(11) EP 4 064 453 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 28.09.2022 Bulletin 2022/39

(21) Application number: 20903178.0

(22) Date of filing: 21.08.2020

(51) International Patent Classification (IPC):

H01Q 1/38 (2006.01) H01Q 1/50 (2006.01)

H01Q 9/16 (2006.01) H01Q 21/00 (2006.01)

H01Q 21/24 (2006.01)

(86) International application number: **PCT/CN2020/110587**

(87) International publication number: WO 2021/120663 (24.06.2021 Gazette 2021/25)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 20.12.2019 CN 201911323563

(71) Applicant: Comba Telecom Technology (Guangzhou) Limited Guangzhou, Guangdong 510730 (CN)

(72) Inventors:

 LI, Mingchao Guangzhou, Guangdong 510730 (CN)

 LIN, Xiaoyang Guangzhou, Guangdong 510730 (CN)

 WANG, Yu Guangzhou, Guangdong 510730 (CN)

 CHEN, Litao Guangzhou, Guangdong 510730 (CN)

(74) Representative: Gulde & Partner
Patent- und Rechtsanwaltskanzlei mbB
Wallstraße 58/59
10179 Berlin (DE)

(54) 5G ANTENNA AND RADIATION UNIT THEREOF

(57) The present invention discloses a 5G antenna and the radiation unit thereof. The radiation unit includes two groups of dipoles the polarizations of which are orthogonal, each group of the dipoles includes two radiation arms which are disposed to be spaced apart relative to each other, and each of the radiation arms is provided with a first extension branch and a second extension branch which are disposed to be spaced apart from each other. The extension of the operating frequency band and good radiation performance can be achieved by the radiation unit; as such, a 5G antenna using the radiation unit has good radiation performance.

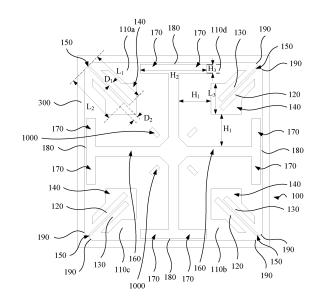


Figure 1

Description

TECHNICAL FIELD

[0001] The present invention relates to the field of communication technologies, and in particular, to a 5G antenna and a radiation unit thereof.

BACKGROUND

[0002] With the increasing sophistication and advancement of the 5G communication technology, the 5G network is also gradually entering the commercial stage. Due to higher requirements on antennas by the 5G technology, the antennas are required to have high-rate transmission, larger system capacity, miniaturization, and dual-polarization characteristic simultaneously.

[0003] Conventional radiation units have bandwidth ranging from low frequencies to high frequencies. Since the wave length with respect to the low frequencies is longer than the wave length with respect to the frequencies, for a radiation unit having fixed size, when the low frequencies and the high frequencies are operated simultaneously, they will be influenced by each other, thereby affecting the frequency band extension of the radiation units and affecting the radiation performance of the antennas

SUMMARY

[0004] As the low frequency wavelength is longer than the high frequency wavelength, for fixed size radiation unit, when the low frequency and high frequency work at the same time, they tend to interact with each other, thus affecting the radiation unit's frequency band expansion and affecting the radiation performance of the antenna. **[0005]** The technical solution is as follows:

According to an aspect, there is provided a radiation unit, including: two groups of dipoles the polarizations of which are orthogonal, each group of the dipoles includes two radiation arms which are disposed to be spaced apart relative to each other, and each of the radiation arms is provided with a first extension branch and a second extension branch which are disposed to be spaced apart from each other.

[0006] The radiation unit of the above embodiment includes four radiation arms of the same shape and size, wherein two radiation arms which are disposed to be spaced apart and diagonal relative to each other fit to form a first group of dipoles, the other two radiation arms which are disposed to be spaced apart and diagonal relative to each other fit to form a second group of dipoles, and the two groups of dipoles the polarizations of which are orthogonal to each other are utilized to form dual-polarization radiation. Meanwhile, the first extension branches and the second extension branches which are disposed to be spaced apart from each other are disposed on respective radiation arms, so that the first ex-

tension branches and the second extension branches can be utilized to adjust the electrical lengths of the high frequencies and low frequencies of the radiation unit, thereby being able to achieve extension of the operating frequency band which is more than 20% of the bandwidth, good radiation performance, and fulfil the use requirements of 5G antennas. Moreover, the radiation unit has a simple structure and is easy to produce, and the manufacturing cost is lowered.

[0007] The technical solution will be described further below.

[0008] In one of these embodiments, the surface area of the first extension branch is adjustable and/or the surface area of the second extension branch is adjustable.

[0009] In one of these embodiments, the surface area of the first extension branch is greater than or equal to the surface area of the second extension branch.

