

(11) **EP 4 060 447 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 21.09.2022 Bulletin 2022/38

(21) Application number: 20915737.9

(22) Date of filing: 28.11.2020

(51) International Patent Classification (IPC): **G05D** 1/02 (2020.01)

(52) Cooperative Patent Classification (CPC): G05D 1/024; G05D 1/0244; G05D 1/0248; G05D 2201/0216

(86) International application number: **PCT/CN2020/132523**

(87) International publication number: WO 2021/147511 (29.07.2021 Gazette 2021/30)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

(30) Priority: 21.01.2020 CN 202010069251

(71) Applicant: Dreame Innovation Technology (Suzhou) Co., Ltd.
Suzhou, Jiangsu 215104 (CN)

(72) Inventor: SUN, Jiajia Suzhou, Jiangsu 215104 (CN)

(74) Representative: dompatent von Kreisler Selting
Werner Partnerschaft von Patent- und Rechtsanwälten
mbB
Deichmannhaus am Dom
Bahnhofsvorplatz 1
50667 Köln (DE)

(54) SELF-MOVING DEVICE AND DISTANCE MEASUREMENT METHOD FOR SAID DEVICE

(57)A self-moving device and a distance measurement method for said device, the self-moving device comprising a vehicle body (1), a movement assembly arranged on the vehicle body (1), and a control system arranged within the vehicle body (1); the self-moving device further comprises an optical reception apparatus (2) and at least two optical emission apparatuses (3) arranged on the vehicle body (1), at least two optical emission apparatuses (3) emitting light rays having different paths, and the optical reception apparatus (2) being able to receive reflected light rays formed via emitted light rays from at least one optical emission apparatus (3) hitting an obstruction. The self-moving device and the distance measurement method, by using emitted light rays that can be emitted in different paths, allow the area of the received light rays to become larger as an obstruction is approached, and the emitted light rays are formed by the addition of spectral reflection and diffuse reflection, thereby increasing the luminous intensity of light received and reducing the occurrence of non-uniform feedback distance due to obstructions having different reflectance.

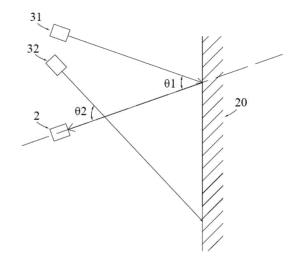


FIG. 3

EP 4 060 447 A1

15

TECHNICAL FIELD

[0001] The present application relates to a self-moving device and a distance measuring method thereof.

1

BACKGROUND

[0002] Self-moving devices, such as sweepers, cannot detect a distance information of obstacles with low reflectivity (such as black obstacles, etc.), so the self-moving devices cannot bypass such obstacles, and collisions will occur.

[0003] At present, a distance measuring sensor of the sweeper has a single structure and simple function, which can only achieve detours for obstacles with high reflectivity, but will hit obstacles with low reflectivity, thereby seriously affecting the user experience. For laser sensors with high distance measuring accuracy, the cost is high and it is not easy to popularize.

SUMMARY

[0004] An object of the present application is to provide a self-moving device and a distance measuring method thereof.

[0005] To achieve the above object, the present application provides the following technical solutions:

[0006] In a first aspect, a self-moving device is provided. The self-moving device includes a body, a walking assembly arranged on the body, and a control system arranged in the body. The self-moving device further includes an optical receiving device and at least two optical emitting devices arranged on the body. Paths of emitted light emitted by the at least two optical emitting devices are different. The optical receiving device is adapted to receive a reflected light formed after the emitted light emitted by at least one of the optical emitting devices hits an obstacle.

[0007] Further, the emitted light emitted by each of the optical emitting devices forms an included angle θ with a center line of the optical receiving device, and the included angle is greater than 0° .

[0008] Further, the optical emitting device farther from the optical receiving device in two adjacent optical emitting devices forms a first included angle with the center line of the optical receiving device; the optical emitting device closer to the optical receiving device forms a second included angle with the center line of the optical receiving device; and the first included angle is smaller than the second included angle.

[0009] Further, the at least two optical emitting devices are arranged on a same side of the optical receiving device

[0010] Further, directions of the emitted light emitted by the at least two optical emitting devices are deviated toward the center line of the optical receiving device.

[0011] Further, the at least two optical emitting devices and the optical receiving device are arranged in a row.

[0012] Further, a detection range of the optical receiving device and the optical emitting device is within 2cm.

[0013] Further, the at least two optical emitting devices and the optical receiving device are integrated in one optical module.

