RBD-monomer proteins in tandem through flexible regions at the N-terminal and C-terminal, and the results showed that the method could realize good expression of a single-chain dimer. Compared with a non-single-chain RBD-dimer protein formed by simply binding two RBD monomers through cysteines therein with disulfide bonds, the single-chain RBD-dimer protein obtained in the example of the present disclosure would not render the content of the RBD-dimer protein unstable in the production process due to unstable formation of the disulfide bonds. That is to say, the expression of most RBD-monomers and few RBD-dimers could be avoided, so that the RBD-dimer could be stably expressed and uniform in form with a greatly improved yield. Compared with the non-single-chain RBD-dimer protein formed by simply binding two RBD monomers through cysteines therein with disulfide bonds, the single-chain dimer expressed in the example of the present disclosure had equivalent immunogenicity as an antigen of a β -coronavirus, and a vaccine prepared by using the single-chain dimer as the antigen of a β -coronavirus could elicit high-titer neutralizing antibodies in mice.
- (2) In the antigen of a β -coronavirus of an example of the present disclosure, based on the selection of amino acids in different regions of the contained RBD, the construct with the best expression was found from the first amino acid of START shown in FIG.14A to the amino acid before the last cysteine of STOP shown in FIG.14B, so that the influence of unpaired cysteines at the ends on the expression and the stability of the protein could be avoided to the greatest extent.
- (3) In the antigen of a β -coronavirus of an example of the present disclosure, based on the selection of direct tandem connection or linker fragment-involved tandem connection of two nucleotide sequences encoding the identical or substantially identical RBD-monomer proteins, the highest expression level was found under the condition that no any exogenous linker sequence was introduced, i.e., two nucleotide sequences encoding the identical or substantially identical RBD-monomer proteins were linked directly in tandem, and the expression was also the safest because no exogenous sequence was added. Since various single-chain RBD-dimers obtained in the examples of the present disclosure had good immune effect as antigens of β -coronaviruses, the yield thereof would be crucial.
- (4) In the antigen of a β -coronavirus of an example of the present disclosure, the involved end-to-end single-chain dimer structure is suitable for severe respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus and 2019 novel coronavirus.

BRIEF DESCRIPTION OF THE DRAWINGS

⁵⁵ [0035]

FIG. 1 shows an ultraviolet absorption profile for the RBD protein obtained by means of a constructed vector pFastBac-SP-MERS-RBD (E367-Y606) in Example 1 subjected to molecular sieve chromatography using a Superdex 200

Hiload 16/60 column (GE), and an electrophoretogram for the protein subjected to SDS-PAGE under reduced conditions (+DTT) or non-reduced conditions (-DTT) obtained by collecting Dimer peaks and Monomer peaks in the ultraviolet absorption profile.

FIG. 2 is a schematic diagram of the immunization and MERS-CoV challenge strategies in Examples 2 to 7.

5

10

15

20

25

30

35

40

45

50

55

FIG. 3 shows the results of Example 3, i.e., the titers of MERS-CoV RBD specific IgG antibody in sera collected from mice according to the immunization strategy in FIG. 2 after the third immunization in Example 2, where Dimer indicates that MERS-CoV RBD-dimer was used as the immunogen; RBD-monomer indicates MERS-CoV RBD-monomer was used as the immunogen; AddaVax indicates the use of AddaVax adjuvant; Alum indicates the use of aluminum adjuvant; no indication of adjuvant means no use of adjuvant; and 3 μ g, 10 μ g, and 30 μ g indicate the amounts of the immunogen used per immunization. Significant difference analysis: ns, P > 0.05; *, P < 0.05; **, P < 0.01; ****, P < 0.001; ****, P < 0.001; ****, P < 0.0001.

FIG. 4 shows the results of Example 5, i.e., 90% neutralization titers antibodies against MERS-CoV pseudovirus in sera collected from mice according to the immunization strategy in FIG. 2 after the third immunization in Example 2, where Dimer indicates that MERS-CoV RBD dimer was used as the immunogen; RBD monomer indicates that MERS-CoV RBD monomer was used as the immunogen; AddaVax indicates the use of AddaVax adjuvant; Alum indicates the use of aluminum adjuvant; no indication of adjuvant means no use of adjuvant; and 3 μ g, 10 μ g, and 30 μ g indicate the amounts of the immunogen used per immunization. Significant difference analysis: ns, P > 0.05; ***, p < 0.001.

FIG. 5 shows the results of Example 6, i.e., 50% neutralization titers of antibodies against MERS-CoV euvirus (EMC strain) in sera collected from mice according to the immunization strategy in FIG. 2 after the third immunization in Example 2, where Dimer indicates that MERS-CoV RBD dimer was used as the immunogen; AddaVax indicates the use of Addavax adjuvant; Alum indicates the use of aluminum adjuvant; no indication of adjuvant means no use of adjuvant; and 3 μ g, 10 μ g, and 30 μ g indicate the amounts of the immunogen used per immunization. Significant difference analysis: ns, P > 0.05; ***, p < 0.001; ****, P < 0.0001.

FIG. 6 shows the results of Example 7 in which mice after the third immunization were subjected to intranasal infection with adenovirus expressing hCD26 (hDPP4) according to the immunization strategy in FIG. 2, and were challenged with MERS-CoV 5 days later, followed by the detection of viral titers (TCID₅₀) on the tissue homogenates prepared from the lungs of the mice removed 3 days later. Dimer indicates that MERS-CoV RBD dimer was used as the immunogen; AddaVax indicates the use of AddaVax adjuvant; Alum indicates the use of aluminum adjuvant; no indication of adjuvant means no use of adjuvant; and 3 μ g, 10 μ g, and 30 μ g indicate the amounts of the immunogen used per immunization. Significant difference analysis: ns, P > 0.05; *, P < 0.05; **, P < 0.01; ****, P < 0.001; *****, P < 0.0001.

FIG. 7 shows the pathological results of the examination of the protective efficacy of the vaccine on the lung tissue of mice in Example 8 in which the lungs from the challenged mice in Example 7 after necroscopy were fixed in 4% paraformaldehyde, embedded in paraffin, stained with hematoxylin and eosinand sliced to obtain tissue sections for observation of pathological changes, where AddaVax indicates the use of AddaVax adjuvant; Alum indicates the use of aluminum adjuvant; and 3 μ g, 10 μ g, and 30 μ g indicate the amounts of the immunogen used per immunization. Slight, Mild and Severe indicate different grades of lung tissue lesions, respectively.

FIG. 8 shows the structure of MERS-CoV-RBD dimer (E367-Y606) analyzed in Example 9.

FIGS. 9A, 9B, and 9C show single-chain RBD dimers designed based on the MERS-CoV RBD-dimer structure in Example 10.

FIG. 10 shows the results of Western blot conducted on MERS-RBD-C1 to MERS-RBD-C10 single-chain dimers expressed in Example 10 under reduced conditions (+DTT) or non-reduced conditions (-DTT), where RBD Monomer is MERS-CoV RBD Monomer protein.

FIG. 11 shows an ultraviolet absorption profile for MERS-RBD-C5 single-chain dimer expressed in Example 11 subjected to molecular sieve chromatography using a Superdex 200 Hiload 16/60 column (GE), and the results of SDS-PAGE of the purified single-chain dimer under reduced conditions (+DTT) or non-reduced conditions (-DTT). FIG. 12 shows the titers of MERS-CoV-RBD specific IgG antibody elicited by immunization of mice in Example 12 with single-chain MERS-CoV-RBD dimer and disulfide-linked non-single-chain dimer proteins, where sc-dimer is a single-chain dimer, and Dimer is a disulfide-linked non-single-chain dimer. Significant difference analysis: ns, P > 0.05; *, P < 0.05; ***, P < 0.001; ****, P < 0.001; ****, P < 0.001; ****, P < 0.0001;

FIG. 13 shows the 90% neutralization titers of antibodies against MERS-CoV pseudovirus elicited by immunization of mice with single-chain MERS-CoV-RBD dimer and disulfide-linked non-single-chain dimer proteins in Example 12, where sc-dimer is a single-chain dimer, and Dimer is a disulfide-linked non-single-chain dimer. Significant difference analysis: ns, P > 0.05; *, P < 0.05; ****, P < 0.0001.

FIGS. 14A and 14B are comparison diagrams of the receptor binding domains (RBDs) of β -coronaviruses in Example 13, where the sequences in the two figures were consecutive, and the following β -coronaviruses were aligned: MERS-CoV (AFS88936), SARS-CoV (AAS00003), SARS-CoV-2 (QHR63290), Bat-CoV_HKU5 (ABN10875),

Rousettus_bat-CoV (AOG30822), Bat-CoV_BM48-31 (ADK66841), Bat-CoV_HKU9 (ABN10911), Bat_Hp-betaCoV (AIL94216), SARS-related-CoV (APO40579), BtRs-Beta-CoV (QDF43825), Bat-SARS-like-CoV (AT098231), SARS-like-CoV_WIV16 (ALK02457), Bat-CoV (ARI44804), BtR1-Beta-CoV (QDF43815), HCoV_HKU1 (AZS52618), MCoV_MHV1 (ACN89742), BetaCoV_HKU24 (AJA91217), HCoV_OC43 (AAR01015), and BetaCoV_Erinaceus (AGX27810).

FIG. 15 is a mimic diagram showing the structure of SARS-CoV-RBD dimer or 2019-nCoV-RBD dimer in example 13 and the construct of the expression 2019-nCoV-RBD dimer, the 2019-nCoV-RBD monomer and the SARS-CoV-RBD dimer designed.

FIG. 16 shows the results of Western blot under reduced conditions (+DTT) or non-reduced conditions (-DTT) for several single-chain dimers of SARS-CoV-RBD and 2019-nCoV-RBD expressed in Example 13.

FIG. 17 shows theultraviolet absorbance at 280 nm for 2019-nCoV-RBD-C2 antigen purified in Example 14, and the results of SDS-PAGE of the purified single-chain dimer under reduced conditions (+DTT) or non-reduced conditions (-DTT).

FIG. 18 shows the ultraviolet absorbance at 280 nm for SARS-CoV-RBD-C1 antigen purified in Example 14, and the results of SDS-PAGE of the purified single-chain dimer under reduced conditions (+DTT) or non-reduced conditions (-DTT).

FIG. 19 shows the titers of 2019-nCoV-RBD specific IgG antibody in sera collected from mice after three immunizations (19 days after the first immunization, 14 days after the second immunization, and 14 days after the third immunization) in Example 15, respectively, where sc-dimer indicates that single-chain nCoV-RBD dimer was used as the immunogen, and Monomer indicates that nCoV-RBD-monomer was used as the immunogen. Significant difference analysis: ****, P < 0.0001.

FIG. 20 shows the 90% neutralization titers of antibodies against 2019-nCoV pseudovirus in sera collected from mice after three immunizations (19 days after the first immunization, 14 days after the second immunization, and 14 days after the third immunization) in Example 15, where sc-dimer indicates that single-chain nCoV-RBD dimer was used as the immunogen, and Monomer indicates that nCoV-RBD-monomer was used as the immunogen. Significant difference analysis: ns, P > 0.05; **, P < 0.01; ****, P < 0.0001.

FIG. 21 shows the 50% neutralization titers of antibodies against 2019-nCoV euvirus (2020XN4276 strain) in sera collected after the second immunization (14 days after the second immunization) of mice in Example 15, where scdimer indicates that single-chainnCoV-RBD dimer was used as the immunogen, and Monomer indicates that nCoV-RBD-monomer was used as the immunogen.

FIG. 22 shows the titers of SARS-RBD-specific IgG antibody in sera collected after three immunizations of mice in Example 16 (19 days after the first immunization, 14 days after the second immunization, and 14 days after the third immunization), where sc-dimer indicates that single-chain SARS-CoV-RBD dimer was used as the immunogen, and Monomer indicates that SARS-CoV-RBD-monomer was used as the immunogen. Significant difference analysis: IgG IgG

FIG. 23 shows the 90% neutralization titers of antibodies against SARS-CoV pseudovirus in sera collected from mice after three immunizations (19 days after the first immunization, 14 days after the second immunization, and 14 days after the third immunization) in Example 16, where sc-dimer indicates that single-chain SARS-CoV-RBD dimer was used as the immunogen, and Monomer indicates that SARS-RBD-monomer was used as the immunogen. Significant difference analysis: ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ***, P < 0.0001.

DETAILED DESCRIPTION OF THE PRESENT DISCLOSURE

5

10

15

20

25

30

35

40

50

55

[0036] In order to make the objects, technical solutions and advantages of the examples of the present disclosure clearer, the technical solutions in the examples of the present disclosure will be clearly and completely described below. Apparently, the described examples are some, but not all examples of the present disclosure. All other examples derived from the examples of the present disclosure by a person skilled in the art without creative work shall fall within the scope of protection of the present disclosure.

[0037] Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a better understanding of the present disclosure. It will be understood by those skilled in the art that the present disclosure may be practiced without some of these specific details. In some examples, materials, elements, methods, procedures, and the like that are well known to those of skill in the art have not been described in detail so as not to obscure the present disclosure.

[0038] Throughout the specification and claims, unless expressly indicated otherwise, the terms "comprise" or "include", or variations such as "comprises" or "comprising", "includes" or "including" will be understood to imply the inclusion of a stated element or component but not the exclusion of any other element or component.

Explanation of Terms

10

15

20

30

35

40

[0039] Disulfide-linked non-single-chain RBD dimer and RBD monomer refer to those obtained by inserting a nucleotide sequence encoding RBD monomer into a vector, then transfecting cells of an expression system for expression, collecting cell supernatants after expression, and purifying, where two RBD monomers in a disulfide-linked non-single-chain RBD dimer are simply disulfide-bonded through cysteines therein. As used herein, disulfide-linked non-single-chain RBD dimer and non-single-chain RBD-dimer protein have the same meaning; and RBD monomer, monomeric RBD, and RBD-monomer protein all have the same meaning.

Single-chain RBD dimer is a recombinant protein obtained by linking two nucleotide sequences encoding identical or substantially identical RBD monomers in tandem directly or via a linker fragment, adding a sequence encoding a signal peptide to the 5'-terminal of the nucleotide sequence and a terminator codon to the 3'-terminal of the nucleotide sequence for cloning and expression, screening correct recombinants, transfecting cells of an expression system cell for expression, collecting cell supernatants after expression, and purifying, where the protein contains two RBD monomers which are identical or substantially identical and can be directly linked together with peptide bonds or linked together through a linker sequence (such as GGS, GGSGGS and the like). As used herein, single-chain RBD-dimer, single-chain RBD dimer, single-chain dimer, sc-RBD dimer, single-chain RBD dimer and the like all have the same meaning.

EXAMPLE 1: Preparation of Recombinant Baculovirus Expressing MERS-CoV Antigen, and Expression and Purification of RBD Protein

[0040] A nucleotide sequence (shown as SEQ ID NO: 24) encoding an amino acid RBD (E367-Y606) sequence (shown as SEQ ID NO: 1) in MERS-CoV S protein (having a sequence shown as GenBank: AFS88936.1) was cloned between EcoR I and Xho I restriction enzyme cutting sites of a pFastBac vector (pFastBac-SP, available from Invitrogen) containing gp67 signal peptide after the addition of a translation termination codon to the 3'-terminal thereof, so that the protein encoding region was subjected to fusion expression behind the signal peptide gp67 sequence for secretion of the protein of interest having 6 histidines at the C-terminal thereof, thereby obtaining a vector pFastBac-SP-MERS-RBD (E367-Y606). The vector was then transfected into the cells of the expression system for expression, and after expression, cell supernatants were collected and purified.

[0041] The obtained RBD protein was purified through molecular sieve chromatography using a Superdex 200 Hiload 16/60 column (GE), and a typical ultraviolet absorption profile for protein purification is shown in FIG. 1. There was one dimer peak and one monomer peak. SDS-PAGE was conducted on the elution peak of MERS-RBD protein in the vicinity of the elution volume of 78 mL. Under non-reduced conditions (without DTT), the size of the protein in the vicinity of the elution volume of 78 mL was approximately 60 Kd; whereas under reduced conditions (with DTT added), the size was approximately 30 Kd, which confirmed that the protein obtained in this peak was a dimer. SDS-PAGE was conducted on the elution peak in the vicinity of 90 mL of the elution volume, the size of the protein of interest was approximately 30 Kd under non-reduced conditions (without DTT) and reduced conditions, which confirmed that the peak was mainly RBD monomer. The dimer or monomer used in each of Examples 2 to 9 below was the disulfide-linked non-single-chain RBD dimer or RBD monomer obtained in this Example.

EXAMPLE 2 Experiment for Immunization of Mice with MERS-RBD Protein

[0042] MF59 (AddaVax used below was an MF59-like adjuvant) and aluminum adjuvant two commonly used adjuvants approved by SFDA, were used as vaccine components to provide more direct guidance for subsequent clinical trials. An in vitro neutralization experiment, as a classic method, was conducted to detect the protective efficacy of vaccines. Therefore, different doses of antigen were mixed with AddaVax adjuvant and Imject™ Alum adjuvant separately for immunization. The immunization groups, the types of RBD used in each group, the amount of RBD used in each immunization and the adjuvants are shown in Table 1 in which the blank space indicates "None".

[0043] MERS-RBD antigen (dimer or monomer) obtained in Example 1 was diluted with normal saline to a desired concentration and emulsified with adjuvants in groups. BALB/c mice aged 4-6 weeks (average weight 15-20 g, similarly hereinafter) were immunized in groups, with 6 mice in each group.

