(11) **EP 4 056 760 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 14.09.2022 Patentblatt 2022/37

(21) Anmeldenummer: 21162228.7

(22) Anmeldetag: 12.03.2021

(51) Internationale Patentklassifikation (IPC): E01C 19/48 (2006.01) E01C 19/00 (2006.01)

(52) Gemeinsame Patentklassifikation (CPC): E01C 19/48; E01C 19/006

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN

(71) Anmelder: Joseph Vögele AG 67067 Ludwigshafen (DE)

(72) Erfinder:

SIMON, Stefan
 67141 Neuhofen (DE)

- STUMPF, Philipp 69115 Heidelberg (DE)
- WEISER, Ralf 68526 Ladenburg (DE)
- BUSCHMANN, Martin 67435 Neustadt (DE)
- (74) Vertreter: Grünecker Patent- und Rechtsanwälte PartG mbB Leopoldstraße 4 80802 München (DE)

(54) STRASSENFERTIGER MIT NIVELLIERKASKADENREGELUNG

Die Erfindung bezieht sich auf einen Straßenfertiger (1) mit einer Einbaubohle (4) zur Herstellung einer Einbauschicht (2) auf einem Untergrund (3), auf welchem sich der Straßenfertiger (1) während einer Einbaufahrt in Fahrtrichtung (R) fortbewegt, wobei der Straßenfertiger (1) zum Ausgleich von Unebenheiten (8) im Untergrund (3) ein Nivelliersystem (10A, 10B) zur Höhenverstellung der Einbaubohle (4) umfasst, wobei das Nivelliersystem (10A, 10B) eine Kaskadenregelung (100A, 100B) aufweist, wobei die Kaskadenregelung (100A) entweder zwischen dem äußeren und dem inneren Regelkreis (11, 13) einen mittleren Regelkreis (12) umfasst, der einen dritten Regler (C_{zp}) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts der Zugpunktposition (z_{zp}) des Zugpunkts (6) der Einbaubohle (4) zur vorbestimmten Referenz (L) und auf Basis des mittels des ersten Reglers (Cbo) bestimmten Sollwerts der Zugpunktposition (r_{zp}) den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{zp}) zu bestimmen, oder dass die Kaskadenregelung (100B) zwischen dem äußeren und dem inneren Regelkreis (11, 13) eine Zugpunktsteuerung (C'zp) aufweist, die dazu ausgebildet ist, auf Basis des mittels des ersten Reglers (C_{bo}) bestimmten Sollwerts der Zugpunktposition (r_{zp}) des Zugpunkts (6) der Einbaubohle (4) und auf Basis eines der Zugpunktsteuerung (C'zD) vorgehaltenen, digitalen Geländemodells (DGM) des Untergrunds (3), auf welchem sich der Straßenfertiger (1) zur Herstellung der Einbauschicht (2) fortbewegt, den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{nz}) zu bestimmen. Die Erfindung betrifft ferner ein dementsprechendes Nivellierverfahren.

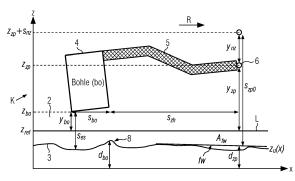


FIG. 2

Beschreibung

10

35

40

50

[0001] Die vorliegende Erfindung bezieht sich auf einen Straßenfertiger mit einem Nivelliersystem gemäß dem Anspruch 1. Ferner betrifft die vorliegende Erfindung ein Verfahren zum Nivellieren einer Einbaubohle eines Straßenfertigers gemäß dem Verfahrensanspruch 14.

[0002] Bekannte Straßenfertiger sind mit Nivelliersystemen ausgestattet, die während einer Einbaufahrt zum Ausgleich von Unebenheiten des Untergrunds, die auf das Fahrwerk des Straßenfertigers oder direkt auf die Einbaubohle des Straßenfertigers wirken, dienen. Basierend auf den Sensormessungen eines Nivelliersystems kann die Einbaubohle des Straßenfertigers mittels eines Nivellierzylinders, der einen mit der Einbaubohle gekoppelten ausfahrbaren Kolben aufweist, zur Herstellung einer ebenen Einbauschicht höhenverstellt werden.

[0003] Bei herkömmlichen Nivelliersystemen ist, wenn mittels Leitdraht und Abstandssensor nivelliert wird, der Abstandssensor am Zugholm zwischen einem daran ausgebildeten vorderen Zugpunkt, woran der Kolben des Nivellierzylinders befestigt ist, und dem mittels des Zugholms geschleppten Bohlenkörper installiert, d.h. in Fahrtrichtung ungefähr auf Höhe der Querverteilereinrichtung. Von dieser Position aus erfasst der Abstandssensor weder die exakte Position der dahinterliegenden Bohlenhinterkante, die allgemein eine Bohlenhöhe definiert und die maßgeblich die Ebenheit des eingebauten Belags bestimmt, noch den Einfluss von Bodenunebenheiten auf den vorderen Zugpunkt. Diese ungenauen Sensormessungen geben den vorliegenden Untergrund nicht profilgenau wieder, sodass darauf basierend keine Nivellierung der Einbaubohle zustande kommt, wodurch sich Unebenheiten des Untergrunds präzise kompensieren lassen. [0004] DE 196 47 150 A1 offenbart einen Straßenfertiger mit einem Nivelliersystem, das einen auf Basis einer gemessenen Höhenlage der Hinterkante der Einbaubohle arbeitenden Höhenregelkreis als Führungsregler aufweist. Dieser ist dazu konfiguriert, ein Stellsignal als Führungssignal für einen als Folgeregler ausgebildeten Zugpunktregelkreis zu erzeugen, welcher darauf basierend und hinsichtlich einer erfassten Neigung des Zugarms der Einbaubohle ein Hydraulikventil eines mit dem vorderen Zugpunkt der Einbaubohle gekoppelten Nivellierzylinders ansteuert.

[0005] DE 100 25 474 B4 offenbart ein Nivelliersystem, das als Führungsregler einen Schichtdickenregelkreis einsetzt, aus dem ein Stellsignal auf Basis eines berechneten Schichtdicken-Istwertes und auf Basis eines Schichtdicken-Sollwerts hervorgeht. Dieses Stellsignal gibt einen Neigungs-Soll-Wert vor, der einem als Folgeregler ausgebildeten Ebenheits-Regelkreis vorhaltbar ist. Dieser Ebenheits-Regelkreis berechnet auf Basis des ihm vorgehaltenen Neigungs-Sollwertes und auf Basis einer während der Einbaufahrt erfassten Zugarmneigung eine Stellgröße zum Ansteuern eines Nivellierzylinders zur Höhenverstellung der Einbaubohle.

[0006] In DE 196 47 150 A1 und DE 100 25 474 B4 lässt sich der störende Einfluss des Untergrunds auf eine Zugpunktposition nicht einwandfrei mittels der zweistufigen Reglereinrichtung eliminieren. Dies wird durch den Einsatz von Neigungssensoren, die auf Unebenheiten im Untergrund besonders störempfindlich sind, erschwert.

[0007] Aufgabe der Erfindung ist es, einen Straßenfertiger mit einem Nivelliersystem zur Verfügung zu stellen, anhand dessen sich ein störender Einfluss des Untergrunds auf die Zugpunktposition der Einbaubohle nahezu vollständig kompensieren lässt. Weiter ist es die Aufgabe der Erfindung, ein auf das vorliegende Untergrundprofil präzise ansprechendes Nivellierverfahren für einen Straßenfertiger zur Verfügung zu stellen.

[0008] Diese Aufgabe wird gelöst durch einen Straßenfertiger gemäß Anspruch 1 oder mittels eines Verfahrens zum Nivellieren einer Einbaubohle eines Straßenfertigers gemäß Anspruch 14. Vorteilhafte Weiterbildungen der Erfindung sind durch die Unteransprüche gegeben.

