TECHNICAL FIELD AND BACKGROUND
[0001] The present disclosure relates to a machine support frame for supporting a machine,
in particular a vibration sensitive machine; and methods of installation.
[0002] As background,
DE 33 26 360 A1 discloses a collapsible worktable with four legs, which has a frame with two frame
member/leg elements arranged mutually parallel and at a distance from one another.
The legs each have two plate-like leg elements which are at a distance from one another
and between which, at the upper end, longitudinal frame members engage with their
ends. At the lower end, plate-parts of vertically adjustable foot elements engage.
At least one transverse frame member connecting the longitudinal frame members is
provided, which, with its end faces, butts against the inner side of the longitudinal
frame members or of the leg elements and is screwed thereto. In addition, clamping
elements are provided, which are connected to the frame member/leg elements via screw
connections, and via which a table top, resting on the frame members, is secured.
[0003] Vibration sensitive machines, e.g. lithography machines, electron microscopes, and
semiconductor production equipment, may benefit from a machine support frame (MSF)
having as little resonances as possible. To suppress resonances, at least for typical
environmental vibration, the frame preferably has a high stiffness. Furthermore, the
MSF typically includes a massive support plate which should resist deformation. Preferably,
the frame should typically be able to withstand forces of a few hundred kilo Newton
(e.g. including the machine, possible with seismic shock) while avoiding resonances
below hundred Hertz.
[0004] These and other requirements make it difficult to provide any adjustability to the
frame. Accordingly, an MSF design is typically prefabricated according to specific
dimensions depending on a specific application. For example, the height of the MSF
may depend on the height of the building floor or height of other surrounding equipment.
For example, the width and length may depend on the size of the support plate or machine
to be supported. Since the design may considerably vary for each case, it is difficult
to keep the parts in supply. This may lead to long waiting times or high expenses
in storage of many different parts.
[0005] Therefore, there remains a need for an improved MSF and method of installation. In
particular, there is a need for a MSF having the necessary stiffness and the capacity
to carry heavy loads, while being easy to install from stock components with adjustable
height, e.g. between 250-1300mm, preferably allowing to customize for different sizes
of the support block.
SUMMARY
[0006] Aspects of the present disclosure relate to a modular machine support frame for supporting
a vibration sensitive machine, and method of assembling such frame. The frame can
be conceptually divided in a top part, a bottom part, and an intermediate there between.
The top part of the frame comprises a horizontally extending support plate. Typically,
the support plate comprises mounting structures for mounting the vibration sensitive
machine.
[0007] As described herein, the top part also comprises a set of horizontally elongate top
bars connected to a bottom of the support plate. The bottom part similarly comprises
a set of horizontally elongate bottom bars configured to support the frame on a floor.
The intermediate part comprises a set of vertically extending side plates connected
between the top and bottom parts. The side plates are fixed by bolting to respective
vertical sections formed by downward and upward extending parts of the horizontally
elongate top and bottom bars, respectively. The top part of the frame is carried by
the side plates at an adjustable height from the floor. The vertical sections in at
least one of the top and bottom bars comprise vertically extending elongate slots
for the bolting of the side plates at a specific position along a length of the slots
to determine the adjustable height.
[0008] Advantageously, the respective vertical sections of the top and bottom bars are sandwiched
between respective sets of at least two of the side plates on either sides of the
vertical slots held together by the bolting. By the bolting through the side plates
sandwiching the vertical sections, respective friction connections are formed with
at least two frictional surfaces on either side of the vertical sections between each
side of the respective vertical section and side plate for the carrying of the top
part of the frame while maintaining the specific position of the bolting along the
slots. As will be appreciated each frictional surface of a respective plate contacting
the vertical sections may contribute in withstanding shear forces to carry a part
of the load at an adjustable height provided by the slots, while the set of multiple
side plates can form a sort of box construction to increase stiffness. The inventors
find that both a sufficient stiffness and friction for the purposes of the MSF can
be obtained using a plurality of bolts distributed along the side plates with a density
that is on the one hand high enough to develop desired friction and on the other hand
not so high as to compromise the structural integrity (due the corresponding holes/slots).
In combination, the MSF can provide relatively high stiffness and capacity to carry
heavy loads, while being easy to install from stock components with adjustable height.
BRIEF DESCRIPTION OF DRAWINGS
[0009] These and other features, aspects, and advantages of the apparatus, systems and methods
of the present disclosure will become better understood from the following description,
appended claims, and accompanying drawing wherein:
FIG 1A illustrates a perspective translucent view of a modular machine support frame
supporting a vibration sensitive machine;
FIG 1B illustrates a cross-sectional view of a part of the frame;
FIG 1C illustrates a zoomed in view of the part;
FIGs 2A-2D illustrate variations of bottom bars connected to respective side plates;
FIGs 3A-3D illustrate one method of assembling the frame;
FIGs 4A-4D illustrate another method of assembling the frame;
FIG 5 illustrate various heights obtainable by a limited set of different side plate
heights connected at a variable height between respective top and bottom bars;
FIGs 6A and 6B illustrate a load applied to a corner of the frame, and calculated
shearing forces for different bolting positions along the frame.
DESCRIPTION OF EMBODIMENTS
[0010] Terminology used for describing particular embodiments is not intended to be limiting
of the invention. As used herein, the singular forms "a", "an" and "the" are intended
to include the plural forms as well, unless the context clearly indicates otherwise.
The term "and/or" includes any and all combinations of one or more of the associated
listed items. It will be understood that the terms "comprises" and/or "comprising"
specify the presence of stated features but do not preclude the presence or addition
of one or more other features. It will be further understood that when a particular
step of a method is referred to as subsequent to another step, it can directly follow
said other step or one or more intermediate steps may be carried out before carrying
out the particular step, unless specified otherwise. Likewise it will be understood
that when a connection between structures or components is described, this connection
may be established directly or through intermediate structures or components unless
specified otherwise.
[0011] The invention is described more fully hereinafter with reference to the accompanying
drawings, in which embodiments of the invention are shown. In the drawings, the absolute
and relative sizes of systems, components, layers, and regions may be exaggerated
for clarity. Embodiments may be described with reference to schematic and/or cross-section
illustrations of possibly idealized embodiments and intermediate structures of the
invention. In the description and drawings, like numbers refer to like elements throughout.
Relative terms as well as derivatives thereof should be construed to refer to the
orientation as then described or as shown in the drawing under discussion. These relative
terms are for convenience of description and do not require that the system be constructed
or operated in a particular orientation unless stated otherwise.
[0012] FIG 1A illustrates a perspective translucent view of a modular machine support frame
100 e.g. suitable for supporting a vibration sensitive machine 200. FIG 1B illustrates
a cross-sectional view of a part of the frame. FIG 1C illustrates a zoomed in view
of the part.
[0013] The frame 100 comprises a top part 10 comprising a horizontally extending support
plate 12, e.g. in the XY plane as shown. The support plate 12 is provided with mounting
structures 12m on top of the support plate 12 for mounting the vibration sensitive
machine 200. The top part 10 comprises a set of horizontally elongate top bars 11
connected to a bottom of the support plate 12.
[0014] The frame 100 comprises a bottom part 30 with a set of horizontally elongate bottom
bars 31 configured to support the frame 100 on a floor 300. Preferably, the bottom
bars 31 are similar or the same as the top bars 11. By using the same bars for both
the top and bottom, the number of stock parts can be reduced. In one embodiment, the
set of top bars and/or the set of bottom bars is welded together to form a respective
structure.
