TECHNICAL FIELD
[0001] This application relates to the field of power transmission technologies, and in
particular, to a two-speed transmission system and a vehicle.
BACKGROUND
[0002] In comparison with a conventional fuel vehicle, a structure of a pure electric vehicle
has a relatively large change. Without an engine and an exhaust system, a complex
gearbox becomes a current single-gear reduction gearbox. To enable a motor to work
highly efficiently as much as possible and reduce energy consumption, a pure electric
two-gear gearbox is also widely studied and applied. However, a gear shift mechanism
such as a synchronizer is added to the two-gear gearbox in comparison with a one-gear
gearbox. During gear shift, power interruption occurs in a process in which the synchronizer
is disengaged from a first gear and engages with a second gear, that is, a vehicle
jerk.
[0003] To reduce power interruption, a one-way clutch is generally used in the gear shift
mechanism. The one-way clutch is usually installed between a gear tooth surface and
a shaft interface of a first floating gear in one-way power transmission. The one-way
clutch only allows a power source to rotate in one direction to transmit a torque
to a driven component. If a rotation direction of the power source changes (for example,
from a clockwise direction to a counterclockwise direction), the driven component
is divorced from a transmission relationship with the power source under the function
of the one-way clutch. In other words, the power source does not transmit the torque
to the driven component. As shown in FIG. 4, in the conventional technologies, at
a first gear, a one-way clutch 400 is connected between a gear tooth surface 201 and
a shaft interface 202 of a first floating gear 200, the gear tooth surface 201 of
the first floating gear 200 engages with a first fixed gear 100, and the gear tooth
surface 201 may rotate relative to the shaft interface 202 in a direction. When the
first fixed gear 100 rotates in another direction, the gear tooth surface 201 and
the shaft interface 202 are relatively static, to implement differential rotation
between the gear tooth surface 201 and the shaft interface 202. Therefore, this may
be applied to a speed change process when the first gear is switched to a second gear,
to avoid power interruption. However, in a transmission system shown in FIG. 4, a
first-gear power transmission path is an input shaft 21, the first fixed gear 100,
the gear tooth surface 201, the one-way clutch 400, and the shaft interface 202. In
this case, the one-way clutch 400 is locked to generate an acting force on the gear
tooth surface 201, and the first fixed gear 100 and the gear tooth surface 201 are
engaged more tightly, affecting accuracy of gear transmission.
SUMMARY
[0004] This application provides a two-speed transmission system, to improve accuracy of
gear transmission.
[0005] According to a first aspect, this application provides a two-speed transmission system.
The two-speed transmission system includes:
a first fixed gear, sleeved on a first shaft and fixedly connected to the first shaft;
a first floating gear, sleeved on a second shaft, where the first floating gear can
rotate relative to the second shaft, and the first fixed gear and the first floating
gear are permanently engaged;
a first connection mechanism, fastened on the second shaft and configured to implement
connection or disconnection between the first floating gear and the second shaft;
and
a one-way clutch, where the one-way clutch is located between the first floating gear
and the first connection mechanism; an inner surface of the one-way clutch is connected
to the first floating gear; an outer surface of the one-way clutch abuts against the
first connection mechanism; when the first floating gear rotates relative to the first
connection mechanism in a rotation direction, the first floating gear and the first
connection mechanism can implement differential rotation by using the one-way clutch;
and when the first floating gear rotates relative to the first connection mechanism
in another rotation direction, the one-way clutch is locked so that the first floating
gear and the first connection mechanism are relatively static and rotate at a same
rotation speed to transmit first-gear power.
[0006] This application provides the two-speed transmission system. When the one-way clutch
is in a connected state, a power transmission path of the first shaft is sequentially
the first shaft, the first fixed gear, the first floating gear, the one-way clutch,
the first connection mechanism, and the second shaft. The outer surface of the one-way
clutch is connected to the first connection mechanism. An acting force of the outer
surface directly acts on the first connection mechanism instead of a tooth surface
between the first floating gear and the first fixed gear, to avoid the following case:
Accuracy of gear transmission between the first fixed gear and the first floating
gear is affected because the first fixed gear and the first floating gear are engaged
more tightly due to the acting force of the one-way clutch. When the one-way clutch
is in the connected state, the first connection mechanism may further be connected
to the second shaft and the first floating gear, to avoid affecting power transmission
when the one-way clutch is unstably connected in a fluctuation process.
[0007] In a possible implementation, the first fixed gear is not limited to be fastened
on the first shaft in a key manner, a welding manner, or an integrated forming manner.
The key includes a flat key or a spline.
[0008] In a possible implementation, when the one-way clutch is in the connected state,
the outer surface of the one-way clutch abuts against the first connection mechanism,
and the outer surface of the one-way clutch and the first connection mechanism are
relatively fixed and cannot rotate relative to each other. When the one-way clutch
is in a disconnected state, the outer surface of the one-way clutch abuts against
the first connection mechanism, but the one-way clutch and the first connection mechanism
can rotate relative to each other and are not fully fastened or locked. In some implementations,
when the one-way clutch is in the disconnected state, the outer surface of the one-way
clutch abuts against the first connection mechanism, and the outer surface of the
one-way clutch and the first connection mechanism are relatively fixed. However, the
outer surface and the inner surface of the one-way clutch can rotate relative to each
other, to implement differential rotation between a component on the outer surface
side and a component on the inner surface side.
[0009] In a possible implementation, the one-way clutch may be one of a roller-type one-way
clutch and a wedge-type one-way clutch.
[0010] In a possible implementation, a housing is further disposed outside the two-speed
transmission system. The housing can be used to protect the two-speed transmission
system or can be used as a support carrier for some components in the two-speed transmission
system. For example, the first shaft and the second shaft may be supported on the
housing by using a connection apparatus.
[0011] In a possible implementation, the first floating gear includes a first floating transmission
tooth surface and a first floating connection part. The first floating transmission
tooth surface is disposed away from the second shaft relative to the first floating
connection part. The first floating transmission tooth surface is configured to engage
with the first fixed gear. The first floating connection part is configured to connect
to the second shaft through rotation to connect the first floating gear to the second
shaft through rotation. The first floating connection part includes a first extension
part extending in an axial direction of the second shaft. The inner surface of the
one-way clutch is sleeved on a surface of the first extension part and away from the
second shaft and is fixedly connected to the first extension part. The inner surface
of the one-way clutch is connected to the first floating gear.
[0012] In a possible implementation, the first floating connection part may be connected
to the second shaft through rotation by using a bearing.
[0013] In a possible implementation, the first connection mechanism includes a gear hub
fixedly connected to the second shaft. The gear hub includes a gear hub connection
part and a second extension part. The second extension part is disposed away from
the second shaft relative to the gear hub connection part. The second extension part
extends in an opposite direction of an extension direction of the first extension
part. The second extension part is sleeved on the outer surface of the one-way clutch
and abuts against the outer surface of the one-way clutch. The outer surface of the
one-way clutch abuts against the first connection mechanism.
[0014] In a possible implementation, the first floating gear further includes a first gear
shift ring. The first gear shift ring is configured to connect to or disconnect from
the first connection mechanism.
[0015] In a possible implementation, the first floating gear further includes a first transmission
connection part located between the first floating transmission tooth surface and
the first floating connection part. The first transmission connection part is located
at an end of the first floating connection part away from the first extension part.
The first gear shift ring is located on the first transmission connection part. The
first gear shift ring extends in the same direction as the first extension part. An
end of the first gear shift ring away from the first transmission connection part
is connected to or disconnected from the first connection mechanism.
[0016] In a possible implementation, the first connection mechanism further includes a sliding
mechanism and a shifting fork. The sliding mechanism is sleeved on an outer surface
of the gear hub and can slide in the axial direction of the second shaft. The shifting
fork is connected to the sliding mechanism and can control the sliding mechanism to
move in the axial direction of the second shaft. The sliding mechanism includes a
second gear shift ring matching the first gear shift ring. The first gear shift ring
and the second gear shift ring can be controlled to be engaged or separated when the
shafting fork slides in the axial direction of the second shaft, to implement connection
and disconnection between the first connection mechanism and the first floating gear.