Table 1

Group	Immunogen	Forms	Dose	Adjuvant
1	RBD	Dimer	3 μg	Alum
2	RBD	Dimer	10 μg	Alum
3	RBD	Dimer	30 μg	Alum

55

50

(continued)

Group	Immunogen	Forms	Dose	Adjuvant
4	RBD	Dimer	3 μg	AddaVax
5	RBD	Dimer	10 μg	AddaVax
6	RBD	Dimer	30 μg	AddaVax
7	RBD	Monomer	3 μg	Alum
8	RBD	Monomer	10 μg	Alum
9	RBD	Monomer	30 μg	Alum
10	RBD	Monomer	3 μg	AddaVax
11	RBD	Monomer	10 μg	AddaVax
12	RBD	Monomer	30 μg	AddaVax
13	PBS	-		
14	PBS	-		Alum
15	PBS	-		Addavax

[0044] The immunization was conducted according to a strategy as shown in FIG. 2, i.e., by means of intramuscular injection into the thigh, each mouse received three immunizations with vaccine at day 0, day 21 and day 42, respectively, each time in a vaccination volume of 100 μ l. On the day 56 (namely, the 14th day after the third immunization), blood was collected from the tails of mice. Mouse sera were obtained by centrifugation at 3000 rpm for 10 minutes after standing, and stored at -20° C in a refrigerator for specific antibody titer assay and pseudovirus neutralization assay.

EXAMPLE 3 ELISA Assay of Vaccine-Elicited Specific Antibody Titer

[0045]

5

10

15

20

25

30

35

40

45

50

- (1) The RBD-monomer protein of MERS-CoV was diluted to 3 μ g/ml with an ELISA coating solution (Solarbio, C1050), and 100 μ l of the resulting solution was added to each well of a 96-well ELISA plate (Coring, 3590) and placed at 4°C for 12 hours.
- (2) The coating solution was removed, and then PBS was added to wash once. 5% skim milk prepared with PBS was added to a 96-well plate in an amount of 100 μ l per well as a blocking solution for blocking and placed at room temperature for 1 hour. After the completion of blocking, the plate was washed once with PBS solution.
- (3) Mouse serum was diluted during blocking. Serum samples were also diluted with the blocking solution. Serum samples were diluted from 20-fold. Then 100 μ l of serum was added to each well of the ELISA plate, while the blocking solution was added for the negative control, incubated at 37°C for 2 hours, and then washed with PBST for 4 times.
- (4) Goat anti-mouse IgG-HRP antibody (Abcam, ab6789) diluted 1:2000 with the blocking solution was added and incubated at 37°C for 1.5 hours, and then washed with PBST for 5-6 times. Plates were developed with TMB substrate, which was followed by stopping the reactions with 2 M hydrochloric acid for a proper time, and the absorbance was measured at 450 nm using a microplate reader. Antibody titer values were defined as the highest dilution of serum with a response value greater than 2.5 times the negative control value. The titer of a sample was defined as half of the lowest dilution (limit of detection) at which the response value was still less than 2.5-fold background value, namely, 1: 10.

[0046] As shown in FIG. 3, significantly different levels of antibodies were elicited for the RBD dimer group and monomer group at doses of 3 μ g and 10 μ g with the AddaVax adjuvant, and significantly different levels of antibodies were elicited for the two groups at doses of 3 μ g, 10 μ g and 30 μ g with the aluminum adjuvant, and the dimer group elicited higher levels of antibodies, indicating that the dimeric RBD antigen had a significantly higher ability to activate the antibody response in mice than the RBD monomer vaccine.

[0047] The RBD-monomer protein of MERS-CoV was used as the coating protein in all ELISA assays in the examples of the present disclosure.

55

EXAMPLE 4 Preparation of MERS-CoV Pseudovirus

PNL43-Luci Pseudovirus Packaging

⁵ [0048]

10

15

20

30

45

50

55

- (1) Cell plating: on the day before transfection, 293T cells grown in logarithmic phase were harvested by trypsinization, counted, reseeded and cultured overnight in a 10 cm petri dish, and transfected (without antibiotics) when the confluence of the cells reached 70-90% over 18-24 hours.
- (2) Plasmid co-transfection by a PEI method: a total of 20 μg of plasmid (10 μg of HIV pNL4-3.Luc.RE (Invitrogen) and 10 μg of pCAGGS-MERS-S which was obtained by inserting a DNA sequence encoding MERS Spike protein (M1-H1352) into EcoRI and XhoI sites of pCAGGS vector) and 40 μL of PEI (2 mg/ml) were dissolved in normal saline or HBS separately, to a final volume of 500 μL , and mixed evenly. After standing for 5 minutes, the two solutions were mixed, followed by standing for 20 minutes. The mixture was then added dropwise to the cell culture dish, and 4-6 hours later, the cells were washed twice with PBS and provided with a fresh serum-free medium.
- (3) Virus harvesting: after transfection for 48 hours, cells and supernatants were harvested, centrifuged slow at 1000 rpm for 10 minutes to remove cell debris, packed, and single use aliquots were stored at -80°C to avoid the decrease of virus titers caused by repeated freezing and thawing.
- (4) Infection: on the first day, the cells were seeded and cultured overnight, and the cells reached 80-100% over 18-24 hours;

[0049] On the next day, the susceptible cells were washed with PBS to remove serum and infected with the collected viral supernatant, and the culture medium was changed to a serum-containing medium 4-6 hours later. According to the experimental requirements, Luciferase values could be measured at different time points, with reference to the Luciferase Assay System Protocol or the Dual Luciferase Reporter Assay System Protocol of Promega Company. The harvested virus solution was diluted 5-fold and added to Huh7 cells (human hepatoma cells) in a 96-well plate. After 4 hours of infection, the virus solution was discarded, and the cells were washed twice with PBS, and provided with DMEM complete medium containing 10% serum. The medium was discarded 48 hours later, and the cells were washed twice with PBS and added with a cell lysis solution. After freezing and thawing once at -80°C, 20 μ l of cell culture from each well was assayed for luciferase activity using a GloMax 96 Microplate Luminometer (Promega). TCID₅₀ was calculated by Reed-Muech method.

EXAMPLE 5 Pseudovirus Neutralization Assay of Immune Serum

[0050] The serum obtained in Example 2 was diluted in multiple ratios, mixed with 100 TCID₅₀ pseudovirus, and incubated for 30 minutes at 37°C. The mixture was then added to a 96-well plate completely covered with Huh7 cells. After incubation at 37°C for 4 hours, the virus solution was discarded, and the cells were washed twice with PBS, and provided with a complete medium DMEM containing 10% serum. After 48 hours, the culture medium was discarded, and the cells were washed twice with PBS and added with a cell lysis solution to assay the luciferase activity. Pseudovirus having spike protein on the surface infected cells to release DNA and express rather than replicate luciferase. If the pseudovirus could not infect the cells in the presence of neutralizing antibodies, the luciferase was not expressed. The neutralization titers of the serum were examined in this way.

[0051] The results of immunogenicity assays after the third immunization are shown in FIG. 4. The result shown that the RBD dimer (E367-Y606) elicited neutralizing antibodies after three immunizations, regardless of the adavax adjuvant group or the aluminum adjuvant group (indicated by +Alum). Particularly, the mean value of the neutralizing antibodies NT $_{90}$ in the AddaVax adjuvant 10 μ g group could reach more than 1:1000 (as shown in FIG. 4); whereas the RBD-monomer (E379-E589) did not elicit neutralizing antibodies after three immunizations except low neutralizing antibody production in 2 mice (as shown in FIG. 4). Pseudovirus neutralization assay demonstrated that the neutralizing antibodies induced by the RBD-dimer was much higher than that induced by the monomeric RBD.

[0052] The RBD monomer (E379-E589) was obtained by the following method: a nucleic acid fragment (shown as SEQ ID NO: 25) encoding the amino acid (E379-E589) sequence (shown as SEQ ID NO: 4) in MERS-CoV S protein was inserted into EcoRI and XhoI restriction enzyme cutting sites of pFastBac-SP to allow fusion expression of the protein coding region behind the signal peptide gp67 sequence for secretion of the protein of interest having 6 histidines at the C-terminal thereof, thereby obtaining a vector pFastBac-SP-MERS-RBD (E379-E589).

EXAMPLE 6 Euvirus Neutralization of Immune Serum (EMC Strain)

[0053] Neutralization assay was conducted with serum after three immunizations for MERS-CoV euvirus (EMC strain,

disclosed in Yao Y, Bao L, Deng W, et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis. 2014;209(2):236-242. doi:10.1093/infdis/jit590, supplied by the institute of laboratory animals of Peking Union Medical College). The resultsare shown in FIG. 5. The results showed that both AddaVax adjuvant and aluminum adjuvant could elicit high neutralizing antibodies in mice. The highest group (Addavax adjuvant 10 μ g and RBD dimer) achieved an IC50 greater than 1: 600. This result demonstrated that the dimeric RBD could elicit a higher level of neutralizing antibodies in mice by MERS-CoV euvirus neutralization assay.

EXAMPLE 7 Challenge Protection Experiment

20

30

50

55

[0054] Mice immunized three times in Example 2 were intranasally infected with adenovirus expressing hCD26 (hDPP4) on day 77, as shown in FIG. 2. This allowed transient expression of MERS-CoV receptor hCD26 in lung, making mice susceptible to MERS-CoV (see Chi H et al. DNA vaccine encoding Middle East responsive syndrome coronavirus S1 protein induces protective immune responses in mice [J]. Vaccine, 2017, 35 (16): 2069-2075). Five days later, experiments with MERS-CoV (EMC strain) challenge were conducted with a challenge dose of 5×10^5 pfu. Three days later after challenge, the lungs of mice were harvested, and tissue homogenate prepared therefrom was used to detect virus titers (TCID₅₀). The results are shown in FIG. 6. Compared with PBS control group, the viral load in lung tissue of mice in vaccine group decreased significantly. The viral load in the group with AddaVax adjuvant 3 μ g and RBD dimer decreased by nearly 1000 times compared with that of the PBS group, showing a good protective efficacy. These results showed that the RBD dimer, as a vaccine, had a markedly significant protective efficacy against MERS-CoV challenge.

EXAMPLE 8 Validation of Vaccine Protection for The Lung Tissue of Mice

[0055] The lung tissue of mice in the MERS-CoV challenge experiment in Example 7 was fixed in 4% paraformaldehyde, and then stained with hematoxylin and eosin, and tissue sections were used to observe the pathological changes of the lung, with results as shown in FIG. 7. Lung tissues of all control mice (namely, PBS group) exhibited severe interstitial pneumonia, pulmonary alveolitis, diffuse inflammatory cell infiltration, and necrosis of bronchial epithelial cells (as shown in FIG. 7). However, milder lesions were observed in the group of mice immunized with the RBD-dimer and the pulmonary alveolus was highly visible with lower infiltration of inflammatory cells because both AddaVax and Alum adjuvants could greatly alleviate the lung injury caused by virus challenge. The small histopathological changes in the lung likely resulted from a direct inoculation of high amount (5×10⁵ pfu) of virus intranasally. Therefore, the RBD-dimer could substantially reduce the lung injury caused by MERS-CoV infection.

EXAMPLE 9 Crystallization and Structure Determination of MERS-RBD-Dimer

[0056] The RBD (E367-Y606) protein was expressed according to the method of Example 1. After purification, the dimer protein peaks were collected. The protein was concentrated to 10 mg/ml and mixed with the reservoir solution in a volume ratio of 1:1, and then protein crystal screening was carried out by mosquito[®] Protein Crystallization Screening Liquid Workstation (TTP LabTech). Diffraction-quality crystals of MERS-CoV RBD-dimer were obtained at 18°C. The crystals were collected at the Shanghai Synchrotron Radiation Facility (SSRF), and finally 2.8 Å diffraction data were obtained. The data were processed with HKL2000 software, and the structure was solved by the molecular replacement module, with the structure of MERS-CoV RBD (PDB: 4KQZ) as the search models. The results are shown in FIG. 8.

EXAMPLE 10 Structure Design of a Single-Chain RBD Dimer (Sc-RBD Dimer) Based on MERS-RBD Dimer

[0057] Based on the MERS-RBD crystal structure of FIG. 8, the N-terminal (N') and C-terminal (C') of the two subunits of RBD were arranged in an end-to-end form. The N-terminal and the C-terminal each had an invisible flexible sequence (as shown in FIG. 9A), which inspired us to link two subunits as a tandem repeat single chain, namely, single-chain RBD dimer (sc-RBD dimer).

[0058] The first design (as shown in FIG. 9A) was as follows:

(1) two GGS linker sequences were added between two repeated tandem (E367-Y606) sequences to obtain MERS-RBD-C1 (abbreviated as C1), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 9; (2) one GGS linker sequence was added between two repeated tandem (E367-Y606) sequences to obtain MERS-RBD-C2 (abbreviated as C2), where the nucleotide sequence encoding the amino acid sequence is SEQ ID NO: 10; (3) two repeated (E367-Y606) sequences were directly linked in tandem to obtain MERS-RBD-C3 (abbreviated as C3), where the nucleotide sequence encoding the amino acid sequence is SEQ ID NO: 11.

[0059] The second design (as shown in FIG. 9B), in order to avoid the effects of cysteine residue (C603) at the position

603 of the C-terminal on expression, a truncated construct at C-terminal residue N602 was conducted, which was specifically as follows:

[0060] (4) one GGS linker sequence was added between two repeated tandem (E367-N602) sequences to obtain MERS-RBD-C4 (abbreviated as C4), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 12:

[0061] (5) two repeated (E367-N602) sequences were linked in tandem directly to obtain MERS-RBD-C5 (abbreviated as C5), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 13.

[0062] The third design in which (as shown in FIG. 9C) structurally visible sequences were directly expressed and linked by linker sequences of different lengths was specifically as follows:

[0063] (6) five GGS linker sequences were added between two repeated tandem (V381-L588) sequences to obtain MERS-RBD-C6 (abbreviated as C6), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 14;

[0064] (7) four GGS linker sequences were added between two repeated tandem (V381-L588) sequences to obtain MERS-RBD-C7 (abbreviated as C7), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 15;

[0065] (8) three GGS linker sequences were added between two repeated tandem (V381-L588) sequences to obtain MERS-RBD-C8 (abbreviated as C8), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 16;

[0066] (9) one GGS linker sequence was added between two repeated tandem (V381-L588) sequences to obtain MERS-RBD-C9 (abbreviated as C9), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 17:

20

30

35

40

45

50

55

[0067] (10) two repeated sequences (V381-L588) were directly linked in tandem to obtain MERS-RBD-C10 (abbreviated as C10), where the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 18.

[0068] The 5'-terminal of a nucleotide sequence encoding the above MERS-RBD-C1 to C10 was added with a nucleotide sequence encoding the MERS-S protein self-signal peptide (MIHSVFLLMFLLTPTES), while the 3'-terminal was added with a nucleotide sequence encoding six histidines. A terminator codon was then added to the 3'-terminal, and the obtained nucleotide sequence was inserted between the EcoRl and Xhol restriction enzyme cutting sites of a pCAGGS vector, and a Kozak sequence gccacc was contained upstream of an initiator codon. The above plasmid was transfected into 293T cells, and 48 hours later, the supernatant was collected, and the N-terminus of the protein of interest was provided with a signal peptide. Western blot method was used to detect the expression of the protein of interest, with the results as shown in FIG. 10. The results showed that all constructs were expressed except C2. Under both reduced (+DTT) and non-reduced (-DTT) conditions, the protein was about the size of the dimer (50-60 Kda). Among them, C4 and C5 were expressed at the highest levels. In view of that no any exogenous sequence was introduced and the sequence of the MERS-CoV itself was completely used, the C5 construct would be more advantageous and safer for clinical use. The efficacy of MERS-RBD-C5 as a vaccine would be further assessed.

EXAMPLE 11 Mammalian Expression of Single-Chain MERS-CoV RBD Dimer (Sc-RBD Dimer) and Protein Purification

[0069] MERS-RBD-C5 was expressed using mammalian 293T cells. After transfection of the plasmid into 293T cells, expression was conducted and the supernatant was harvested. The cell supernatant was filtered through a 0.22 μm filtration membrane to remove cell debris. The supernatant of cell culture was purified by Ni affinity chromatography column (Histrap) overnight at 4°C. The resin was washed with buffer A (20 mM Tris, 150 mM NaCl, pH 8.0) to remove non-specific binding proteins. Finally, the protein of interest was eluted from the resin with buffer B (20 mM Tris, 150 mM NaCl, pH 8.0, 300 mM imidazole), and the eluent was concentrated to be within 5 ml with a concentration tube of 10K MWCO. The protein of interest was further purified by molecular sieve chromatography using a Superdex 200 Hiload 16/60 column (GE). The buffer for molecular sieve chromatography was 20 mM Tris and 150 mM NaCl, with pH 8.0. After the molecular sieve chromatography, there was only one main peak near the elution volume of 80 mL. Proteins were collected for SDS-PAGE analysis. As can be seen from the results of SDS-PAGE, MERS-RBD-C5 protein showed a distinct protein band between 55 and 72 kd, which was the size of RBD dimer. It was demonstrated that single-chain MERS-RBD dimer was obtained, as shown in FIG. 11. By using the method of Example 10, 293T cells were used to express and purify the non-single-chain MERS RBD dimer for comparison with the sc-RBD dimer.

EXAMPLE 12: Mice Immunized with Single-Chain MERS-CoV RBD Dimer (Sc-RBD Dimer) Protein

[0070] The single-chain MERS-RBD dimer antigen obtained in Example 11 was diluted in normal saline and emulsified with adjuvants in groups. Then BALB/c mice aged 4-6 weeks were immunized in groups, with 6 mice in each group. In addition, one group of mice was immunized with PBS as a negative control. A group of mice immunized with 293T cells

expressed a non-single-chain form of the dimer. Each mouse received three immunizations of vaccine by intramuscular injection into the thigh, at day 0, day 21 and day 42, respectively, at a vaccination volume of 100 μ l each time (containing 10 μ g of immunogen). Orbital blood was collected from mice 19 days later after the first immunization, 14 days later after the second immunization and 14 days later after the third immunization. Mouse serum was obtained by centrifugation at 3000 rpm for 10 minutes after standing, and stored in a refrigerator at -20°C for specific antibody detection and pseudovirus neutralization detection.