[0009] Die Erfindung bezieht sich auf einen Straßenfertiger mit einer Einbaubohle zur Herstellung einer Einbauschicht auf einem Untergrund, auf welchem sich der Straßenfertiger während einer Einbaufahrt in Fahrtrichtung fortbewegt. Der erfindungsgemäße Straßenfertiger umfasst zum Ausgleich von Unebenheiten des Untergrunds ein Nivelliersystem zur Höhenverstellung der Einbaubohle, wobei das Nivelliersystem eine Kaskadenregelung aufweist.

[0010] Die Kaskadenregelung umfasst einen äußeren Regelkreis, der einen ersten Regler (im Folgenden auch Bohlenregler genannt) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Bohlenhöhe der Einbaubohle relativ zu einer vorbestimmten Referenz und auf Basis eines ihm vorhaltbaren Sollwerts der Bohlenhöhe relativ zu der vorbestimmten Referenz einen Sollwert einer Zugpunktposition eines Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz zu bestimmen. Als Bohlenhöhe ist hier insbesondere die Höhe einer Bohlenhinterkante der Einbaubohle gemeint. Die Zugpunktposition ist vorzugsweise durch ein vorderes Ende des Zugarms der Einbaubohle bestimmt.

[0011] Weiter umfasst die Kaskadenregelung einen inneren Regelkreis, der einen zweiten Regler (im Folgenden auch Nivellierzylinderregler genannt) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Nivellierzylinderposition eines am Zugpunkt befestigten, ausfahrbaren Kolbens eines Nivellierzylinders und auf Basis eines dem zweiten Regler vorgehaltenen Sollwerts der Nivellierzylinderposition ein Stellsignal für den Nivellierzylinder zu bestimmen, anhand dessen der Nivellierzylinder ansteuerbar ist.

[0012] Erfindungsgemäß umfasst die Kaskadenregelung entweder zwischen dem äußeren und dem inneren Regelkreis einen mittleren Regelkreis, der einen dritten Regler (im Folgenden auch Zugpunktregler genannt) aufweist, welcher dazu ausgebildet ist, auf Basis eines erfassten Istwerts der Zugpunktposition des Zugpunkts der Einbaubohle zur vor-

bestimmten Referenz und auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition den Sollwert der Nivellierzylinderposition für den zweiten Regler zu bestimmen, oder die Kaskadenregelung weist zwischen dem äußeren und dem inneren Regelkreis eine Zugpunktsteuerung auf, die dazu ausgebildet ist, auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition des Zugpunkts der Einbaubohle und insbesondere auf Basis eines der Zugpunktsteuerung vorgehaltenen, digitalen Geländemodells des Untergrunds, auf welchem sich der Straßenfertiger zur Herstellung der Einbauschicht fortbewegt, den Sollwert der Nivellierzylinderposition für den zweiten Regler zu bestimmen.

[0013] Bei der ersten erfindungsgemäßen Alternative umfasst die Kaskadenregelung mindestens drei Regelkreise, nämlich einen äußeren, einen mittleren und einen inneren Regelkreis, die zur Herstellung des Stellsignals für den Nivellierzylinder ineinander verschachtelt sind. Anhand des dadurch bereitgestellten dreistufigen Kaskadennivelliersystems, insbesondere unter Einsatz des mittleren, unmittelbar auf Untergrundunebenheiten ansprechenden Regelkreises, kann eine unbekannte Zugpunktstörung, die vom Untergrundprofil über das Fahrwerk des Straßenfertigers auf den Zugpunkt wirkt, einwandfrei kompensiert werden.

10

20

30

35

40

50

[0014] Die zweite Alternative des erfindungsgemäßen Straßenfertigers stellt eine Kaskadenregelung mit integrierter Zugpunktsteuerung zur verbesserten Nivellierung der Einbaubohle zur Verfügung. Die hierfür eingesetzte Zugpunktsteuerung bildet für den inneren Regelkreis eine Führungssteuerung und für den äußeren Regelkreis eine Folgesteuerung aus und kann auf Basis des ihr vorgehaltenen, digitalen Geländemodells, worin Untergrundunebenheiten als bekannt berücksichtigt sind, die Zugpunktstörung nahezu vollständig kompensieren.

[0015] Anhand beider Alternativen ist eine bessere Kompensation von Unebenheiten des Untergrunds möglich, weil sowohl der Einfluss von Unebenheiten auf die Bohlenhöhe als auch der Einfluss von Unebenheiten auf die Zugpunktmechanik direkt erfasst und zur Erzeugung des Stellsignals für die Einstellung des Nivellierzylinders berücksichtigt werden.

[0016] Beide o.g. Alternativen des erfindungsgemäßen Straßenfertigers ermöglichen es, dass durch im Untergrund ausgebildete Unebenheiten verursachte, störende Einflüsse auf die Zugpunktposition und die Einbaubohle präzise erfasst und dementsprechend nahezu vollständig ausgeregelt werden können. Dies liegt vor allen Dingen daran, dass das Nivelliersystem in mehrere Regel-/Steuerstreckenabschnitte aufgeteilt ist, die hinsichtlich deren jeweiligen Regel-/Steuerstrecke besser auslegbar sind, um vorliegende Unebenheiten des Untergrunds sowie andere in der Praxis vorkommende Störgrößen bei der Nivellierung der Einbaubohle nahezu vollständig zu kompensieren.

[0017] Positiv zur Kompensation der Unebenheiten des Untergrunds wirkt sich insbesondere die Aufteilung der zusammenhängenden Regelstecke des äußeren Regelkreises in die oben genannten Alternativen aus, nämlich die Kombination der einander überlagerten inneren und mittleren Regelschleifen oder die Kombination der inneren Regelschleife mit der vorausgehenden Zugpunktsteuerung. Diese alternativen Kombinationen ermöglichen es jeweils, dass die zusammengefasste Regelstrecke des äußeren Regelkreises aufgrund ihrer Aufteilung in Teilabschnitte besser zum Zwecke einer effektiven Störgrößenkompensation kontrollierbar ist.

[0018] Vorzugsweise umfasst der äußere Regelkreis eine Regelstrecke, deren Ausgangsgröße (Regelgröße) der erfasste Istwert der Bohlenhöhe der Einbaubohle relativ zu der vorbestimmten Referenz und/oder deren Eingangsgröße der erfasste Istwert der Zugpunktposition des Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz ist. Alternativ kann die Eingangsgröße ein in Abhängigkeit eines erfassten Istwerts der Nivellierzylinderposition berechneter Istwert der Zugpunktposition des Zugpunkts sein. Der äußere Regelkreis ermöglicht es, die Bohlenhöhe hinsichtlich der vorbestimmten Referenz, beispielsweise einem neben der Fahrbahn gespannten Leitdraht, einzuregeln.

[0019] Eine Variante sieht vor, dass das Nivelliersystem für den äußeren Regelkreis mindestens einen ersten Sensor aufweist, der zum Erfassen des Istwerts der Bohlenhöhe ausgebildet ist. Im Folgenden wird dieser Sensor daher auch Bohlensensor genannt. Insbesondere ist der erste Sensor zum Erfassen eines Abstands der Bohlenhinterkante der Einbaubohle zur vorbestimmten Referenz ausgebildet. Gemäß einer Ausführungsform der Erfindung ist der erste Sensor ein im Bereich einer Bohlenhinterkante der Einbaubohle positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz. Beispielsweise ist der Sensor an einem Seitenschieber der Einbaubohle befestigt. Damit kann die tatsächliche Höhenposition der Einbaubohle als Regelgröße, vor allem eine Höhenposition der daran ausgebildeten Hinterkante, präzise erfasst und per Rückkopplung dem ersten Regeler des äußeren Regelkreises zugeführt werden. Die äußere Rückkopplung kann auf der Rückkopplung des inneren Regelkreises aufbauen, wobei die innere Rückkopplung bevorzugt schneller abläuft, sodass die Störgrößenkompensation mittels der inneren Regelschleife bzw. Regelschleifen und das Führungsverhalten der äußeren Regelschleife besser aufeinander abgestimmt werden können. [0020] Vorzugsweise umfasst der innere Regelkreis eine Regelstrecke, deren Ausgangsgröße der erfasste Istwert der Nivellierzylinderposition des am Zugpunkt befestigten, ausfahrbaren Kolbens des Nivellierzylinders und/oder deren Eingangsgröße das Stellsignal für den Nivellierzylinder ist.