[0017] In a possible implementation, a sliding sleeve away from the second shaft is disposed
on the sliding mechanism. The sliding sleeve is sleeved on an outer surface of the
sliding mechanism and is fixedly connected to the sliding mechanism. A shifting fork
groove is disposed in the sliding sleeve, and the shifting fork is disposed in the
shifting fork groove. When the shifting fork is flexibly connected to the sliding
mechanism, the shifting fork groove may limit the shifting fork to be in the shifting
fork groove. The shifting fork groove may be a "U"-shaped groove. When an external
force acts on the shifting fork, the shifting fork abuts against a groove wall of
the shifting fork groove, to push the sliding mechanism to move in the axial direction
of the second shaft 30.
[0018] In a possible implementation, a tooth surface of the first gear shift ring and a
tooth surface of the second gear shift ring are perpendicular to the axial direction
of the second shaft. A shape of a tooth part in the first gear shift ring and that
in the second gear shift ring are not limited to one of a rectangle, a trapezoid,
or a square.
[0019] In a possible implementation, the first shaft is an input shaft, the second shaft
is an intermediate shaft, the first fixed gear is a first driving gear, and the first
floating gear is a first driven gear; or
the first shaft is an intermediate shaft, the second shaft is an input shaft, the
first fixed gear is a first driven gear, and the first floating gear is a first driving
gear.
[0020] In a possible implementation, the two-speed transmission system further includes:
a second fixed gear, sleeved on a fixed shaft and fixedly connected to the fixed shaft,
where the fixed shaft is one of the first shaft and the second shaft;
a second floating gear, sleeved on a floating shaft, where the second floating gear
can rotate relative to the floating shaft, the second fixed gear and the second floating
gear are permanently engaged, and the floating shaft is the other one of the first
shaft and the second shaft; and
a second connection mechanism, fastened on the floating shaft and configured to implement
connection or disconnection between the second floating gear and the floating shaft,
where when the second floating gear and the floating shaft are connected by using
the second connection mechanism; the second floating gear and the floating shaft rotate
at a same rotation speed; and when the second floating gear and the floating shaft
are disconnected by using the second connection mechanism, a rotation speed of the
floating shaft is not controlled by the second floating gear.
[0021] In a possible implementation, the second fixed gear is not limited to be fastened
on the first shaft in a key manner, a welding manner, or an integrated forming manner.
The key includes a flat key or a spline.
[0022] In a possible implementation, the fixed shaft is the first shaft and is the input
shaft, the floating shaft is the second shaft and is the intermediate shaft, the second
fixed gear is a second driving gear, and the second floating gear is a second driven
gear; or
the fixed shaft is the first shaft and is the intermediate shaft, the floating shaft
is the second shaft and is the input shaft, the second fixed gear is a second driven
gear, and the second floating gear is a second driving gear; or
the fixed shaft is the second shaft and is the intermediate shaft, the floating shaft
is the first shaft and is the input shaft, the second fixed gear is a second driven
gear, and the second floating gear is a second driving gear; or
the fixed shaft is the second shaft and is the input shaft, the floating shaft is
the first shaft and is the intermediate shaft, the second fixed gear is a second driving
gear, and the second floating gear is a second driven gear. In a possible implementation,
the second floating gear includes a second floating transmission gear part and a second
floating hollow shaft. The second floating transmission gear part and the second fixed
gear are engaged. The second floating hollow shaft is sleeved outside the floating
shaft and is connected to the floating shaft through rotation. The second connection
mechanism is connected to the second floating hollow shaft.
[0023] In a possible implementation, the second connection mechanism is a friction clutch.
The friction clutch includes a first rotation shaft interface, a second rotation interface,
and a plurality of friction plates. The first rotation shaft interface is fixedly
connected to an outer surface of the second floating hollow shaft away from the floating
shaft. The second rotation interface is fixedly connected to the floating shaft. The
friction clutch controls connection and disconnection between the second floating
gear and the floating shaft through connection and disconnection between the plurality
of friction plates.
[0024] In a possible implementation, the friction clutch further includes a fastening screw.
The fastening screw is fastened on the floating shaft in an axial direction of the
floating shaft, to fixedly connect the friction clutch to the floating shaft. According
to a second aspect, this application provides a vehicle. The vehicle includes front
wheels, rear wheels, a vehicle body connected between the front wheels and the rear
wheels, and the two-speed transmission system according to any one of the first aspect
and the possible implementations. The two-speed transmission system is installed on
the vehicle body. The vehicle includes a car, an electric vehicle, or a special working
vehicle. The electric vehicle includes a two-wheel, three-wheel, or four-wheel electric
vehicle. The special working vehicle includes various vehicles having specific functions,
for example, an engineering emergency vehicle, a water spraying vehicle, a suction
sewage truck, a cement mixer vehicle, a carriage hoist, and a medical vehicle.
BRIEF DESCRIPTION OF DRAWINGS
[0025] To describe technical solutions in embodiments of this application more clearly,
the following describes the accompanying drawings required for embodiments in this
application.
FIG. 1 is a schematic diagram of a structure of a two-speed transmission system according
to an implementation of this application;
FIG. 2 is a schematic diagram of a local structure of a two-speed transmission system
according to an implementation of this application;
FIG. 3 is a schematic diagram of positions of a first connection mechanism, a first
floating gear, a one-way clutch, and a second shaft in a two-speed transmission system
according to an implementation of this application;
FIG. 4 is a schematic diagram of positions of a first floating gear, a one-way clutch,
and a second shaft in the conventional technologies;
FIG. 5 is a schematic diagram of structures of a first connection mechanism and a
first floating gear in a two-speed transmission system according to an implementation
of this application;
FIG. 6 is a schematic diagram of a structure of a two-speed transmission system when
a first connection mechanism is disconnected from a first floating gear according
to an implementation of this application;
FIG. 7 is a schematic diagram of a structure of a two-speed transmission system when
a first connection mechanism is connected to a first floating gear according to an
implementation of this application;
FIG. 8 is a schematic diagram of a structure of a two-speed transmission system when
a first gear shift ring and a second gear shift ring are engaged according to an implementation
of this application;
FIG. 9 is a schematic diagram of a structure of a two-speed transmission system when
a first gear shift ring and a second gear shift ring are engaged according to an implementation
of this application;
FIG. 10 is a schematic diagram of a local structure of a two-speed transmission system
according to an implementation of this application;
FIG. 11 is a schematic diagram of a structure of a two-speed transmission system according
to an implementation of this application;
FIG. 12 is a schematic diagram of a first-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 13 is a schematic diagram of a second-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 14 is a schematic diagram of a structure of a two-speed transmission system according
to an implementation of this application;
FIG. 15 is a schematic diagram of a first-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 16 is a schematic diagram of a second-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 17 is a schematic diagram of a structure of a two-speed transmission system according
to an implementation of this application;
FIG. 18 is a schematic diagram of a first-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 19 is a schematic diagram of a second-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 20 is a schematic diagram of a structure of a two-speed transmission system according
to an implementation of this application;
FIG. 21 is a schematic diagram of a first-gear power transmission path of a two-speed
transmission system according to an implementation of this application;
FIG. 22 is a schematic diagram of a second-gear power transmission path of a two-speed
transmission system according to an implementation of this application; and
FIG. 23 is a schematic diagram of a structure of a vehicle according to an implementation
of this application.
DESCRIPTION OF EMBODIMENTS
[0026] The following describes technical solutions in embodiments of this application with
reference to the accompanying drawings in embodiments of this application. It is clear
that the described embodiments are merely some rather than all of embodiments of this
application.
[0027] The terms "first", "second", and the like in this specification are merely intended
for a purpose of description, and shall not be understood as an indication or implication
of relative importance or implicit indication of a quantity of indicated technical
features. Therefore, a feature limited by "first" or "second" may explicitly or implicitly
include one or more features. In the descriptions of this application, unless otherwise
specified, "a plurality of' means two or more than two.
[0028] In addition, in this specification, position terms such as "top" and "bottom" are
defined relative to positions of structures in the accompanying drawings. It should
be understood that these position terms are relative concepts used for relative description
and clarification, and may correspondingly change according to changes in the positions
of the structures.
[0029] With reference to FIG. 1, an implementation of this application provides a two-speed
transmission system 10. The two-speed transmission system 10 includes a first shaft
20, a second shaft 30, a first fixed gear 100, a first floating gear 200, a first
connection mechanism 300, a one-way clutch 400, a second fixed gear 500, a second
floating gear 600, and a second connection mechanism 700. The first fixed gear 100,
the first floating gear 200, the first connection mechanism 300, and the one-way clutch
400 are components that can be used to transmit first-gear power. The second fixed
gear 500, the second floating gear 600, and the second connection mechanism 700 are
components that can be used to transmit second-gear power.