[0071] The serum specific antibody titer of the mice was detected by ELISA assay, using the method as shown in Example 3, with the results shown in FIG. 12. The RBD-sc-dimer group mice and disulfide-linked non-single-chain RBD-dimer group (indicated by Dimer) mice could be induced to produce antibody response. The titer mean value of the sc-dimer group was higher than that of the Dimer group, and the two groups had a significant difference after three immunizations (*, P<0.05). The results showed that the sc-dimer had excellent immunogenicity as the disulfide-linked non-single-chain RBD-dimer.

[0072] The pseudovirus neutralization experiment was carried out with reference to Example 5, with the results shown in FIG. 13. The sc-dimer group mice and disulfide-linked non-single-chain RBD-dimer group (indicated by Dimer) mice could be induced to produce antibody response. The titer mean value of the sc-dimer group was higher than that of the Dimer group, and there was a significant difference between the two groups after the first immunization and the second immunization (FIG. 13). The mean values of the pseudovirus neutralization titers of sc-dimer group mice after three immunizations were already greater than 1: 1000. The results indicated that the vaccine developed by the sc-dimer had great clinical development potential.

EXAMPLE 13 Application of Single-Chain RBD Dimer Technology in Other Coronavirus Vaccines

10

20

30

35

45

50

[0073] To verify that this concept can be applied to vaccine design of all other coronaviruses, we compared the Receptor Binding Domains (RBDs) of the 19 common βcoronaviruses, the result is shown in FIG. 14A and 14B. All β-coronavirus RBDs exhibited a conserved cysteine at position C603 of MERS-CoV, as shown in FIG. 14B. 2019-nCoV (hereinafter referred to as nCoV) and SARS-CoV were selected for verification. According to the structure of SARS-RBD (PDB: 3D0G), the crystal structure of SARS-RBD was molded into the crystal structure of MERS-RBD dimer at a resolution of 2.8 Å by using Pymol software. A simulated SARS-RBD dimer structure as shown in FIG. 15 was obtained. It was found that, like MERS-RBD dimer, SARS-RBD dimer also existed in the form of end-to-end (as shown in FIG. 15). Since the RBD region of 2019-nCoV shared more than 75 % homology with SARS-CoV, it was expected that the RBD dimer of 2019-nCoV would form this end-to-end arrangement. Considering that dimers in MERS-CoV could induce neutralizing antibodies with higher titers than monomers, it was considered that single-chain dimers (sc-dimers) were stilled used to design vaccines. Firstly, based on the S protein sequence of the 2019-nCoV WH01 strain, the construct of three singlechain dimers (sc-dimer) was designed, as shown in FIG. 15: (1) two R319-S530 were linked in tandem and named nCoV-RBD-C1 (the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 19); (2) two R319-K537 were linked in tandem and named nCoV-RBD-C2 (the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 20); (3) two R319-F541 were linked in tandem and named nCoV-RBD-C3 (the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 21); and (4) a further monomer was constructed as R319-F541, named nCoV-RBD-C4 (the nucleotide sequence encoding the amino acid sequence was SEQ ID NO: 22). In addition, a singlechain dimer of SARS-CoV was constructed, and two R306-Q523 were linked in tandem, as shown in FIGS. 14A and 14B, named SARS-CoV-RBD-C1 (the nucleotide sequence encoding this amino acid sequence was SEQ ID NO: 23). [0074] A nucleotide sequence encoding the above nCoV-RBD-C1 to C4 and a nucleotide sequence encoding SARS-CoV-RBD-C1 (SEQ ID NO: 23) were added with the nucleotide sequence encoding the MERS-S protein self-signal peptide (MIHSVFLLMFLLTPTES). After the nucleotide sequence encoding six histidines was added to the 3'-terminal, a terminator codon was added to the 3'-terminal, and inserted into the pCAGGS vector EcoRI and XhoI restriction enzyme cutting sites, and the Kozak sequence gccacc was contained upstream of the initiatorcodon thereof. The above plasmid was transfected into 293T cells. The supernatant was harvested 48 hours later and the expression of the protein of interest was detected by Western blot. The expression results are shown in FIG. 16. The results showed that the expression of nCoV-RBD-C2 was the highest among several antigen designs of 2019-nCoV The SARS-CoV-RBD-C1 construct also had a high protein expression.

[0075] The above results indicated that in the design of a single-chain dimer of the β -coronavirus, the optimal construct is from the first amino acid of FIG. 14A (marked as Start) to an amino acid before the last cysteine of FIG. 14B (marked as Stop).

EXAMPLE 14 Expression and Purification of Single-Chain 2019-nCoV-RBD Dimer Antigen and Single-Chain SARS-CoV-RBD Dimer Antigen

[0076] Mammalian 293T cells were used to express nCoV-RBD-C2. After the plasmid was transfected into 293T cells,

the supernatant was harvested. The cell supernatant was filtered through a $0.22~\mu m$ filtration membrane to remove cell debris. The supernatant of cell culture was purified by Ni affinity chromatography column (Histrap) overnight at 4°C. The resin was washed with buffer A (20 mM Tris, 150 mM NaCl, pH 8.0) to remove non-specific binding proteins. Finally, the protein of interest was eluted from the resin with buffer B (20 mM Tris, 150 mM NaCl, pH 8.0, 300 mM imidazole), and the eluent was concentrated to be within 5 ml with a concentration tube of 10K MWCO. The protein of interest was further purified by molecular sieve chromatography with a Superdex 200 Hiload 16/60 column (GE). The buffer for molecular sieve chromatography was 20 mM Tris and 150 mM NaCl, with PH 8.0. After molecular sieve chromatography, there was only one main peak near the elution volume of 80 mL. Proteins were collected for SDS-PAGE analysis. As can be seen from the results of SDS-PAGE, nCoV-RBD-C2 protein showed a distinct protein band between 48-63 kd, which was the size of RBD-dimer. It was demonstrated that single-chain 2019-nCoV-RBD dimer was obtained, as shown in FIG. 17. The purity was more than 95%. The results showed that such construct could produce sufficient and high-purity single-chain 2019-nCoV dimer protein.

[0077] The monomeric RBD protein of 2019-nCoV (obtained by expression of nCoV-RBD-C4 construct), the monomeric RBD protein of SARS-CoV (SARS-CoV RBD R306-F527, having an amino acid sequence and a nucleotide sequence encoding the amino acid sequence as shown as SEQ ID NO: 26 and SEQ ID NO: 27) and the single-chain dimer protein of SARS-CoV (obtained by expression of SARS-CoV-RBD-C1 construct) were expressed and purified in the same way. [0078] As shown in FIG. 18, the result of the single-chain dimer protein of SARS-CoV showed that after the molecular sieve chromatography, there was only one main peak near the elution volume of 80 mL. Proteins were collected for SDS-PAGE analysis. As can be seen from the results of SDS-PAGE, SARS-CoV-RBD-C1 protein of interest showed a distinct protein band between 55 and72 kd, which was the size of RBD-dimer. It was demonstrated that single-chain SARS-RBD dimer was obtained, as shown in FIG. 18, and with high purity.

EXAMPLE 15 Mice Immunized with Single-Chain 2019-nCoV-RBD Dimer Protein

10

30

35

50

[0079] The single-chain 2019-nCoV-RBD dimer and 2019-nCoV-RBD monomer obtained in Example 14 was diluted in PBS solution and emulsified with AddaVax adjuvant in groups. Then BALB/c mice (average body weight 15-20g, the same applies below) aged 6-8 weeks were immunized in groups, with 8 mice in each group. Each mouse received three immunizations of vaccine by intramuscular injection into the thigh, at day 0, day 21 and day 42, respectively, at a vaccination volume of 100 μ l each time (containing 10 μ g of immunogen). Blood samples were collected from mice 19 days later after the first immunization, 14 days later after the second immunization and 14 days later after the third immunization. Mouse serum was obtained by centrifugation at 3000 rpm for 10 minutes after standing, and stored in a refrigerator at -20°C for specific antibody detection and pseudovirus neutralization detection.

[0080] The serum specific antibody titer of 2019-CoV RBD of the mice was detected by ELISA assay, using the method as shown in Example 3, with the results shown in FIG. 19,. The single-chain dimeric RBD (indicated by sc-dimer) and monomeric RBD (indicated by Monomer) could induce mice to produce antibody response. The titer mean value of the single-chain dimeric RBD group was higher than that of the monomeric RBD group, and the two groups had a significant difference after three immunizations (FIG. 19). The single-chain dimeric RBD induced mice to produce antibodies at levels of up to approximately 1:10⁶ after three immunizations. The results showed that the immunogenicity of the single-chain dimeric RBD antigen was stronger than that of the single-chain dimeric RBD antigen, and it had great potential as a potential new coronavirus vaccine.

[0081] 2019-nCoV pseudovirus neutralization assay was carry out with reference to Example 5, with results as shown in FIG. 20. Neutralizing antibodies were induced in only the single-chain dimeric RBD (indicated by sc-dimer) group after the first immunization. Neutralizing antibodies were not detected in both the monomeric RBD (indicated by Monomer) and PBS groups, and there was a significant difference of neutralizing antibody titers between the single-chain dimeric RBD group and the monomeric RBD group (FIG. 20). After the second and third immunizations, both single-chain dimeric RBD and monomeric RBD could induce mice to produce neutralizing antibodies. After each immunization, the mean value of neutralizing antibody titers of the single-chain dimeric RBD group was higher than that of the monomeric RBD group (10-100 times higher), and there was a significant difference between the two groups after each immunization (FIG. 20). The single-chain dimeric RBD induced mice to produce antibodies at levels of up to approximately 1:10⁴ after three immunizations. The results showed that the single-chain dimeric RBD antigen could induce mice to produce higher neutralizing antibody level than the monomeric RBD antigen, and the single-chain dimeric RBD antigen had high advantages in use.

[0082] Neutralization assay was conducted with serum after the second immunization for 2019-nCoV euvirus (2020XN4276 strain, which was published in Lu J, du Plessis L, Liu Z, et al. Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181(5):997-1003.e9. doi:10.1016/j.cell.2020.04.023, provided by Guangdong Provincial Center for Disease Control and Prevention). The experimental results are shown in FIG. 21. The results showed that the RBD dimer could induce mice to produce high levels of neutralizing antibodies against the novel coronavirus. The highest neutralizing NT50 was greater than 4096, and the lowest NT50 was 512 in a mouse. However,

the neutralizing antibodies against the novel coronavirus were detected in only 2 of the 8 mice in the RBD monomer group, with lower NT50, which were 128 and 256, respectively. The results indicated that the dimeric RBD could induce mice to produce higher levels of neutralizing antibodies against the novel coronavirus.

5 EXAMPLE 16 Mice Immunized with Single-Chain SARS-RBD Dimer Protein

[0083] The single-chain SARS-RBD dimer and SARS-RBD monomer obtained in Example 14 were diluted in PBS solution and emulsified with AddaVax adjuvant in groups. Then BALB/c mice aged 6-8 weeks were immunized in groups, with 6 mice in each group. Each mouse received three immunizations of vaccine by intramuscular injection into the thigh, at day 0, day 2 and day 42, respectively, at a vaccination volume of 100 μ l each time (containing 10 μ g of immunogen). Blood samples were collected from mice 19 days later after the first immunization, 14 days later after the second immunization and 14 days later after the third immunization. Mouse serum was obtained by centrifugation at 3000 rpm for 10 minutes after standing, and stored in a refrigerator at -20°C for specific antibody detection and pseudovirus neutralization detection.

[0084] The serum specific antibody titer of SARS-RBD of the mice was detected by ELISA assay, using the method shown in Example 3, with the results shown in FIG. 22. The single-chain dimeric RBD (indicated by sc-dimer) and monomeric RBD (indicated by Monomer) could induce mice to produce antibody response. The titer mean value of the single-chain dimeric RBD group was higher than that of the monomeric RBD group, and the two groups had a significant difference after the second and the third immunizations (FIG.22). The dimeric RBD induced mice to produce antibodies at levels of up to approximately 1:10⁶ after three immunizations. The results showed that the immunogenicity of the dimeric RBD antigen was stronger than that of the monomeric RBD antigen.

[0085] The neutralization assay was conducted for SARS-CoV pseudovirus with reference to Example 5, with the results shown in FIG. 23. After the first and second immunizations, both dimeric RBD (indicated by sc-dimer) group and monomeric RBD (indicated by Monomer) group could induce mice to produce neutralizing antibodies. The mean value of neutralizing antibody titers of the dimeric RBD group was higher, and there was a significant difference between the two groups (FIG. 23). After the third immunization, the mean value of neutralizing antibody titers of the dimeric RBD group was still higher than that of the monomeric RBD group, and there was a significant difference (FIG. 23). The levels of neutralizing antibodies induced by dimeric RBD in mice after three immunizations were higher than 1:10³. The results showed that the dimeric RBD antigen could induce mice to produce higher neutralizing antibody level than the monomeric RBD antigen, and the dimeric RBD antigen had high advantages in use.

[0086] Finally, it should be noted that the above examples are only intended to illustrate rather than limit the technical solutions of the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing examples, it will be understood by a person skilled in the art that the technical solutions described in the foregoing examples may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the examples of the present disclosure.

INDUSTRIAL PRACTICAL APPLICABILITY

[0087] The examples of the present disclosure relate to antigens of β-coronaviruses, preparation methods and uses thereof. An antigen of a β-coronavirus,its amino acid sequence comprises an amino acid sequence arranged in a (A-B)-(A-B) pattern or an amino acid sequence arranged in a (A-B)-(A-B') pattern or an amino acid sequence arranged in a (A-B)-(A-B') pattern, where A-B represents a partial amino acid sequence or the entire amino acid sequence of a receptor binding domain of a surface spike protein of the β-coronavirus; C represents an amino acid linker sequence; A-B' represents an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence of A-B; a protein encoded by A-B' has the identical or substantially identical immunogenicity as a protein encoded by A-B; and the antigen of the β-coronavirus has a single-chain dimer structure. The single-chain dimer expressed according to the examples of the present disclosure is stable in content and has excellent immunogenicity as an antigen of a β-coronavirus, and the vaccine prepared by using the single-chain dimer as an antigen of a β-coronavirus can elicit high-titer neutralizing antibodies in mice.

55

10

20

30

35

SEQUENCE LISTING

	<110> INSTITUTE OF MICROBIOLOGY, CHINESE ACADEMY OF SCIENCE
5	<120> ANTIGENS OF -CORONAVIRUSES, PREPARATION METHODS AND USES THEREOF
	<130> 1087-200363F
10	<150> CN202010085038.9 <151> 2020-02-10
	<160> 27
	<170> PatentIn version 3.5
15	<210> 1 <211> 240 <212> PRT <213> MERS-CoV
20	<220> <221> DOMAIN <222> (1)(240) <223> E367-Y606 amino acid sequence of in the RBD of MERS-CoV S protein (sequence such as GenBank:AFS88936.1)
25	<400> 1
	Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln Ala Glu Gly Val Glu 1 5 10 15
30	Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro Pro Gln Val Tyr Asn 20 25 30
35	Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr Asn Leu Thr Lys Leu 35 40 45
40	Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys Ser Gln Ile Ser Pro 50 55 60
	Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu Ile Leu Asp Tyr Phe 65 70 75 80
45	Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser Val Ser Ser Ala Gly 85 90 95
50	Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe Ser Asn Pro Thr Cys 100 105 110
	Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr Thr Ile Thr Lys Pro 115 120 125
55	Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg Leu Leu Ser Asp Asp 130 135 140

	Arg Th	r Glu	Val	Pro	Gln 150	Leu	Val	Asn	Ala	Asn 155	Gln	Tyr	Ser	Pro	Cys 160
5	Val Se	r Ile	Val	Pro 165	Ser	Thr	Val	Trp	Glu 170	Asp	Gly	Asp	Tyr	Tyr 175	Arg
10	Lys Gl	n Leu	Ser 180	Pro	Leu	Glu	Gly	Gly 185	Gly	Trp	Leu	Val	Ala 190	Ser	Gly
15	Ser Th	r Val 195	Ala	Met	Thr	Glu	Gln 200	Leu	Gln	Met	Gly	Phe 205	Gly	Ile	Thr
	Val G1: 21	_	Gly	Thr	Asp	Thr 215	Asn	Ser	Val	Cys	Pro 220	Lys	Leu	Glu	Phe
20	Ala As	n Asp	Thr	Lys	Ile 230	Ala	Ser	Gln	Leu	Gly 235	Asn	Cys	Val	Glu	Tyr 240
25	<210> <211> <212> <213>	236 PRT	-CoV												
30	<220>														
	<221> <222> <223>	(1).	. (236 -N602	2 ami			_							ŒRS-	-CoV S
35	<222>	(1). E367 prote	. (236 -N602	2 ami			_							ŒRS-	-CoV S
	<222> <223>	(1). E367- prote	. (236 -N602 ein	2 ami (sequ	ience	e sud	ch as	s Ger	nBanl	c:AFS	88893	36.1)	ı		
35 40	<222> <223> <400> Glu Al	(1). E367 proto 2 a Lys	. (236 -N602 ein Pro	2 ami (sequ Ser 5	Gly	suc Ser	val	s Ger Val	Glu 10	Gln	8893 Al a	36.1) Glu	Gly	Val 15	Glu
	<222> <223> <400> Glu Al	(1). E367- proto 2 a Lys	. (230 -N602 ein Pro Ser 20	2 ami (sequ Ser 5	Gly Leu	Ser Leu	Val	Val Gly 25	Glu 10 Thr	Gln Pro	Ala Pro	Glu Gln	Gly Val 30	Val 15 Tyr	Glu Asn
40	<222> <223> <400> Glu Al 1	(1). E367 proto 2 Lys Phe SArg 35	.(230-N602ein Pro Ser 20	2 ami (sequ Ser 5 Pro	Gly Leu	Ser Leu	Val Ser Asn	Val Gly 25 Cys	Glu 10 Thr	Gln Pro	Ala Pro Asn	Glu Gln Leu 45	Gly Val 30	Val 15 Tyr Lys	Glu Asn Leu
40 45	<222><223> <400> Glu Al 1 Cys As Phe Ly Leu Se	(1). E367 proto 2 a Lys p Phe s Arg 35	.(230-N602ein Pro Ser 20 Leu Phe	2 ami (sequ Ser 5 Pro Val	Gly Leu Phe	Ser Leu Thr Asn 55	Val Ser Asn 40	Val Gly 25 Cys	Glu 10 Thr Asn	Gln Pro Tyr Cys	Ala Pro Asn Ser	Glu Gln Leu 45	Gly Val 30 Thr	Val 15 Tyr Lys Ser	Glu Asn Leu Pro