[0021] Eine vorteilhafte Variante sieht vor, dass das Nivelliersystem für den inneren Regelkreis mindestens einen zweiten Sensor aufweist, der zum Erfassen des Istwerts der Nivellierzylinderposition ausgebildet ist. Dieser Sensor wird im Folgenden auch Nivellierzylindersensor genannt. Vorteilhaft ist es, wenn der zweite Sensor ein im Bereich des Nivellierzylinders positionierter Abstandssensor zum Erfassen eines Ausfahrwegs des Kolbens des Nivellierzylinders

ist. Damit kann die Nivellierzylinderstellung als Regelgröße, insbesondere der aktuelle Ausfahrweg des Nivellierzylinder-Kolbens, präzise erfasst und per Rückkopplung dem zweiten Regler des inneren Regelkreises zugeführt werden.

[0022] Zweckmäßig ist es, wenn der mittlere Regelkreis eine Regelstrecke aufweist, deren Ausgangsgröße der erfasste Istwert der Zugpunktposition der Einbaubohle und/oder deren Eingangsgröße der erfasste Istwert der Nivellierzylinderposition ist.

[0023] Gemäß einer Ausführungsform der Erfindung weist das Nivelliersystem für den mittleren Regelkreis mindestens einen dritten Sensor (im Folgenden auch Zugpunktsensor genannt) auf, der zum Erfassen des Istwerts der Zugpunktposition zur vorbestimmten Referenz ausgebildet ist. Zweckmäßig ist es, wenn der dritte Sensor ein im Bereich des Zugpunkts der Einbaubohle positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz ist. Damit kann die durch Unebenheiten direkt beeinflusste Zugpunktposition als Regelgröße präzise erfasst und per Rückkopplung dem dritten Regler des mittleren Regelkreises zugeführt werden.

10

20

30

35

45

50

[0024] Insbesondere die Sensoren zum Erfassen der Bohlen- und Zugpunktposition können als Wegmesssensoren ausgebildet sein. Vorstellbar wäre der Einsatz von Laser-, Ultraschall-, LIDAR- und/oder Radarsensoren. Als Messeinrichtung für das Erfassen der Bohlen- und Zugpunktposition kann gemäß einer bevorzugten Variante mindestens ein am Straßenfertiger angeordnetes Tachymeter und/oder am Bohlenverbund befestigter Laserempfänger eingesetzt werden. Vorstellbar ist es, dass das Tachymeter zur Zielverfolgung der vorbestimmten Referenz motorisiert selbsttätig verstellbar ausgebildet ist.

[0025] Es wäre vorstellbar, dass anstelle von zwei Abstandssensoren, die an der Bohlenhinterkante und am Zugpunkt installiert sind, ein Längsneigungssensor in Kombination mit einem Abstandssensor zum Einsatz kommen. Dabei kann der Abstandssensor am Bohlenholm an einem beliebigen Punkt zwischen der Bohlenhinterkante und dem Zugpunkt installiert werden. Der Neigungssensor misst den Anstellwinkel der Bohle. Dabei ist es aufgrund der bekannten Bohlengeometrie unerheblich, an welcher Position der Einbaubohle oder des Zugholms der Neigungssensor installiert ist. Kommt die hier beschriebene Sensorkombination zum Einsatz, können die Abstände der Bohlenhinterkante und des Zugpunkts zur Referenz (siehe die in Fig.2 dargestellten Abstände y_{bo} und y_{zp}) durch trigonometrische Berechnungen basierend auf dem gemessenen Winkel und dem gemessenen Abstand ermittelt werden. Der Aufbau und die Parametrierung der Regler bleiben davon unberührt. Diese Sensorkonfiguration kann auch zum Einsatz kommen, wenn ein Untergrundmodell als Referenz (im Folgenden auch virtuelle Referenz genannt) zum Einsatz kommt.

[0026] Vorzugsweise weist die Kaskadenregelung mindestens eine Störgrößenaufschaltung auf. Es wäre möglich, dass die Störgrößenaufschaltung auf Basis einer rechnerischen, indirekten Bestimmung mindestens einer Störgröße und/oder auf Basis mindestens einer direkt messbaren Störgröße funktioniert. Anhand der Störgrößenaufschaltung kann proaktiv mittels einer vorgeschalteten Übertragungsfunktion eine Stellgröße, beispielsweise die Stellgröße für die Zugpunktposition angepasst werden, anstatt die Auswirkung der Störgröße auf die am Ausgang vorliegende Regelgröße zuzulassen.

[0027] Vorstellbar ist es, dass die Störgrößenaufschaltung mit mindestens einem Filter zum Glätten von berechneten bzw. erfassten Störgrößen ausgestattet ist. Damit kann die Reaktion des funktional mit der Störgrößenaufschaltung verbundenen Reglers gedämpft werden. Für die Störgrößenaufschaltung können mittels eines Scanners aufgenommene Messungen eines Untergrundprofils eingesetzt und/oder ein digitales Geländemodell eingesetzt werden.

[0028] Insbesondere umfasst die Kaskadenregelung eine erste Störgrößenaufschaltung für den äußeren Regelkreis und eine zweite Störgrößenaufschaltung für den mittleren Regelkreis. Damit können Unebenheiten des Untergrunds und/oder andere während des Einbaus vorkommende Störgrößen, beispielsweise Störgrößen betreffend mechanische und/oder hydraulische Systeme des Straßenfertigers, reaktionsschnell proaktiv kompensiert werden, ohne dass diese die kaskadierte Rückkopplung der Regelgrößen spürbar beeinflussen.

[0029] Die jeweiligen Störgrößenaufschaltungen können unabhängig voneinander einzeln oder gemeinsam aktiviert und deaktiviert werden. Vorstellbar ist es, dass basierend auf mindestens einem am Straßenfertiger während des Einbaubetriebs gemessenen Prozessparameters und/oder auf Basis einer gemessenen Eigenschaft der hergestellten Einbauschicht mindestens eine auf den Prozessparameter und/oder die Eigenschaft der Einbauschicht direkt oder indirekt ansprechende Störgrößenaufschaltung automatisch aktivierbar ist.

[0030] Vorzugsweise ist die Kaskadenregelung um ein Schichtstärkenberechnungsmodul ergänzt, das dazu ausgebildet ist, auf Basis einer ermittelten aktuellen Schichtdicke der hergestellten Einbauschicht und/oder auf Basis eines ihm vorgehaltenen Sollwerts der Schichtdicke der herzustellenden Einbauschicht für den äußeren Regelkreis den Sollwert der Bohlenhöhe als Führungsgröße zu bestimmen. Anhand dieser Kaskadenregelung lässt sich die Kompensierung von Untergrundunebenheiten durch die Herstellung einer gewünschten Schichtdicke komplettieren.

[0031] Eine Variante sieht vor, dass das Schichtstärkenberechnungsmodul dazu konfiguriert ist, die Schichtdicke aus einem Verlauf der für die Nivellierung eingesetzten, ggf. temporär abgespeicherten, Sensormessungen zu ermitteln.

[0032] Der Istwert der Schichtdicke kann mittels eines am Straßenfertiger ausgebildeten Schichtdickenmesssystems ermittelt werden. Vorstellbar wäre es, dass zum Ermitteln der hergestellten Schichtdicke die Messergebnisse mindestens eines Abstandssensors verwendet werden, dessen Messergebnisse auch für den Betrieb des Nivelliersystems dienen. [0033] Die Referenz ist gemäß einer Variante als reale physikalische Referenz ausgeführt (z.B. Leitdraht). In der

Praxis ist jedoch nicht immer eine physikalische Referenz vorhanden. In diesem Fall kommt eine, hier als "virtuell" bezeichnete, Referenz zum Einsatz. Dies kann zum Beispiel ein Rotationslaser und ein, an der Einbaubohle montierter, Laserempfänger oder ein Tachymeter, welches ein an der Einbaubohle montiertes Prisma verfolgt, sein. Bei diesen beiden Messmethoden kommen keine typischen Abstandssensoren zum Einsatz, da Referenz und Sensor ein System bilden.