[0014] In a second aspect, a distance measuring method of a self-moving device is provided. The distance measuring method includes:

at least two optical emitting devices emitting light with different paths; and

an optical receiving device at least receiving at least one reflected light formed after an emitted light emitted by the optical emitting device hits an obstacle.

[0015] Further, the emitted light emitted by each of the optical emitting devices forms an included angle θ with a center line of the optical receiving device, and the included angle is greater than 0° .

[0016] The beneficial effects of the self-moving device and the distance measuring method thereof of the present application are: by adopting the emitted light that can emit different paths, the area of the emitted light received is larger when it is closer to the obstacle. The emitted light is superimposed by specular reflection and diffuse reflection, thereby increasing the received light intensity and reducing the problem of inconsistent feedback distances of obstacles with different reflectivity, so that obstacles with low reflectivity can be effectively detected, and detours to the obstacles with low reflectivity can be realized.

[0017] The above description is only an overview of the technical solutions of the present application. In order to understand the technical solutions of the present application more clearly and implement them in accordance with the contents of the description, preferred embodiments of the present application and the accompanying drawings are described in detail below.

BRIEF DESCRIPTION OF DRAWINGS

⁴⁵ [0018]

40

50

55

FIG. 1 is a schematic structural view of a self-moving device according to an embodiment of the application:

FIG. 2 is a flowchart of a distance measuring method of the self-moving device according to an embodiment of the present application; and

FIG. 3 is a schematic view of reflection when the selfmoving device encounters an obstacle according to an embodiment of the present application.

10

DETAILED DESCRIPTION

[0019] The specific implementations of the present application will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are used to illustrate the present application, but are not intended to limit the scope of the present application.

3

[0020] Firstly, some terms involved in the present application are introduced:

[0021] A self-moving device can be, for example, a sweeping robot, a mopping robot, a dust-removing robot, an obstacle-removing robot, a lawn-mowing robot, a drawing robot, and the like. In some embodiments, in implementation, the self-moving device may be provided with a path planning system. The self-moving device moves according to the path set by the system, and performs operations such as cleaning, dust removal, wiping, and drawing. The self-moving device is further provided with a distance measuring unit, which is used to measure the distance between the self-moving device and the obstacle. The self-moving device will inevitably collide with obstacles during the working process. The self-moving device may also be provided with a wireless communication module such as a WIFI module and a Bluetooth module, so as to be connected in communication with intelligent terminals, and receive operation instructions transmitted by the user using the intelligent terminals through the wireless communication module.

[0022] An optical receiving device, such as an infrared receiver, is used to receive optical signals.

[0023] An optical emitting device, such as an infrared transmitter, is used to emit optical signals.

[0024] The self-moving device in the present application is a sweeping robot as an example. The distance measuring method of the present application is used to sense the existence of obstacles in the process of walking of the self-moving device. The distance measuring method can also be used in other self-moving devices that can realize self-moving control, while the application of the self-moving device is not specifically limited.

[0025] Referring to FIG. 1, the sweeping robot 10 provided in the embodiment of the present application includes a body 1, a walking assembly (not shown) disposed on the body 1, a control system (not shown) disposed in the body 1, an optical receiving device 2 and at least two optical emitting devices 3 arranged on the body 1. Paths of emitted light emitted by the at least two optical emitting devices 3 are different. The optical receiving device 2 can receive at least one reflected light formed after the emitted light emitted by the optical emitting device 3 hits an obstacle. In this embodiment, the optical receiving device 2 and the optical emitting device 3 are arranged on an upper surface of the body. The control system is signal-connected with the optical receiving device 2 and the optical emitting device 3. The control system controls the optical emitting device 3 to emit emission light (light emission signal). The optical receiving device 2 receives

the emitted light (light receiving signal) and converts the emitted light into a light receiving signal and transmits it to the control system. The distance between the sweeping robot 10 and the obstacle is obtained by analysis and calculation by the control system, and then the sweeping robot is controlled by the control system to perform preset actions. Of course, in other embodiments, after receiving the emitted light, the optical receiving device 2 can also independently analyze and calculate the distance between the sweeping robot and the obstacle, and then transmit the result to the control system.

[0026] Alternatively, the emitted light emitted by each optical emitting device 3 forms an included angle θ with a center line of the optical receiving device 2, and the included angle is greater than 0° .

[0027] Alternatively, the optical emitting device 3 farther from the optical receiving device 2 among the two adjacent optical emitting devices 3 forms a first included angle with the center line of the optical receiving device 2. The optical emitting device 3 which is closer to the optical receiving device forms a second included angle with the center line of the optical receiving device 2. The first included angle is smaller than the second included angle.

[0028] Alternatively, at least two optical emitting devices 3 are arranged on a same side of the optical receiving device 2.