[0030] The first shaft 20 may be one of an input shaft 21 and an intermediate shaft 31.
The second shaft 30 is the other one of the input shaft 21 and the intermediate shaft
31. The input shaft 21 is configured to connect to a drive motor. The drive motor
drives the input shaft 21 to rotate. A gear located on the input shaft 21 is a driving
gear, and a gear located on the intermediate shaft 31 is a driven gear. The driven
gear and the driving gear are engaged, so that the input shaft 21 drives the intermediate
shaft 31 to rotate.
[0031] The first fixed gear 100 is sleeved on the first shaft 20 and fixedly connected to
the first shaft 20. In this implementation, the first shaft 20 is the input shaft
21, and the first fixed gear 100 is a first driving gear. The first fixed gear 100
is not limited to be fastened on the first shaft 20 in a key manner, a welding manner,
and an integrated forming manner. The key includes a flat key or a spline.
[0032] The first floating gear 200 is sleeved on the second shaft 30 and can rotate relative
to the second shaft 30. In other words, the first floating gear 200 idles relative
to the second shaft 30 in a floating manner. The first fixed gear 100 and the first
floating gear 200 are permanently engaged. In this implementation, the second shaft
30 is the intermediate shaft 31, the first floating gear 200 is a first driven gear,
and the first floating gear 200 is sleeved on the second shaft 30. It indicates that
the first floating gear 200 is not fixed on the second shaft 30, and differential
rotation may be implemented between the first floating gear 200 and the second shaft
30. Specifically, the first floating gear 200 is connected to the second shaft 30
through rotation by using a bearing 11. The first fixed gear 100 and the first floating
gear 200 are permanently engaged. When the two-speed transmission system 10 is at
a first gear, power of the first shaft 20 (the input shaft 21) is transmitted to the
second shaft 30 (the intermediate shaft 31), to transmit the first-gear power.
[0033] The first connection mechanism 300 is fastened on the second shaft 30 and configured
to implement connection or disconnection between the first floating gear 200 and the
second shaft 30. In this implementation, the second shaft 30 is the intermediate shaft
31, the first connection mechanism 300 is fixedly connected to the intermediate shaft
31, and the first connection mechanism 300 is not limited to be fastened on the intermediate
shaft 31 in a key manner, a welding manner, and an integrated forming manner. The
key includes a flat key or a spline. When the first connection mechanism 300 is connected
to the first floating gear 200 and the second shaft 30 (the intermediate shaft 31),
the first floating gear 200 and the second shaft 30 (the intermediate shaft 31) can
rotate only at the same speed. A power transmission path is sequentially the first
shaft 20 (the input shaft 21), the first fixed gear 100, the first floating gear 200,
the first connection mechanism 300, and the second shaft 30 (the intermediate shaft
31).
[0034] The one-way clutch 400 is located between the first floating gear 200 and the first
connection mechanism 300 (as shown in FIG. 2 and FIG. 3). An inner surface 410 of
the one-way clutch 400 is connected to the first floating gear 200, and an outer surface
420 of the one-way clutch 400 abuts against the first connection mechanism 300. The
one-way clutch 400 has a disconnected state and a connected state. When the one-way
clutch 400 is in the disconnected state, a component on the outer surface 420 side
of the one-way clutch 400 can rotate relative to a component on the inner surface
410 side in a direction. When the one-way clutch 400 is in the connected state, the
outer surface 420 rotates in another direction. A component on the inner surface 410
side and a component on the outer surface 420 side are fixed and relatively static.
In this case, the component on the outer surface 420 side and the component on the
inner surface 410 side rotate in the same direction. In the one-way clutch 400 shown
in FIG. 3, when the outer surface 420 rotates in a clockwise direction, the first
connection mechanism 300 on the outer surface 420 side may rotate relative to the
first floating gear 200 on the inner surface 410 side, and the first floating gear
200 on the inner surface 410 side may not rotate or rotate at a rotation speed less
than a rotation speed of the first connection mechanism 300 on the outer surface 420
side. In this case, the one-way clutch 400 is in the disconnected state. When the
outer surface 420 rotates in a counterclockwise direction, the first connection mechanism
300 on the outer surface 420 side and the first floating gear 200 on the inner surface
410 side are fixed and relatively static. In this case, the first floating gear 200
on the inner surface 410 side and the first connection mechanism 300 on the outer
surface 420 side rotate in the counterclockwise direction together. In this case,
the one-way clutch 400 is in the connected state. In some embodiments, alternatively,
in the one-way clutch 400, when the outer surface 420 rotates in the clockwise direction,
a component on the outer surface 420 side and a component on the inner surface 410
side are relatively static. When the outer surface 420 rotates in the counterclockwise
direction, a component on the outer surface 420 side and a component on the inner
surface 410 side rotate relative to each other.
[0035] When the one-way clutch 400 is in the connected state, the outer surface 420 of the
one-way clutch 400 abuts against the first connection mechanism 300, and the outer
surface 420 of the one-way clutch 400 and the first connection mechanism 300 are relatively
fixed and cannot rotate relative to each other. A specific implementation structure
may be disposed based on the specific one-way clutch 400, for example, may be implemented
by using a locking component 430 (as shown in FIG. 3). When the one-way clutch 400
is in the disconnected state, the outer surface 420 of the one-way clutch 400 abuts
against the first connection mechanism 300, but the outer surface 420 of the one-way
clutch 400 and the first connection mechanism 300 can rotate relative to each other
and are not fully fastened or locked. In some embodiments, when the one-way clutch
400 is in the disconnected state, the outer surface 420 of the one-way clutch 400
abuts against the first connection mechanism 300, and the outer surface 420 of the
one-way clutch 400 and the first connection mechanism 300 are relatively fixed. However,
the outer surface 420 and the inner surface 410 of the one-way clutch 400 can rotate
relative to each other, to implement differential rotation between the component on
the outer surface 420 side and the component on the inner surface 410 side.
[0036] The first floating gear 200 is a component on the outer surface 420 side of the one-way
clutch 400. The first connection mechanism 300 is a component on the inner surface
410 side of the one-way clutch 400. When the first floating gear 200 rotates relative
to the first connection mechanism 300 in a rotation direction, the first floating
gear 200 and the first connection mechanism 300 can implement differential rotation.
When the first floating gear 200 rotates relative to the first connection mechanism
300 in another rotation direction, the one-way clutch 400 is locked so that the first
floating gear 200 and the first connection mechanism 300 are relatively static and
rotate at the same rotation speed to transmit the first-gear power.
[0037] In the conventional technologies, as shown in FIG. 4, the inner surface 410 of the
one-way clutch 400 is fixed in the first floating gear 200. The outer surface 420
abuts against a gear tooth surface 201 of the first floating gear 200. The inner surface
is fastened on the shaft interface 202 of the first floating gear 200. When the one-way
clutch 400 is in the connected state, a power transmission path of the first shaft
20 (the input shaft 21) is sequentially the first shaft 20 (the input shaft 21), the
first fixed gear 100, the gear tooth surface 201, the one-way clutch 400, the shaft
interface 202, and the second shaft 30 (the intermediate shaft 31). Power of the first
floating gear 200 is directly transmitted to the outer surface 420. The outer surface
420 also has a reaction force to the first floating gear 200. The first floating gear
200 and the first fixed gear 100 are engaged more tightly due to the reaction force,
affecting accuracy of gear transmission between the first fixed gear 100 and the first
floating gear 200.
[0038] In this implementation, still with reference to FIG. 1, when the one-way clutch 400
is in the connected state, a power transmission path of the first shaft 20 (the input
shaft 21) is sequentially the first shaft 20 (the input shaft 21), the first fixed
gear 100, the first floating gear 200, the one-way clutch 400, the first connection
mechanism 300, and the second shaft 30 (the intermediate shaft 31). The outer surface
420 of the one-way clutch 400 is connected to the first connection mechanism 300.
An acting force of the outer surface 420 directly acts on the first connection mechanism
300 instead of a tooth surface between the first floating gear 200 and the first fixed
gear 100, to avoid the following case: The accuracy of gear transmission between the
first fixed gear 100 and the first floating gear 200 is affected because the first
fixed gear 100 and the first floating gear 200 are engaged more tightly due to the
acting force of the one-way clutch 400. When the one-way clutch 400 is in the connected
state, the first connection mechanism 300 may further be connected to the second shaft
30 and the first floating gear 200, to avoid affecting power transmission when the
one-way clutch 400 is unstably connected in a fluctuation process.