[0034] Eine aus praktischer Sicht ausführungsgemäße virtuelle Referenz ist ein mathematisches Modell des Untergrundes, das als digitales Geländemodell (DGM) oder in anderer digitaler Form (Daten eines (Laser-)Scanners) vorliegt. Bei dem Einsatz einer solchen Referenz ermitteln weiterhin Abstandssensoren den Abstand zum Untergrund und somit zur Referenz. Der entsprechende Sollabstand für Bohle und Zugpunkt zum Untergrund wird in diesem Fall in Abhängigkeit des Ortes so gewählt, dass sich die gewünschte Bohlenhöhe einstellt. Für den Sollwert des Bohlenreglers gilt $r_{bo}(x) = Z_{bo_{soll}}(x) - z_{ref}(x)$ mit $r_{bo}(x) > 0 \ \forall x$. Bei dem Zugpunktregler wird analog das Stellsignal des Bohlenreglers mit dem Josephien verlauf der Referenz überlagert, um die von dem Bohlenregler gewünschte Zugpunktposition zu erreichen. [0035] Die Erfindung betrifft ferner ein Verfahren zum Nivellieren einer Einbaubohle eines Straßenfertigers zur Herstellung einer Einbauschicht auf einem Untergrund, auf welchem sich der Straßenfertiger während einer Einbaufahrt in Fahrtrichtung fortbewegt. Erfindungsgemäß werden Unebenheiten im Untergrund mittels eines Nivelliersystems ausgeglichen, das mittels einer Kaskadenregelung eine Höhenverstellung der Einbaubohle durchführt.

10

15

20

30

35

50

55

[0036] Beim erfindungsgemäßen Verfahren bestimmt ein äußerer Regelkreis der Kaskadenregelung mittels eines ersten Reglers auf Basis eines erfassten Istwerts einer Bohlenhöhe der Einbaubohle relativ zu einer vorbestimmten Referenz und auf Basis eines dem ersten Regler als Führungsgröße vorhaltbaren Sollwerts der Bohlenhöhe relativ zu der vorbestimmten Referenz einen Sollwert einer Zugpunktposition eines Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz.

[0037] Ferner bestimmt ein innerer Regelkreis der Kaskadenregelung mittels eines zweiten Reglers auf Basis eines erfassten Istwerts einer Nivellierzylinderposition eines am Zugpunkt der Einbaubohle befestigten, ausfahrbaren Kolbens eines Nivellierzylinders und auf Basis eines dem zweiten Regler vorgehaltenen Sollwerts der Nivellierzylinderposition ein Stellsignal für den Nivellierzylinder, anhand dessen der Nivellierzylinder für die Höhenverstellung der Einbaubohle angesteuert wird.

[0038] Das erfindungsgemäße Verfahren sieht vor, dass entweder ein zwischen dem äußeren und dem inneren Regelkreis integrierter mittlerer Regelkreis der Kaskadenregelung mittels eines dritten Reglers auf Basis eines erfassten Istwerts der Zugpunktposition des Zugpunkts der Einbaubohle relativ zur vorbestimmten Referenz und auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition den Sollwert der Nivellierzylinderposition für den zweiten Regler bestimmt, oder dass eine zwischen dem äußeren und dem inneren Regelkreis funktional eingebundene Zugpunktsteuerung auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition des Zugpunkts der Einbaubohle und insbesondere auf Basis eines der Zugpunktsteuerung vorgehaltenen, digitalen Geländemodells des Untergrunds, auf welchem sich der Straßenfertiger zur Herstellung der Einbauschicht fortbewegt, den Sollwert der Nivellierzylinderposition für den zweiten Regler bestimmt.

[0039] Demzufolge wird anhand des erfindungsgemäßen Verfahrens der als Führungsgröße für die Einstellung des Nivellierzylinders vorgesehene Sollwert der Nivellierzylinderposition und damit auch die davon benötigte Stellgröße für den Nivellierzylinder entweder mittels einer dreistufigen, ineinander verschachtelten Kaskadenregelung, sprich anhand der einander überlagerten ersten, zweiten und dritten Regelkreise, bestimmt oder auf Basis des äußeren und inneren Regelkreises sowie der dazwischen ausgebildeten Zugpunktsteuerung. Anhand beider Alternativen ist eine bessere Kompensation von Unebenheiten des Untergrunds möglich, weil sowohl der Einfluss von Unebenheiten auf die Bohlenhöhe als auch der Einfluss von Unebenheiten auf die Zugpunktmechanik direkt erfasst und zur Erzeugung des Stellsignals für die Einstellung des Nivellierzylinders berücksichtigt werden.

[0040] Vorzugsweise wird die Kaskadenregelung um mindestens eine Störgrößenaufschaltung ergänzt. Diese kann proaktiv zur Bestimmung der sollwertigen Zugpunkt- und/oder Nivellierzylinderposition auf Unebenheiten des Untergrunds und andere Störgrößen ansprechen und diese zuverlässig kompensieren, indem sie die damit zusammenhängenden Störgrößen dem Bohlenregler, d.h. dem Regler des äußeren Regelkreises, und/oder dem Zugpunktregler, d.h. dem Regler des mittleren Regelkreises, mittels einer vorbestimmten Übertragungsfunktion zuführt.

[0041] Gemäß einer Ausführungsform wird die Kaskadenregelung um ein Schichtstärkenberechnungsmodul ergänzt, das auf Basis einer während der Einbaufahrt ermittelten Schichtdicke der hergestellten Einbauschicht und/oder auf Basis eines ihm vorgehaltenen Sollwerts der Schichtdicke der herzustellenden Einbauschicht für den äußeren Regelkreis den Sollwert der Bohlenhöhe bestimmt. Das Schichtstärkenberechnungsmodul könnte beispielsweise die Nivelliersensorsignale verwenden, um die Sollbohlenhöhe zu berechnen.

[0042] Ausführungsbeispiele der Erfindung werden anhand der folgenden Figuren genauer erläutert. Es zeigen:

- Fig. 1 einen Straßenfertiger zum Herstellen einer Einbauschicht auf einem Untergrund,
- Fig. 2 eine isolierte, schematische Darstellung einer Einbaubohle des Straßenfertigers in einem Bezugskoordinaten-