[0010] In one of these embodiments, each of the radiation arms is provided with a first connecting portion for coupling feed with a feeding balun.

[0011] In one of these embodiments, an outer sidewall of each of the radiation arms is provided with a cut-off corner.

[0012] In one of these embodiments, each of the radiation arms is provided with a first hollowed groove, each of one end of the first extension branch and one end of the second extension branch is connected with the outer sidewall of each of the radiation arms, a first spacer groove in communication with the first hollowed groove is provided between the first extension branch and the second extension branch, and each of the first extension branch and the second extension branch is disposed towards the inside of the first hollowed groove.

[0013] In one of these embodiments, a second spacer groove and a current-conducting part for connecting two adjacent radiation arms are provided between the two adjacent radiation arms, and each of the two adjacent radiation arms is provided with a second hollowed groove in communication with the second spacer groove.

[0014] In one of these embodiments, a hollowed area of the first hollowed groove is adjustable and/or a hollowed area of the second hollowed groove is adjustable.
[0015] In one of these embodiments, a distance between a sidewall of the first hollowed groove and a sidewall of the second spacer groove ranges from 5.5 mm to 6mm; and a width of the second hollowed groove ranges from 11.9 mm to 12.7 mm.

[0016] According to another aspect, there is provided a 5G antenna, including: the radiation unit; and feeding baluns which are in coupling feed with the radiation arms. [0017] The 5G antenna in the above embodiments, when in use, performs coupling feed on the radiation arms by using the feeding baluns, so that it can be ensured that the radiation unit can radiate signals with good radiation performance in a stable and reliable manner. Meanwhile, the first extension branches and the second extension branches which are disposed to be spaced apart from each other are disposed on respective radia-

tion arms of the radiation unit, thus the first extension branches and the second extension branches can be utilized to adjust the electrical lengths of the high frequencies and low frequencies of the radiation unit, thereby being able to achieve extension of the operating frequency band, achieve a very wide operating frequency band, and fulfil the use requirements of 5G antennas. The 5G antenna of the above embodiment, in the case of ultrawideband being implemented, also has good impedance characteristics and cross-polarization ratio, and the production cost is low, which is suitable for the use requirements of 5G technology.

[0018] In one of these embodiments, the radiation unit further includes a substrate which is provided between the radiation arms and the feeding baluns, and the radiation arms are disposed on a surface of the substrate.

[0019] In one of these embodiments, each of the feeding baluns includes a first feeding component for the coupling feed with the first group of dipoles and a second feeding component for the coupling feed with the second group of dipoles, the first feeding component and the second feeding component being disposed to have an

BRIEF DESCRIPTION OF THE DRAWINGS

[0020]

angle therebetween.

Fig. 1 is a structural schematic diagram of a radiation unit according to one embodiment;

Fig. 2 is a structural schematic diagram of a side of a first media of the radiation unit of Fig. 1;

Fig. 3 is a structural schematic diagram of other side of the first media of the radiation unit of Fig. 1;

Fig. 4 is a structural schematic diagram of a side of a second media of the radiation unit of Fig. 1;

Fig. 5 is a structural schematic diagram of other side of the second media of the radiation unit of Fig. 1;

Fig. 6 is a simulation diagram of the standing waves of the radiation unit of Fig. 1; and

Fig. 7 is a horizontal radiation pattern of a 5G antenna according to one embodiment.

DESCRIPTION OF REFERENCE SYMBOLS:

[0021] 10, radiation unit, 110, radiation arm, 120, first extension branch, 130, second extension branch, 140, first hollowed groove, 150, first spacer groove, 160, second spacer groove, 170, second hollowed groove, 180, current-conducting part, 190, cut-off corner, 1000, feeding socket, 210, first feeding component, 211, first media, 2111, first socket, 2112, third bump, 212, first balun microstrip line, 2121, first branch, 2122, second branch, 213, first microstrip ground piece, 2131, first bump, 220, second feeding component, 221, second media, 2211, second socket, 2212, fourth bump, 222, second balun microstrip line, 2221, third branch, 2222, fourth branch, 223, second microstrip ground piece, 2231, second

bump, 300, substrate.

DETAILED DESCRIPTION

[0022] In order to make the objectives, technical solutions and advantages of present invention clearer, hereafter, the present invention will be further described in detail with reference to the accompanying drawings and the detailed description. It should be understood that the detailed description here is only for explaining the present invention and does not define the protection scope of the present invention.

[0023] It should be noted that when an element is referred to as being "disposed on" or "fixed to" another element, it can be directly on another element or intervening elements may be present.