[0039] The one-way clutch 400 further includes a locking component 430 (as shown in FIG.
3). The locking component 430 is configured to keep the one-way clutch 400 in the
connected state. A specific structure of the locking component 430 is not limited
in this application, provided that the one-way clutch 400 is in the disconnected state
when the component on the outer surface 420 side rotates relative to the component
on the inner surface 410 side in a direction and the one-way clutch 400 is in the
connected state when the component on the outer surface 420 side rotates relative
to the component on the inner surface 410 side in another direction.
[0040] The one-way clutch 400 may be one of a roller-type one-way clutch and a wedge-type
one-way clutch. When the one-way clutch 400 is the wedge-type one-way clutch, the
locking component 430 is a wedge wheel. For an outer diameter of the wedge-type one-way
clutch, when the one-way clutch 400 is in the connected state, the outer diameter
of the wedge-type one-way clutch increases under the function of the wedge wheel in
the one-way clutch 400, which increases an acting force on the first floating gear
200. When a connection structure among the one-way clutch 400, the first connection
mechanism 300, and the first floating gear 200 in this application is used, an impact
of an acting force generated due to the locking of the one-way clutch 400 on the accuracy
of gear transmission can be effectively reduced.
[0041] In this implementation, still with reference to FIG. 1, a housing 13 is further disposed
outside the two-speed transmission system 10. The housing 13 can be used to protect
the two-speed transmission system 10 or can be used as a support carrier for some
components in the two-speed transmission system 10. For example, the first shaft 20
and the second shaft 30 may be supported on the housing 13 by using a connection apparatus.
[0042] Still with reference to FIG. 2, in a possible implementation, the first floating
gear 200 includes a first floating transmission tooth surface 210 and a first floating
connection part 220. The first floating transmission tooth surface 210 is disposed
away from the second shaft 30 relative to the first floating connection part 220.
The first floating transmission tooth surface 210 is configured to engage with the
first fixed gear 100. The first floating connection part 220 is configured to connect
to the second shaft 30 through rotation to connect the first floating gear 200 to
the second shaft 30 through rotation. The first floating connection part 220 includes
a first extension part 221 extending in an axial direction of the second shaft 30.
The inner surface 410 of the one-way clutch 400 is sleeved on a surface of the first
extension part 221 away from the second shaft 30 and is fixedly connected to the first
extension part 221. The inner surface 410 of the one-way clutch 400 is connected to
the first floating gear 200. The inner surface 410 of the one-way clutch 400 is connected
to the first extension part 221, and the first extension part 221 is disposed close
to the second shaft 30, so that a size of the one-way clutch 400 can be set relatively
small, to reduce the costs. In this implementation, the first extension part 221 extends
in the axial direction of the second shaft 30 to a right side A in FIG. 2. In some
implementations, the first extension part 221 extends in the axial direction of the
second shaft 30 to a left side B (as shown in FIG. 5).
[0043] The first floating connection part 220 may be connected to the second shaft 30 through
rotation by using the bearing 11.
[0044] Still with reference to FIG. 2, in a possible implementation, the first connection
mechanism 300 includes a gear hub 310 fixedly connected to the second shaft 30. The
gear hub 310 includes a gear hub connection part 311 and a second extension part 312.
The second extension part 312 is disposed away from the second shaft 30 relative to
the gear hub connection part 311. The second extension part 312 extends in an opposite
direction of an extension direction of the first extension part 221. The second extension
part 312 is sleeved on the outer surface 420 of the one-way clutch 400 and abuts against
the outer surface 420 of the one-way clutch 400. The outer surface 420 of the one-way
clutch 400 abuts against the first connection mechanism 300. In this implementation,
the second extension part 312 extends in the axial direction of the second shaft 30
to the left side B in FIG. 2 (as shown in FIG. 2). In some implementations, the second
extension part 312 extends in the axial direction of the second shaft 30 to the right
side A (as shown in FIG. 5). A distance between the second extension part 312 and
the second shaft 30 is greater than a distance between the first extension part 221
and the second shaft 30, so that the one-way clutch 400 can be located between the
first extension part 221 and the second extension part 312. The one-way clutch 400
is located at a surface between the gear tooth surface 201 and the shaft interface
202 of the first floating gear 200 in FIG. 4. In comparison with this, a size of the
one-way clutch 400 may be reduced in this implementation, to reduce the costs. When
the one-way clutch 400 is connected and the first floating gear 200 rotates, a a power
transmission path is sequentially the first extension part 221, the inner surface
410, the outer surface 420, the second extension part 312, the gear hub connection
part 311, and the second shaft 30. The acting force of the outer surface 420 directly
acts on the second extension part 312, to reduce the impact on the accuracy of gear
transmission between the first fixed gear 100 and the first floating gear 200.
[0045] Still with reference to FIG. 2, in a possible implementation, the first floating
gear 200 further includes a first gear shift ring 230. The first gear shift ring 230
is configured to connect to or disconnect from the first connection mechanism 300.
The first connection mechanism 300 has a ring matching the first gear shift ring 230.
When the first gear shift ring 230 and the ring are engaged, the first gear shift
ring 230 is connected to the first connection mechanism 300. When the first gear shift
ring 230 and the ring are separated, the first gear shift ring 230 is disconnected
from the first connection mechanism 300. If only the one-way clutch 400 is used to
fix the first floating gear 200 and the first connection mechanism 300, the one-way
clutch 400 is easily affected by fluctuation of the rotation speed of the second shaft
30, so that the locking of the one-way clutch 400 is not stable. Therefore, the first
gear shift ring 230 is disposed on the first floating gear 200 to engage with and
be connected to the first connection mechanism 300, thereby improving connection stability.
[0046] In a possible implementation, the first floating gear 200 further includes a first
transmission connection part 240 located between the first floating transmission tooth
surface 210 and the first floating connection part 220. The first transmission connection
part 240 is located at an end of the first floating connection part 220 away from
the first extension part 221. The first gear shift ring 230 is connected to the first
transmission connection part 240. The first gear shift ring 230 extends in the same
direction as the first extension part 221. An end of the first gear shift ring 230
away from the first transmission connection part 240 is connected to or disconnected
from the first connection mechanism 300. In this implementation, a distance between
the first gear shift ring 230 and the second shaft 30 is greater than a distance between
the second extension part 312 and the second shaft 30. The first gear shift ring 230
is fixed relative to the first transmission connection part 240. A ring matching the
first gear shift ring 230 in the first connection mechanism 300 may move towards the
first gear shift ring 230 to be engaged with or disconnected from the first gear shift
ring 230.
[0047] With reference to FIG. 6 and FIG. 7, in a possible implementation, the first connection
mechanism 300 further includes a sliding mechanism 320 and a shifting fork 330. The
sliding mechanism 320 is sleeved on an outer surface of the gear hub 310 and can slide
in the axial direction of the second shaft 30. The shifting fork 330 is connected
to the sliding mechanism 320 and can control the sliding mechanism 320 to move in
the axial direction of the second shaft 30. The sliding mechanism 320 includes a second
gear shift ring 321 matching the first gear shift ring 230. The first gear shift ring
230 and the second gear shift ring 321 can be controlled to be engaged (as shown in
FIG. 7) or separated (as shown in FIG. 6) when the shifting fork 330 slides in the
axial direction of the second shaft 30, to implement connection and disconnection
between the first connection mechanism 300 and the first floating gear 200. The second
gear shift ring 321 on the first connection mechanism 300 and the first gear shift
ring 230 on the first floating gear 200 are engaged when required, so that the first
connection mechanism 300 and the first floating gear 200 are securely connected. In
this way, the following case can be avoided: Connection between the first connection
mechanism 300 and the first floating gear 200 is unstable when the fluctuation of
the rotation speed occurs in the one-way clutch 400, which affects power transmission.
FIG. 6 is a schematic diagram of a state in which the first gear shift ring 230 is
separated from the second gear shift ring 321. FIG. 7 is a schematic diagram of a
state in which the first gear shift ring 230 and the second gear shift ring 321 are
engaged after the shifting fork 330 moves in the axial direction to the left side
B.