system,

30

35

50

- Fig. 3 eine schematische Darstellung einer ersten Variante des erfindungsgemäßen Nivelliersystems für die Einbaubohle des Straßenfertigers, und
- Fig. 4 eine schematische Darstellung einer zweiten Variante des erfindungsgemäßen Nivelliersystems für die Einbaubohle des Straßenfertigers.
- [0043] Technische Merkmale sind in den Figuren durchgängig mit gleichen Bezugszeichen versehen.
- [0044] Fig. 1 zeigt einen Straßenfertiger 1, der eine Einbauschicht 2 mit einer gewünschten Schichtdicke S auf einem Untergrund 3 herstellt, auf dem sich der Straßenfertiger 1 während einer Einbaufahrt in einer Fahrtrichtung R fortbewegt. Der Straßenfertiger 1 besitzt eine nivellierbare Einbaubohle 4 zum Verdichten der Einbauschicht 2. Die Einbaubohle 4 weist einen Zugarm 5 auf, der an einem vorderen Zugpunkt 6 mit einem am Chassis des Straßenfertigers 1 befestigten Nivellierzylinder 7 verbunden ist. Der Nivellierzylinder 7 kann den Zugarm 5 am vorderen Zugpunkt 6 anheben und absenken, sodass sich ein Anstellwinkel der geschleppten Einbaubohle 4 während der Einbaufahrt einstellen lässt, wobei in Reaktion darauf die Einbaubohle 4 angehoben oder abgesenkt wird. Insbesondere können durch eine dynamische Regelung der Nivellierzylindereinstellung Unebenheiten 8 des Untergrunds 3 ausgeglichen werden.
- [0045] Fig. 2 zeigt eine isolierte, schematische Darstellung der Einbaubohle 4 in einem Bezugskoordinatensystem K, einschließlich den Untergrund 3 und die Bohlengeometrie betreffende Abmessungen, die im Zusammenhang mit den Fig. 3 und 4 im Folgenden genauer erläutert werden.
- **[0046]** Fig. 3 zeigt ein Nivelliersystem 10A, das zum Nivellieren der Einbaubohle 4 ausgebildet ist. Das Nivelliersystem 10A umfasst eine Kaskadenregelung 100A, die drei einander überlagerte Regelkreise, nämlich einen inneren Regelkreis 11, einen mittleren Regelkreis 12 und einen äußeren Regelkreis 13 umfasst.
- [0047] Der äußere Regelkreis 13 weist einen ersten Sensor H_{bo} (Bohlensensor), der innere Regelkreis 11 einen zweiten Sensor H_{nz} (Nivellierzylindersensor) und der mittlere Regelkreis 12 einen dritten Sensor H_{zp} (Zugpunktsensor) auf. Jeder der drei Regelkreise 11, 12, 13 weist somit gemäß Fig. 2 jeweils einen gesonderten Sensor auf. Die Sensoren H_{bo} , H_{nz} , H_{zp} sind dazu konfiguriert, die in Fig. 2 dargestellten Abstände zu messen, insbesondere den Ausfahrweg des Nivellierzylinders s_{nz} , die Bohlenhöhe z_{bo} und die Zugpunktposition z_{zp} . Dementsprechende Sensorsignale y_{bo} , y_{nz} , y_{zp} werden von den jeweiligen Sensoren H_{bo} , H_{nz} , H_{zp} als Ist-Regelgrößen den drei Reglern C_{bo} , C_{zp} , C_{nz} zugeführt.
- [0048] Gemäß Fig. 2 ist die Kaskadenregelung 100A um eine optionale Störgrößenaufschaltung S1, S2 ergänzt, die hier schematisch, in gestrichelter Form dargestellt ist.
 - [0049] Zunächst wird die Kaskadenregelung 100A im Folgenden ohne Störgrößenaufschaltung S1, S2 beschrieben. Die drei Regelkreise 11, 12, 13 der Kaskadenregelung 100A sind ineinander verschachtelt. Im äußeren Regelkreis 13 wird die Bohlenhöhe z_{bo} eingeregelt. Das dynamische Verhalten der Regelstrecke "Einbaubohle" wird durch die Übertragungsfunktion G_{bo} beschrieben. Ausgangsgröße dieser Regelstrecke ist die erfasste Bohlenhöhe z_{bo} . Die Bohlenhöhe z_{bo} wird durch den Bohlensensor H_{bo} , welcher nahe einer Bohlenhinterkante 14 (siehe Figuren 1 und 2) installiert ist, erfasst. Das entsprechende Sensorsignal y_{bo} wird dem Regler C_{bo} per Rückkopplung zugeführt. Eingangsgröße der Übertragungsfunktion G_{bo} ist der gemessene Istwert der Zugpunktposition z_{zp} . Der entsprechende Sollwert der Zugpunktposition r_{zp} ist das Stellsignal vom ersten Regler c_{bo} (Bohlenregler) und wird aus dem hier vorgehaltenen Sollwert der Bohlenhöhe r_{bo} und dem Sensorsignal y_{bo} berechnet.
 - [0050] Das Stellsignal r_{zp} des äußeren Regelkreises 13 ist das Führungssignal des mittleren Regelkreises 12, welcher die Zugpunktposition z_{zp} mit Hilfe des Zugpunktreglers C_{zp} einregelt. Der Istwert der Zugpunktposition z_{zp} wird mittels des Sensors H_{zp} erfasst, welcher den Abstand des Zugpunktes von der Referenz L (beispielsweise einem neben der Fahrbahn gespannten Seil oder Leitdraht) ermittelt. Dabei ist die Zugpunktposition z_{zp} die Ausgangsgröße der Zugpunktmechanik G_{zp} . Das resultierende Sensorsignal y_{zp} wird zum Zugpunktregler C_{zp} zurückgeführt. Das Stellsignal des Zugpunktreglers C_{zp} ist der Sollwert der Nivellierzylinderposition r_{zp} .
 - **[0051]** Somit stellt das Stellsignal vom Zugpunktregler C_{zp} die Führungsgröße des inneren Regelkreises 11 dar, dessen Istwert die Nivellierzylinderposition s_{nz} ist. Der innere Regelkreis 11 umfasst als Regelstrecke die Nivellierzylinderfunktion G_{nz} , wobei der Sensor H_{nz} die Nivellierzylinderstellung erfasst und dem Nivellierzylinderregler C_{nz} zuführt. Dabei ist u_{nz} das Stellsignal des Nivellierzylinderreglers C_{nz} , welches auf den Nivellierzylinder 7 wirkt.
 - **[0052]** Mittels der vorangehend beschriebenen Kaskadenregelung 100A kann der störende Einfluss des Untergrunds d_{zp} auf die Zugpunktposition z_{zp} nahezu vollständig ausgeregelt werden. Zudem kann aufgrund der genauen Erfassung der Bohlenhöhe z_{bo} diese direkt eingeregelt werden und der Störung d_{bo} , welche auf z_{bo} wirkt, kann besser entgegengewirkt werden.
- [0053] Auf Basis der drei Sensorsignale y_{bo}, y_{nz}, y_{zp} sowie hinsichtlich des in Fig. 2 dargestellten Aufbaus können die folgenden Zusammenhänge hergeleitet werden:

$$z_{bo} = y_{bo} + z_{ref} \tag{1}$$

$$d_{zp} = y_{zp} + z_{ref} + y_{nz} - s_{zp0}$$
 (2)

[0054] Dabei ist d_{zp} durch die Wechselwirkung des Fahrwerks fw mit dem Untergrund 3, hier in Fig. 2 Untergrund z_u , gegeben. Somit gilt d_{zp} = fw(z_u). Folglich kann das Untergrundprofil durch die Umkehrfunktion der Fahrwerksfunktion berechnet werden. Es gilt

$$z_{u} = fw^{-1}(d_{zp}). \tag{3}$$

[0055] Da für die Schichtdicke $s_{es} = z_{bo} - z_{u}$ gilt, kann die Schichtdicke s_{es} mit Hilfe der Zusammenhänge (1) - (3) durch die drei Sensorsignale y_{bo} , y_{nz} , y_{zp} ermittelt werden. Es gilt

$$s_{es} = y_{bo} + z_{ref} - fw^{-1}(y_{zp} + z_{ref} + y_{nz} - s_{zp0})$$
(4)

[0056] Wird der Fahrwerkseinfluss vernachlässigt, d.h. $z_u \approx d_{zp}$ wird angenommen, gilt

$$s_{es} = y_{bo} - y_{zp} - y_{nz} + s_{zp0}$$
 (5)

$$d_{bo} = d_{zp} (6)$$

[0057] Bei der Implementierung der Gleichungen (5) und (6) ist die Ortsabhängigkeit zu berücksichtigen. Das bedeutet, es gilt

$$d_{bo}(x) = d_{zp}(x - s_{zh})$$

und

5

10

15

20

25

30

35

40

50

55

$$s_{es}(x) = y_{bo}(x) - y_{zp}(x - s_{zh} - s_{bo}) - y_{nz}(x - s_{zh} - s_{bo}) + s_{zp0}$$

[0058] Somit werden die Signale y_{bo} , y_{nz} , y_{zp} aufgezeichnet und die Bohlenstörung $d_{bo}(x)$ wird an dem Wegpunkt x aus der Zugpunktstörung d_{zp} des vorangegangen Wegpunktes x - s_{zh} berechnet. Die Information bezüglich der Einbaustärke $s_{es}(x)$ kann dem Bediener angezeigt werden, beispielsweise auf einem Display am Außenbedienstand der Einbaubohle.

[0059] Darüber hinaus kann obige Kaskadenregelung 100A durch ein Schichtstärkenberechnungsmodul zur Schichtstärkenregelung erweitert werden, welchem eine Sollschichtstärke als gewünschte Schichtstärke vorhaltbar ist, worauf basierend das Schichtstärkenberechnungsmodul den Sollwert der Bohlenhöhe r_{bo} berechnet.