[0024] When an element is "fixed to" another element or "fixedly connected to" another element, they are fixed in a detachable manner or they are fixed in a non-removable manner. When an element is considered to be "connected with", "rotately connected with" another element, it can be directly connected to another element or there are intervening elements present. The terms such as "perpendicular", "horizontal", "left", "right", "upper" and "lower" as well as similar expressions as used herein are for illustration purposes only, and do not represent the unique implementation.

[0025] Unless otherwise defined, all technical and scientific terms as used herein have the same meaning as meanings that are generally understood to one of ordinary skill in the art. The terms as used in the description of the invention herein are for the purpose of description only and are not intended to limit the present invention. The term " and/or" as used herein includes any and all combinations of one or more of the associated listed items.

[0026] Similar words such as "first", ""second" and "third" in the present invention do not represent specific number or order, and are used merely to distinguish between names.

[0027] It should also be understood that when explaining an element, the element should be construed as including a error range although not explicitly described, the error range should be within an acceptable deviation from the specified value as determined by those skilled in the art. For example, "about", "approximately" or "substantially" may mean that it is in one or more standard derivations, which is not limited herein.

[0028] As shown in Fig. 1, in one embodiment, there is provided a radiation unit 10 including two groups of dipoles the polarizations of which are orthogonal, each group of the dipoles includes two radiation arms 110 which are disposed to be spaced apart relative to each other, each of the radiation arms 110 is provided with a first extension branch 120 and a second extension branch 130 which are disposed to be spaced apart from each other.

[0029] The radiation unit 10 of the above embodiment

45

includes four radiation arms 110 of the same shape and size, wherein two radiation arms 110 which are disposed to be spaced apart and diagonal relative to each other fit to form a first group of dipoles, the other two radiation arms 110 which are disposed to be spaced apart and diagonal relative to each other fit to form a second group of dipoles, and the two groups of dipoles the polarizations of which are orthogonal to each other are utilized to form dual-polarization radiation.

[0030] Meanwhile, the first extension branches 120 and the second extension branches 130 which are disposed to be spaced apart from each other are disposed on respective radiation arms 110, so that the first extension branches 120 and the second extension branches 130 can be utilized to adjust the electrical lengths of the high frequencies and low frequencies of the radiation unit 10, thereby being able to achieve extension of the operating frequency band which is more than 20% of the bandwidth, good radiation performance, and fulfil the use requirements of 5G antennas. Moreover, the radiation unit 10 has a simple structure and is easy to produce, and the manufacturing cost is lowered.

[0031] It should be noted that the connecting end of the first extension branches 120 and the connecting end of the second extension branches 130 may be connected with outer sidewalls of respective radiation arms 110, so that the first extension branches 120 and the second extension branches 130 can flexibly extend towards the outer sides or inner sides of the radiation arms 110. The first extension branch 120 and the second extension branch 130 can be formed with the radiation arm 110 in an all-in-one manner or they can be formed separately to be assembled; the all-in-one manufacturing manner is preferred, which is simple and convenient, and lowers the manufacturing cost. The first extension branch 120 and the second extension branch 130 can be provided in structures of sheets, strips, etc. As shown in Fig. 1, the radiation arm 110a and the radiation arm 110b form the first group of dipoles, and the radiation arm 110c and the radiation arm 110d form the second group of dipoles. [0032] The surface area of the first extension branch 120 and the surface area of the second extension branch 130 can be flexibly adjusted simultaneously or separately according to the actual use cases, as long as the first extension branch 120 and the second extension branch 130 are enabled to extend the operating frequency band of the radiation unit 10.

[0033] In one embodiment, the length (L_1 as shown in Fig. 1) of the first extension branch 120 is adjustable. As such, by flexibly adjusting the length of the first extension branch 120, the surface area of the first extension branch 120 is adjusted, the electrical length of the radiation unit 10 is adjusted, and in turn the operating frequency band of the radiation unit 10 is adjusted.

[0034] In one embodiment, the width (D_1 as shown in Fig. 1) of the first extension branch 120 is adjustable. As such, by flexibly adjusting the width of the first extension branch 120, the surface area of the first extension branch

120 is adjusted, the electrical length of the radiation unit 10 is adjusted, and in turn the operating frequency band of the radiation unit 10 is adjusted.

[0035] In one embodiment, the length (L_2 as shown in Fig. 1) of second extension branch 130 is adjustable. As such, by flexibly adjusting the length of second extension branch 130, the surface area of the second extension branch 130 is adjusted, the electrical length of the radiation unit 10 is adjusted, and in turn the operating frequency band of the radiation unit 10 is adjusted.

[0036] In one embodiment, the width (D_2 as shown in Fig. 1) of second extension branch 130 is adjustable. As such, by flexibly adjusting the width of second extension branch 130, the surface area of the second extension branch 130 is adjusted, the electrical length of the radiation unit 10 is adjusted, and in turn the operating frequency band of the radiation unit 10 is adjusted.