[0015] The frame 100 comprises an intermediate part 20 with a set of vertically extending
side plates 22, e.g. in the XZ plane, YZ plane or any other vertical plane transverse
to the horizontal plane XY.
[0016] The side plates 22 are connected between the top and bottom parts 10,30. For example,
the side plates 22 are fixed by bolting 25 to respective vertical sections 11v,31v
formed by downward and upward extending parts of the horizontally elongate top and
bottom bars 11,31, respectively. For example, the vertical sections 11v,31v extend
in the-Z, or +Z direction as shown. Optionally, some of the side plates can be welded
together to form a respective structure.
[0017] The top part 10 of the frame 100 is carried C by the side plates 22 at an adjustable
height H from the floor 300.
[0018] The vertical sections 11v,31v in at least one of the top and bottom bars 11,31 comprise
vertically extending elongate slots 11s, 31s.
[0019] The vertical slots are arranged side by side along a respective length of the top
and/or bottom bars 11,31. As will be appreciated, the plurality of slots can be used
in combination with a plurality of bolts for the bolting 25 of the side plates 22
at a specific position ΔH along a length of the slots ) ) s .) s. In this way the
adjustable height H can be determined. The respective vertical sections 11v,31v of
the top and bottom bars 11,31 are sandwiched between respective sets of at least two
of the side plates 22 on either sides of the vertical slots 11s, 31s held together
by the bolting 25. As will be appreciated, by the bolting 25 through the side plates
22 sandwiching the vertical sections 11v,31v, respective friction connections are
formed with at least two frictional surfaces F on either side of the vertical sections
11v,31v. That is the frictional surfaces are formed between each side of the respective
vertical section 11v,31v and side plate 22 for the carrying C of the top part 10 of
the frame ) (( while maintaining the specific position ΔH of the bolting , 1 along
the slots 11s, 31s. Alternatively, or additionally, it can also be envisaged to sandwich
one or more side plates between respective sets of bottom bars and/or top bars.
[0020] As described herein, the vibration sensitive machine may generally refer to a machine
that is sensitive to vibrations, e.g. negatively affecting operation of the machine
when it experiences a vibrational amplitude of more than hundred micrometer, more
than ten micrometer, or even more than one micrometer, e.g. in a frequency range above
one hertz, ten hertz, hundred hertz, or one kilohertz, or more. For example, such
vibrations which may occur in a building due to environmental circumstances, e.g.
caused by vibration sources in the building itself or adjacent to the building such
as traffic. For example, the vibration sensitive machine 200 is an optical device,
e.g. lithographic machine or an electron microscope wherein high precision can be
achieved only if undesired vibrations are sufficiently dampened and/or at least not
resonated by the frame. Typically, the vibration sensitive machine 200 can be relatively
heavy, e.g. having a mass of more than hundred kilogram, more than five hundred kilogram,
or even more than thousand kilograms.
[0021] In some embodiments, e.g. as shown, the vibration sensitive machine 200 is connected
to the top part 10 of the frame 100, which is carried by the intermediate part 20
of the frame and supported by the bottom part 30 of the frame. Typically, the machine
support frame 100 is configured to provide a relatively stiff connection between the
vibration sensitive machine 200 and the building floor 300. For example, the frame
as described herein preferably has a horizontal and/or vertical stiffness of more
than 10
7 Newton per meter, more preferably above 10
8 Newton per meter, e.g. between 10
8 - 10
10 Newton per meter, or more. In a preferred embodiment, the top bars, bottom bars,
optional corner bars, and side plates are essentially made from steel, or other metal.
[0022] In some embodiments, the stiffness of the frame is sufficiently high that any mechanical
resonances of the combined system (frame+machine) are above a dominant frequencies
of environmental vibrations. Without being bound by theory a resonance frequency ω(
of a mass-spring system can be calculated e g as ω( = √(k/M), where k is the stiffness,
and M is the mass. For example, the mass can be dominated by the mass of the top part
10 (including concrete plate 12) and/or machine 200. In a preferred embodiment, the
frame has a sufficiently high stiffness (e.g. for a total mass of 1000 kg) that it
can provide a (lowest) resonance frequency (in any direction) above hundred hertz,
preferably above one kilohertz, most preferably above two kilohertz. In this way it
may be prevented that typically environmental vibrations cause resonant behavior in
the system.
[0023] In a preferred embodiment, the top part 10 of the frame 100 comprises support plate
12 onto which the vibration sensitive machine 200 can be placed, preferably fixed.
Typically, the support plate 12 is formed as slab or a plate. For example, the plate
has a thickness (here in Z direction) of more than ten centimeter (cm), preferably
more than fifteen centimeter, e.g. between twenty and fifty centimeter. For example,
the support plate 12 has a length and/or width (here in X, Y direction) of more than
one meter, or more than two meter, e.g. five by ten meters.
[0024] In a preferred embodiment, e.g. as shown, a length of the side plates 20 substantially
corresponds to the length and/or width of the support plate 12. For example, each
side plate has a length (transverse to the height and thickness of the side plate,
e.g. along X and/or Y) of at least half a meter, at least one meter, at least two
meter, or more. In some embodiments, e.g. as shown in FIGs 1 and 3, each side plate
is large enough to cover a respective side of the frame 100. For example, the side
plates extend along the whole length and/or width of the frame. The side faces of
the frame can also be subdivided to be covered by two, three, four, or more side plates.
For example, this is shown in FIG 4.
[0025] In some embodiments, the side plates 22 are arranged to substantially cover each
side of the frame (e.g. between the corner bars 21). For example, at least fifty percent
of the total side face surface of the frame 100 is covered by a set of side plates,
preferably at least eighty percent, at least ninety percent, e.g. up to hundred percent.
The more surface can be covered by plate material, the better the structural integrity
and/or stiffness of the frame. On the other hand, it can also be envisaged to provide
one or more passages through one or more sides of the frame, e.g. one or more manholes
22h through a respective side plate 22.
[0026] Preferably, the support plate 12 is relative rigid, i.e. having high stiffness. For
example, the support plate 12 is made of a concrete material, preferably reinforced
concrete. In some embodiments, the support plate 12 has a modulus of elasticity of
more than 10 Giga-Pascal (10^10 Newton per square meter), preferably more than 20
Giga-Pascal, e.g. between thirty and fifty Giga-Pascal. In other or further embodiments,
the support plate 12 has a mass of more than thousand kilograms, e.g. up to 3500 kg,
or more. The stiffer the support plate the better it may withstand deformation, e.g.
against a load of the machine 200.
[0027] In a preferred embodiment, vibration sensitive machine 200 is provided with mounting
elements 201, e.g. legs or pillars for connection to the support plate 12. In other
or further embodiments, the support plate 12 comprises (corresponding) mounting structures
12m, e.g. comprising plates of metal such as steel. For example, the mounting structures
12m, e.g. footplates comprise connection elements for connecting the mounting elements
201 to the support plate 12. In some embodiments (not shown), the mounting structures
12m extend through the support plate 12, e.g. directly connecting the machine 200
via the mounting structures to the top bars 11 and/or intermediate part 20 of the
frame. For example, the mounting structures comprise a different material such as
steel providing a relatively high stiffness compared to the surrounding plate material
such as concrete, e.g. more than a factor two higher.