[0060] Bei dem Schichtstärkenberechnungsmodul liegt die Besonderheit vor, dass der Zusammenhang zwischen Schichtstärke und Bohlenhöhe algebraisch ist. Das heißt, eine Änderung der Schichtstärke entspricht exakt der gleichen Änderung der Bohlenhöhe. Zur Umsetzung einer Schichtstärkenregelung sind zwei Varianten denkbar.

[0061] Bei der ersten Variante wird die aktuelle Schichtstärke aus dem Verlauf der Sensormessungen ermittelt und mit der vorgehaltenen Sollschichtstärke verglichen. Diese Abweichung wird in dem Bohlenregler zu einer Änderung der Bohlenhöhe verarbeitet. Bei der zweiten Variante kann der Zusammenhang

$$s_{es}(x) = y_{bo}(x) - y_{zp}(x - s_{zh} - s_{bo}) - y_{nz}(x - s_{zh} - s_{bo}) + s_{zp}$$

genutzt werden um den Sollwert der Bohlenhöhe r_{bo} direkt aus der gewünschten Schichtstärke zu bestimmen. Zur Berechnung der Sollbohlenhöhe r_{bo} aus der Sollschichtstärke r_{es} wird $s_{es} = r_{es}$ und $y_{bo} = r_{bo}$ in obige Gleichung eingesetzt. Anschließend wir bezgl. r_{bo} aufgelöst. Dies führt zu

$$r_{bo}(x) = r_{es}(x) + y_{zv}(x - s_{zh} - s_{bo}) + y_{nz}(x - s_{zh} - s_{bo}) - s_{zp0}.$$

[0062] Somit liegt der Unterschied zwischen der Kaskadenregelung und der um das Schichtstärkenberechnungsmodul erweiterten Kaskadenregelung im Wesentlichen darin, ob der Benutzer einen Sollwert für die Bohlenhöhe oder für die Schichtstärke angibt.

[0063] Die oben beschriebene Kaskadenregelung 100A kann um die in Fig. 2 gestrichelt dargestellte Störgrößenaufschaltung S1, S2 erweitert werden. Dabei werden Informationen bezüglich des Untergrunds z_u und der resultierenden Störungen d_{bo} und d_{zp} erfasst und dem Bohlenregler C_{bo} sowie dem Zugpunktregler C_{zp} zugeführt, welche diese zur Berechnung der gewünschten Zugpunkt- und Nivellierzylinderposition r_{zp} , r_{nz} verwenden, um proaktiv die Störgrößen d_{bo} und d_{zp} zu kompensieren, ohne abzuwarten, dass diese in die Regelgrößen z_{bo} , z_{zp} einfließen. Dabei wird bei der Stellsignalberechnung im Bohlenregler C_{bo} berücksichtigt, dass die Störung d_{bo} mit einer von der Einbaugeschwindigkeit abhängigen Totzeit der Störung d_{zp} nacheilt. Es ist sowohl die rechnerische Bestimmung der Störgrößen d_{bo} und d_{zp} , wie oben beschrieben, als auch das direkte Messen der Störgrößen d_{bo} und d_{zp} mittels geeigneter Messsysteme H_{dbo} und H_{dzp} (z.B. Scanner u.ä.) möglich. Dabei kann die Messung sowohl "online", d.h. während des Einbaus, als auch "offline", d.h. vor dem Einbau, beispielsweise anhand eines digitalen Geländemodells (DGM), erfolgen. Offline gemessene Verläufe werden dabei in dem Steuerungssystem gespeichert.

[0064] Die Nivelliermethode ist nicht auf eine bestimmte Sensortechnologie beschränkt. Zur Erfassung der Bohlenund Zugpunktposition können insbesondere Messsysteme, wie z.B. Tachymeter und/oder Laserempfänger, zum Einsatz
kommen. Auch ein Neigungssensor, der den Anstellwinkel der Bohle misst, wäre vorstellbar. Einer der beiden Ultraschallsensoren könnte durch solch einen Neigungssensor ersetzt werden. Der durch den ersetzten Sensor gemessene
Abstand könnte dann durch trigonometrische Beziehungen bestimmt werden. Dadurch kann auch von den vorgegebenen
Sensorpositionen am Zugpunkt und der Bohlenhinterkante abgewichen werden, was in der Praxis Vorteile bringen kann.
Der Einsatz von Messsystemen ohne feste Referenz, beispielsweise ein am Zugholm 5 des dem Straßenfertigers 1
montierter BigSki, der den Abstand auf den Untergrund 3 an verschiedenen Positionen misst, wäre möglicherweise mit
Genauigkeitseinbußen ebenfalls einsetzbar.

[0065] Beim Nivelliersystem 10A ist das Untergrundprofil z_u nicht bekannt. z_u wirkt über das Fahrwerk fw auf den Zugpunkt 6 und bildet somit die unbekannte Zugpunktstörung $d_{zp} = fw(z_u)$. Insbesondere um diese unbekannte Zugpunktstörung $d_{zp} = fw(z_u)$ zu kompensieren, kommt der mittlere Regelkreis 12 der Kaskadenregelung 100A, welcher die Zugpunktposition z_{zp} einregelt, zum Einsatz.

[0066] Liegt jedoch gemäß Fig. 4 ein ausreichend genaues digitales Geländemodell (DGM) vor, ist z_u durch dieses Modell gegeben und d_{zp} kann mit Hilfe des Fahrwerks fw des Straßenfertigers 1 berechnet werden. Somit wird der Zugpunkt 6 im vorliegenden Fall von einer bekannten Störung beeinflusst. Dies hat zur Folge, dass der mittlere Regelkreis 12 einschließlich des Sensors H_{zp} nicht mehr erforderlich sind, und durch eine Zugpunktsteuerung C_{zp} ersetzt werden können. Außerdem kann die Information bezüglich z_u für eine optionale Störgrößenaufschaltung verwendet werden. Die Messeinrichtungen H_{dbo} und H_{dzp} können folglich ebenfalls entfallen.

[0067] Fig. 4 zeigt die Ausführungsform, welche ein Nivelliersystem 10B mit einer Kaskadenregelung 100B umfasst, die ein digitales Geländemodell (DGM) verarbeitet. Der Bohlenregler C_{bo} ist im Vergleich zu der Grundausführung gemäß Fig. 3 nahezu unverändert. Ein Unterschied zur gezeigten Variante aus Fig. 3 besteht darin, dass, falls eine Störgrößenaufschaltung verwendet wird, die Störung d_{bo} im Bohlenregler C_{bo} aus z_{u} berechnet wird. Im Unterschied zur Grundausführung gemäß Fig. 3 ist der Zugpunktregler C_{zp} in Fig. 4 nicht mehr vorhanden, sondern wird durch die Zugpunksteuerung C'_{zp} , welche aus dem bekannten Untergrundprofil z_{u} und der Sollposition des Zugpunktes r_{zp} eine Sollwertstellung r_{nz} des Nivellierzylinders berechnet. Diese Berechnung basiert auf den Gleichungen (2) und (3). Zunächst werden die Istwerte y_{zp} und y_{nz} durch die entsprechenden Sollwerte r_{zp} und r_{nz} ersetzt. Anschließend wird Gleichung (3) bezüglich d_{zp} aufgelöst. Es gilt d_{zp} = fw(z_{u}). Einsetzen von y_{zp} = r_{zp} , y_{nz} = r_{nz} und d_{zp} = fw(z_{u}) in Gleichung (2) und Auflösen bezüglich r_{nz} führt zu

$$r_{nz} = fw(z_u) - r_{zp} - z_{ref} + s_{zp0},$$
 (7)

wodurch der Steueralgorithmus für die Zugpunktsteuerung C'zn gegeben ist.