[0029] Alternatively, directions of the light emitted by the at least two optical emitting devices 3 are deviated toward the center line of the optical receiving device 2.

[0030] Alternatively, at least two optical emitting devices 3 and the optical receiving device 2 are arranged in a row.

[0031] Alternatively, a detection range of the optical receiving device 2 and the optical emitting device 3 is within 2cm.

[0032] Alternatively, at least two optical emitting devices 3 and the optical receiving device 2 are integrated in one optical module.

[0033] Referring to FIG. 2 and in combination with FIG. 1, the distance measuring method of the sweeping robot 10 of the present application includes:

S1: at least two optical emitting devices 3 emitting light with different emission paths; and

S2: an optical receiving device 2 at least receiving a reflected light formed after the emitted light emitted by the at least one optical emitting device 3 hits an obstacle.

[0034] Alternatively, the emitted light emitted by each optical emitting device 3 forms an included angle θ with a center line of the optical receiving device 2, and the included angle is greater than 0°. Among two adjacent optical emitting devices 3, the optical emitting device 3 which is farther from the optical receiving device 2 forms a first included angle with the center line of the optical receiving device 2. The optical emitting device 3 which

is closer to the optical receiving device forms a second included angle with the center line of the optical receiving device 2. The first included angle is smaller than the second included angle.

[0035] In summary, the sweeping robot 10 and the distance measuring method thereof adopts the emitted light that can emit different paths, so that the area of the received emitted light is larger when it is closer to the obstacle. The emitted light is superimposed by specular reflection and diffuse reflection, thereby increasing the received light intensity and reducing the problem of inconsistent feedback distances of obstacles with different reflectivity, so that obstacles with low reflectivity can be effectively detected, and detours to obstacles with low reflectivity can be realized, and the detour distance can be consistent.

[0036] A specific embodiment will be described in detail below. Referring to FIG. 1, in this embodiment, the number of the optical emitting devices 3 is selected to be two, including a first optical emitting device 31 and a second optical emitting device 32. The number of optical receiving device 2 is one. The paths of the emitted light emitted by the first optical emitting device 31 and the second optical emitting device 32 are different, but both are deviated toward the optical receiving device 2. The first optical emitting device 31 and the second optical emitting device 32 are arranged on the same side of the optical receiving device 2. The first optical emitting device 31, the second optical emitting device 32 and the optical receiving device 2 are arranged in a row. The first optical emitting device 31 is disposed farther from the optical receiving device 2 than the second optical emitting device 32. Taking directions of FIG. 1 as an example, a direction of arrow a in FIG. 1 is a left-right direction, and a direction of arrow b is a moving direction of the sweeping robot 10, which is defined as a front-rear direction.

[0037] The first optical emitting device 31 and the centerline of the optical receiving device 2 form a first included angle $\theta 1$ greater than 0° . The second optical emitting device 32 and the center line of the optical receiving device 2 form a second included angle $\theta 2$ greater than 0° . The first included angle $\theta 1$ is smaller than the second included angle $\theta 2$. In addition, in FIG. 1, the center line of the optical receiving device 2 is shown by a dotted line x. In this embodiment, the reflected light received by the optical receiving device 2 is the reflected light formed after the emitted light emitted by the first optical emitting device 31 hits the obstacle. Therefore, in FIG. 1, the center line overlaps the reflection line of the first optical emitting device 31.

[0038] The technical features of the above embodiments can be combined arbitrarily. In order to simplify the description, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of the description in this specification.

[0039] The above examples only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the present invention. It should be noted that, for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.

Claims

15

20

25

30

35

40

45

50

- 1. A self-moving device, comprising: a body, a walking assembly arranged on the body, and a control system arranged in the body, the self-moving device further comprising an optical receiving device and at least two optical emitting devices arranged on the body, paths of emitted light emitted by the at least two optical emitting devices being different, the optical receiving device being adapted to receive a reflected light formed after the emitted light emitted by at least one of the optical emitting devices hits an obstacle.
- 2. The self-moving device according to claim 1, wherein the emitted light emitted by each of the optical emitting devices forms an included angle θ with a center line of the optical receiving device, and the included angle is greater than 0° .
- 3. The self-moving device according to claim 2, wherein the optical emitting device farther from the optical receiving device in two adjacent optical emitting devices forms a first included angle with the center line of the optical receiving device; the optical emitting device closer to the optical receiving device forms a second included angle with the center line of the optical receiving device; and the first included angle is smaller than the second included angle.
- 4. The self-moving device according to claim 2, wherein the at least two optical emitting devices are arranged on a same side of the optical receiving device.
- 5. The self-moving device according to claim 2, wherein directions of the emitted light emitted by the at least two optical emitting devices are deviated toward the center line of the optical receiving device.
- **6.** The self-moving device according to claim 3, 4 or 5, wherein the at least two optical emitting devices and the optical receiving device are arranged in a row.
- 7. The self-moving device according to claim 1, wherein a detection range of the optical receiving device and

the optical emitting device is within 2cm.