	Pro	Ile	Ser	Gln 100	Phe	Asn	Tyr	Lys	Gln 105	Ser	Phe	Ser	Asn	Pro 110	Thr	Cys
5	Leu	Ile	Leu 115	Ala	Thr	Val	Pro	His 120	Asn	Leu	Thr	Thr	Ile 125	Thr	Lys	Pro
10	Leu	Lys 130	Tyr	Ser	Tyr	Ile	Asn 135	Lys	Cys	Ser	Arg	Leu 140	Leu	Ser	Asp	Asp
15	Arg 145	Thr	Glu	Val	Pro	Gln 150	Leu	Val	Asn	Ala	Asn 155	Gln	Tyr	Ser	Pro	Cys 160
	Val	Ser	Ile	Val	Pro 165	Ser	Thr	Val	Trp	Glu 170	Asp	Gly	Asp	Tyr	Туг 175	Arg
20	Lys	Gln	Leu	Ser 180	Pro	Leu	Glu	Gly	Gly 185	Gly	Trp	Leu	Val	Ala 190	Ser	Gly
25	Ser	Thr	Val 195	Ala	Met	Thr	Glu	Gln 200	Leu	Gln	Met	Gly	Phe 205	Gly	Ile	Thr
30	Val	Gln 210	Tyr	Gly	Thr	Asp	Thr 215	Asn	Ser	Val	Cys	Pro 220	Lys	Leu	Glu	Phe
	Ala 225	Asn	Asp	Thr	Lys	Ile 230	Ala	Ser	Gln	Leu	Gly 235	Asn				
35	<210 <211 <212 <213	l> 2 ?> E	3 208 PRT MERS-	-CoV												
45	<220 <221 <222 <223	L> I 2> '	00MA1 (1) /381- (sequ	. (208 -L588	ami			_					ŒRS-	-CoV	S pı	coteir
40	<400)> 3	3													
50	Val 1	Glu	Cys	Asp	Phe 5	Ser	Pro	Leu	Leu	Ser 10	Gly	Thr	Pro	Pro	Gln 15	Val
	Tyr	Asn	Phe	Lys 20	Arg	Leu	Val	Phe	Thr 25	Asn	Cys	Asn	Tyr	Asn 30	Leu	Thr
55	Lys	Leu	Leu 35	Ser	Leu	Phe	Ser	Val 40	Asn	Asp	Phe	Thr	Cys 45	Ser	Gln	Ile

	Ser	Pro 50	Ala	Ala	Ile	Ala	Ser 55	Asn	Cys	Tyr	Ser	Ser 60	Leu	IIe	Leu	Asp
5	Tyr 65	Phe	Ser	Tyr	Pro	Leu 70	Ser	Met	Lys	Ser	Asp 75	Leu	Ser	Val	Ser	Ser 80
10	Ala	Gly	Pro	Ile	Ser 85	Gln	Phe	Asn	Tyr	Lys 90	Gln	Ser	Phe	Ser	Asn 95	Pro
	Thr	Cys	Leu	Ile 100	Leu	Ala	Thr	Val	Pro 105	His	Asn	Leu	Thr	Thr 110	Ile	Thr
15	Lys	Pro	Leu 115	Lys	Tyr	Ser	Tyr	Ile 120	Asn	Lys	Cys	Ser	Arg 125	Leu	Leu	Ser
20	Asp	Asp 130	Arg	Thr	Glu	Val	Pro 135	Gln	Leu	Val	Asn	Ala 140	Asn	Gln	Tyr	Ser
	Pro 145	Cys	Val	Ser	Ile	Val 150	Pro	Ser	Thr	Val	Trp 155	Glu	Asp	Gly	Asp	Туг 160
25	Tyr	Arg	Lys	Gln	Leu 165	Ser	Pro	Leu	Glu	Gly 170	Gly	Gly	Trp	Leu	Val 175	Ala
30	Ser	Gly	Ser	Thr 180	Val	Ala	Met	Thr	Glu 185	Gln	Leu	Gln	Met	Gly 190	Phe	Gly
35	Ile	Thr	Val 195	Gln	Tyr	Gly	Thr	Asp 200	Thr	Asn	Ser	Val	Cys 205	Pro	Lys	Leu
40	<210 <211 <212 <213	L> : 2> :	4 211 PRT MERS-	-CoV												
45	<220 <221 <222 <223	L> 1 2> 3> :	DOMA: (1). E379- (sequ	. (21) -E589	ami			_					of l	MERS-	-CoV	S protein
	<400															
50	Glu 1	Gly	Val	Glu	Cys 5	Asp	Phe	Ser	Pro	Leu 10	Leu	Ser	Gly	Thr	Pro 15	Pro
55	Gln	Val	Tyr	Asn 20	Phe	Lys	Arg	Leu	Val 25	Phe	Thr	Asn	Cys	Asn 30	Tyr	Asn
55	Leu	Thr	Lys	Leu	Leu	Ser	Leu	Phe	Ser	Val	Asn	Asp	Phe	Thr	Cys	Ser

5	Gln	Ile 50	Ser	Pro	Ala	Ala	Ile 55	Ala	Ser	Asn	Cys	Туг 60	Ser	Ser	Leu	Ile
	Leu 65	Asp	Tyr	Phe	Ser	Tyr 70	Pro	Leu	Ser	Met	Lys 75	Ser	Asp	Leu	Ser	Val 80
10	Ser	Ser	Ala	Gly	Pro 85	Ile	Ser	Gln	Phe	Asn 90	Tyr	Lys	Gln	Ser	Phe 95	Ser
15	Asn	Pro	Thr	Cys 100	Leu	Ile	Leu	Ala	Thr 105	Val	Pro	His	Asn	Le u 110	Thr	Thr
20	Ile	Thr	Lys 115	Pro	Leu	Lys	Tyr	Ser 120	Tyr	Ile	Asn	Lys	Cys 125	Ser	Arg	Leu
	Leu	Ser 130	Asp	Asp	Arg	Thr	Glu 135	Val	Pro	Gln	Leu	Val 140	Asn	Ala	Asn	Gln
25	Tyr 145	Ser	Pro	Cys	Val	Ser 150	Ile	Val	Pro	Ser	Thr 155	Val	Trp	Glu	Asp	Gly 160
30	Asp	Tyr	Tyr	Arg	Lys 165	Gln	Leu	Ser	Pro	Leu 170	Glu	Gly	Gly	Gly	Trp 175	Leu
	Val	Ala	Ser	Gly 180	Ser	Thr	Val	Ala	Met 185	Thr	Glu	Gln	Leu	Gln 190	Met	Gly
35	Phe	Gly	Ile 195	Thr	Val	Gln	Tyr	Gly 200	Thr	Asp	Thr	Asn	Ser 205	Val	Cys	Pro
40	Lys	Leu 210	Glu													
45	<210 <211 <212 <213	L> 2 2> 1	5 212 PRT 2019-	-nCoV	7											
50	<220 <220 <220 <220	L> 1 2> 3> 1		. (212 -s530	ami			_							_	otein QHR63250)
55	<400 Arg 1		5 Gln	Pro	Thr 5	Glu	Ser	Ile	Val	Arg 10	Phe	Pro	Asn	Ile	Thr 15	Asn

	Leu C	ys Pro	Phe 20	Gly	Glu	Val	Phe	Asn 25	Ala	Thr	Arg	Phe	Ala 30	Ser	Val
5	Tyr A	la Trp 35	Asn	Arg	Lys	Arg	Ile 40	Ser	Asn	Cys	Val	Ala 45	Asp	Tyr	Ser
10	Val L 5	eu Tyr O	Asn	Ser	Ala	Ser 55	Phe	Ser	Thr	Phe	Lys 60	Cys	Tyr	Gly	Val
15	Ser P 65	ro Thr	Lys	Leu	Asn 70	Asp	Leu	Cys	Phe	Thr 75	Asn	Val	Tyr	Ala	Asp 80
15	Ser P	he Val	Ile	Arg 85	Gly	Asp	Glu	Val	Arg 90	Gln	Ile	Ala	Pro	Gly 95	Gln
20	Thr G	ly Lys	Ile 100	Ala	Asp	Tyr	Asn	Tyr 105	Lys	Leu	Pro	Asp	Asp 110	Phe	Thr
25	Gly C	ys Val 115	Ile	Ala	Trp	Asn	Ser 120	Asn	Asn	Leu	Asp	Ser 125	Lys	Val	Gly
	_	sn Tyr 30	Asn	Tyr	Leu	Туг 135	Arg	Leu	Phe	Arg	Lys 140	Ser	Asn	Leu	Lys
30	Pro P 145	he Glu	Arg	Asp	Ile 150	Ser	Thr	Glu	Ile	Tyr 155	Gln	Ala	Gly	Ser	Thr 160
35	Pro C	ys Asn	Gly	Val 165	Glu	Gly	Phe	Asn	Cys 170	Tyr	Phe	Pro	Leu	Gln 175	Ser
40	Tyr G	ly Phe	Gln 180	Pro	Thr	Asn	Gly	Val 185	Gly	Tyr	Gln	Pro	Туг 190	Arg	Val
	Val V	al Leu 195	Ser	Phe	Glu	Leu	Leu 200	His	Ala	Pro	Ala	Thr 205	Val	Cys	Gly
45		ys Lys 10	Ser												
50	<210><211><212><212><213>	219 PRT	-nCoV	7											
55	<220> <221> <222>	DOMA	IN . (21	∌)											

	\ 22.														_	OHR63250)
	<400)>	6													
5	Arg 1	Val	Gln	Pro	Thr 5	Glu	Ser	Ile	Val	Arg 10	Phe	Pro	Asn	Ile	Thr 15	Asn
10	Leu	Cys	Pro	Phe 20	Gly	Glu	Val	Phe	Asn 25	Ala	Thr	Arg	Phe	Ala 30	Ser	Val
15	Tyr	Ala	Trp 35	Asn	Arg	Lys	Arg	Ile 40	Ser	Asn	Cys	Val	Ala 45	Asp	Tyr	Ser
	Val	Leu 50	Tyr	Asn	Ser	Ala	Ser 55	Phe	Ser	Thr	Phe	Lys 60	Cys	Tyr	Gly	Val
20	Ser 65	Pro	Thr	Lys	Leu	Asn 70	Asp	Leu	Cys	Phe	Thr 75	Asn	Val	Tyr	Ala	Asp 80
25	Ser	Phe	Val	Ile	Arg 85	Gly	Asp	Glu	Val	Arg 90	Gln	Ile	Ala	Pro	Gly 95	Gln
	Thr	Gly	Lys	Ile 100	Ala	Asp	Tyr	Asn	Tyr 105	Lys	Leu	Pro	Asp	Asp 110	Phe	Thr
30	Gly	Cys	Val 115	Ile	Ala	Trp	Asn	Ser 120	Asn	Asn	Leu	Asp	Ser 125	Lys	Val	Gly
35	Gly	As n 130	Tyr	Asn	Tyr	Leu	Туг 135	Arg	Leu	Phe	Arg	Lys 140	Ser	Asn	Leu	Lys
40	Pro 145	Phe	Glu	Arg	Asp	Ile 150	Ser	Thr	Glu	Ile	Tyr 155	Gln	Ala	Gly	Ser	Thr 160
	Pro	Cys	Asn	Gly	Val 165	Glu	Gly	Phe	Asn	Cys 170	Tyr	Phe	Pro	Leu	Gln 175	Ser
45	Tyr	Gly	Phe	Gln 180	Pro	Thr	Asn	Gly	Val 185	Gly	Tyr	Gln	Pro	Туг 190	Arg	Val
50	Val	Val	Leu 195	Ser	Phe	Glu	Leu	Leu 200	His	Ala	Pro	Ala	Thr 205	Val	Cys	Gly
	Pro	Lys 210	Lys	Ser	Thr	Asn	Leu 215	Val	Lys	Asn	Lys					
55	<210 <21		7 223													

	<212 <213		PRT 2019-	-nCoV	7											
5	<220 <221 <222 <223	.> : !> !> :		(223 -F541	. ami			_							_	otein QHR63250)
10	<400	>	7													
	Arg 1	Val	Gln	Pro	Thr 5	Glu	Ser	Ile	Val	Arg 10	Phe	Pro	Asn	Ile	Thr 15	Asn
15	Leu	Cys	Pro	Phe 20	Gly	Glu	Val	Phe	Asn 25	Ala	Thr	Arg	Phe	Ala 30	Ser	Val
20	Tyr	Ala	Trp 35	Asn	Arg	Lys	Arg	Ile 40	Ser	Asn	Cys	Val	Ala 45	Asp	Tyr	Ser
25	Val	Leu 50	Tyr	Asn	Ser	Ala	Ser 55	Phe	Ser	Thr	Phe	Lys 60	Cys	Tyr	Gly	Val
	Ser 65	Pro	Thr	Lys	Leu	Asn 70	Asp	Leu	Cys	Phe	Thr 75	Asn	Val	Tyr	Ala	Asp 80
30	Ser	Phe	Val	Ile	Arg 85	Gly	Asp	Glu	Val	Arg 90	Gln	Ile	Ala	Pro	Gly 95	Gln
35	Thr	Gly	Lys	Ile 100	Ala	Asp	Tyr	Asn	Tyr 105	Lys	Leu	Pro	Asp	Asp 110	Phe	Thr
	Gly	Суѕ	Val 115	Ile	Ala	Trp	Asn	Ser 120	Asn	Asn	Leu	Asp	Ser 125	Lys	Val	Gly
40	Gly	As n 130	Tyr	Asn	Tyr	Leu	Туг 135	Arg	Leu	Phe	Arg	Lys 140	Ser	Asn	Leu	Lys
45	Pro 145	Phe	Glu	Arg	Asp	Ile 150	Ser	Thr	Glu	Ile	Tyr 155	Gln	Ala	Gly	Ser	Thr 160
50	Pro	Cys	Asn	Gly	Val 165	Glu	Gly	Phe	Asn	Cys 170	Tyr	Phe	Pro	Leu	Gln 175	Ser
	Tyr	Gly	Phe	Gln 180	Pro	Thr	Asn	Gly	Val 185	Gly	Tyr	Gln	Pro	Туг 190	Arg	Val
55	Val	Val	Leu 195	Ser	Phe	Glu	Leu	Leu 200	His	Ala	Pro	Ala	Thr 205	Val	Cys	Gly

	Pro	Lys 210	Lys	Ser	Thr	Asn	Leu 215	Val	Lys	Asn	Lys	Cys 220	Val	Asn	Phe	
5	<210 <211 <212 <213	L> 2>	8 218 PRT S A RS-	-CoV												
10	<220 <221 <222 <223	L> 2>	DOMA:	(218		no :	acid	sagu	lenge	. in	+he	חפס	of t	·he (: pro	otein
15	<400		seque					_							, P.C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20			Val	Pro	Ser 5	Gly	Asp	Val	Val	Arg 10	Phe	Pro	Asn	Ile	Thr 15	Asn
	Leu	Cys	Pro	Phe 20	Gly	Glu	Val	Phe	Asn 25	Ala	Thr	Lys	Phe	Pro 30	Ser	Val
25	Tyr	Ala	Trp 35	Glu	Arg	Lys	Lys	Ile 40	Ser	Asn	Cys	Val	Ala 45	Asp	Tyr	Ser
30	Val	Leu 50	Tyr	Asn	Ser	Thr	Phe 55	Phe	Ser	Thr	Phe	Lys 60	Cys	Tyr	Gly	Val
35	Ser 65	Ala	Thr	Lys	Leu	Asn 70	Asp	Leu	Cys	Phe	Ser 75	Asn	Val	Tyr	Ala	Asp 80
	Ser	Phe	Val	Val	Lys 85	Gly	Asp	Asp	Val	Arg 90	Gln	Ile	Ala	Pro	Gly 95	Gln
40	Thr	Gly	Val	Ile 100	Ala	Asp	Tyr	Asn	Tyr 105	Lys	Leu	Pro	Asp	Asp 110	Phe	Met
45	Gly	Cys	Val 115	Leu	Ala	Trp	Asn	Thr 120	Arg	Asn	Ile	Asp	Ala 125	Thr	Ser	Thr
50	Gly	A sn 130	Tyr	Asn	Tyr	Lys	Tyr 135	Arg	Tyr	Leu	Arg	His 140	Gly	Lys	Leu	Arg
	Pro 145	Phe	Glu	Arg	Asp	Ile 150	Ser	Asn	Val	Pro	Phe 155	Ser	Pro	Asp	Gly	Lys 160
55	Pro	Cys	Thr	Pro	Pro 165	Ala	Leu	Asn	Cys	Tyr 170	Trp	Pro	Leu	Asn	Asp 175	Tyr