[0048] The shifting fork 330 may be fixedly connected to or flexibly connected to the sliding
mechanism 320. When the shifting fork 330 is fixedly connected to the sliding mechanism
320, the shifting fork 330 pushes the sliding mechanism 320 to move in the axial direction
of the second shaft 30 under the function of an external force. When the shifting
fork 330 is flexibly connected to the sliding mechanism 320, the shifting fork 330
pushes another component into contact with the sliding mechanism 320, and can further
push the sliding mechanism 320 to move in the axial direction of the second shaft
30.
[0049] Still with reference to FIG. 7, in this implementation, a sliding sleeve 340 away
from the second shaft 30 is disposed on the sliding mechanism 320. The sliding sleeve
340 is sleeved on an outer surface of the sliding mechanism 320 and is fixedly connected
to the sliding mechanism 320. A shifting fork groove 350 is disposed in the sliding
sleeve 340, and the shifting fork 330 is disposed in the shifting fork groove 350.
When the shifting fork 330 is flexibly connected to the sliding mechanism 320, the
shifting fork groove 350 may limit the shifting fork 330 to be in the shifting fork
groove 350. The shifting fork groove 350 may be a "U"-shaped groove. When an external
force acts on the shifting fork 330, the shifting fork 330 abuts against a groove
wall of the shifting fork groove 350, to push the sliding mechanism 320 to move in
the axial direction of the second shaft 30.
[0050] With reference to FIG. 8, in this implementation, a tooth surface of the first gear
shift ring 230 and a tooth surface of the second gear shift ring 321 are perpendicular
to the axial direction of the second shaft 30, so that the first gear shift ring 230
and the second gear shift ring 321 are engaged more tightly when rotate in the axial
direction of the second shaft 30. A shape of a tooth part in the first gear shift
ring 230 and that in the second gear shift ring 321 are not limited to one of a rectangle
(as shown in FIG. 8), a trapezoid (as shown in FIG. 9), or a square.
[0051] Still with reference to FIG. 1, in a possible implementation, the second fixed gear
500 is sleeved on a fixed shaft and is fixedly connected to the fixed shaft. The fixed
shaft is one of the first shaft 20 and the second shaft 30. The fixed shaft indicates
a shaft on which the second fixed gear 500 is located. In this implementation, the
fixed shaft is the first shaft 20 and is the input shaft 21. In other words, the second
fixed gear 500 is sleeved on the first shaft 20 (the input shaft 21) and is fixedly
connected to the first shaft 20 (the input shaft 21). The second fixed gear 500 is
a second driving gear. In a possible implementation, the second fixed gear 500 is
not limited to be fastened on the first shaft 20 (the input shaft 21) in a key manner,
a welding manner, and an integrated forming manner. The key includes a flat key or
a spline.
[0052] The second floating gear 600 is sleeved on a floating shaft. The second floating
gear 600 can rotate relative to the floating shaft. The second fixed gear 500 and
the second floating gear 600 are permanently engaged, to transmit second-gear power.
The floating shaft is the other one of the first shaft 20 and the second shaft 30.
The floating shaft indicates a shaft on which the second floating gear 600 is located.
In this implementation, the floating shaft is the second shaft 30 and is the intermediate
shaft 31. In other words, the second floating gear 600 is sleeved on the second shaft
30 (the intermediate shaft 31) and is connected to the second shaft 30 (the intermediate
shaft 31) through rotation. The second floating gear 600 is a second driven gear.
The second floating gear 600 is connected to the second shaft 30 (the intermediate
shaft 31) through rotation. This indicates that the second floating gear 600 and the
second shaft 30 are not fixed and can implement differential rotation. Specifically,
the second floating gear 600 is connected to the second shaft 30 through rotation
by using the bearing 11.
[0053] The second connection mechanism 700 is fastened on the floating shaft and is configured
to implement connection or disconnection between the second floating gear 600 and
the floating shaft. When the second floating gear 600 and the floating shaft are connected
by using the second connection mechanism 700, the second floating gear 600 and the
floating shaft rotate at the same rotation speed. When the second floating gear 600
and the floating shaft are disconnected by using the second connection mechanism 700,
a rotation speed of the floating shaft is not controlled by the second floating gear
600.
[0054] In this implementation, the floating shaft is the second shaft 30 (the intermediate
shaft 31). In other words, the second connection mechanism 700 is fastened on the
second shaft 30 (the intermediate shaft 31) and is configured to implement connection
or disconnection between the second floating gear 600 and the second shaft 30 (the
intermediate shaft 31). When the second floating gear 600 and the second shaft 30
(the intermediate shaft 31) are connected by using the second connection mechanism
700, the second floating gear 600 and the second shaft 30 (the intermediate shaft
31) transmit the second-gear power at the same rotation speed. When the second floating
gear 600 and the second shaft 30 (the intermediate shaft 31) are disconnected by using
the second connection mechanism 700, the rotation speed of the second shaft 30 (the
intermediate shaft 31) is not controlled by the second floating gear 600. The rotation
speed of the second shaft 30 (the intermediate shaft 31) is not controlled by the
second floating gear 600. It indicates that the second shaft 30 and the second floating
gear 600 can implement differential rotation. The second shaft 30 may be controlled
by the first-gear a power transmission path, that is, may be controlled by the path
of the first shaft 20, the first fixed gear 100, the first floating gear 200, the
first connection mechanism 300, and the second shaft 30.
[0055] In this implementation, the second-gear power is at a high-speed gear, and the first-gear
power is at a low-speed gear. When the first shaft 20 (the input shaft 21) at the
first gear rotates at the same rotation speed as the first shaft 20 at the second
gear, the rotation speed of the second shaft 30 when the power is transmitted to the
second shaft 30 (the intermediate shaft 31) by using the second-gear a power transmission
path is greater than the rotation speed of the second shaft 30 when the power is transmitted
to the second shaft 30 (the intermediate shaft 31) by using the first-gear a power
transmission path. A radius of the first driving gear on the input shaft 21 is less
than a radius of the second driving gear. A radius of the first driven gear on the
intermediate shaft 31 is greater than a radius of the second driven gear. In this
implementation, a radius of the first fixed gear 100 is less than a radius of the
second fixed gear 500, and a radius of the first floating gear 200 is greater than
a radius of the second floating gear 600.
[0056] When the two-speed transmission system 10 performs power transmission by using the
first gear, the first connection mechanism 300 connects the first floating gear 200
to the second shaft 30 (the intermediate shaft 31). The one-way clutch 400 is in the
connected state. The first-gear power transmission path is sequentially the first
shaft 20 (the input shaft 21), the first fixed gear 100, the first floating gear 200,
the one-way clutch 400, the first connection mechanism 300, and the second shaft 30
(the intermediate shaft 31). During the first-gear power transmission, the first floating
gear 200 and the second shaft 30 (the intermediate shaft 31) may be both connected
to the one-way clutch 400 by using the first connection mechanism 300.
[0057] When the two-speed transmission system 10 changes from the first gear to the second
gear for power transmission, the first floating gear 200 and the second shaft 30 (the
intermediate shaft 31) are first disconnected by using the first connection mechanism
300, and the one-way clutch 400 stays in the connected state. In this case, the second
shaft 30 may continue to receive the power transmission of the first shaft 20 by using
the one-way clutch 400 to keep rotation. In addition, the second floating gear 600
and the second shaft 30 (the intermediate shaft 31) are connected by using the second
connection mechanism 700. The second-gear power transmission path is sequentially
the first shaft 20 (the input shaft 21), the second fixed gear 500, the second floating
gear 600, the second connection mechanism 700, and the second shaft 30 (the intermediate
shaft 31). Because the radius of the first fixed gear 100 is less than the radius
of the second fixed gear 500, and the radius of the first floating gear 200 is greater
than the radius of the second floating gear 600, the rotation speed of the second
floating gear 600 is greater than the rotation speed of the first floating gear 200,
and further the rotation speed of the second shaft 30 controlled by the second-gear
power transmission path is greater than the rotation speed of the second shaft 30
controlled by the first-gear power transmission path. The second shaft 30 rotates
with the second floating gear 600. The first connection mechanism 300 is fastened
on the second shaft 30. The first connection mechanism 300 and the second shaft 30
rotate at the same speed. In this case, the rotation speed of the first connection
mechanism 300 is greater than the rotation speed of the first floating gear 200, and
the one-way clutch 400 enters the disconnected state. In other words, in this case,
the first floating gear 200 idles around the second shaft 30, and the rotation speed
of the second shaft 30 is fully controlled by the second-gear power transmission path.
The first-gear power is changed to the second-gear power to implement a power transmission
process. Due to functions of the one-way clutch 400 and the friction clutch 700, a
power loss problem does not occur in a gear shift process.