- 8. The self-moving device according to claim 1, wherein the at least two optical emitting devices and the optical receiving device are integrated in one optical module.
- 9. A distance measuring method of a self-moving device, comprising:

at least two optical emitting devices emitting light with different paths; and an optical receiving device at least receiving at least one reflected light formed after an emitted light emitted by the optical emitting device hits

an obstacle.

- 10. The distance measuring method of the self-moving device according to claim 9, wherein the emitted light emitted by each of the optical emitting devices forms an included angle $\boldsymbol{\theta}$ with a center line of the optical receiving device, and the included angle is greater than 0°.
- 11. A self-moving device, comprising: a body, a walking assembly arranged on the body, and a control system arranged in the body, a front portion of the body being provided with an optical generating device and at least two optical emitting devices, the at least two optical emitting devices being arranged side by side, the optical emitting device farther from the optical receiving device forming a first included angle with a center line of the optical receiving device, the optical emitting device closer to the optical receiving device forming a second included angle with the center line of the optical receiving device, the first included angle being smaller than the second included angle, the closer the self-moving device being to an obstacle, the larger an area of the emitted light received by the optical receiving device.
- 12. The self-moving device according to claim 11, wherein two optical emitting devices are provided; and wherein a reflected light formed after the emitted light emitted by the optical emitting device far from the optical receiving device hits the obstacle overlaps the center line of the optical receiving device.
- 13. The self-moving device according to claim 11, wherein the at least two optical emitting devices are located on a same side of the optical receiving device, and directions of the emitted light emitted by the at least two optical generating devices are deviated toward the center line of the optical receiving device.

10

40

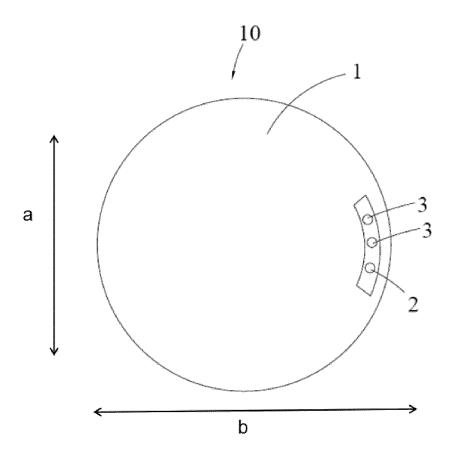


FIG. 1

at least two optical emitting devices emitting light with different paths;

an optical receiving device at least receiving at least one reflected light formed after an emitted light emitted by the optical emitting device hits an obstacle;

FIG. 2

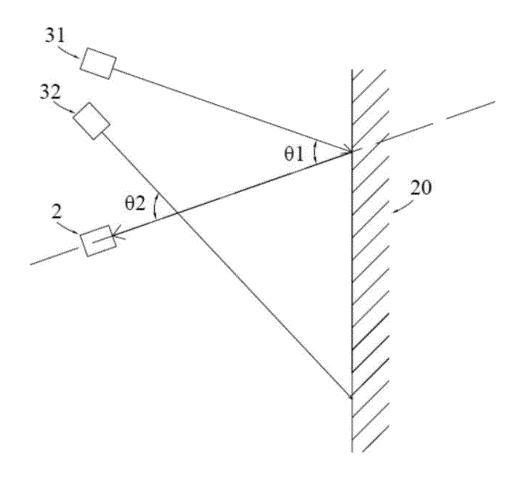


FIG. 3

INTERNATIONAL SEARCH REPORT

International application No.