Gly Phe Tyr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val 185

Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro 5

Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln 215

10

15

20

25

30

35

40

45

50

55

<210> 9

<211> 1458 <212>

<213> Artificial Sequence

<220>

<221> CDS

<222> (1) . . (1458)

DNA

A nucleotide sequence encoding two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by the GGSGGS linker sequence

<400>

60 gaagcaaaac cttctggctc agttgtggaa caggctgaag gtgttgaatg tgatttttca 120 cctcttctgt ctggcacacc tcctcaggtt tataatttca agcgtttggt ttttaccaat tgcaattata atcttaccaa attgctttca cttttttctg tgaatgattt tacttgtagt 180 caaatatctc cagcagcaat tgctagcaac tgttattctt cactgatttt ggattacttt 240 tcatacccac ttagtatgaa atccgatctc agtgttagtt ctgctggtcc aatatcccag 300 tttaattata aacagteett ttetaateee acatgtttga ttttagegae tgtteeteat 360 aaccttacta ctattactaa gcctcttaag tacagctata ttaacaagtg ctctcgtctt 420 ctttctgatg atcgtactga agtacctcag ttagtgaacg ctaatcaata ctcacctgt 480 gtatccattg tcccatccac tgtgtgggaa gacggtgatt attataggaa acaactatct 540 600 ccacttgaag gtggtggctg gcttgttgct agtggctcaa ctgttgccat gactgagcaa 660 ttacagatgg gctttggtat tacagttcaa tatggtacag acaccaatag tgtttgcccc aagcttgaat ttgctaatga cacaaaaatt gcctctcaat taggcaattg cgtggaatat 720 ggcggctcag gcggctcaga agcaaaacct tctggctcag ttgtggaaca ggctgaaggt 780 gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag 840 cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg 900 aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca 960 ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct 1020 gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt 1080 ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt 1140

	aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	1200
	aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	1260
5	tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	1320
	gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	1380
	accaatagtg	tttgccccaa	gcttgaattt	gctaatgaca	caaaaattgc	ctctcaatta	1440
10	ggcaattgcg	tggaatat					1458
15	<210> 10 <211> 144: <212> DNA <213> Art:		ience				
20						no acid sequ r sequence	ences
25	<400> 10 gaagcaaaac	cttctggctc	agttgtggaa	caggctgaag	gtgttgaatg	tgatttttca	60
	cctcttctgt	ctggcacacc	tcctcaggtt	tataatttca	agcgtttggt	ttttaccaat	120
	tgcaattata	atcttaccaa	attgctttca	ctttttctg	tgaatgattt	tacttgtagt	180
30	caaatatctc	cagcagcaat	tgctagcaac	tgttattctt	cactgatttt	ggattacttt	240
	tcatacccac	ttagtatgaa	atccgatctc	agtgttagtt	ctgctggtcc	aatatcccag	300
	tttaattata	aacagtcctt	ttctaatccc	acatgtttga	ttttagcgac	tgttcctcat	360
35	aaccttacta	ctattactaa	gcctcttaag	tacagctata	ttaacaagtg	ctctcgtctt	420
	ctttctgatg	atcgtactga	agtacctcag	ttagtgaacg	ctaatcaata	ctcaccctgt	480
	gtatccattg	tcccatccac	tgtgtgggaa	gacggtgatt	attataggaa	acaactatct	540
10	ccacttgaag	gtggtggctg	gcttgttgct	agtggctcaa	ctgttgccat	gactgagcaa	600
	ttacagatgg	gctttggtat	tacagttcaa	tatggtacag	acaccaatag	tgtttgcccc	660
	aagcttgaat	ttgctaatga	cacaaaaatt	gcctctcaat	taggcaattg	cgtggaatat	720
1 5	ggcggctcag	aagcaaaacc	ttctggctca	gttgtggaac	aggctgaagg	tgttgaatgt	780
	gatttttcac	ctcttctgtc	tggcacacct	cctcaggttt	ataatttcaa	gcgtttggtt	840
50	tttaccaatt	gcaattataa	tcttaccaaa	ttgctttcac	ttttttctgt	gaatgatttt	900
	acttgtagtc	aaatatctcc	agcagcaatt	gctagcaact	gttattcttc	actgattttg	960
	gattactttt	catacccact	tagtatgaaa	tccgatctca	gtgttagttc	tgctggtcca	1020
55	atatcccagt	ttaattataa	acagtccttt	tctaatccca	catgtttgat	tttagcgact	1080
	gttcctcata	accttactac	tattactaag	cctcttaagt	acagctatat	taacaagtgc	1140

	tctcgtcttc	tttctgatga	tcgtactgaa	gtacctcagt	tagtgaacgc	taatcaatac	1200
	tcaccctgtg	tatccattgt	cccatccact	gtgtgggaag	acggtgatta	ttataggaaa	1260
5	caactatctc	cacttgaagg	tggtggctgg	cttgttgcta	gtggctcaac	tgttgccatg	1320
	actgagcaat	tacagatggg	ctttggtatt	acagttcaat	atggtacaga	caccaatagt	1380
	gtttgcccca	agcttgaatt	tgctaatgac	acaaaaattg	cctctcaatt	aggcaattgc	1440
10	gtggaatat						1449
15	<210> 11 <211> 1440 <212> DNA <213> Arti) ificial Sequ	1ence				
20	<223> Nucl	(1440) leotide sequ ID NO: 1 di				acid sequences	of
25	<400> 11	cttctggctc	agttgtggaa	caggetgaag	atattaaata	taattttaa	60
		ctggcacacc				_	120
							180
30	_	atcttaccaa	_	_			
		cagcagcaat		_			240
		ttagtatgaa	-			_	300
35	tttaattata	aacagtcctt	ttctaatccc	acatgtttga	ttttagcgac	tgttcctcat	360
	aaccttacta	ctattactaa	gcctcttaag	tacagctata	ttaacaagtg	ctctcgtctt	420
	ctttctgatg	atcgtactga	agtacctcag	ttagtgaacg	ctaatcaata	ctcaccctgt	480
40	gtatccattg	tcccatccac	tgtgtgggaa	gacggtgatt	attataggaa	acaactatct	540
	ccacttgaag	gtggtggctg	gcttgttgct	agtggctcaa	ctgttgccat	gactgagcaa	600
	ttacagatgg	gctttggtat	tacagttcaa	tatggtacag	acaccaatag	tgtttgcccc	660
45	aagcttgaat	ttgctaatga	cacaaaaatt	gcctctcaat	taggcaattg	cgtggaatat	720
	gaagcaaaac	cttctggctc	agttgtggaa	caggctgaag	gtgttgaatg	tgatttttca	780
	cctcttctgt	ctggcacacc	tcctcaggtt	tataatttca	agcgtttggt	ttttaccaat	840
50	tgcaattata	atcttaccaa	attgctttca	ctttttctg	tgaatgattt	tacttgtagt	900
	caaatatctc	cagcagcaat	tgctagcaac	tgttattctt	cactgatttt	ggattacttt	960
55	tcatacccac	ttagtatgaa	atccgatctc	agtgttagtt	ctgctggtcc	aatatcccag	1020
	tttaattata	aacagtcctt	ttctaatccc	acatgtttga	ttttagcgac	tgttcctcat	1080

	aaccttacta ctattactaa gcctcttaag tacagctata ttaacaagtg ctctcgtctt	1140
	ctttctgatg atcgtactga agtacctcag ttagtgaacg ctaatcaata ctcaccctgt	1200
5	gtatccattg tcccatccac tgtgtgggaa gacggtgatt attataggaa acaactatct	1260
	ccacttgaag gtggtggctg gcttgttgct agtggctcaa ctgttgccat gactgagcaa	1320
	ttacagatgg gctttggtat tacagttcaa tatggtacag acaccaatag tgtttgcccc	1380
10	aagcttgaat ttgctaatga cacaaaaatt gcctctcaat taggcaattg cgtggaatat	1440
15	<210> 12 <211> 1425 <212> DNA <213> Artificial Sequence	
20	<220> <221> CDS <222> (1)(1425) <223> A nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 2 linked in tandem by a GGS linker sequence	s
	<400> 12	60
25	gaagcaaaac cttctggctc agttgtggaa caggctgaag gtgttgaatg tgatttttca	60 120
	cctcttctgt ctggcacacc tcctcaggtt tataatttca agcgtttggt ttttaccaat	180
	tgcaattata atcttaccaa attgctttca cttttttctg tgaatgattt tacttgtagt	
30	caaatatete cagcagcaat tgetagcaac tgttattett caetgatttt ggattaettt	240
	tcatacceae ttagtatgaa atecgatete agtgttagtt etgetggtee aatateceag	300
0.5	tttaattata aacagteett ttetaateee acatgtttga ttttagegae tgtteeteat	360
35	aaccttacta ctattactaa gcctcttaag tacagctata ttaacaagtg ctctcgtctt	420
	ctttctgatg atcgtactga agtacctcag ttagtgaacg ctaatcaata ctcaccctgt	480
40	gtatccattg tcccatccac tgtgtgggaa gacggtgatt attataggaa acaactatct	540
70	ccacttgaag gtggtggctg gcttgttgct agtggctcaa ctgttgccat gactgagcaa	600
	ttacagatgg gctttggtat tacagttcaa tatggtacag acaccaatag tgtttgcccc	660
45	aagcttgaat ttgctaatga cacaaaaatt gcctctcaat taggcaatgg cggctcagaa	720
	gcaaaacctt ctggctcagt tgtggaacag gctgaaggtg ttgaatgtga tttttcacct	780
	cttctgtctg gcacacctcc tcaggtttat aatttcaagc gtttggtttt taccaattgc	840
50	aattataatc ttaccaaatt gctttcactt ttttctgtga atgattttac ttgtagtcaa	900
	atatctccag cagcaattgc tagcaactgt tattcttcac tgattttgga ttacttttca	960
	tacccactta gtatgaaatc cgatctcagt gttagttctg ctggtccaat atcccagttt	1020
55	aattataaac agtccttttc taatcccaca tgtttgattt tagcgactgt tcctcataac	1080
	cttactacta ttactaagcc tcttaagtac agctatatta acaagtgctc tcgtcttctt	1140

	tctgatgatc	gtactgaagt	acctcagtta	gtgaacgcta	atcaatactc	accctgtgta	1200
	tccattgtcc	catccactgt	gtgggaagac	ggtgattatt	ataggaaaca	actatctcca	1260
5	cttgaaggtg	gtggctggct	tgttgctagt	ggctcaactg	ttgccatgac	tgagcaatta	1320
	cagatgggct	ttggtattac	agttcaatat	ggtacagaca	ccaatagtgt	ttgccccaag	1380
	cttgaatttg	ctaatgacac	aaaaattgcc	tctcaattag	gcaat		1425
10							
	<210> 13 <211> 1416	5					
	<212> DNA						
15	<213> Arti	ificial Sequ	ience				
	<220>						
	<221> CDS <222> (1)	(1416)					
20	<223> Nucl	Leotide sequ		ing two repo ced in tando		acid sequences	of
	<400> 13						
		cttctggctc	agttgtggaa	caggctgaag	gtgttgaatg	tgatttttca	60
25	cctcttctgt	ctggcacacc	tcctcaggtt	tataatttca	agcgtttggt	ttttaccaat	120
	tgcaattata	atcttaccaa	attgctttca	cttttttctg	tgaatgattt	tacttgtagt	180
30	caaatatctc	cagcagcaat	tgctagcaac	tgttattctt	cactgatttt	ggattacttt	240
,,,	tcatacccac	ttagtatgaa	atccgatctc	agtgttagtt	ctgctggtcc	aatatcccag	300
	tttaattata	aacagtcctt	ttctaatccc	acatgtttga	ttttagcgac	tgttcctcat	360
35				tacagctata			420
				ttagtgaacg			480
				gacggtgatt			540 600
10				agtggctcaa tatggtacag			660
				gcctctcaat			720
15				gttgaatgtg			780
	ggcacacctc	ctcaggttta	taatttcaag	cgtttggttt	ttaccaattg	caattataat	840
	cttaccaaat	tgctttcact	tttttctgtg	aatgatttta	cttgtagtca	aatatctcca	900
50	gcagcaattg	ctagcaactg	ttattcttca	ctgattttgg	attacttttc	atacccactt	960
	agtatgaaat	ccgatctcag	tgttagttct	gctggtccaa	tatcccagtt	taattataaa	1020
55	cagtcctttt	ctaatcccac	atgtttgatt	ttagcgactg	ttcctcataa	ccttactact	1080
	attactaagc	ctcttaagta	cagctatatt	aacaagtgct	ctcgtcttct	ttctgatgat	1140

	cgtactgaag tacctcagtt agtgaacgct aatcaatact caccctgtgt atccattgtc	1200
	ccatccactg tgtgggaaga cggtgattat tataggaaac aactatctcc acttgaaggt	1260
5	ggtggctggc ttgttgctag tggctcaact gttgccatga ctgagcaatt acagatgggc	1320
	tttggtatta cagttcaata tggtacagac accaatagtg tttgccccaa gcttgaattt	1380
	gctaatgaca caaaaattgc ctctcaatta ggcaat	1416
10		
	<210> 14 <211> 1293	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	<221> CDS	
	<pre><222> (1)(1293) <223> A nucleotide sequence encoding two repeated amino acid sequence</pre>	es
20	of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGGSGGS linker sequence	
	<400> 14	
	gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag	60
25	cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg	120
	aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca	180
30	ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct	240
	gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt	300
	ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt	360
35	aacaagtgct ctcgtcttct ttctgatgat cgtactgaag tacctcagtt agtgaacgct	420
	aatcaatact caccetgtgt atccattgte ceatecactg tgtgggaaga eggtgattat	480
	tataggaaac aactatctcc acttgaaggt ggtggctggc ttgttgctag tggctcaact	540
40	gttgccatga ctgagcaatt acagatgggc tttggtatta cagttcaata tggtacagac	600
	accaatagtg tttgccccaa gcttggcggc tcaggcggct caggcggctc aggcggctca	660
	ggcggctcag ttgaatgtga tttttcacct cttctgtctg gcacacctcc tcaggtttat	720
45	aatttcaagc gtttggtttt taccaattgc aattataatc ttaccaaatt gctttcactt	780
	ttttctgtga atgattttac ttgtagtcaa atatctccag cagcaattgc tagcaactgt	840
50	tattetteae tgattttgga ttaettttea tacceaetta gtatgaaate egateteagt	900
	gttagttctg ctggtccaat atcccagttt aattataaac agtccttttc taatcccaca	960
	tgtttgattt tagcgactgt tcctcataac cttactacta ttactaagcc tcttaagtac	1020
55	agctatatta acaagtgctc tcgtcttctt tctgatgatc gtactgaagt acctcagtta	1080

1140

gtgaacgcta atcaatactc accctgtgta tccattgtcc catccactgt gtgggaagac

ggtgattatt ataggaaaca actatctcca cttgaaggtg gtggctggct tgttgctagt 1200 ggctcaactg ttgccatgac tgagcaatta cagatgggct ttggtattac agttcaatat 1260 1293 ggtacagaca ccaatagtgt ttgccccaag ctt 5 <210> 15 <211> 1284 <212> DNA 10 <213> Artificial Sequence <220> <221> CDS <222> (1) .. (1284) 15 <223> A nucleotide sequence encoding two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGGS linker sequence 20 gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag 60 cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg 120 180 aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca 25 240 ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt 300 ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt 360 30 aacaagtgct ctcgtcttct ttctgatgat cgtactgaag tacctcagtt agtgaacgct 420 aatcaatact caccctgtgt atccattgtc ccatccactg tgtgggaaga cggtgattat 480 540 tataggaaac aactatetee acttgaaggt ggtggetgge ttgttgetag tggeteaact 35 gttgccatga ctgagcaatt acagatgggc tttggtatta cagttcaata tggtacagac 600 accaatagtg tttgccccaa gcttggcggc tcaggcggct caggcggctc aggcggctca 660 40 720 gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag cqtttqqttt ttaccaattq caattataat cttaccaaat tqctttcact tttttctqtq 780 840 aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca 45 ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct 900 gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt 960 ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt 1020 50 aacaagtgct ctcgtcttct ttctgatgat cgtactgaag tacctcagtt agtgaacgct 1080

aatcaatact caccetgtgt atceattgte ceatecactg tgtgggaaga eggtgattat

tataggaaac aactatctcc acttgaaggt ggtggctggc ttgttgctag tggctcaact

gttgccatga ctgagcaatt acagatgggc tttggtatta cagttcaata tggtacagac

55

1140

1200

1260

	accaatagtg tttgccccaa gctt	1284
5	<210> 16 <211> 1275 <212> DNA <213> Artificial Sequence	
10	<220> <221> CDS <222> (1)(1275) <223> A nucleotide sequence encoding two repeated amino acid sequence of SEQ ID NO: 3 linked in tandem by the GGSGGSGGS linker sequence sequence of SEQ ID NO: 3 linked in tandem by the SEGGGGGGS linker sequence s	
15	<400> 16	
	gttgaatgtg atttttcacc tcttctgtct ggcacacctc ctcaggttta taatttcaag	60
	cgtttggttt ttaccaattg caattataat cttaccaaat tgctttcact tttttctgtg	120
20	aatgatttta cttgtagtca aatatctcca gcagcaattg ctagcaactg ttattcttca	180
	ctgattttgg attacttttc atacccactt agtatgaaat ccgatctcag tgttagttct	240
	gctggtccaa tatcccagtt taattataaa cagtcctttt ctaatcccac atgtttgatt	300
25	ttagcgactg ttcctcataa ccttactact attactaagc ctcttaagta cagctatatt	360
	aacaagtgct ctcgtcttct ttctgatgat cgtactgaag tacctcagtt agtgaacgct	420
	aatcaatact caccctgtgt atccattgtc ccatccactg tgtgggaaga cggtgattat	480
30	tataggaaac aactatctcc acttgaaggt ggtggctggc ttgttgctag tggctcaact	540
	gttgccatga ctgagcaatt acagatgggc tttggtatta cagttcaata tggtacagac	600
	accaatagtg tttgccccaa gcttggcggc tcaggcggct caggcggctc agttgaatgt	660
35	gatttttcac ctcttctgtc tggcacacct cctcaggttt ataatttcaa gcgtttggtt	720
	tttaccaatt gcaattataa tcttaccaaa ttgctttcac ttttttctgt gaatgatttt	780
	acttgtagtc aaatatctcc agcagcaatt gctagcaact gttattcttc actgattttg	840
40	gattactttt catacccact tagtatgaaa teegatetea gtgttagtte tgetggteea	900
	atatcccagt ttaattataa acagtccttt tctaatccca catgtttgat tttagcgact	960
	gttcctcata accttactac tattactaag cctcttaagt acagctatat taacaagtgc	1020
45	tetegtette tttetgatga tegtaetgaa gtaeeteagt tagtgaaege taateaatae	1080
	tcaccctgtg tatccattgt cccatccact gtgtgggaag acggtgatta ttataggaaa	1140
	caactatctc cacttgaagg tggtggctgg cttgttgcta gtggctcaac tgttgccatg	1200
50	actgagcaat tacagatggg ctttggtatt acagttcaat atggtacaga caccaatagt	1260
	gtttgcccca agctt	1275
55	<210> 17 <211> 1257	