[0058] In a possible implementation, the second floating gear 600 includes a second floating
transmission gear part 610 and a second floating hollow shaft 620. The second floating
transmission gear part 610 and the second fixed gear 500 are engaged. The second floating
hollow shaft 620 is sleeved outside the floating shaft and is connected to the floating
shaft through rotation. The second connection mechanism 700 is connected to the second
floating hollow shaft 620. In this implementation, the second floating hollow shaft
620 is sleeved on the second shaft 30 (the intermediate shaft 31) and is connected
to the second shaft 30 (the intermediate shaft 31) through rotation by using the bearing
11. FIG. 10 is a locally enlarged diagram of FIG. 1. In a possible implementation,
the second connection mechanism 700 is a friction clutch. The friction clutch 700
includes a first rotation interface 710, a second rotation interface 720, and a plurality
of friction plates 730 (as shown in FIG. 1). The first rotation shaft interface 710
is fixedly connected to an outer surface of the second floating hollow shaft 620 away
from the floating shaft (the second shaft 30). The second rotation interface 720 is
fixedly connected to the floating shaft (the second shaft 30). The friction clutch
700 controls connection and disconnection between the second floating gear 600 and
the floating shaft (the second shaft 30) through connection and disconnection between
the plurality of friction plates 730. The friction clutch 700 may be a normally open
friction clutch or a normally closed friction clutch. When the friction clutch 700
is the normally open friction clutch, and there is no external force acting on the
friction plates 730, the acting force cannot be transmitted due to a gap between the
friction plates 730. In this case, the friction clutch 700 is in a disconnected state,
and the second floating gear 600 and the floating shaft (the second shaft 30) are
disconnected. When the external force acts on the plurality of friction plates 730,
the friction plates 730 are gradually bonded to each other to transmit the acting
force. In this case, the friction clutch 700 is in a connected state, and the second
floating gear 600 and the floating shaft (the second shaft 30) may be connected. A
working principle of the normally closed friction clutch is the same as that of the
normally open friction clutch.
[0059] In a possible implementation, the friction clutch 700 further includes a fastening
screw 740. The fastening screw 740 is fastened on the floating shaft in an axial direction
of the floating shaft, to fixedly connect the friction clutch 700 to the floating
shaft.
[0060] With reference to FIG. 11, in a possible implementation, the second shaft 30 (the
intermediate shaft 31) is configured to sequentially transmit power to a final driving
gear 40, a final driven gear 60, and a differential mechanism 50. The differential
mechanism 50 is configured to transmit power to a vehicle tire, to drive the tire
to rotate.
[0061] In a possible implementation, one end of the shifting fork 330 is electrically connected
to an actuator 70. A control program used for the first gear, the second gear, and
the gear shift in the two-speed transmission system 10 is set in the actuator 70.
The control program controls the shifting fork 330 to move in the axial direction
under specific conditions, to control disconnection and connection of the first connection
mechanism 300. In some implementations, the actuator 70 is further connected to the
second connection mechanism 700 and is configured to exert an acting force on the
friction plates 730 under a specific condition according to a control program to control
disconnection and connection of the second connection mechanism 700.
[0062] The following describes a working process of the two-speed transmission system 10
in this implementation with reference to FIG. 12 and FIG. 13. FIG. 12 is the first-gear
a power transmission path of the two-speed transmission system 10. FIG. 13 is the
second-gear a power transmission path of the two-speed transmission system 10.
[0063] When the two-speed transmission system 10 is driven by the first-gear power, the
first connection mechanism 300 is connected to the first floating gear 200. The one-way
clutch 400 is in the connected state. The second connection mechanism 700 disconnects
the second floating gear 600 from the second shaft 30 (the intermediate shaft 31).
When a drive motor 12 drives the first shaft 20 (the input shaft 21) to rotate, the
first-gear power transmission path is sequentially the first shaft 20 (the input shaft
21), the first fixed gear 100, the first floating gear 200, the one-way clutch 400,
the first connection mechanism 300, and the second shaft 30 (the intermediate shaft
31). The second shaft 30 (the intermediate shaft 31) is configured to sequentially
transmit the power to the final driving gear 40, the final driven gear 60, and the
differential mechanism 50 (as shown in FIG. 12).
[0064] When driving of the first-gear power is changed to driving of the second-gear power,
the first connection mechanism 300 is first disconnected from the first floating gear
200, and the one-way clutch 400 stays in the connected state. In this case, the second
shaft 30 may continue to receive, by using the one-way clutch 400, the power transmitted
by the first shaft 20 to keep rotation, and then connect the second floating gear
600 to the second shaft 30 (the intermediate shaft 31) by using the second connection
mechanism 700. The radius of the first fixed gear 100 is less than the radius of the
second fixed gear 500, and the radius of the first floating gear 200 is greater than
the radius of the second floating gear 600. Therefore, the rotation speed of the second
floating gear 600 is greater than the rotation speed of the first floating gear 200.
The second floating gear 600 drives the second shaft 30 (the intermediate shaft 31)
to rotate at a high rotation speed. The first connection mechanism 300 rotates with
the second shaft 30 (the intermediate shaft 31) at a high rotation speed. The rotation
speed of the first connection mechanism 300 is greater than the rotation speed of
the first floating gear 200. In this case, the one-way clutch 400 is changed to the
disconnected state. In this case, gear shift is completed. The second-gear power transmission
path is sequentially the first shaft 20 (the input shaft 21), the second fixed gear
500, the second floating gear 600, the second connection mechanism 700, and the second
shaft 30 (the intermediate shaft 31). The second shaft 30 (the intermediate shaft
31) is configured to sequentially transmit power to the final driving gear 40, the
final driven gear 60, and the differential mechanism 50 (as shown in FIG. 13).
[0065] During driving using the first-gear power or in a process of changing from the first-gear
power to the second-gear power, because the outer surface 420 of the one-way clutch
400 abuts against the first connection mechanism 300, the acting force of the outer
surface 420 directly acts on the first connection mechanism 300 instead of a tooth
surface between the first floating gear 200 and the first fixed gear 100. This can
avoid the following case: Accuracy of gear transmission between the first fixed gear
100 and the first floating gear 200 is affected because the first fixed gear 100 and
the first floating gear 200 are engaged more tightly due to the acting force of the
one-way clutch 400. When driving of the first-gear power is changed to driving of
the second-gear power, power transmission from the first shaft 20 is constantly performed
on the second shaft 30 under the function of the one-way clutch 400. Therefore, a
power loss problem does not occur in the second shaft 30, or power interruption does
not occur, to improve driving performance of the entire vehicle.
[0066] With reference to FIG. 14, an implementation of this application further provides
a two-speed transmission system 10a. A difference from the implementation shown in
FIG. 1 is that the first shaft 20 is the intermediate shaft 31, the second shaft 30
is the input shaft 21, the fixed shaft is the first shaft 20 and the intermediate
shaft 31, the floating shaft is the second shaft 30 and the input shaft 21, the first
fixed gear 100 is the first driven gear, the first floating gear 200 is the first
driving gear, the second fixed gear 500 is the second driven gear, the second floating
gear 600 is the second driving gear, the first connection mechanism 300 is fixedly
connected to the input shaft 21 (the second shaft 30), the second connection mechanism
700 is fixedly connected to the input shaft 21 (the second shaft 30), the first floating
gear 200 is connected to the input shaft 21 through rotation, the second floating
gear 600 is connected to the input shaft 21 through rotation, the first fixed gear
100 is fixedly connected to the intermediate shaft 31, the second fixed gear 500 is
fixedly connected to the intermediate shaft 31, and the one-way clutch 400 is connected
between the first floating gear 200 and the first connection mechanism 300. The radius
of the first driving gear is less than the radius of the second driving gear. The
radius of the first driven gear is greater than the radius of the second driven gear.
In this implementation, the radius of the first floating gear 200 is less than the
radius of the second floating gear 600, and the radius of the first fixed gear 100
is greater than the radius of the second fixed gear 500.
[0067] The following describes a working process of the two-speed transmission system 10a
in this implementation with reference to FIG. 15 and FIG. 16. FIG. 15 is the first-gear
a power transmission path of the two-speed transmission system 10a. FIG. 16 is the
second-gear a power transmission path of the two-speed transmission system 10a.