Patentansprüche

30

35

50

55

1. Straßenfertiger (1) mit einer Einbaubohle (4) zur Herstellung einer Einbauschicht (2) auf einem Untergrund (3), auf welchem sich der Straßenfertiger (1) während einer Einbaufahrt in Fahrtrichtung (R) fortbewegt, wobei der Straßenfertiger (1) zum Ausgleich von Unebenheiten (8) im Untergrund (3) ein Nivelliersystem (10A, 10B) zur Höhen-

verstellung der Einbaubohle (4) umfasst, wobei das Nivelliersystem (10A, 10B) eine Kaskadenregelung (100A, 100B) aufweist, die einen äußeren Regelkreis (13) umfasst, der einen ersten Regler (C_{bo}) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Bohlenhöhe (z_{bo}) der Einbaubohle (4) relativ zu einer vorbestimmten Referenz (L) und auf Basis eines ihm vorhaltbaren Sollwerts der Bohlenhöhe (r_{bo}) relativ zu der vorbestimmten Referenz (L) einen Sollwert einer Zugpunktposition (r_{zp}) eines Zugpunkts (6) der Einbaubohle (4) relativ zu der vorbestimmten Referenz (L) zu bestimmen, und die einen inneren Regelkreis (11) umfasst, der einen zweiten Regler (C_{nz}) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Nivellierzylinderposition (s_{nz}) eines am Zugpunkt (6) befestigten, ausfahrbaren Kolbens eines Nivellierzylinders (7) und auf Basis eines dem zweiten Regler (C_{nz}) vorgehaltenen Sollwerts der Nivellierzylinderposition (r_{nz}) ein Stellsignal (r_{nz}) für den Nivellierzylinder (7) zu bestimmen, anhand dessen der Nivellierzylinder (7) ansteuerbar ist,

dadurch gekennzeichnet, dass

10

15

20

35

40

45

55

die Kaskadenregelung (100A) entweder zwischen dem äußeren und dem inneren Regelkreis (11, 13) einen mittleren Regelkreis (12) umfasst, der einen dritten Regler (C_{zp}) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts der Zugpunktposition (z_{zp}) des Zugpunkts (6) der Einbaubohle (4) zur vorbestimmten Referenz (L) und auf Basis des mittels des ersten Reglers (C_{bo}) bestimmten Sollwerts der Zugpunktposition (r_{zp}) den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{zp}) zu bestimmen, oder dass die Kaskadenregelung (100B) zwischen dem äußeren und dem inneren Regelkreis (11, 13) eine Zugpunktsteuerung (C'_{zp}) aufweist, die dazu ausgebildet ist, auf Basis des mittels des ersten Reglers (C_{bo}) bestimmten Sollwerts der Zugpunktposition (r_{zp}) des Zugpunkts (6) der Einbaubohle (4) und insbesondere auf Basis eines der Zugpunktsteuerung (C'_{zp}) vorgehaltenen, digitalen Geländemodells (DGM) des Untergrunds (3), auf welchem sich der Straßenfertiger (1) zur Herstellung der Einbauschicht (2) fortbewegt, den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{nz}) zu bestimmen.

- 2. Straßenfertiger nach Anspruch 1, dadurch gekennzeichnet, dass der äußere Regelkreis (13) eine Regelstrecke (G_{bo}) umfasst, deren Ausgangsgröße der erfasste Istwert der Bohlenhöhe (z_{bo}) der Einbaubohle (4) relativ zu der vorbestimmten Referenz (L) und/oder deren Eingangsgröße der erfasste Istwert der Zugpunktposition (z_{zp}) des Zugpunkts (6) der Einbaubohle (4) relativ zu der vorbestimmten Referenz (L) ist.
- Straßenfertiger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Nivelliersystem (10A, 10B) für den äußeren Regelkreis (13) mindestens einen ersten Sensor (H_{bo}) aufweist, der zum Erfassen des Istwerts der Bohlenhöhe (z_{bo}) ausgebildet ist.
 - 4. Straßenfertiger nach Anspruch 3, dadurch gekennzeichnet, dass der erste Sensor (H_{bo}) ein im Bereich einer Bohlenhinterkante (14) der Einbaubohle (4) positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz (L) ist.
 - 5. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der innere Regelkreis (11) eine Regelstrecke (G_{nz}) umfasst, deren Ausgangsgröße der erfasste Istwert der Nivellierzylinderposition (s_{nz}) des am Zugpunkt (6) befestigten, ausfahrbaren Kolbens des Nivellierzylinders (7) und/oder dessen Eingangsgröße das Stellsignal (u_{nz}) für den Nivellierzylinder (7) ist.
 - 6. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Nivelliersystem (10A, 10B) für den inneren Regelkreis (11) mindestens einen zweiten Sensor (H_{nz}) aufweist, der zum Erfassen des Istwerts der Nivellierzylinderposition (s_{nz}) ausgebildet ist.
 - Straßenfertiger nach Anspruch 6, dadurch gekennzeichnet, dass der zweite Sensor (H_{nz}) ein im Bereich des Nivellierzylinders (7) positionierter Abstandssensor zum Erfassen der Nivellierzylinderposition (s_{nz}) des Kolbens des Nivellierzylinders (7) ist.
- Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der mittlere Regelkreis
 (12) eine Regelstrecke (G_{zp}) umfasst, deren Ausgangsgröße der erfasste Istwert der Zugpunktposition (z_{zp}) der Einbaubohle (4) und/oder deren Eingangsgröße der erfasste Istwert der Nivellierzylinderposition (s_{nz}) ist.
 - 9. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Nivelliersystem (10A, 10B) für den mittleren Regelkreis (12) einen dritten Sensor (H_{zp}) aufweist, der zum Erfassen des Istwerts der Zugpunktposition (z_{zp}) zur vorbestimmten Referenz (L) ausgebildet ist.
 - 10. Straßenfertiger nach Anspruch 9, dadurch gekennzeichnet, dass der dritte Sensor (H_{zp}) ein im Bereich des

Zugpunkts (6) der Einbaubohle (4) positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz (L) ist.

- **11.** Straßenfertiger nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Kaskadenregelung (100A, 100B) mindestens eine Störgrößenaufschaltung (S1, S2) aufweist.
- 12. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kaskadenregelung (100A, 100B) um ein Schichtstärkenberechnungsmodul ergänzt ist, das dazu ausgebildet ist, auf Basis einer ermittelten aktuellen Schichtdicke (S) der hergestellten Einbauschicht (2) und/oder auf Basis eines ihm vorgehaltenen Sollwerts der Schichtdicke (S) der herzustellenden Einbauschicht (2) für den äußeren Regelkreis (13) den Sollwert der Bohlenhöhe (rho) zu bestimmen.
- **13.** Straßenfertiger nach Anspruch 12, **dadurch gekennzeichnet**, **dass** das Schichtstärkenberechnungsmodul dazu ausgebildet ist, die Schichtdicke (S) aus einem Verlauf der für die Nivellierung eingesetzten Sensormessungen zu ermitteln.
- 14. Verfahren zum Nivellieren einer Einbaubohle (4) eines Straßenfertiger (1) zur Herstellung einer Einbauschicht (2) auf einem Untergrund (3), auf welchem sich der Straßenfertiger (1) während einer Einbaufahrt in Fahrtrichtung (R) fortbewegt, wobei Unebenheiten (8) im Untergrund (3) mittels eines Nivelliersystems (10A, 10B) ausglichen werden, das mittels einer Kaskadenregelung (100A, 100B) eine Nivellierung der Einbaubohle (4) durchführt, wobei ein äußerer Regelkreis (13) der Kaskadenregelung (100A, 100B) mittels eines ersten Reglers (C_{bo}) auf Basis eines erfassten Istwerts einer Bohlenhöhe (z_{bo}) der Einbaubohle (4) relativ zu einer vorbestimmten Referenz (L) und auf Basis eines dem ersten Regler (C_{bo}) vorhaltbaren Sollwerts der Bohlenhöhe (r_{bo}) relativ zu der vorbestimmten Referenz (L) bestimmt, und wobei ein innerer Regelkreis (11) der Kaskadenregelung (100A, 100B) mittels eines zweiten Reglers (C_{nz}) auf Basis eines erfassten Istwerts einer Nivellierzylinderposition (s_{nz}) eines am Zugpunkt (6) der Einbaubohle (4) befestigten, ausfahrbaren Kolbens eines Nivellierzylinders (7) und auf Basis eines dem zweiten Regler (C_{nz}) vorgehaltenen Sollwerts (r_{nz}) der Nivellierzylinderposition ein Stellsignal (u_{nz}) für den Nivellierzylinder (7) bestimmt, anhand dessen der Nivellierzylinder (7) für die Höhenverstellung der Einbaubohle (4) angesteuert wird,