		DNA Arti	ficial Seq	uence				
5	<222>	A nu		equence enco 3 linked in			no acid sequ r sequence	ences
10		17 gtg	atttttcacc	tcttctgtct	ggcacacctc	ctcaggttta	taatttcaag	60
	cgtttgg	gttt	ttaccaattg	caattataat	cttaccaaat	tgctttcact	tttttctgtg	120
15	aatgatt	tta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	180
,,	ctgattt	tgg	attacttttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	240
	gctggto	ccaa	tatcccagtt	taattataaa	cagtcctttt	ctaatcccac	atgtttgatt	300
20	ttagcga	actg	ttcctcataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	360
	aacaagt	gct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	420
	aatcaat	act	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	480
25	tatagga	aac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	540
	gttgcca	atga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	600
	accaata	ıgtg	tttgccccaa	gcttggcggc	tcagttgaat	gtgattttc	acctcttctg	660
30	tctggca	cac	ctcctcaggt	ttataatttc	aagcgtttgg	tttttaccaa	ttgcaattat	720
	aatctta	acca	aattgctttc	actttttct	gtgaatgatt	ttacttgtag	tcaaatatct	780
	ccagcag	jcaa	ttgctagcaa	ctgttattct	tcactgattt	tggattactt	ttcataccca	840
35	cttagta	atga	aatccgatct	cagtgttagt	tctgctggtc	caatatccca	gtttaattat	900
	aaacagt	cct	tttctaatcc	cacatgtttg	attttagcga	ctgttcctca	taaccttact	960
40	actatta	acta	agcctcttaa	gtacagctat	attaacaagt	gctctcgtct	tctttctgat	1020
40	gatcgta	actg	aagtacctca	gttagtgaac	gctaatcaat	actcaccctg	tgtatccatt	1080
	gtcccat	cca	ctgtgtggga	agacggtgat	tattatagga	aacaactatc	tccacttgaa	1140
45	ggtggtg	gct	ggcttgttgc	tagtggctca	actgttgcca	tgactgagca	attacagatg	1200
	ggctttg	ggta	ttacagttca	atatggtaca	gacaccaata	gtgtttgccc	caagctt	1257
50		18 1248 DNA Arti	3 Lficial Seq	uence				
55	<220> <221>	CDS						

<222> (1)..(1248)

<223> Nucleotide sequence encoding two repeated amino acid sequences of SEQ ID NO: 3 directly linked in tandem

5	<400> 18 gttgaatgtg	atttttcacc	tcttctgtct	ggcacacctc	ctcaggttta	taatttcaag	60
	cgtttggttt	ttaccaattg	caattataat	cttaccaaat	tgctttcact	tttttctgtg	120
	aatgatttta	cttgtagtca	aatatctcca	gcagcaattg	ctagcaactg	ttattcttca	180
10	ctgattttgg	attacttttc	atacccactt	agtatgaaat	ccgatctcag	tgttagttct	240
	gctggtccaa	tatcccagtt	taattataaa	cagtcctttt	ctaatcccac	atgtttgatt	300
	ttagcgactg	ttcctcataa	ccttactact	attactaagc	ctcttaagta	cagctatatt	360
15	aacaagtgct	ctcgtcttct	ttctgatgat	cgtactgaag	tacctcagtt	agtgaacgct	420
	aatcaatact	caccctgtgt	atccattgtc	ccatccactg	tgtgggaaga	cggtgattat	480
00	tataggaaac	aactatctcc	acttgaaggt	ggtggctggc	ttgttgctag	tggctcaact	540
20	gttgccatga	ctgagcaatt	acagatgggc	tttggtatta	cagttcaata	tggtacagac	600
	accaatagtg	tttgccccaa	gcttgttgaa	tgtgattttt	cacctcttct	gtctggcaca	660
25	cctcctcagg	tttataattt	caagcgtttg	gtttttacca	attgcaatta	taatcttacc	720
	aaattgcttt	cactttttc	tgtgaatgat	tttacttgta	gtcaaatatc	tccagcagca	780
	attgctagca	actgttattc	ttcactgatt	ttggattact	tttcataccc	acttagtatg	840
30	aaatccgatc	tcagtgttag	ttctgctggt	ccaatatccc	agtttaatta	taaacagtcc	900
	ttttctaatc	ccacatgttt	gattttagcg	actgttcctc	ataaccttac	tactattact	960
	aagcctctta	agtacagcta	tattaacaag	tgctctcgtc	ttctttctga	tgatcgtact	1020
35	gaagtacctc	agttagtgaa	cgctaatcaa	tactcaccct	gtgtatccat	tgtcccatcc	1080
	actgtgtggg	aagacggtga	ttattatagg	aaacaactat	ctccacttga	aggtggtggc	1140
	tggcttgttg	ctagtggctc	aactgttgcc	atgactgagc	aattacagat	gggctttggt	1200
40	attacagttc	aatatggtac	agacaccaat	agtgtttgcc	ccaagctt		1248

<210> 19

<211> 1272 <212> DNA <213> Artificial Sequence

<220>

45

50

<221> CDS

<222> (1) . . (1272)

<223> Nucleotide sequence encoding two repeated amino acid sequences of SEQ ID NO: 5 directly linked in tandem

<400> 19

agagtgcaac ctacagaatc aatcgtgaga tttcctaaca tcacaaacct ttgccctttc 60 55 ggcgaggtgt ttaacgcaac aagatttgca tcagtgtacg catggaacag aaagcgtata 120

	ccaaaccgcg	cggcagacca	cccagcgccc	cacaacccag	caccacccag	cacgeeeaaa	-00
	tgctacggag	tgtcacctac	aaagctaaat	gatctttgct	ttacaaacgt	gtacgcagat	240
5	tcatttgtga	tcagaggaga	tgaagtgaga	caaatcgcac	ctggacaaac	aggaaagatt	300
	gccgattaca	actacaaact	tcctgatgat	ttcaccggct	gcgtgatcgc	atggaactca	360
	aacaaccttg	attcaaaggt	aggtggtaat	tataattatt	tgtataggct	ctttcgtaag	420
10	agcaacttaa	agccatttga	gcgagatatc	tcaacagaaa	tctaccaagc	aggatcaaca	480
	ccttgcaacg	gagtggaagg	atttaactgc	tactttcctc	ttcaatcata	cggatttcaa	540
	cctacaaacg	gagtgggata	ccaaccttac	agagtggtgg	tgctttcatt	tgaacttctt	600
15	cacgcacctg	caacagtgtg	cggacctaag	aagagcagag	tgcaacctac	agaatcaatc	660
	gtgagatttc	ctaacatcac	aaacctttgc	cctttcggcg	aggtgtttaa	cgcaacaaga	720
20	tttgcatcag	tgtacgcatg	gaacagaaag	cgtatatcaa	actgcgtggc	agattactca	780
	gtgctttaca	actcagcatc	attcagtacg	tttaaatgct	acggagtgtc	acctacaaag	840
	ctaaatgatc	tttgctttac	aaacgtgtac	gcagattcat	ttgtgatcag	aggagatgaa	900
25	gtgagacaaa	tcgcacctgg	acaaacagga	aagattgccg	attacaacta	caaacttcct	960
	gatgatttca	ccggctgcgt	gatcgcatgg	aactcaaaca	accttgattc	aaaggtaggt	1020
	ggtaattata	attatttgta	taggctcttt	cgtaagagca	acttaaagcc	atttgagcga	1080
30	gatatctcaa	cagaaatcta	ccaagcagga	tcaacacctt	gcaacggagt	ggaaggattt	1140
	aactgctact	ttcctcttca	atcatacgga	tttcaaccta	caaacggagt	gggataccaa	1200
25	ccttacagag	tggtggtgct	ttcatttgaa	cttcttcacg	cacctgcaac	agtgtgcgga	1260
35	cctaagaaga	gc					1272
	<210> 20	_					
40	<211> 1314 <212> DNA	1					
		ificial Sequ	ience				
	<220>						
45	<221> CDS						
	<222> (1)						
		leotide sequ ID NO: 6 di				acid sequences	of
50	<400> 20		-				
50		ctacagaatc	aatcgtgaga	tttcctaaca	tcacaaacct	ttgccctttc	60
	ggcgaggtgt	ttaacgcaac	aagatttgca	tcagtgtacg	catggaacag	aaagcgtata	120
55	tcaaactgcg	tggcagatta	ctcagtgctt	tacaactcag	catcattcag	tacgtttaaa	180
	tactacagag	totcacctac	aaagctaaat	gatetttget	ttacaaacgt	gtacgcagat	240

	tcatttgtga	tcagaggaga	tgaagtgaga	caaatcgcac	ctggacaaac	aggaaagatt	300
	gccgattaca	actacaaact	tcctgatgat	ttcaccggct	gcgtgatcgc	atggaactca	360
5	aacaaccttg	attcaaaggt	aggtggtaat	tataattatt	tgtataggct	ctttcgtaag	420
	agcaacttaa	agccatttga	gcgagatatc	tcaacagaaa	tctaccaagc	aggatcaaca	480
	ccttgcaacg	gagtggaagg	atttaactgc	tactttcctc	ttcaatcata	cggatttcaa	540
10	cctacaaacg	gagtgggata	ccaaccttac	agagtggtgg	tgctttcatt	tgaacttctt	600
	cacgcacctg	caacagtgtg	cggacctaag	aagagcacga	accttgtgaa	gaataagaga	660
	gtgcaaccta	cagaatcaat	cgtgagattt	cctaacatca	caaacctttg	ccctttcggc	720
15	gaggtgttta	acgcaacaag	atttgcatca	gtgtacgcat	ggaacagaaa	gcgtatatca	780
	aactgcgtgg	cagattactc	agtgctttac	aactcagcat	cattcagtac	gtttaaatgc	840
20	tacggagtgt	cacctacaaa	gctaaatgat	ctttgcttta	caaacgtgta	cgcagattca	900
20	tttgtgatca	gaggagatga	agtgagacaa	atcgcacctg	gacaaacagg	aaagattgcc	960
	gattacaact	acaaacttcc	tgatgatttc	accggctgcg	tgatcgcatg	gaactcaaac	1020
25	aaccttgatt	caaaggtagg	tggtaattat	aattatttgt	ataggctctt	tcgtaagagc	1080
	aacttaaagc	catttgagcg	agatatctca	acagaaatct	accaagcagg	atcaacacct	1140
	tgcaacggag	tggaaggatt	taactgctac	tttcctcttc	aatcatacgg	atttcaacct	1200
30	acaaacggag	tgggatacca	accttacaga	gtggtggtgc	tttcatttga	acttcttcac	1260
	gcacctgcaa	cagtgtgcgg	acctaagaag	agcacgaacc	ttgtgaagaa	taag	1314
35	<210> 21 <211> 1338 <212> DNA <213> Arti	3 ificial Sequ	ience				
40		leotide sequ		ing two repe ced in tande		acid sequences	of
45	<400> 21 agagtgcaac	ctacagaatc	aatcgtgaga	tttcctaaca	tcacaaacct	ttgccctttc	60
	ggcgaggtgt	ttaacgcaac	aagatttgca	tcagtgtacg	catggaacag	aaagcgtata	120
50	tcaaactgcg	tggcagatta	ctcagtgctt	tacaactcag	catcattcag	tacgtttaaa	180
	tgctacggag	tgtcacctac	aaagctaaat	gatctttgct	ttacaaacgt	gtacgcagat	240
	tcatttgtga	tcagaggaga	tgaagtgaga	caaatcgcac	ctggacaaac	aggaaagatt	300
55	gccgattaca	actacaaact	tcctgatgat	ttcaccggct	gcgtgatcgc	atggaactca	360
	aacaaccttg	attcaaaggt	aggtggtaat	tataattatt	tgtataggct	ctttcgtaag	420

	agcaacttaa agccatttga gcgagatatc tcaacagaaa tctaccaagc aggatcaaca	400
	ccttgcaacg gagtggaagg atttaactgc tactttcctc ttcaatcata cggatttcaa	540
5	cctacaaacg gagtgggata ccaaccttac agagtggtgg tgctttcatt tgaacttctt	600
	cacgcacctg caacagtgtg cggacctaag aagagcacga accttgtgaa gaataagtgc	660
	gtgaacttta gagtgcaacc tacagaatca atcgtgagat ttcctaacat cacaaacctt	720
10	tgccctttcg gcgaggtgtt taacgcaaca agatttgcat cagtgtacgc atggaacaga	780
	aagcgtatat caaactgcgt ggcagattac tcagtgcttt acaactcagc atcattcagt	840
	acgtttaaat gctacggagt gtcacctaca aagctaaatg atctttgctt tacaaacgtg	900
15	tacgcagatt catttgtgat cagaggagat gaagtgagac aaatcgcacc tggacaaaca	960
	ggaaagattg ccgattacaa ctacaaactt cctgatgatt tcaccggctg cgtgatcgca	1020
00	tggaactcaa acaaccttga ttcaaaggta ggtggtaatt ataattattt gtataggctc	1080
20	tttcgtaaga gcaacttaaa gccatttgag cgagatatct caacagaaat ctaccaagca	1140
	ggatcaacac cttgcaacgg agtggaagga tttaactgct actttcctct tcaatcatac	1200
25	ggatttcaac ctacaaacgg agtgggatac caaccttaca gagtggtggt gctttcattt	1260
	gaacttette aegeacetge aacagtgtge ggacetaaga agageaegaa eettgtgaag	1320
	aataagtgcg tgaacttt	1338
30		
	<210> 22	
	<211> 669	
	<212> DNA <213> Artificial Sequence	
35	12132 ALCITICIAL Sequence	
	<220>	
	<221> CDS	
	<222> (1)(669)	
40	<223> The nucleotide sequence encoding R319-F541 amino acid sequence the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the S protein of 2019-nCoV WH01 strain (sequence such as the RBD of the RB	
	as GenBank: QHR63250)	
	<400> 22	
	agagtgcaac ctacagaatc aatcgtgaga tttcctaaca tcacaaacct ttgccctttc	60
45	ggcgaggtgt ttaacgcaac aagatttgca tcagtgtacg catggaacag aaagcgtata	120
	tcaaactgcg tggcagatta ctcagtgctt tacaactcag catcattcag tacgtttaaa	180
50	tgctacggag tgtcacctac aaagctaaat gatctttgct ttacaaacgt gtacgcagat	240
50	tcatttgtga tcagaggaga tgaagtgaga caaatcgcac ctggacaaac aggaaagatt	300
	gccgattaca actacaaact tcctgatgat ttcaccggct gcgtgatcgc atggaactca	360
55	aacaaccttg attcaaaggt aggtggtaat tataattatt tgtataggct ctttcgtaag	420
	agcaacttaa agccatttga gcgagatatc tcaacagaaa tctaccaagc aggatcaaca	480

	ccttgcaacg	gagtggaagg	atttaactgc	tactttcctc	ttcaatcata	cggatttcaa	540
	cctacaaacg	gagtgggata	ccaaccttac	agagtggtgg	tgctttcatt	tgaacttctt	600
5	cacgcacctg	caacagtgtg	cggacctaag	aagagcacga	accttgtgaa	gaataagtgc	660
	gtgaacttt						669
10	<210> 23 <211> 1308 <212> DNA <213> Arti	3 ificial Sequ	ience				
15	<223> Nucl	(1308) leotide sequ ID NO: 8 di				acid sequences	of
20	<400> 23	cctccggtga	catcattcat	ttcccaaata	taacaaacct	ctgtccattt	60
		ttaacgcgac					120
25		ttgcggacta					180
		tatcggctac	_	_	_	_	240
		tcaaaggaga					300
30		actacaaact					360
							420
		acgccacctc					480
35		ggccgtttga		_	_		
		cgccagcact	_			_	540
		ttgggtacca					600
40	gcgcccgcta	ctgtctgtgg	tccgaagcta	tcgactgacc	tcataaagaa	tcagcgtgtt	660
	gtcccatccg	gtgacgttgt	ccggtttcct	aacatcacaa	acttgtgtcc	ctttggcgaa	720
	gtcttcaatg	ctaccaaatt	tcccagcgtc	tacgcgtggg	aaagaaagaa	aatatcaaat	780
45	tgtgttgccg	actattccgt	cctatataat	agcacgttct	tctcgacgtt	caagtgttat	840
	ggtgtctctg	ctacgaaact	taacgactta	tgtttctcaa	acgtgtacgc	agattctttc	900
50	gtagttaaag	gtgatgatgt	gaggcagatt	gcgcccggac	aaacaggagt	aatcgccgat	960
-	tacaactaca	aactcccgga	cgactttatg	gggtgtgtgt	tagcttggaa	tacgaggaat	1020
	atagacgcca	cgagtaccgg	gaattataat	tataagtatc	gctatctccg	acatggcaaa	1080
55	ctcaggccat	ttgaacgcga	cattagcaat	gttccattct	ctccggacgg	caaaccgtgc	1140
	actccaccgg	ctttaaattg	ttattggccg	ttaaacgact	atggctttta	tacaacgacg	1200