				PCT/CN	12020/132523	
5	A. CLAS	SSIFICATION OF SUBJECT MATTER		<u> </u>		
	G05D 1/02(2020.01)i					
	According to International Patent Classification (IPC) or to both national classification and IPC					
	B. FIELDS SEARCHED					
10	Minimum documentation searched (classification system followed by classification symbols)					
	G05D1/02; G01V8/20; G01S17/-; G01S7/-; A47L9/-; A47L11/-					
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
15	Electronic da	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
	CNKI; CNPAT; WPI; EPODOC: 追创科技, 机器人, 自移动, 清洁, 清扫, 扫地, 距离, 测距, 接近, 近接, 第一 3w 发射, 第二 3w 发射, 障碍, 避障, 一 3w 接收, 光, 红外, 角, 方向, robot, self w mov+, distance, range, ranging, proximity, clean+, clear+, sweep+, first 2w (transmit+ or send+), second 2w (transmit+ or send+), optic+, light, laser, infrared, angle, direction, obstacle?, barrier?, obstruction					
20	C. DOCUMENTS CONSIDERED TO BE RELEVANT					
20	Category*	Citation of document, with indication, where a	appropriate, of the rele	evant passages	Relevant to claim No.	
	PX	CN 111240336 A (ZHUICHUANG TECHNOLOGY (2020-06-05) claims 1-10, description paragraphs [0018], [002	1-13			
25	Y	CN 103941307 A (SUZHOU EUP ELECTRIC CO., LTD.) 23 July 2014 (2014-07-23) description, particular embodiments, and figures 1-6			1-13	
	Y	US 4659922 A (EATON CORPORATION) 21 Apri description column 1 lines 6-15, column 1 line 5 column 4 line 4, figure 1	6- column 2 line 11, c		1-13	
30	Y	CN 102645654 A (PEGATRON CORPORATION) description, particular embodiments, and figures	1-4	2-08-22)	3, 11-13	
	A	CN 105404298 A (IROBOT CORPORATION) 16 M description paragraphs [0045], [0051]-[0052], [0 [0111], [0120], figures 1-7B, 9B	March 2016 (2016-03-	·16) [0099], [0104]-	1-2, 4-6, 8-10, 13	
35	A	KR 20090019480 A (ACEROBOT CO., LTD.) 25 F description, paragraphs 39-62, and figures 5-8	February 2009 (2009-0		3, 11	
	Further documents are listed in the continuation of Box C. See patent family annex.					
40	* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "I" later document published after the international filing date or principle and not in conflict with the application but cited to understand principle or theory underlying the invention					
	"E" earlier application or patent but published on or after the international filing date "X" document of particular relevance; the considered novel or cannot be considered.			claimed invention cannot be		
	"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) when the document is taken alone "Y" document of particular relevance; the considered to involve an inventive special reason (as specified)					
		t referring to an oral disclosure, use, exhibition or other	combined with o	ne or more other such of	tep when the document is documents, such combination	
45	means being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
	Date of the actual completion of the international search		Date of mailing of the international search report			
	03 February 2021		26 February 2021			
50	Name and mai	ling address of the ISA/CN	Authorized officer			
30	CN)	tional Intellectual Property Administration (ISA/ucheng Road, Jimenqiao, Haidian District, Beijing				

Facsimile No. (86-10)62019451
Form PCT/ISA/210 (second sheet) (January 2015)

China

55

Telephone No.

EP 4 060 447 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CN2020/132523

C. DOC	CUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	CN 107045352 A (ZHUHAI AMICRO SEMICONDUCTOR CO., LTD.) 15 August 2017 (2017-08-15) entire document	1-13

10

Form PCT/ISA/210 (second sheet) (January 2015)

EP 4 060 447 A1

INTERNATIONAL SEARCH REPORT

5

10

15

20

25

30

35

40

45

50

55

International application No. Information on patent family members PCT/CN2020/132523 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN 111240336 05 June 2020 None A 103941307 103941307 CN $23\;\mathrm{July}\;2014$ CN В 16 February 2018 US 4659922 A 21 April 1987 None 102645654 CN 22 August 2012 CN102645654 В 12 March 2014 A CN 105404298 Α 16 March 2016 C 24 April 2018 CA 2868860 US 10429851 B2 01 October 2019 JP 2015517162 18 June 2015 A JP 6675373 B2 01 April 2020 JP 2016076248 A 12 May 2016 CA2868860 **A**1 27 March 2014 EP 2834048 **B**1 01 November 2017 WO 2014047557 27 March 2014 JP 5885147 B215 March 2016 07 May 2015 A U2013317738 B220 January 2016 CN104245244 В 6250617 B220 December 2017 ΙP EP 3287242 28 February 2018 A1CN 10424524424 December 2014 Α 2018028947 22 February 2018 JP A 2014088761 A127 March 2014 US 2014257622 11 September 2014 LIS A1 2017031366 02 February 2017 US A1 В2 14 October 2014 US 8862271 105404298 16 October 2018 CN В EP 2834048 11 February 2015 A1US 9442488 B2 13 September 2016 2013317738 16 October 2014 ΑU **A**1 2009001948025 February 2009 KR None CN 107045352 Α 15 August 2017 None

Form PCT/ISA/210 (patent family annex) (January 2015)