[0028] In a preferred embodiment, the support plate 12 is connected to a set of top bars
11. For example, the support plate 12 is fixedly connected to the top bars 11 at a
distance H above a building floor 300. In some embodiments, the support plate 12 is
glued and/or screwed to the top bars 11. In other embodiments, the support plate 12
is at least partially kept in place by its sheer weight.
[0029] In some embodiments, the top bars 11 and/or bottom bars 31 comprise horizontal sections
11h,31h transverse to the vertical sections 11v,31v. For example, the horizontal sections
11h,31h and/or vertical sections 11v,31v comprise interconnected elongate plate shapes.
In a preferred embodiment, the top bars 11 and/or bottom bars 31 comprise a Tor L-profile
wherein one leg of the profile forms the vertical section 11v, 31v for connecting
the side plates 22, and another transvers leg of the profile forms a horizontal section
11h, 31h for connecting to the floor 300 and/or support plate 12.
[0030] FIGs 2A-2D illustrate variations of bottom bars 31 connected to respective side plates
22. While these figures illustrate only the bottom bars 31, the features as shown
and described preferably apply mutatis mutandis to the top bars, e.g. as was previously
shown in FIG 1C.
[0031] In one embodiment, e.g. as shown in FIG 2A, the bottom bars 31 comprise L-bars. In
another or further embodiment, e.g. as shown in FIG 2B, the bottom bars 31 comprise
T-bars. In another or further embodiment, e.g. as shown in FIG 2C, a T-bar is formed
by combining two L-bars. In a preferred embodiment, a set of at least two side plates
22 is disposed on either side of the vertical section 31v of the L-bar or T-bar. It
can also be envisaged to provide more than two side plates, e.g. including a third
side plate 22 between two vertical sections 31v or one or more bottom bars 31, e.g.
two L-bars as shown in FIG 2D, or an integrated bottom bar (not shown). As will be
appreciated this configuration may double the frictional surface to carry the construction
(quadruple compared to a single plate). Also more than three side plates can be used,
e.g. with the top and bottom bars comprising a comb profile.
[0032] In some embodiments, at least part of the vertical section 31v may help to carry
the load similar as the side plates 22. Accordingly, it is preferable that the total
thickness of the vertical section 31v is similar or the same as a total thickness
of the combined set of side plates 22. In one embodiment, a (total) thickness Tv of
the vertical section 31v is higher than an individual thickness of the side plates
22. The thickness Tv of the vertical section 31v can also be higher than a thickness
Th of the horizontal section 31h. For example, the side plates 22 have an individual
thickness between 5 - 20 mm, e.g. 10 mm. For example, the thickness Tv of the vertical
section 31v is between 10 - 40 mm, e.g. 20 mm. For example, the thickness Th of the
horizontal section 31h is between 5 - 20 mm, e.g. 10 mm.
[0033] In a preferred embodiment, the vertical sections 31v comprise elongate slots 31s
there through, e.g. having a length greater than a width by at least a factor two,
three, five, ten, twenty, thirty, fifty, or more. The longer the slot, the more the
adjustable range. For example, each slot has a width between 5 - 40 mm, preferably
between 10 - 30 mm, Preferably, the slots are arranged side-by-side with a center-to-center
distance between two and four times the slot width, or a side-to-side distance (of
plate material between the slots) between one and three times the slot width. For
example, center-to-center between slots is between 25 - 100 mm. For example, a side-to-side
distance of plate material between the slots is between 10 - 80 mm, preferably between
20 - 60 mm.
[0034] In a preferred embodiment, the side plates 22 comprise round through holes 22h, at
respective positions corresponding to the slots. For example, the round holes can
have a diameter which is the same or similar as the respective width of the slots.
In another or further preferred embodiment, the side plates 22 are held together sandwiching
the vertical section 31v by bolting 25. Most preferably, the bolt extends through
the elongate vertical slot 31s as well as the through holes 22h of the side plates
on either side. In other words each bolting 25 goes through the entire sandwich of
the set of side plates and respective vertical section. In one embodiment, the bolt
25 comprises a nut and screw connections. Preferably, the nut is disposed on an outside
of the frame so in can be tightened from the outside where it is easy to access. Also
other types of connections can be envisaged.
[0035] FIGs 3A-3D illustrate one method of a manufacturing or assembling a modular machine
support frame (here still without the top support plate). Various zoomed in sections
illustrate further details as described herein.
[0036] In one embodiment, the frame is assembled to support a vibration sensitive machine
at a specific height H above a floor. In some embodiments, the assembly comprises
connecting a set of horizontally elongate bottom bars 31 to the floor 300 to form
a bottom part 30 of the frame 100, e.g. as shown in FIG 3A. In other or further embodiments,
assembly comprises connecting a set of vertically extending side plates 22 to the
bottom parts 10,30 to form an intermediate part 20 of the frame 100, e.g. as shown
in FIG 3C. In other or further embodiments, the assembly comprises connecting a set
of horizontally elongate top bars 11 to the side plates 22, e.g. as shown in FIG 3D.
In one embodiment, the elongate top bars 11 are connected to a bottom of a horizontally
extending support plate (not shown here). For example, the top bars 11 and support
plate together form a top part 10 of the frame 100.
[0037] In some embodiments, e.g. as illustrated in FIG 3B, the machine support frame additionally
comprises a set of vertically extending corner bars 21. Preferably, each corner bar
comprises a corner profile (e.g. L-shaped , preferably T-shaped) interconnecting a
set of transversely oriented bottom bars 31 at the bottom part 30 of the frame and/or
interconnecting a set of transversely oriented top bars 11 at the top part 10 of the
frame 100. For example, the corner bars 21 can interconnect the vertical sections
of respective bottom bars, or top bars by being bolted to respective slots 11s, 31s.
[0038] In a preferred embodiment, the corner bars 21 also form an interconnection between
the top and bottom parts 10,30. In this way, the corner bars 21 can also carry part
of the load together with the side plates. Most preferably, the corner bars 21 are
disposed in the same plane as one of the side plates, i.e. bolted side by side. In
other words, the corner bars 21 are preferably not between the side plates 22 and
the vertical section 31v. Instead the corner bars 21 may be considered as a corner
extension of the side plates 22. The term corner may include an inner corner, e.g.
in the middle of the frame as shown in the figures.
[0039] In some embodiments, the top bars 11 and/or bottom bars 31 are cut to size for providing
the frame with a specific length and/or width. Advantageously, the bars can be cut
during assembly, i.e. at the assembly site as opposed to during fabrication. For example,
the top bars 11 and/or bottom bars 31 are cut to length to match with the support
plate 12. Also the corner bars 21 may be cut to length. It can also be envisaged to
use identical parts for constructing the top bars, the bottom bars and side bars,
e.g. cut to different lengths. In some embodiments, an inside of the frame ) ( ( may
be divided by a set on inner side plates , , ' having similar function and connection
as the outer side plates 22. For example, a set of inner side plates , , ' may sandwich
a respective inner bottom bar The one or more inner side plates 22 may provide additional
support, especially when the frame 100 has a length X greater than its width Y.
[0040] FIGs 4A-4D illustrate another or further method of assembling the frame. In one embodiment,
e.g. as shown, the top bars 11 are integrated into the support plate 12. For example,
the support plate 12 comprises a concrete block wherein parts of the top bars 11 are
cast into the concrete. Also, other integrated constructions can be envisaged, e.g.
top bars welded to a metal top plate. In another or further embodiment, e.g. as shown,
the frame is assembled by lifting the support plate 12 at a specific height above
the floor, and assembling the other parts in reverse order. For example, a set of
vertical bars 21 and/or side plates 22 is connected to the top bars 11, and a set
of side bottom bars 31 is connected to the side plates 22. Also other sequences can
be envisaged.