	ggaataggg	gt accaacctta	cagagtagta	gtactaagtt	tcgagctatt	aaatgcgccg	1260
	gccaccgta	at gtgggcccaa	gctatcgacg	gacctaatca	agaatcag		1308
5			1ence				
10							
15	<223> Th	L) (720)				o acid sequence n as GenBank:	in
	<400> 24	ı					
	gaagcaaaa	ac cttctggctc	agttgtggaa	caggctgaag	gtgttgaatg	tgatttttca	60
20	cctcttctc	gt ctggcacacc	tcctcaggtt	tataatttca	agcgtttggt	ttttaccaat	120
	tgcaattat	a atcttaccaa	attgctttca	cttttttctg	tgaatgattt	tacttgtagt	180
	caaatatct	c cagcagcaat	tgctagcaac	tgttattctt	cactgatttt	ggattacttt	240
25	tcataccca	ac ttagtatgaa	atccgatctc	agtgttagtt	ctgctggtcc	aatatcccag	300
	tttaattat	a aacagtcctt	ttctaatccc	acatgtttga	ttttagcgac	tgttcctcat	360
	aaccttact	a ctattactaa	gcctcttaag	tacagctata	ttaacaagtg	ctctcgtctt	420
30	ctttctgat	g atcgtactga	agtacctcag	ttagtgaacg	ctaatcaata	ctcaccctgt	480
	gtatccatt	g teccatecae	tgtgtgggaa	gacggtgatt	attataggaa	acaactatct	540
0.5	ccacttgaa	ag gtggtggctg	gcttgttgct	agtggctcaa	ctgttgccat	gactgagcaa	600
35	ttacagato	gg gctttggtat	tacagttcaa	tatggtacag	acaccaatag	tgtttgcccc	660
	aagcttgaa	at ttgctaatga	cacaaaaatt	gcctctcaat	taggcaattg	cgtggaatat	720
40	<210> 25 <211> 63 <212> DN <213> A1	33	1ence				
45 50	th	L) (633)	_	_		acid sequence ir n as GenBank:	ı
	<400> 25	· •					
		g aatgtgattt	ttcacctctt	ctgtctggca	cacctcctca	ggtttataat	60
55	ttcaagcgt	t tggtttttac	caattgcaat	tataatctta	ccaaattgct	ttcacttttt	120
	tctgtgaat	g attttacttg	tagtcaaata	tctccagcag	caattgctag	caactgttat	180

	tcttcactga ttttggatta cttttcatac ccacttagta tgaaatccga tctcagtgtt	240
	agttctgctg gtccaatatc ccagtttaat tataaacagt ccttttctaa tcccacatgt	300
5	ttgattttag cgactgttcc tcataacctt actactatta ctaagcctct taagtacagc	360
	tatattaaca agtgctctcg tcttctttct gatgatcgta ctgaagtacc tcagttagtg	420
	aacgctaatc aatactcacc ctgtgtatcc attgtcccat ccactgtgtg ggaagacggt	480
10	gattattata ggaaacaact atctccactt gaaggtggtg gctggcttgt tgctagtggc	540
	tcaactgttg ccatgactga gcaattacag atgggctttg gtattacagt tcaatatggt	600
15	acagacacca atagtgtttg ccccaagctt gaa	633
20	<210> 26 <211> 222 <212> PRT <213> SARS-CoV	
25	<220> <221> DOMAIN <222> (1)(222) <223> R306-F527 amino acid sequence in the RBD of the S protein sequence of SARS-CoV (GenBank on NCBI: AAR07630)	
	<400> 26	
30	Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn 1 5 10 15	
35	Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val 20 25 30	
	Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser 35 40 45	
40	Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val 50 55 60	
45	Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp 65 70 75 80	
50	Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln 85 90 95	
	Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met 100 105 110	
55	Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr 115 120 125	

	Gly	Asn 130	Tyr	Asn	Tyr	Lys	Tyr 135	Arg	Tyr	Leu	Arg	His 140	Gly	Lys	Leu	Arg	
5	Pro 145	Phe	Glu	Arg	Asp	Ile 150	Ser	Asn	Val	Pro	Phe 155	Ser	Pro	Asp	Gly	Lys 160	
10	Pro	Cys	Thr	Pro	Pro 165	Ala	Leu	Asn	Cys	Tyr 170	Trp	Pro	Leu	Asn	Asp 175	Tyr	
	Gly	Phe	Tyr	Thr 180	Thr	Thr	Gly	Ile	Gly 185	Tyr	Gln	Pro	Tyr	Ar g 190	Val	Val	
15	Val	Leu	Ser 195	Phe	Glu	Leu	Leu	Asn 200	Ala	Pro	Ala	Thr	Val 205	Cys	Gly	Pro	
20	Lys	Leu 210	Ser	Thr	Asp	Leu	Ile 215	Lys	Asn	Gln	Cys	Val 220	Asn	Phe			
25	<210 <211 <212 <213	L> (2> I		ficia	al Se	equer	ıce										
30	<220 <221 <222 <223	L> (2> 3> :	The i		eotic encoc	ling	-									sequenc (GenBan	
35	<400		27 taa (catco	eggte	ja c <u>c</u>	gttgt	ccg	g ttt	ccta	aaca	tcac	caaac	ett (gtgto	eccttt	60
	ggcg	gaagt	tat 1	caat	gcta	ac ca	aatt	tcc	e ago	egtet	acg	cgt	ggaa	aag a	aaaga	aaata	120
40	tcaa	aatto	gtg 1	tgc	egact	a tt	ccgt	ccta	a tat	aata	agca	cgtt	ctto	etc (gacgt	tcaag	180
	tgtt	atg	gtg 1	ctct	gcta	ac ga	aact	taac	gad	cttat	gtt	tata	caaac	gt (gtac	gcagat	240
	tctt	tegt	tag 1	taaa	aggto	ja to	gatgt	gagg	g cag	gatto	gege	ccg	gacaa	aac a	agga	gtaatc	300
45	gccg	gatta	aca a	actac	caaac	et ec	cgga	acgao	ttt	atgo	ggt	gtgt	gtta	agc 1	ttgga	aatacg	360
	agga	aatat	tag a	acgco	cacga	ag ta	accg	ggaat	tat	aatt	ata	agta	atcgo	cta 1	tctc	cgacat	420
50	ggca	aaact	tca (ggcca	attto	ga ac	gcga	catt	ago	caato	gttc	catt	ctct	cc (ggac	ggcaaa	480
	ccgt	gcad	ctc (cacco	gctt	t aa	atto	gttat	tgg	geegt	taa	acga	actat	gg (cttt	tataca	540
	acga	acgg	gaa 1	aggg	gtaco	ca ac	ectta	acaga	a gta	agtaç	gtac	taag	gttt	cga (gctat	taaat	600
55	gcgc	ccgg	cca (ccgta	atgto	gg go	ccaa	agcta	a teg	gacgo	gacc	taat	caaç	gaa 1	tcagt	gtgtt	660
	aatt	tc															666

Claims

5

10

15

30

35

40

45

50

- 1. An antigen of a β-coronavirus, its amino acid comprising an amino acid sequence arranged in a (A-B)-(A-B) pattern or an amino acid sequence arranged in a (A-B)-(A-B') pattern or an amino acid sequence arranged in a (A-B)-(A-B') pattern or an amino acid sequence arranged in a (A-B)-C-(A-B') pattern, wherein A-B represents a partial amino acid sequence or an entire amino acid sequence of a receptor binding domain of a surface spike protein of the β-coronavirus; C represents an amino acid linker sequence; A-B' represents an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence of A-B; a protein encoded by A-B' has an identical or a substantially identical immunogenicity as a protein encoded by A-B; and the antigen of the β-coronavirus has a single-chain dimer structure.
- 2. The antigen of the β-coronavirus according to claim 1, wherein the β-coronavirus is selected from a group consisting of severe respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and 2019 novel coronavirus.
- 3. The antigen of the β-coronavirus according to claim 1, wherein the amino acid linker sequence comprises a (GGS)_n linker sequence, wherein n represents the number of GGSs, n is an integer more than or equal to 1; preferably, n is an integer selected from 1 to 10, and further preferably, n is an integer selected from 1 to 5.
- 4. The antigen of the β-coronavirus according to claim 1, wherein the partial amino acid sequence of the receptor binding domain of the surface spike protein of the β-coronavirus is at least 50%, 60%, 70%, 80%, 90%, 95%, or 99% of the entire amino acid sequence of the receptor binding domain of the surface spike protein of the β-coronavirus.
- 5. The antigen of the β-coronavirus according to claim 1, wherein:
 when the β-coronavirus is the Middle East respiratory syndrome coronavirus, the partial or the entire amino acid sequence of the receptor binding domain of the surface spike protein thereof is any one selected from a group consisting of following amino acid sequences:
 - (1) SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3;
 - (2) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence (1), wherein a protein encoded by the amino acid sequence has an identical or substantially identical immunogenicity as a protein encoded by the amino acid sequence (1);
 - alternatively, the partial amino acid sequence of the receptor binding domain of the surface spike protein thereof comprises SEQ ID NO: 2;
 - when the β -coronavirus is the 2019 novel coronavirus, the partial or the entire amino acid sequence of the receptor binding domain of the surface spike protein thereof is any one selected from a group consisting of following amino acid sequences:
 - (3) SEQ ID NO: 5, SEQ ID NO: 6, or SEQ ID NO: 7;
 - (4) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence (3), wherein a protein encoded by the amino acid sequence has an identical or substantially identical immunogenicity as a protein encoded by the amino acid sequence (3);
 - alternatively, the partial amino acid sequence of the receptor binding domain of the surface spike protein comprises SEQ ID NO: 6; and
 - when the β -coronavirus is the severe respiratory syndrome coronavirus, the partial or the entire amino acid sequence of the receptor binding domain of the surface spike protein thereof is any one selected from a group consisting of following amino acid sequences:
 - (5) SEQ ID NO: 8;
 - (6) an amino acid sequence obtained by substitution, deletion or addition of one or more amino acids in the amino acid sequence (5), wherein a protein encoded by the amino acid sequence has an identical or substantially identical immunogenicity as a protein encoded by the amino acid sequence (5);
 - 6. The antigen of the β -coronavirus according to claim 5, wherein: when the β -coronavirus is the Middle East respiratory syndrome coronavirus, the amino acid sequence of the antigen of the β -coronavirus comprises any one selected from a group consisting of following amino acid sequences:

- (1) two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by a GGSGGS linker sequence;
- (2) two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by a GGS linker sequence;
- (3) two repeated amino acid sequences of SEQ ID NO: 1 linked directly in tandem;
- (4) two repeated amino acid sequences of SEQ ID NO: 2 linked in tandem by a GGS linker sequence;
- (5) two repeated amino acid sequences of SEQ ID NO: 2 linked directly in tandem;
- (6) two repeated amino acid sequences of SEQ ID NO: 3 linked by a GGSGGSGGSGS linker sequence;
- (7) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGSGGSGSGS linker sequence:
- (8) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGSGGSGGS linker sequence;
- (9) two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by a GGS linker sequence; and
- (10) two repeated amino acid sequences of SEQ ID NO: 3 linked directly in tandem;

alternatively, the amino acid sequence of the antigen of the β -coronavirus comprises two repeated amino acid sequences of SEQ ID NO: 2 directly linked in tandem;

when the β -coronavirus is the 2019 novel coronavirus, the amino acid sequence of the antigen of the β -coronavirus comprises any one selected from a group consisting of following amino acid sequences:

- (1) two repeated amino acid sequences of SEQ ID NO: 5 linked directly in tandem;
- (2) two repeated amino acid sequences of SEQ ID NO: 6 linked directly in tandem; and
- (3) two repeated amino acid sequences of SEQ ID NO: 7 linked directly in tandem;

alternatively, the amino acid sequence of the antigen of the β -coronavirus comprises two repeated amino acid sequences of SEQ ID NO: 6 directly linked in tandem; and when the β -coronavirus is the severe respiratory syndrome coronavirus, the amino acid sequence

of the antigen of the β -coronavirus comprises two repeated amino acid sequences of SEQ ID NO: 8 linked directly in tandem.

7. The antigen of the β -coronavirus according to claim 6, wherein:

5

10

15

20

25

35

40

45

50

- a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by the GGSGGS linker sequence is shown as SEQ ID NO: 9;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 1 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 10;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 1 linked directly in tandem is shown as SEQ ID NO: 11;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 2 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 12;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 2 linked directly in tandem is shown as SEQ ID NO: 13;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGSGS linker sequence is shown as SEQ ID NO: 14;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by the GGSGGSGGSGInker sequence is shown as SEQ ID NO: 15;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by the GGSGGSGS linker sequence is shown as SEQ ID NO: 16;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 3 linked in tandem by the GGS linker sequence is shown as SEQ ID NO: 17;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 3 linked directly in tandem is shown as SEQ ID NO: 18;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 5 linked directly in tandem is shown as SEQ ID NO: 19;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 6 linked directly in tandem is shown as SEQ ID NO: 20;
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 7 linked directly in tandem is shown as SEQ ID NO: 21; and
 - a nucleotide sequence encoding the two repeated amino acid sequences of SEQ ID NO: 8 linked directly in tandem is shown as SEQ ID NO: 23.

- **8.** A method for preparing the antigen of the β-coronavirus according to any one of claims 1-7, comprising following steps: adding a sequence encoding a signal peptide to a 5'-terminal of a nucleotide sequence encoding the antigen of the β-coronavirus according to any one of claims 1-7, adding a terminator codon to a 3'-terminal for cloning and expression, screening a correct recombinant, transfecting an expression system cell for expression, collecting a cell supernatant after expression, and purifying to obtain the antigen of the β-coronavirus.
- **9.** The method according to claim 8, wherein the expression system cell is selected from a group consisting of mammalian cell, insect cell, yeast cell, and bacterial cell; preferably, the mammalian cell is 293T cell or CHO cell, and the bacterial cell is *Escherichia coli* cell.
- **10.** A nucleotide sequence encoding the antigen of the β -coronavirus according to any one of claims 1-7.
- 11. A recombinant vector comprising the nucleotide sequence according to claim 10.
- 15 **12.** An expression system cell comprising the recombinant vector according to claim 11.

5

10

20

25

35

40

45

50

- 13. Use of the antigen of the β -coronavirus according to any one of claims 1-7, the nucleotide sequence according to claim 10, the recombinant vector according to claim 11, and the expression system cell according to claim 12 in the preparation of a vaccine against the β -coronavirus.
- **14.** A β -coronavirus vaccine, comprising the antigen of the β -coronavirus according to any one of claims 1-7 and an adjuvant.
- **15.** The β-coronavirus vaccine according to claim 14, wherein the adjuvant is selected from a group consisting of an aluminum adjuvant, an MF59 adjuvant, and an MF59-like adjuvant.
- **16.** A β -coronavirus DNA vaccine, comprising a recombinant vector comprising a DNA sequence encoding the antigen of the β -coronavirus according to any one of claims 1-7.
- **17.** A β-coronavirus RNA vaccine, comprising a recombinant vector comprising an mRNA sequence encoding the antigen of the β-coronavirus according to claims 1-7.
 - **18.** A β-coronavirus viral vector vaccine comprising a recombinant viral vector comprising a nucleotide sequence encoding the antigen of the β-coronavirus according to any one of claims 1-7, alternatively, the viral vector is one or more selected from a group consisting of an adenovirus vector, a poxvirus vector, an influenza virus vector, and an adeno-associated virus vector.