dadurch gekennzeichnet, dass

entweder ein zwischen dem äußeren und dem inneren Regelkreis (11, 13) vorliegender mittlerer Regelkreis (12) der Kaskadenregelung (100A) mittels eines dritten Reglers (C_{zp}) auf Basis eines erfassten Istwerts der Zugpunktposition (z_{zp}) des Zugpunkts (6) der Einbaubohle (4) zur vorbestimmten Referenz (L) und auf Basis des mittels des ersten Reglers (C_{bo}) bestimmten Sollwerts der Zugpunktposition (r_{zp}) den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{nz}) bestimmt, oder dass eine zwischen dem äußeren und dem inneren Regelkreis (11, 13) vorliegende Zugpunktsteuerung (C_{zp}) der Kaskadenregelung (100B) auf Basis des mittels des ersten Reglers (C_{bo}) bestimmten Sollwerts der Zugpunktposition (r_{zp}) des Zugpunkts (6) der Einbaubohle (4) und insbesondere auf Basis eines der Zugpunktsteuerung (C_{zp}) vorgehaltenen, digitalen Geländemodells (GDM) des Untergrunds (3), auf welchem sich der Straßenfertiger (1) zur Herstellung der Einbauschicht (2) fortbewegt, den Sollwert der Nivellierzylinderposition (r_{nz}) für den zweiten Regler (C_{nz}) bestimmt.

15. Verfahren nach Anspruch 14, **dadurch gekennzeichnet**, **dass** die Kaskadenregelung (100A, 100B) um mindestens eine Störgrößenaufschaltung (S1, S2) und/oder um ein Schichtstärkenberechnungsmodul ergänzt wird, das auf Basis einer ermittelten Schichtdicke (S) der hergestellten Einbauschicht (2) und/oder auf Basis eines ihm vorgehaltenen Sollwerts einer Schichtdicke (S) der herzustellenden Einbauschicht (2) für den äußeren Regelkreis (13) den Sollwert der Bohlenhöhe (r_{bo}) bestimmt.

55

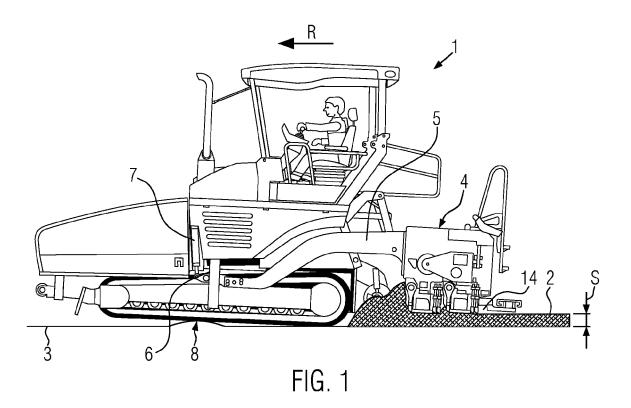
5

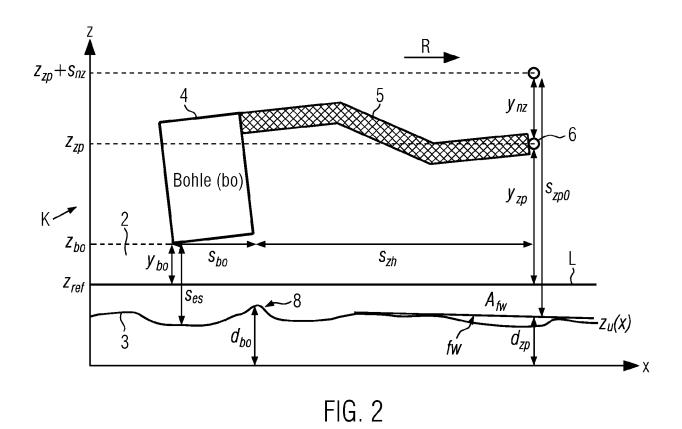
10

15

20

25


30


35

40

45

50

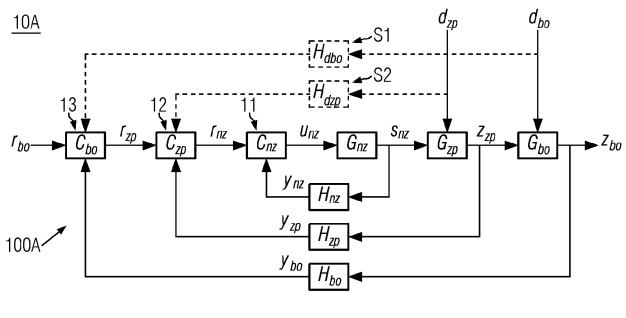
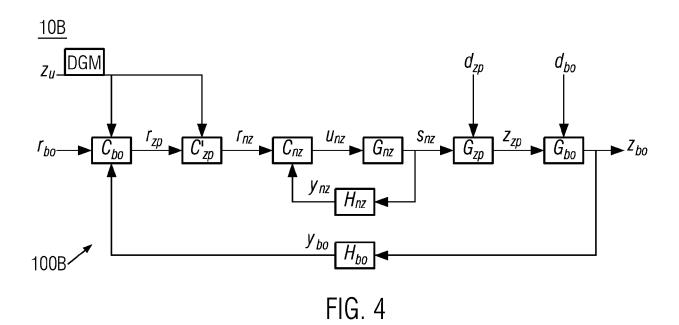



FIG. 3

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 21 16 2228

10		
15		
20		
25		
30		
35		
40		
45		

50

55

5

<u>,</u>	EINSCHLÄGIGE DOKU Kennzeichnung des Dokuments mit Al		Betrifft	KLASSIFIKATION DER			
Categorie	der maßgeblichen Teile	gaso, comen enordemon,	Anspruch	ANMELDUNG (IPC)			
A,D	DE 196 47 150 A1 (MOBA MO GMBH [DE]) 28. Mai 1998 (* Spalte 4, Zeile 37 - Sp Abbildungen 1-3 *	1998-05-28)	1-15	INV. E01C19/48 E01C19/00			
A	DE 10 2005 022266 A1 (ABG BAUMASCHINEN GMBH [DE]) 16. November 2006 (2006-1 * Absätze [0026] - [0030] *	1-16)	1-15				
A	DE 10 2011 001542 A1 (CAT CONTROL [US]) 13. Dezember 2012 (2012-13 * Absätze [0033] - [0037] 1,6,6A *	2-13)	1-15				
				RECHERCHIERTE SACHGEBIETE (IPC)			
				E01C			
Der vo	rliegende Recherchenbericht wurde für alle	Patentansprüche erstellt					
	Recherchenort	Abschlußdatum der Recherche		Prüfer			
	München	26. August 2021	Flo	res Hokkanen, P			
X : von Y : von ande	ATEGORIE DER GENANNTEN DOKUMENTE besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit einer vren Veröffentlichung derselben Kategorie nologischer Hintergrund	E : älteres Patentdok nach dem Anmeld D : in der Anmeldung L : aus anderen Grün	ument, das jedoc edatum veröffen angeführtes Dol den angeführtes	tlicht worden ist kument			

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 21 16 2228

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

26-08-2021

		Recherchenbericht hrtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	DE	19647150	A1	28-05-1998	DE 19647150 US 6027282		28-05-1998 22-02-2000
	DE	102005022266	A1	16-11-2006	CA 2607690 CN 101248235 DE 102005022266 EP 1880057 US 2009226255 WO 2006119954	A A1 A1 A1	16-11-2006 20-08-2008 16-11-2006 23-01-2008 10-09-2009 16-11-2006
	DE	102011001542	A1	13-12-2012	CN 102220738 DE 102011001542 US 2011255918	A1	19-10-2011 13-12-2012 20-10-2011
EPO FORM P0461							

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 19647150 A1 [0004] [0006]

• DE 10025474 B4 [0005] [0006]