[0041] FIG 5 illustrate various heights obtainable by a limited set of different side plate
heights connected at a variable height between respective top and bottom bars;
As described herein, typical plate heights of the side plates are between 200 - 1200
mm, preferably between 300 - 1000 mm. For example, each side plate has a minimum length
and height (width) of at least 300 mm, preferably at least 400 mm, and a thickness
of at least 5 mm. The specific length of the side plates can depend on the desired
length and/or width of the frame. The specific height (width) of the side plates can
depend on the desired height of the frame. In one embodiment, heights between 250
- 400 mm are obtained by directly connecting the top bars 11 to at a variable height
to the bottom bars 31, e.g. without any side plates. In another or further embodiment,
heights between 440 - 700 mm are obtained by inserting a first set of side plates
with plate height 360 mm. In another or further embodiment, heights between 670 -
970 mm are obtained by inserting a second set of side plates with plate height 630
mm. In another or further embodiment, heights between 940 - 1240 mm are obtained by
inserting a third set of side plates with plate height 900mm. So it will be appreciated
that a continuous range of heights can be achieved using a limited set of stock plates.
[0042] In some embodiments, where the slots may not extend all the way to the end of the
vertical sections, there can be a gap in obtainable height between 400 - 440 mm To
resolve this the inset "V" illustrates an embodiment, wherein the slots 11s, 31s extend
from an undulating or saw tooth profile at a bottom or top end of the respective vertical
sections 11v,31v on the top and bottom bars 11,31, wherein the undulating profile
of the top bars 11 fits into the undulating profile of the bottom bars 31 to allow
a bottom end of respective slots 11s on the top bars 11 to be set at a same height
or below a top end of respective slots 31s on bottom bars when the vertical sections
11v,31v are disposed in the same plane.
[0043] In one aspect, the present methods and systems may be embodied as a corresponding
kit of parts for assembling the modular machine support frame as described herein.
For example, the kit of part comprises a limited set of top bars and bottom bars,
which may be all the same length and cut to size, as needed. For example, the kit
of parts may also comprise corner bars which can also be the same, or different. For
example, the kit of parts may comprise a limited set of side plates with (discrete)
different heights, e.g. wherein the height interval is the same or a bit less than
the total length of the slots in both the bottom and top bars, e.g. wherein the height
difference of the plates is between 0.8 and 1.0 times the total slot length (or half
length of the individual slots).
[0044] FIGs 6A and 6B illustrate a load L applied to a corner of the frame 100, and calculated
shearing forces for different bolting positions X,Y along the frame. In the calculation
shown, a load L with a force of 1000 Newton was applied to the corner, resulting in
the shown distribution of forces. The graph shows the forces between the plates 22
and inside and outside the top bars ) ) with markers "x" and "o" respectively In this
case a max total shear force of 61 N + 59 N = 120 N, was observed. In another calculation
with a much higher load of 150 kilo Newton, a max shear force of 17.95 kN was observed.
[0045] By increased tightening of the bolting 25, friction between the touching surfaces
of the side plates and vertical section of the top/bottom bars can be increased. Preferably,
the bolt is tightened to prevent slipping of the surfaces. For example, each bolt
is able to provide the at least two sets of touching surfaces with sufficient friction
there between to withstand a respective downward load or shear force without slipping
of at least hundred Newton, preferably at least thousand Newton, or even more than
ten thousand Newton.
[0046] In some embodiments, sufficient friction is be achieved by tightened the bolts e.g.
until a fastening tool measures a predetermined torque. For example, High Resistance
Calibrated (HRC) and/or Tension Controlled Bolts (TCB) can be used. In other or further
embodiments, the surfaces of one or both of the vertical sections and/or side plates
are treated to increase friction. In one embodiment, the surfaces are roughened by
a treatment such as (sand)blasting and/or spraying. For example, a zinc spray can
be used. In another or further embodiment, it can also be envisaged to provide the
surfaces with a corrugated profile which can lock the surfaces together at a specific
height.
[0047] In some embodiments, the slots orientation of slots is diagonal, i.e. having not
only a vertical component for the height adjustment but also a horizontal component
whereby the bolt can partly rest on the slanted surface of the slot. For example,
the slots are at an angle of at least five degrees with respect to a normal of the
floor surface, e.g. between ten and forty five degrees. The higher the angle of the
slots, the more the slanted slot surface may carry part of the load in addition to
the frictional surfaces, although at the cost of height range.
[0048] In a preferred embodiment, as shown throughout the figures, each set of side plates
22 is held together by a plurality of bolts through a corresponding plurality of slots
11s, 31s. To distribute the forces, it is preferable on the one hand to provide a
relative high density of bolts connecting the plates to the top and bottom bars. On
the other hand, increasing the number of bolts may correspond to a similarly increased
number of slots in each of the top bars 11 and bottom bars 31, which may weaken their
structure. Based on the calculations, the inventors find it preferable that the side
plates 22 are respectively bolted to the top bars 11 and/or bottom bars 31 with a
density between a minimum and maximum number of bolts per meter (per top or bottom
bar). Specifically, according to the invention, between five and fifty bolts/slots
per meter, preferably between ten and forty bolts/slots per meter (i.e. a row of adjacent
bolts with a center-to-center distance between 25 - 100 mm), preferably between twenty
and thirty(i.e. center-to-center distance between 33 - 50 mm) are used.
[0049] For example, each plate is bolted by a set of at least three, four, five, ten, or
more, adjacent bolts through a corresponding set of adjacent holes and slots in the
respective side plate and respective vertical section of the top or bottom bar. For
example, the illustrated embodiment has a bolting density about twenty-five bolts
and slots per meter per bar, i.e. a row of adjacent bolts with a center-to-center
distance of about four centimeters.
[0050] The various elements of the embodiments as discussed and shown offer certain advantages,
such as adjustability of various dimensions.
[0051] It is appreciated that this disclosure offers particular advantages to machine support
frames, and in general can be applied for any application wherein a stiff and adjustable
support structure is desired.
[0052] In interpreting the appended claims, it should be understood that the word "comprising"
does not exclude the presence of other elements or acts than those listed in a given
claim; the word "a" or "an" preceding an element does not exclude the presence of
a plurality of such elements; any reference signs in the claims do not limit their
scope; several "means" may be represented by the same or different item(s) or implemented
structure or function; any of the disclosed devices or portions thereof may be combined
together or separated into further portions unless specifically stated otherwise.
Where one claim refers to another claim, this may indicate synergetic advantage achieved
by the combination of their respective features. But the mere fact that certain measures
are recited in mutually different claims does not indicate that a combination of these
measures cannot also be used to advantage. The present embodiments may thus include
all working combinations of the claims wherein each claim can in principle refer to
any preceding claim unless clearly excluded by context.