[0068] When the two-speed transmission system 10a is driven by the first-gear power, the
first connection mechanism 300 is connected to the first floating gear 200. The one-way
clutch 400 is in the connected state. The second connection mechanism 700 disconnects
the second floating gear 600 from the second shaft 30 (the input shaft 21). When a
drive motor 12 drives the second shaft 30 (the input shaft 21) to rotate, as shown
in FIG. 15, the first-gear power transmission path is sequentially the second shaft
30 (the input shaft 21), the one-way clutch 400, the first connection mechanism 300,
the first floating gear 200, the first fixed gear 100, and the first shaft 20 (the
intermediate shaft 31).
[0069] When driving of the first-gear power is changed to driving of the second-gear power,
the first connection mechanism 300 is disconnected from the first floating gear 200,
and the one-way clutch 400 stays in the connected state. In this case, the second
shaft 30 (the input shaft 21) may continue to transmit, by using the one-way clutch
400, the power to the first shaft 20 (the intermediate shaft 31), and the first shaft
20 (the input shaft 31) keeps rotation. In addition, the second floating gear 600
is connected to the second shaft 30 (the input shaft 21) by using the second connection
mechanism 700. The radius of the first floating gear 200 is less than the radius of
the second floating gear 600, and the radius of the first fixed gear 100 is greater
than the radius of the second fixed gear 500. Therefore, the rotation speed of the
second fixed gear 500 is greater than the rotation speed of the first fixed gear 100.
The second fixed gear 500 drives the first shaft 20 (the intermediate shaft 31) and
the first fixed gear 100 to rotate at a high rotation speed. The first floating gear
200 rotates with the first fixed gear 100 at a high rotation speed. The rotation speed
of the first floating gear 200 is greater than the rotation speed of the first connection
mechanism 300. In this case, the one-way clutch 400 is changed to the disconnected
state. In this case, gear shift is completed. As shown in FIG. 16, the second-gear
power transmission path is sequentially the second shaft 30 (the input shaft 21),
the second connection mechanism 700, the second floating gear 600, the second fixed
gear 500, and the first shaft 20 (the intermediate shaft 31).
[0070] With reference to FIG. 17, an implementation of this application further provides
a two-speed transmission system 10b. A difference from the implementation shown in
FIG. 1 is that the fixed shaft is the second shaft 30 and the intermediate shaft 31,
and the floating shaft is the first shaft 20 and the input shaft 21. In other words,
the second floating gear 600 is the second driving gear, the second fixed gear 500
is the second driven gear, the second connection mechanism 700 is fixedly connected
to the first shaft 20 (the input shaft 21), the second floating gear 600 is connected
to the first shaft 20 (the input shaft 21) through rotation, and the second fixed
gear 500 is fixedly connected to the second shaft 30 (the intermediate shaft). Another
part is the same as the implementation shown in FIG. 1. The radius of the first driving
gear is less than the radius of the second driving gear. The radius of the first driven
gear is greater than the radius of the second driven gear. In this implementation,
the radius of the first fixed gear 100 is less than the radius of the second floating
gear 600, and the radius of the first floating gear 200 is greater than the radius
of the second fixed gear 500.
[0071] The following describes a working process of the two-speed transmission system 10b
in this implementation with reference to FIG. 18 and FIG. 19. FIG. 18 is the first-gear
a power transmission path of the two-speed transmission system 10b. FIG. 19 is the
second-gear a power transmission path of the two-speed transmission system 10b. When
the two-speed transmission system 10b is driven by the first-gear power, the first
connection mechanism 300 is connected to the first floating gear 200. The one-way
clutch 400 is in the connected state. The second connection mechanism 700 disconnects
the second floating gear 600 from the first shaft 20 (the input shaft 21). When a
drive motor 12 drives the first shaft 20 (the input shaft 21) to rotate, as shown
in FIG. 18, the first-gear power transmission path is sequentially the first shaft
20 (the input shaft 21), the first fixed gear 100, the first floating gear 200, the
one-way clutch 400, the first connection mechanism 300, and the second shaft 30 (the
intermediate shaft 31). Because the second fixed gear 500 engages with the second
floating gear 600, the second floating gear 600 rotates with the second fixed gear
500, but the second floating gear 600 is disconnected from the first shaft 20 (the
input shaft 21). In this case, the second floating gear 600 idles around the first
shaft 20 (the input shaft 21).
[0072] When driving of the first-gear power is changed to driving of the second-gear power,
the first connection mechanism 300 is first disconnected from the first floating gear
200, and the one-way clutch 400 stays in the connected state. In this case, the second
shaft 30 may continue to receive, by using the one-way clutch 400, the power transmitted
by the first shaft 20 to keep rotation, and then connect the second floating gear
600 to the first shaft 20 (the input shaft 21) by using the second connection mechanism
700. The radius of the first fixed gear 100 is less than the radius of the second
floating gear 600, and the radius of the first floating gear 200 is greater than the
radius of the second fixed gear 500. Therefore, the rotation speed of the second fixed
gear 500 is greater than the rotation speed of the first floating gear 200. The second
fixed gear 500 drives the second shaft 30 (the intermediate shaft 31) to rotate at
a high rotation speed. The first connection mechanism 300 rotates with the second
shaft 30 (the intermediate shaft 31) at a high rotation speed. The rotation speed
of the first connection mechanism 300 is greater than the rotation speed of the first
floating gear 200. In this case, the one-way clutch 400 is changed to the disconnected
state. In this case, gear shift is completed. As shown in FIG. 19, the second-gear
power transmission path is sequentially the first shaft 20 (the input shaft 21), the
second connection mechanism 700, the second floating gear 600, the second fixed gear
500, and the second shaft 30 (the intermediate shaft 31).
[0073] With reference to FIG. 20, an implementation of this application further provides
a two-speed transmission system 10c. A difference from the implementation shown in
FIG. 1 is that the first shaft 20 is the intermediate shaft 31, the second shaft 30
is the input shaft 21, the fixed shaft is the second shaft 30 and the input shaft
21, and the floating shaft is the first shaft 20 and the intermediate shaft 31. In
other words, the first floating gear 200 is the first driving gear, the first fixed
gear 100 is the first driven gear, the first connection mechanism 300 is fixedly connected
to the second shaft 30 (the input shaft 21), and the first floating gear 200 is connected
to the second shaft 30 (the input shaft 21) through rotation. Another part is the
same as that shown in FIG. 1. The radius of the first driving gear is less than the
radius of the second driving gear. The radius of the first driven gear is greater
than the radius of the second driven gear. In this implementation, the radius of the
first floating gear 200 is less than the radius of the second fixed gear 500, and
the radius of the first fixed gear 100 is greater than the radius of the second floating
gear 600.
[0074] The following describes a working process of the two-speed transmission system 10c
in this implementation with reference to FIG. 21 and FIG. 22. FIG. 21 is the first-gear
a power transmission path of the two-speed transmission system 10c. FIG. 21 is the
second-gear a power transmission path of the two-speed transmission system 10c.
[0075] When the two-speed transmission system 10c is driven by the first-gear power, the
first connection mechanism 300 is connected to the first floating gear 200. The one-way
clutch 400 is in the connected state. The second connection mechanism 700 disconnects
the second floating gear 600 from the first shaft 20 (the intermediate shaft 31).
When a drive motor 12 drives the second shaft 30 (the input shaft 21) to rotate, as
shown in FIG. 21, the first-gear power transmission path is sequentially the second
shaft 30 (the input shaft 21), the one-way clutch 400, the first connection mechanism
300, the floating gear 200, the first fixed gear 100, and the first shaft 20 (the
intermediate shaft 31). When driving of the first-gear power is changed to driving
of the second-gear power, the first connection mechanism 300 is first disconnected
from the first floating gear 200, and the one-way clutch 400 stays in the connected
state. In this case, the second shaft 30 (the input shaft 21) may continue to transmit,
by using the one-way clutch 400, the power to the first shaft 20 (the intermediate
shaft 31), and the first shaft 20 (the input shaft 31) keeps rotation. The second
floating gear 600 is connected to the first shaft 20 (the intermediate shaft 31) by
using the second connection mechanism 700. The radius of the first floating gear 200
is less than the radius of the second fixed gear 500, and the radius of the first
fixed gear 100 is greater than the radius of the second floating gear 600. Therefore,
the rotation speed of the second floating gear 600 is greater than the rotation speed
of the first fixed gear 100. The second floating gear 600 drives the first shaft 20
(the intermediate shaft 31) and the second fixed gear 500 to rotate at a high rotation
speed. The first shaft 20 (the intermediate shaft 31) drives the first fixed gear
100 and the first floating gear 200 to rotate at a high speed. The rotation speed
of the first floating gear 200 is greater than the rotation speed of the first connection
mechanism 300. In this case, the one-way clutch 400 is in the disconnected state.