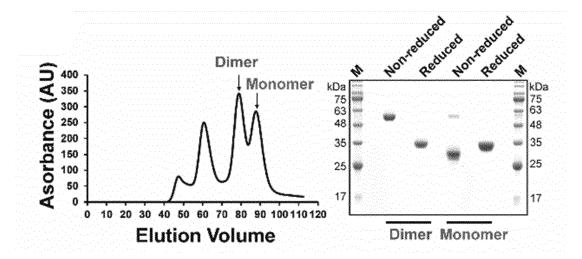


FIG. 1

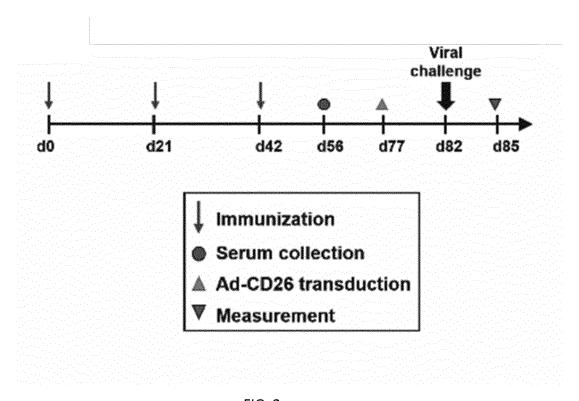


FIG. 2

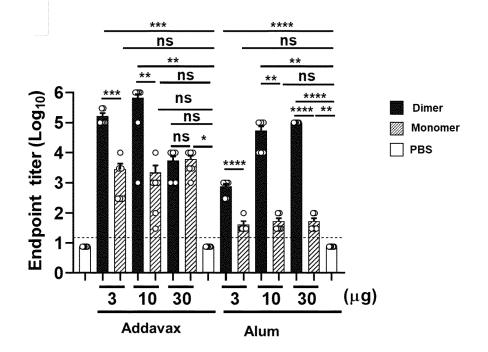


FIG. 3

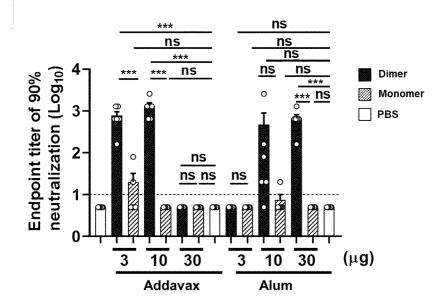


FIG. 4

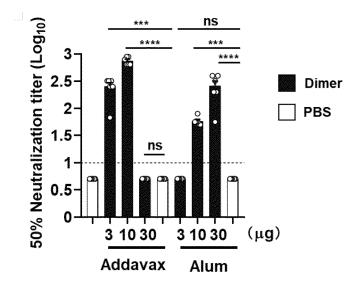


FIG. 5

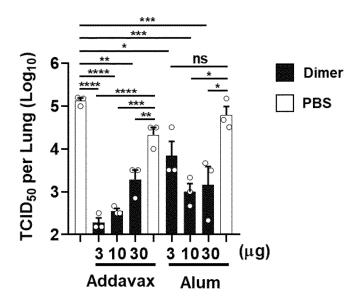


FIG. 6

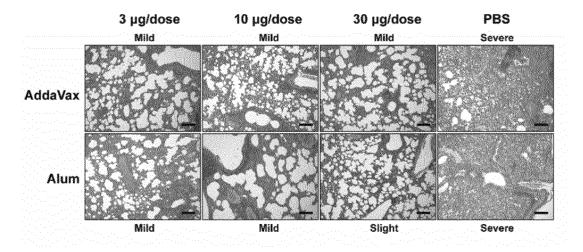
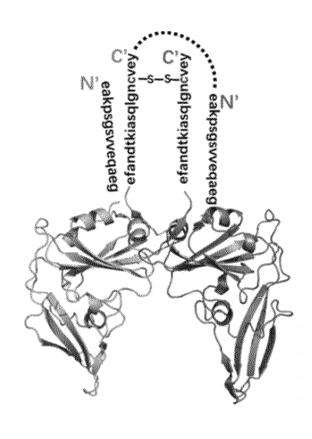



FIG. 7

MERS-CoV-RBD dimer (E367-Y606)

FIG. 8

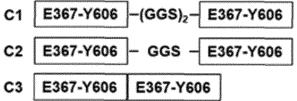


FIG. 9A

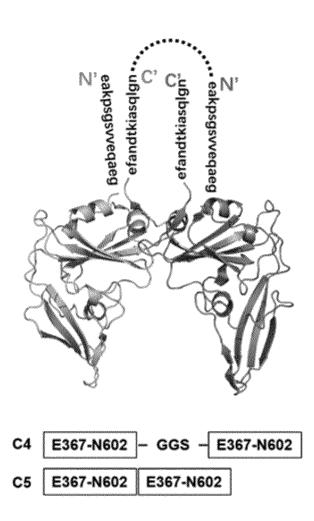


FIG. 9B

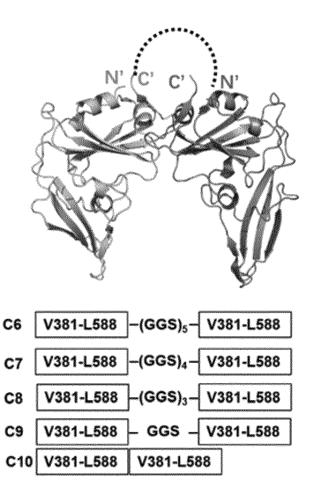


FIG. 9C

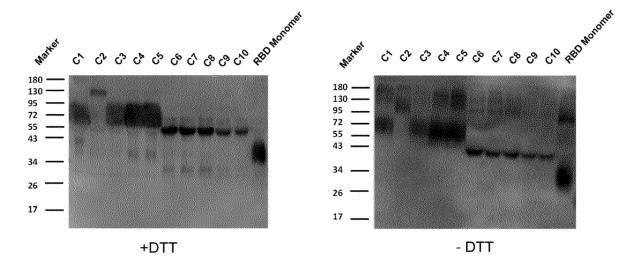


FIG. 10

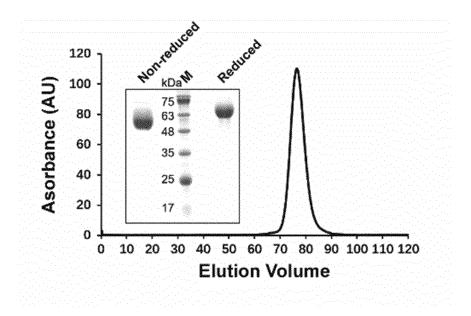


FIG. 11

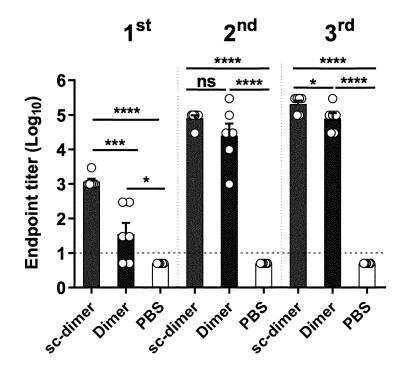


FIG. 12

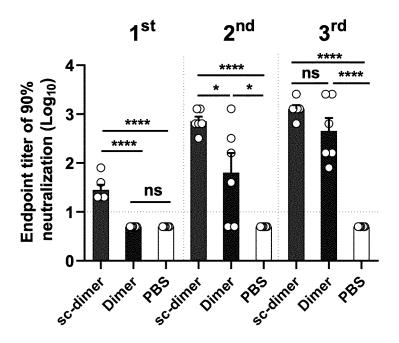
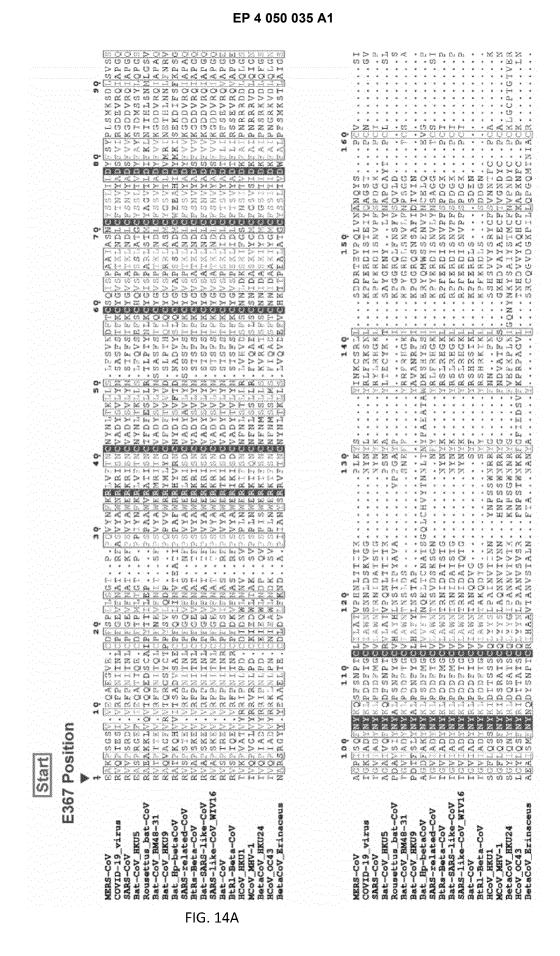



FIG. 13

55

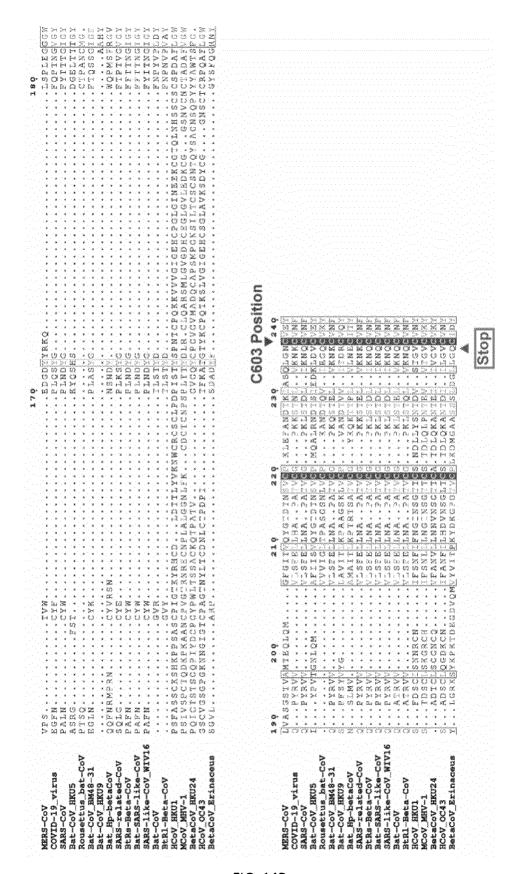



FIG. 14B

SARS-CoV-RBD dimer / 2019-nCoV-RBD dimer (Model)

nCoV-RBD-C1 R319-S530 R319-S530
nCoV-RBD-C2 R319-K537 R319-K537
nCoV-RBD-C3 R319-F541 R319-F541
nCoV-RBD-C4 R319-F541
SARS-CoV-RBD-C1 R306-Q523 R306-Q523

FIG. 15

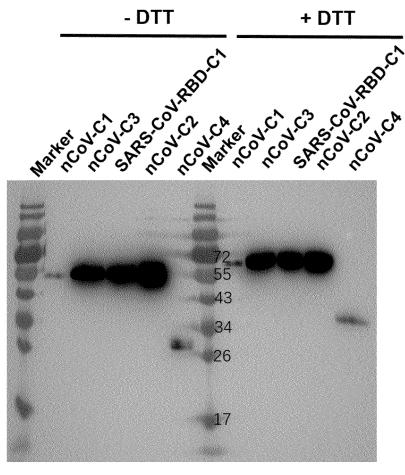


FIG. 16

RBD-sc-dimer (S/ ncov-RBD

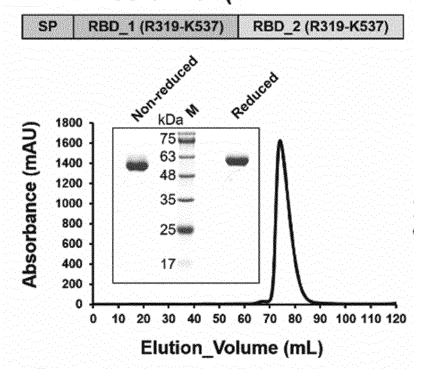


FIG. 17

RBD-sc-dimer (SARS-CoV)

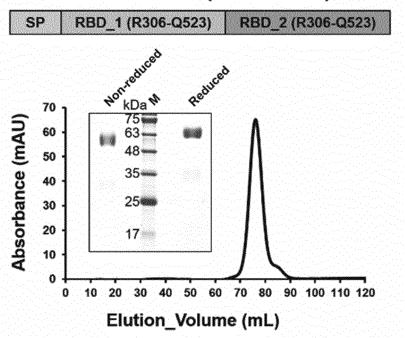


FIG. 18

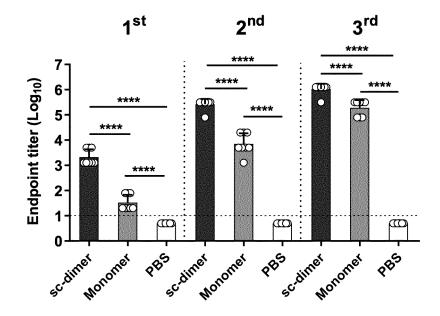


FIG. 19

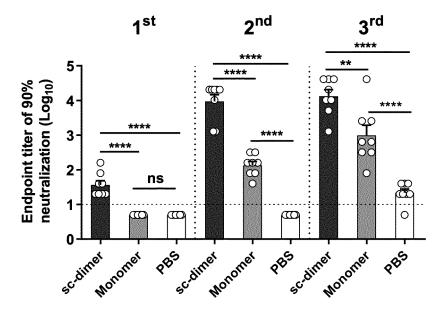


FIG. 20

Live SARS-CoV-2 neutralization (2nd immunization)

Group	Serum ID	NT ₅₀
	1	4096
100	2	1024
	3	2048
sc-dimer	4	>4096
	5	>4096
	6	512
	7	4096
	8	4096
	9	128
	10	256
400	11	<16
Monomer	12	<16
wonomer	13	<16
	14	<16
	15	<16
	16	<16
` [17	<16
	18	<16
	19	<16
PBS	20	<16
FBS	21	<16
	22	<16
	23	<16
	24	<16

FIG. 21

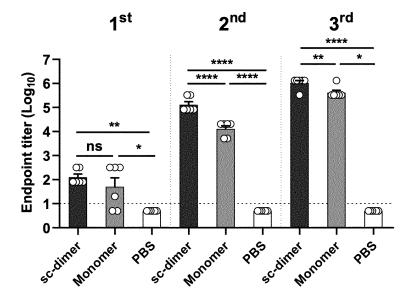


FIG. 22

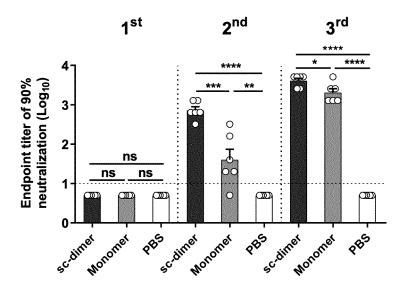


FIG. 23

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2020/097775 5 CLASSIFICATION OF SUBJECT MATTER C07K 19/00(2006.01)i; C12N 15/09(2006.01)i; A61K 39/215(2006.01)i; A61P 31/14(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC 10 В. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07K; C12N; A61K; A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS, DWPI, SIPOABS, CNKI, NCBI, ISI Web of Science, GenBank, 中国专利生物序列检索系统: 冠状病毒, 刺突, 蛋白, 受体,结合,域, 串联,融合, 重复, 抗原, 疫苗, coronavirus, spike, S, protein, receptor, binding, domain, RBD, tandem, fusion, repeat, antigen, vaccine, 本申请的SEQ ID NOs: 1-8 C. DOCUMENTS CONSIDERED TO BE RELEVANT 20 Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages Y Xiaojie Zhu, et al. "Receptor-binding domain as a target for developing SARS vaccines" 1-18 Journal of Thoracic Disease, Vol. 5, No. Suppl2, 31 August 2013 (2013-08-31), abstract 25 Yu-Na Lee, et al. "Cross Protection against Influenza A Virus by Yeast-Expressed Y 1 - 18Heterologous Tandem Repeat M2 Extracellular Proteins" PLOS ONE, Vol. 10, No. 9, 14 September 2015 (2015-09-14), abstract CN 107033250 A (DAIRY CATTLE RESEARCH CENTER OF SHANDONG ACADEMY 1-3, 5, 8-18 X OF AGRICULTURAL SCIENCES; POULTRY INSTITUTE, SHANDONG ACADEMY 30 OF AGRICULTURAL SCIENCE; SHANDONG NORMAL UNIVERSITY) 11 August 2017 (2017-08-11) entire document, in particular claims and abstract 35 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 40 document defining the general state of the art which is not considered to be of particular relevance document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art 45 document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 22 July 2020 12 November 2020 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/ No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing 100088 China 55 Facsimile No. (86-10)62019451 Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

5	PCT/CN2020/097775
	Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)
	1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search w carried out on the basis of a sequence listing:
10	a. forming part of the international application as filed:
	in the form of an Annex C/ST.25 text file.
	on paper or in the form of an image file. b. furnished together with the international application under PCT Rule 13 <i>ter</i> .1(a) for the purposes of international sear
	only in the form of an Annex C/ST.25 text file.
15	c. In furnished subsequent to the international filing date for the purposes of international search only:
	in the form of an Annex C/ST.25 text file (Rule 13ter.1(a)). on paper or in the form of an image file (Rule 13ter.1(b) and Administrative Instructions, Section 713).
20	2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the require statements that the information in the subsequent or additional copies is identical to that forming part of the application a filed or does not go beyond the application as filed, as appropriate, were furnished.
	3. Additional comments:
0.5	
25	
30	
35	
40	
45	
50	

Form PCT/ISA/210 (continuation of first sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

5		INTERNAT	TIONA on on pa	NAL SEARCH REPORT In patent family members International application No. PCT/CN2020/097775							
	Pater cited in	nt document search report		Publication date (day/month/year)	Pater	nt family mem	ber(s)	Publication date (day/month/year)			
	CN	107033250	A	11 August 2017	CN	10703325	0 В	21 January 2020			
10											
15											
20											
25											
30											
35											
40											
45											
50											

Form PCT/ISA/210 (patent family annex) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 202010085038 [0001]

Non-patent literature cited in the description

- YAO Y; BAO L; DENG W et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis., 2014, vol. 209 (2), 236-242 [0053]
- CHI H et al. DNA vaccine encoding Middle East responsive syndrome coronavirus S1 protein induces protective immune responses in mice [J. Vaccine, 2017, vol. 35 (16), 2069-2075 [0054]
- LU J; DU PLESSIS L; LIU Z et al. Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell., 2020, vol. 181 (5), 997-1003 [0082]