1. A modular machine support frame (100) for supporting a machine (200), the frame (100)
comprising
- a top part (10) comprising a horizontally (XY) extending support plate (12) with
mounting structures (12m) on top of the support plate (12) for mounting the vibration
sensitive machine (200), and a set of horizontally elongate top bars (11) connected
to a bottom of the support plate (12);
- a bottom part (30) comprising a set of horizontally elongate bottom bars (31) configured
to support the frame (100) on a floor (300); and
- an intermediate part (20) comprising a set of vertically (XZ,YZ) extending side
plates (22) connected between the top and bottom parts (10,30);
wherein the side plates (22) are fixed by bolting (25) to respective vertical sections
(11v,31v) formed by downward and upward (±Z) extending parts of the horizontally elongate
top and bottom bars (11,31), respectively;
wherein the top part (10) of the frame (100) is carried (C) by the side plates (22)
at an adjustable height (H) from the floor (300);
wherein the vertical sections (11v,31v) in at least one of the top and bottom bars
(11,31) comprise a respective plurality of vertically extending elongate slots (11s,
31s) arranged side-by-side horizontally along a respective length of the at least
one of the horizontally elongate top and bottom bars (11,31) for the bolting (25)
of the side plates (22) at a specific position (ΔH) along a length of the slots (11s,
31s) to determine the adjustable height (H),
wherein the respective vertical sections (11v,31v) of the top and bottom bars (11,31)
are sandwiched between respective sets of at least two of the side plates (22) on
either sides of the vertical slots (11s, 31s), wherein each set of side plates (22)
is held together by a plurality of adjacent bolts through adjacent slots (11s,31s)
of the respective plurality of vertically extending elongate slots (11s, 31s), wherein
the side plates (22) are respectively bolted to the top bars (11) and/or bottom bars
(31) by the adjacent bolts arranged with a bolting density of between five and fifty
bolts per meter per bar;
wherein, by the bolting (25) through the side plates (22) sandwiching the vertical
sections (11v,31v), respective friction connections are formed with at least two frictional
surfaces (F) on either side of the vertical sections (11v,31v) between each side of
the respective vertical section (11v,31v) and side plate (22) for the carrying (C)
of the top part (10) of the frame (100) while maintaining the specific position (ΔH)
of the bolting (25) along the slots (11s, 31s).
2. The machine support frame (100) according to claim 1, wherein the top bars (11) and/or
bottom bars (31) comprise a respective T- or L-profile wherein one leg of the profile
forms the vertical section (11v, 31v) for connecting the side plates (22), and another
transvers leg of the profile forms a horizontal section (11h, 31h) for connecting
to the floor (300) and/or support plate (12).
3. The machine support frame (100) according to any of the preceding claims, wherein
the machine support frame (100) comprises a set of vertically extending corner bars
(21), each comprising a corner profile interconnecting a set of transversely oriented
bottom bars (31) at the bottom part (30) of the frame and/or interconnecting a set
of transversely oriented top bars (11) at the top part (10) of the frame (100), wherein
the corner bars (21) additionally form an interconnection between the top and bottom
parts (10,30); wherein the corner bars (21) are disposed in a same plane as one of
the side plates (22).
4. The machine support frame (100) according to any of the preceding claims wherein the
set of plates (22) include at least a third side plate (22) between two vertical sections
(31v) of one or more bottom bars (31).
5. The machine support frame (100) according to any of the preceding claims, wherein
the vertical sections (11v,31v) comprise elongate slots (31s) there through having
a length greater than a width by at least a factor ten.
6. The machine support frame (100) according to any of the preceding claims, wherein
the slots (11s, 31s) extend from an undulating profile at a bottom or top end of the
respective vertical sections (11v,31v) on the top and bottom bars (11,31), wherein
the undulating profile of the top bars (11) fits into the undulating profile of the
bottom bars (31) to allow a bottom end of respective slots (11s) on the top bars (11)
to be set at a same height or below a top end of respective slots (31s) on bottom
bars when the vertical sections (11v,31v) are disposed in the same plane.
7. The machine support frame (100) according to any of the preceding claims, wherein
the side plates (22) are respectively bolted to the top bars (11) and/or bottom bars
(31) by between twenty and thirty bolts per meter per bar.
8. The machine support frame (100) according to any of the preceding claims, wherein
the machine support frame (100) has a stiffness of more than 107 Newton per meter.
9. The machine support frame (100) according to any of the preceding claims, wherein
the support plate (12) has a modulus of elasticity of more than 10 Giga-Pascal.
10. The machine support frame (100) according to any of the preceding claims, wherein
the frame (100) without the vibration sensitive machine (200) is constructed without
resonances below one kilohertz.
11. The machine support frame (100) according to any of the preceding claims, wherein
the mounting structures (12m) extend through the support plate (12), for directly
connecting the machine (200) via the mounting structures to the top bars (11) and/or
intermediate part (20) of the frame, wherein the mounting structures comprise a different
material providing a relatively high stiffness compared to the surrounding material
of the support plate (12).
12. The machine support frame (100) according to any of the preceding claims, wherein
the top bars (11) are integrated into the support plate (12).
13. A method of assembling a machine support frame (100) for supporting a machine (200)
at a specific height (H) above a floor (300), the method comprising
- connecting a set of horizontally elongate bottom bars (31) to the floor (300) to
form a bottom part (30) of the frame (100);
- connecting a set of vertically (XZ,YZ) extending side plates (22) to the bottom
parts (10,30) to form an intermediate part (20) of the frame (100);
- connecting a set of horizontally elongate top bars (11) to the side plates (22),
wherein the elongate top bars (11) are connected to a bottom of a horizontally (XY)
extending support plate (12) with mounting structures (12m) on top of the support
plate (12) for mounting the vibration sensitive machine (200, wherein the top bars
(11) and support plate (12) together form a top part (10) of the frame (100);
- wherein the top part (10) of the frame (100) is carried (C) by the side plates (22)
at the specific height (H) from the floor (300);
- wherein the vertical sections (11v,31v) in at least one of the top and bottom bars
(11,31) comprise a respective plurality of vertically extending elongate slots (11s,
31s) arranged side-by-side horizontally along a respective length of the at least
one of the horizontally elongate top and bottom bars (11,31) for the bolting (25)
of the side plates (22) at a specific position (ΔH) along a length of the slots (11s,
31s) to determine the specific height (H),
- wherein the respective vertical sections (11v,31v) of the top and bottom bars (11,31)
are sandwiched between respective sets of at least two of the side plates (22) on
either sides of the vertical slots (11s, 31s), wherein each set of side plates (22)
is held together by a plurality of adjacent bolts through adjacent slots (11s,31s)
of the respective plurality of vertically extending elongate slots (11s, 31s), wherein
the side plates (22) are respectively bolted to the top bars (11) and/or bottom bars
(31) by the adjacent bolts arranged with a bolting density of between five and fifty
bolts per meter per bar;
- wherein, by the bolting (25) through the side plates (22) sandwiching the vertical
sections (11v,31v), respective friction connections are formed with at least two frictional
surfaces (F) on either side of the vertical sections (11v,31v) between each side of
the respective vertical section (11v,31v) and side plate (22) to carry (C) of the
top part (10) of the frame (100) while maintaining the specific position (ΔH) of the
bolting (25) along the slots (11s, 31s).
14. The method according to claim 13, wherein the top bars (11) and/or bottom bars (31)
are cut to size at an assembly site of the frame (100) with a specific length and/or
width.