In this case, gear shift is completed. As shown in FIG. 22, the second-gear power
transmission path is sequentially the second shaft 30 (the input shaft 21), the second
fixed gear 500, the second floating gear 600, the second connection mechanism 700,
and the first shaft 20 (the intermediate shaft 31).
[0076] With reference to FIG. 23, an implementation of this application provides a vehicle
1. The vehicle 1 includes front wheels 2, rear wheels 3, a vehicle body 4 connected
between the front wheels 2 and the rear wheels 3, and the two-speed transmission system
10 according to any one of the foregoing implementations. The two-speed transmission
system 10 is installed on the vehicle body 4. The vehicle 1 includes a car, an electric
vehicle, or a special working vehicle. The electric vehicle includes a two-wheel,
three-wheel, or four-wheel electric vehicle. The special working vehicle includes
various vehicles having specific functions, for example, an engineering emergency
vehicle, a water spraying vehicle, a suction sewage truck, a cement mixer vehicle,
a carriage hoist, and a medical vehicle.
[0077] The two-speed transmission system and the vehicle provided in embodiments of this
application are described in detail above. The principles and the implementations
of this application are described herein by using specific examples. The description
about the foregoing embodiments is merely provided to help understand the method and
core ideas of this application. In addition, a person of ordinary skill in the art
can make variations and modifications in terms of the specific implementations and
application scopes according to the ideas of this application. In conclusion, the
content of this specification shall not be construed as a limitation to this application.
1. A two-speed transmission system, wherein the two-speed transmission system comprises:
a first fixed gear, sleeved on a first shaft and fixedly connected to the first shaft;
a first floating gear, sleeved on a second shaft, wherein the first floating gear
can rotate relative to the second shaft, and the first fixed gear and the first floating
gear are permanently engaged;
a first connection mechanism, fastened on the second shaft and configured to implement
connection or disconnection between the first floating gear and the second shaft;
and
a one-way clutch, wherein the one-way clutch is located between the first floating
gear and the first connection mechanism; an inner surface of the one-way clutch is
connected to the first floating gear; an outer surface of the one-way clutch abuts
against the first connection mechanism; when the first floating gear rotates relative
to the first connection mechanism in a rotation direction, the first floating gear
and the first connection mechanism can implement differential rotation by using the
one-way clutch; and when the first floating gear rotates relative to the first connection
mechanism in another rotation direction, the one-way clutch is locked so that the
first floating gear and the first connection mechanism are relatively static and rotate
at a same rotation speed to transmit first-gear power.
2. The two-machine transmission system according to claim 1, wherein the first floating
gear comprises a first floating transmission tooth surface and a first floating connection
part, the first floating transmission tooth surface is disposed away from the second
shaft relative to the first floating connection part, the first floating transmission
tooth surface is configured to engage with the first fixed gear, the first floating
connection part is configured to connect to the second shaft through rotation to connect
the first floating gear to the second shaft through rotation, the first floating connection
part comprises a first extension part extending in an axial direction of the second
shaft, the inner surface of the one-way clutch is sleeved on a surface of the first
extension part away from the second shaft and is fixedly connected to the first extension
part, and the inner surface of the one-way clutch is connected to the first floating
gear.
3. The two-speed transmission system according to claim 2, wherein the first connection
mechanism comprises a gear hub fixedly connected to the second shaft, the gear hub
comprises a gear hub connection part and a second extension part, the second extension
part is disposed away from the second shaft relative to the gear hub connection part,
the second extension part extends in an opposite direction of an extension direction
of the first extension part, the second extension part is sleeved on the outer surface
of the one-way clutch and abuts against the outer surface of the one-way clutch, and
the outer surface of the one-way clutch abuts against the first connection mechanism.
4. The two-speed transmission system according to claim 3, wherein the first floating
gear further comprises a first gear shift ring, and the first gear shift ring is configured
to connect to or disconnect from the first connection mechanism.
5. The two-speed transmission system according to claim 4, wherein the first floating
gear further comprises a first transmission connection part located between the first
floating transmission tooth surface and the first floating connection part, the first
transmission connection part is located at an end of the first floating connection
part away from the first extension part, the first gear shift ring is located on the
first transmission connection part, the first gear shift ring extends in the same
direction as the first extension part, and an end of the first gear shift ring away
from the first transmission connection part is connected to or disconnected from the
first connection mechanism.
6. The two-speed transmission system according to claim 5, wherein the first connection
mechanism further comprises a sliding mechanism and a shifting fork, the sliding mechanism
is sleeved on an outer surface of the gear hub and can slide in the axial direction
of the second shaft, the shifting fork is connected to the sliding mechanism and can
control the sliding mechanism to move in the axial direction of the second shaft,
the sliding mechanism comprises a second gear shift ring matching the first gear shift
ring, and the first gear shift ring and the second gear shift ring can be controlled
to be engaged or separated when the shifting fork slides in the axial direction of
the second shaft, to implement connection and disconnection between the first connection
mechanism and the first floating gear.
7. The two-speed transmission system according to claim 1, wherein the first shaft is
an input shaft, the second shaft is an intermediate shaft, the first fixed gear is
a first driving gear, and the first floating gear is a first driven gear; or
the first shaft is an intermediate shaft, the second shaft is an input shaft, the
first fixed gear is a first driven gear, and the first floating gear is a first driving
gear.
8. The two-speed transmission system according to any one of claims 1 to 7, wherein the
two-speed transmission system further comprises:
a second fixed gear, sleeved on a fixed shaft and fixedly connected to the fixed shaft,
wherein the fixed shaft is one of the first shaft and the second shaft;
a second floating gear, sleeved on a floating shaft, wherein the second floating gear
can rotate relative to the floating shaft, the second fixed gear and the second floating
gear are permanently engaged, and the floating shaft is the other one of the first
shaft and the second shaft; and
a second connection mechanism, fastened on the floating shaft and configured to implement
connection or disconnection between the second floating gear and the floating shaft,
wherein when the second floating gear and the floating shaft are connected by using
the second connection mechanism; the second floating gear and the floating shaft rotate
at a same rotation speed; and when the second floating gear and the floating shaft
are disconnected by using the second connection mechanism, a rotation speed of the
floating shaft is not controlled by the second floating gear.
9. The two-speed transmission system according to claim 8, wherein the fixed shaft is
the first shaft and is the input shaft, the floating shaft is the second shaft and
is the intermediate shaft, the second fixed gear is a second driving gear, and the
second floating gear is a second driven gear; or
the fixed shaft is the first shaft and is the intermediate shaft, the floating shaft
is the second shaft and is the input shaft, the second fixed gear is a second driven
gear, and the second floating gear is a second driving gear; or
the fixed shaft is the second shaft and is the intermediate shaft, the floating shaft
is the first shaft and is the input shaft, the second fixed gear is a second driven
gear, and the second floating gear is a second driving gear; or
the fixed shaft is the second shaft and is the input shaft, the floating shaft is
the first shaft and is the intermediate shaft, the second fixed gear is a second driving
gear, and the second floating gear is a second driven gear.
10. The two-speed transmission system according to claim 8, wherein the second floating
gear comprises a second floating transmission gear part and a second floating hollow
shaft, the second floating transmission gear part and the second fixed gear are engaged,
the second floating hollow shaft is sleeved outside the floating shaft and is connected
to the floating shaft through rotation, and the second connection mechanism is connected
to the second floating hollow shaft
11. The two-speed transmission system according to claim 10, wherein the second connection
mechanism is a friction clutch, the friction clutch comprises a first rotation shaft
interface, a second rotation interface, and a plurality of friction plates, the first
rotation shaft interface is fixedly connected to an outer surface of the second floating
hollow shaft away from the floating shaft, the second rotation interface is fixedly
connected to the floating shaft, and the friction clutch controls connection and disconnection
between the second floating gear and the floating shaft through connection and disconnection
between the plurality of friction plates.
12. A vehicle, wherein the vehicle comprises front wheels, rear wheels, a vehicle body
connected between the front wheels and the rear wheels, and the two-speed transmission
system according to any one of claims 1 to 11, and the two-speed transmission system
is installed on the vehicle body.