15. A kit of parts for assembling the machine support frame (100) according to any of
claims 1-12 in accordance with the method of claim 13 or 14, wherein the parts include
at least a top part (10) comprising a horizontally (XY) extending support plate (12)
with mounting structures (12m) on top of the support plate (12) for mounting a vibration
sensitive machine (200), and a set of horizontally elongate top bars (11); a bottom
part (30) comprising a set of horizontally elongate bottom bars (31) configured to
support the frame (100) on a floor (300); and an intermediate part (20) comprising
a set of vertically (XZ,YZ) extending side plates (22).
1. Modulares Maschinenstützgestell (100) zum Abstützen einer Maschine (200), wobei das
Gestell (100) Folgendes umfasst:
- einen oberen Teil (10), umfassend eine sich horizontal (XY) erstreckende Stützplatte
(12) mit Befestigungsstrukturen (12m) auf der Oberseite der Stützplatte (12) zum Befestigen
der vibrationsempfindlichen Maschine (200), und einen Satz horizontal länglicher oberer
Stangen (11), die mit einer Unterseite der Stützplatte (12) verbunden sind;
- einen unteren Teil (30), umfassend einen Satz von horizontal länglichen unteren
Stangen (31), die konfiguriert sind, um das Gestell (100) auf einem Boden (300) zu
stützen; und
- einen Zwischenteil (20), umfassend einen Satz sich vertikal (XZ, YZ) erstreckender
Seitenplatten (22), die zwischen dem oberen und unteren Teil (10, 30) verbunden sind;
wobei die Seitenplatten (22) durch Verschraubung (25) an jeweiligen vertikalen Abschnitten
(11v, 31v) befestigt sind, die durch sich nach unten und nach oben (±Z) erstreckende
Teile der horizontal länglichen oberen und unteren Stangen (11, 31) gebildet werden;
wobei der obere Teil (10) des Gestells (100) von den Seitenplatten (22) in einer einstellbaren
Höhe (H) vom Boden (300) getragen wird (C);
wobei die vertikalen Abschnitte (11v, 31v) in mindestens einer der oberen und unteren
Stangen (11, 31) jeweils mehrere vertikal sich erstreckende längliche Schlitze (11s,
31s) umfassen, die horizontal nebeneinander entlang einer jeweiligen Länge der mindestens
einen der horizontal länglichen oberen und unteren Stangen (11, 31) für die Verschraubung
(25) der Seitenplatten (22) an einer bestimmten Position (ΔH) entlang einer Länge
der Schlitze (11s, 31s) angeordnet sind, um die einstellbare Höhe (H) zu bestimmen,
wobei die jeweiligen vertikalen Abschnitte (11v, 31v) der oberen und unteren Stangen
(11, 31) zwischen jeweiligen Sätzen von mindestens zwei der Seitenplatten (22) auf
beiden Seiten der vertikalen Schlitze (11s, 31s) eingebettet sind, wobei jeder Satz
von Seitenplatten (22) durch eine Vielzahl von benachbarten Schrauben durch benachbarte
Schlitze (11s, 31s) der jeweiligen Vielzahl von sich vertikal erstreckenden länglichen
Schlitzen (11s, 31s) zusammengehalten wird, wobei die Seitenplatten (22) jeweils mit
den oberen Stangen (11) und/oder den unteren Stangen (31) durch die benachbarten Schrauben
verschraubt sind, die mit einer Schraubendichte zwischen fünf und fünfzig Schrauben
pro Meter und Stange angeordnet sind;
wobei, durch die Verschraubung (25) durch die Seitenplatten (22), welche die vertikalen
Abschnitte (11v, 31v) einbetten, jeweilige Reibungsverbindungen mit mindestens zwei
Reibungsflächen (F) auf jeder Seite der vertikalen Abschnitte (11v, 31v) zwischen
jeder Seite des jeweiligen vertikalen Abschnitts (11v, 31v) und der Seitenplatte (22)
gebildet werden, und zwar für das Tragen (C) des oberen Teils (10) des Gestells (100),
während die spezifische Position (ΔH) der Verschraubung (25) entlang der Schlitze
(11s, 31s) erhalten bleibt.
2. Maschinenstützgestell (100) nach Anspruch 1, wobei die oberen Stangen (11) und/oder
unteren Stangen (31) jeweils ein T- oder L-Profil umfassen, wobei ein Schenkel des
Profils den vertikalen Abschnitt (11v, 31v) zum Verbinden der Seitenplatten (22) bildet
und ein anderer Querschenkel des Profils einen horizontalen Abschnitt (11h, 31h) zum
Verbinden mit dem Boden (300) und/oder der Stützplatte (12) bildet.
3. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei das Maschinenstützgestell
(100) einen Satz von sich vertikal erstreckenden Eckstangen (21) umfasst, die jeweils
ein Eckprofil umfassen, das einen Satz von quer ausgerichteten unteren Stangen (31)
am Unterteil (30) des Gestells und/oder einen Satz von quer ausgerichteten oberen
Stangen (11) am oberen Teil (10) des Gestells (100) miteinander verbindet, wobei die
Eckstangen (21) zusätzlich eine Zwischenverbindung zwischen den oberen und unteren
Teilen (10, 30) bilden; wobei die Eckstangen (21) auf einer gleichen Ebene wie eine
der Seitenplatten (22) angeordnet sind.
4. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei der Satz
von Platten (22) mindestens eine dritte Seitenplatte (22) zwischen zwei vertikalen
Abschnitten (31v) von einer oder mehreren unteren Stangen (31) beinhaltet.
5. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei die vertikalen
Abschnitte (11v, 31v) durchgehende längliche Schlitze (31s) umfassen, deren Länge
mindestens um den Faktor zehn größer ist als die Breite.
6. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei sich die
Schlitze (11s, 31s) von einem wellenförmigen Profil an einem unteren oder oberen Ende
der jeweiligen vertikalen Abschnitte (11v, 31v) an den oberen und unteren Stangen
(11, 31) erstrecken, wobei das wellenförmige Profil der oberen Stangen (11) in das
wellenförmige Profil der unteren Stangen (31) passt, damit ein unteres Ende der jeweiligen
Schlitze (11s) an den oberen Stangen (11) auf gleicher Höhe oder unterhalb eines oberen
Endes der jeweiligen Schlitze (31s) an den unteren Stangen liegen kann, wenn die vertikalen
Abschnitte (11v, 31v) auf derselben Ebene angeordnet sind.
7. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei die Seitenplatten
(22) jeweils mit zwanzig bis dreißig Schrauben pro Meter und Stange an den oberen
Stangen (11) und/oder unteren Stangen (31) verschraubt sind.
8. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei das Maschinenstützgestell
(100) eine Steifigkeit von mehr als 107 Newton pro Meter aufweist.
9. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei die Stützplatte
(12) einen Elastizitätsmodul von mehr als 10 Gigapascal aufweist.
10. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei das Gestell
(100) ohne die vibrationsempfindliche Maschine (200) ohne Resonanzen unter einem Kilohertz
konstruiert ist.
11. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei sich die
Befestigungsstrukturen (12m) durch die Stützplatte (12) erstrecken, und zwar zum direkten
Verbinden der Maschine (200) über die Montagestrukturen mit den oberen Stangen (11)
und/oder dem Zwischenteil (20) des Gestells, wobei die Befestigungsstrukturen ein
anderes Material umfassen, das im Vergleich zum umgebenden Material der Stützplatte
(12) eine relativ hohe Steifigkeit aufweist.
12. Maschinenstützgestell (100) nach einem der vorstehenden Ansprüche, wobei die oberen
Stangen (11) in die Stützplatte (12) integriert sind.
13. Verfahren zum Montieren eines Maschinenstützgestells (100) zum Abstützen einer Maschine
(200) in einer bestimmten Höhe (H) über einem Boden (300), wobei das Verfahren Folgendes
umfasst:
- Verbinden eines Satzes von horizontal länglichen unteren Stangen (31) mit dem Boden
(300), um einen unteren Teil (30) des Gestells (100) zu bilden;
- Verbinden eines Satzes von sich vertikal (XZ, YZ) erstreckenden Seitenplatten (22)
mit den unteren Teilen (10, 30), um einen Zwischenteil (20) des Gestells (100) zu
bilden;
- Verbinden eines Satzes von horizontal länglichen oberen Stangen (11) mit den Seitenplatten
(22), wobei die länglichen oberen Stangen (11) mit einer Unterseite einer sich horizontal
(XY) erstreckenden Stützplatte (12) mit Befestigungsstrukturen (12m) auf der Oberseite
der Stützplatte (12) verbunden sind, um die vibrationsempfindliche Maschine (200)
zu befestigen, wobei die oberen Stangen (11) und die Stützplatte (12) zusammen einen
oberen Teil (10) des Gestells (100) bilden;
- wobei der obere Teil (10) des Gestells (100) von den Seitenplatten (22) in einer
bestimmten Höhe (H) vom Boden (300) getragen wird;
- wobei die vertikalen Abschnitte (11v, 31v) in mindestens einer der oberen und unteren
Stangen (11, 31) jeweils mehrere vertikal sich erstreckende längliche Schlitze (11s,
31s) umfassen, die horizontal nebeneinander entlang einer jeweiligen Länge der mindestens
einen der horizontal länglichen oberen und unteren Stangen (11, 31) für die Verschraubung
(25) der Seitenplatten (22) an einer bestimmten Position (ΔH) entlang einer Länge
der Schlitze (11s, 31s) angeordnet sind, um die spezifische Höhe (H) zu bestimmen,
- wobei die jeweiligen vertikalen Abschnitte (11v, 31v) der oberen und unteren Stangen
(11, 31) zwischen jeweiligen Sätzen von mindestens zwei der Seitenplatten (22) auf
beiden Seiten der vertikalen Schlitze (11s, 31s) eingebettet sind, wobei jeder Satz
von Seitenplatten (22) durch eine Vielzahl von benachbarten Schrauben durch benachbarte
Schlitze (11s, 31s) der jeweiligen Vielzahl von sich vertikal erstreckenden länglichen
Schlitzen (11s, 31s) zusammengehalten wird, wobei die Seitenplatten (22) jeweils mit
den oberen Stangen (11) und/oder den unteren Stangen (31) durch die benachbarten Schrauben
verschraubt sind, die mit einer Schraubendichte zwischen fünf und fünfzig Schrauben
pro Meter und Stange angeordnet sind;
- wobei, durch die Verschraubung (25) durch die Seitenplatten (22), welche die vertikalen
Abschnitte (11v, 31v) einbetten, jeweilige Reibungsverbindungen mit mindestens zwei
Reibungsflächen (F) auf jeder Seite der vertikalen Abschnitte (11v, 31v) zwischen
jeder Seite des jeweiligen vertikalen Abschnitts (11v, 31v) und der Seitenplatte (22)
gebildet werden, um den oberen Teil (10) des Gestells (100) zu tragen (C), während
die spezifische Position (ΔH) der Verschraubung (25) entlang der Schlitze (11s, 31s)
erhalten bleibt.
14. Verfahren nach Anspruch 13, wobei die oberen Stangen (11) und/oder unteren Stangen
(31) an einer Montagestelle des Gestells (100) mit einer bestimmten Länge und/oder
Breite zugeschnitten werden.
15. Teilekit zum Montieren des Maschinenstützgestells (100) nach einem der Ansprüche 1
bis 12 gemäß dem Verfahren nach Anspruch 13 oder 14, wobei die Teile mindestens einen
oberen Teil (10) beinhalten, umfassend eine sich horizontal (XY) erstreckende Stützplatte
(12) mit Montagestrukturen (12m) auf der Oberseite der Stützplatte (12) zum Montieren
einer vibrationsempfindlichen Maschine (200), und einen Satz horizontal länglicher
oberer Stangen (11); einen unteren Teil (30), umfassend einen Satz horizontal länglicher
unterer Stangen (31), die konfiguriert sind, um das Gestell (100) auf einem Boden
(300) zu stützen; und einen Zwischenteil (20), umfassend einen Satz vertikal (XZ,
YZ) sich erstreckender Seitenplatten (22).
1. Cadre de support modulaire de machine (100) pour supporter une machine (200), le cadre
(100) comprenant :
- une partie supérieure (10) comprenant une plaque de support (12) s'étendant horizontalement
(XY) avec des structures de montage (12m) sur le dessus de la plaque de support (12)
pour monter la machine sensible aux vibrations (200), et un ensemble de barres supérieures
horizontalement allongées (11) raccordé à un fond de la plaque de support (12) ;
- une partie inférieure (30) comprenant un ensemble de barres inférieures horizontalement
allongées (31) configuré pour supporter le cadre (100) sur un sol (300) ; et
- une partie intermédiaire (20) comprenant un ensemble de plaques latérales (22) s'étendant
verticalement (XZ, YZ) raccordé entre les parties supérieure et inférieure (10, 30)
;
dans lequel les plaques latérales (22) sont fixées par boulonnage (25) aux sections
verticales (11v, 31v) respectives formées par des parties s'étendant vers le bas et
vers le haut (±Z) des barres supérieures et inférieures horizontalement allongées
(11, 31) respectivement ;
dans lequel la partie supérieure (10) du cadre (100) est portée (C) par les plaques
latérales (22) à une hauteur (H) réglable par rapport au sol (300) ;
dans lequel les sections verticales (11v, 31v) dans au moins l'une des barres supérieures
et inférieures (11, 31) comprennent une pluralité respective de fentes allongées s'étendant
verticalement (11s, 31s) agencées côte à côte horizontalement le long d'une longueur
respective de la au moins une des barres supérieures et inférieures horizontalement
allongées (11, 31) pour le boulonnage (25) des plaques latérales (22) dans une position
spécifique (ΔH) le long d'une longueur des fentes (11s, 31s) afin de déterminer la
hauteur (H) réglable,
dans lequel les sections verticales (11v, 31v) respectives des barres supérieures
et inférieures (11, 31) sont prises en sandwich entre des ensembles respectifs d'au
moins deux des plaques latérales (22) sur chacun des côtés des fentes verticales (11s,
31s), dans lequel chaque ensemble de plaques latérales (22) est maintenu ensemble
par une pluralité de boulons adjacents à travers des fentes (11s, 31s) adjacentes
de la pluralité respective de fentes allongées s'étendant verticalement (11s, 31s),
dans lequel les plaques latérales (22) sont respectivement boulonnées aux barres supérieures
(11) et/ou aux barres inférieures (31) par les boulons adjacents agencés avec une
densité de boulonnage comprise entre cinq et cinquante boulons par mètre par barre
;
dans lequel, grâce au boulonnage (25) à travers les plaques latérales (22) prenant
en sandwich les sections verticales (11v, 31v), des raccordements de friction respectifs
sont formés avec au moins deux surfaces de friction (F) de chaque côté des sections
verticales (11v, 31v) entre chaque côté de la section verticale (11v, 31v) respective
et la plaque latérale (22) pour le support (C) de la partie supérieure (10) du cadre
(100) tout en maintenant la position (ΔH) spécifique du boulonnage (25) le long des
fentes (11s, 31s).
2. Cadre de support de machine (100) selon la revendication 1, dans lequel les barres
supérieures (11) et/ou les barres inférieures (31) comprennent un profilé en forme
de T ou de L respectif, dans lequel une jambe du profilé forme la section verticale
(11v, 31v) pour raccorder les plaques latérales (22) et une autre jambe transversale
du profilé forme une section horizontale (11h, 31h) pour se raccorder au sol (300)
et/ou à la plaque de support (12).
3. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel le cadre de support de machine (100) comprend un ensemble de barres de
coin s'étendant verticalement (21), comprenant chacune un profilé de coin interconnectant
un ensemble de barres inférieures orientées transversalement (31) au niveau de la
partie inférieure (30) du cadre et/ou interconnectant un ensemble de barres supérieures
orientées transversalement (11) au niveau de la partie supérieure (10) du cadre (100),
dans lequel les barres de coin (21) forment, de plus, une interconnexion entre les
parties supérieure et inférieure (10, 30) ; dans lequel les barres de coin (21) sont
disposées dans un même plan que celui des plaques latérales (22).
4. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel l'ensemble de plaques (22) comprend au moins une troisième plaque latérale
(22) entre deux sections verticales (31v) d'une ou de plusieurs barres inférieures
(31).
5. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel les sections verticales (11v, 31v) comprennent des fentes allongées (31s)
à travers ces dernières, ayant une longueur supérieure à une largeur d'au moins un
facteur de dix.
6. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel les fentes (11s, 31s) s'étendent à partir d'un profilé ondulé au niveau
d'une extrémité inférieure ou supérieure des sections verticales (11v, 31v) respectives
sur les barres supérieures et inférieures (11, 31), dans lequel le profil ondulé des
barres supérieures (11) s'adapte dans le profil ondulé des barres inférieures (31)
pour permettre à une extrémité inférieure des fentes (11s) respectives sur les barres
supérieures (11) d'être placée à une même hauteur ou au-dessous d'une extrémité supérieure
des fentes (31s) respectives sur les barres inférieures lorsque les sections verticales
(11v, 31v) sont disposées dans le même plan.
7. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel les plaques latérales (22) sont respectivement boulonnées sur les barres
supérieures (11) et/ou les barres inférieures (31) par un nombre compris entre vingt
et trente boulons par mètre par barre.
8. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel le cadre de support de machine (100) a une rigidité supérieure à 107 Newton/mètre.
9. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel la plaque de support (12) a un module d'élasticité supérieur à 10 Giga
Pascal.
10. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel le cadre (100), sans la machine sensible aux vibrations (200), est construit
sans résonances inférieures à un kilohertz.
11. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel les structures de montage (12m) s'étendent à travers la plaque de support
(12), pour raccorder directement la machine (200), via les structures de montage,
aux barres supérieures (11) et/ou à la partie intermédiaire (20) du cadre, dans lequel
les structures de montage comprennent un matériau différent fournissant une rigidité
relativement élevée par rapport au matériau environnant de la plaque de support (12).
12. Cadre de support de machine (100) selon l'une quelconque des revendications précédentes,
dans lequel les barres supérieures (11) sont intégrées dans la plaque de support (12).
13. Procédé pour assembler un cadre de support de machine (100) pour supporter une machine
(200) à une hauteur (H) spécifique au-dessus d'un sol (300), le procédé comprenant
les étapes consistant à :
- raccorder un ensemble de barres inférieures horizontalement allongées (31) au sol
(300) afin de former une partie inférieure (30) du cadre (100) ;
- raccorder un ensemble de plaques latérales (22) s'étendant verticalement (XZ, YZ)
aux parties inférieures (10, 30) afin de former une partie intermédiaire (20) du cadre
(100) ;
- raccorder un ensemble de barres supérieures horizontalement allongées (11) aux plaques
latérales (22), dans lequel les barres supérieures allongées (11) sont raccordées
à un fond d'une plaque de support (12) s'étendant horizontalement (XY) avec des structures
de montage (12m) sur le dessus de la plaque de support (12) pour monter la machine
sensible aux vibrations (200), dans lequel les barres supérieures (11) et la plaque
de support (12) forment ensemble une partie supérieure (10) du cadre (100) ;
- dans lequel la partie supérieure (10) du cadre (100) est portée (C) par les plaques
latérales (22) à la hauteur (H) spécifique par rapport au sol (300) ;
- dans lequel les sections verticales (11v, 31v) dans au moins l'une des barres supérieures
et inférieures (11,31) comprennent une pluralité respective de fentes allongées s'étendant
verticalement (11s, 31s) agencées côte à côte horizontalement le long d'une longueur
respective de la au moins une des barres supérieures et inférieures horizontalement
allongées (11, 31) pour le boulonnage (25) des plaques latérales (22) dans une position
(ΔH) spécifique le long d'une longueur des fentes (11s, 31s) afin de déterminer la
hauteur (H) spécifique,
- dans lequel les sections verticales (11v, 31v) respectives des barres supérieures
et inférieures (11, 31) sont prises en sandwich entre des ensembles respectifs d'au
moins deux des plaques latérales (22) de chaque côté des fentes verticales (11s, 31s),
dans lequel chaque ensemble de plaques latérales (22) est maintenu ensemble par une
pluralité de boulons adjacents à travers des fentes (11s, 31s) adjacentes de la pluralité
respective de fentes allongées s'étendant verticalement (11s, 31s), dans lequel les
plaques latérales (22) sont respectivement boulonnées aux barres supérieures (11)
et/ou aux barres inférieures (31) par les boulons adjacents agencés avec une densité
de boulonnage comprise entre cinq et cinquante boulons par mètre par barre ;
- dans lequel, grâce au boulonnage (25) à travers les plaques latérales (22) prenant
en sandwich les sections verticales (11v, 31v), des raccordements de friction respectifs
sont formés avec au moins deux surfaces de friction (F) de chaque côté des sections
verticales (11v, 1v) entre chaque côté de la section verticale (11v, 31v) respective
et de la plaque latérale (22) pour porter (C) la partie supérieure (10) du cadre (100)
tout en maintenant la position (ΔH) spécifique du boulonnage (25) le long des fentes
(11s, 31s).
14. Procédé selon la revendication 13, dans lequel les barres supérieures (11) et/ou les
barres inférieures (31) sont coupées à la taille sur un site d'assemblage du cadre
(100) avec une longueur et/ou largeur spécifique(s).
15. Kit de pièces pour assembler le cadre de support de machine (100) selon l'une quelconque
des revendications 1 à 12, selon le procédé selon la revendication 13 ou 14, dans
lequel les pièces comprennent au moins une partie supérieure (10) comprenant une plaque
de support (12) s'étendant horizontalement (XY) avec des structures de montage (12m)
sur le dessus de la plaque de support (12) pour monter une machine sensible aux vibrations
(200), et un ensemble de barres supérieures horizontalement allongées (11) ; une partie
inférieure (30) comprenant un ensemble de barres inférieures horizontalement allongées
(31) configuré pour supporter le cadre (100) sur un sol (300) ; et une partie intermédiaire
(20) comprenant un ensemble de plaques latérales (22) s'étendant verticalement (XZ,
YZ).