[0037] It should be noted that flexible adjustment can be at least made to one of the parameters including the length of the first extension branch 120, the width of the first extension branch 120, the length of the second extension branch 130 and the width of the second extension branch 130, so that the electrical length of the radiation unit 10 can be adjusted, and in turn the operating frequency band of the radiation unit 10 can be adjusted.

[0038] As shown in Fig. 1, in one embodiment, the surface area of the first extension branch 120 is greater than the surface area of the second extension branch 130. As such, the first extension branch 120 can be utilized to extend the bandwidth of low frequencies, and the second extension branch 130 can be utilized to extend the bandwidth of the high frequencies. When adjusting the surface area of the first extension branch 120 by adjusting the length of the first extension branch 120 and adjusting the surface area of the second extension branch 130 by adjusting the length of the second extension branch 130, it is preferred that the difference in length between the first extension branch 120 and the second extension branch 130 is within 1 mm in order not to affect the radiation performance of the radiation unit 10.

[0039] In one embodiment, the surface area of the first extension branch 120 is equal to the surface area of the second extension branch 130.

[0040] As such, when adjusting the surface area of the first extension branch 120 and the surface area of the second extension branch 130, the electrical length of the radiation unit 10 can be adjusted to a greater extent, and in turn the operating frequency band of the radiation unit 10 can be adjusted to a greater extent.

[0041] On the basis of any of the above embodiments, each of the radiation arms 110 is provided with a first connecting portion for coupling feed with a feeding balun. As such, the use of the first connecting portions enables the easy and reliable connection of the feeding baluns to the radiation arms 110, which in turn enables the coupling feed to the radiation arms 110 and ensures the radiation performance of the radiation unit 10. Each of the first connecting portions can be provided as a feed jack

or feeding socket 1000 for ease of pluggable fitting.

[0042] As shown in Fig. 1, on the basis of any of the above embodiments, an outer sidewall of each of the radiation arms 110 is provided with a cut-off corner 190. As such, the cut-off corner 190 is effective in improving the influence between operating frequencies and enhancing the radiation performance of the radiation unit 10. The size of the cut-off corner 190 can be flexibly adjusted according to the actual use requirements. The cut-off corner 190 can be disposed on a portion corresponding to the first extension branch 120 and the second extension branch 130.

[0043] As shown in Fig. 1, on the basis of any of the above embodiments, each of the radiation arms 110 is provided with a first hollowed groove 140, each of one end of the first extension branch 120 and one end of the second extension branch 130 is connected with the outer sidewall of each of the radiation arms 110. A first spacer groove 150 in communication with the first hollowed groove 140 is provided between the first extension branch 120 and the second extension branch 130. In this way, the weights of the radiation arms 110 can be reduced, and light-weight antennas can be achieved. Moreover, the arrangement of the first hollowed groove 140 on the inner surface of the radiation arm 110 also improves the cross-polarization ratio of the radiation unit 10 and also increases the electrical lengths of the radiation arms 110, extending the operating bandwidths of the radiation unit 10.

[0044] Each of the first extension branch 120 and the second extension branch 130 is disposed towards the inside of the first hollowed groove 140. As such, the structure of the radiation unit 10 can be made more compact, the projection area of the radiation unit 10 on the base plate is reduced, and the miniaturization of antenna can be achieved.

[0045] Of course, in other embodiments, it may be that the first extension branch 120 extends towards the interior of the first hollowed groove 140 and the second extension branch 130 extends towards the outer side of a respective radiation arm 110; or it may be that the second extension branch 130 extends towards the interior of the first hollowed groove 140 and the first extension branch 120 extends towards the outer side of a respective radiation arm 110; or it may be that each of the first extension branch 120 and the second extension branch 130 extends towards the exterior of the first hollowed groove 140. It is only necessary to meet the requirement of enabling the first extension branch 120 and the second extension branch 130 to extend the operating frequency band of the radiation unit 10.

[0046] Further, a hollowed area of the first hollowed groove 140 is adjustable. As such, the cross-polarization ratio of the radiation unit 10 can be adjusted by adjusting the hollowed area of the first hollowed groove 140. The hollowed area refers to the size of the first hollowed groove 140. For example, as shown in Fig. 1, when the outline of the first hollowed groove 140 is a square, the

side length of the square is adjusted, i.e., the hollowed area is adjustable.

[0047] As shown in Fig. 1, in one embodiment, a second spacer groove 160 and a current-conducting part 180 for connecting two adjacent radiation arms 110 are provided between the two adjacent radiation arms 110, and each of the two adjacent radiation arms 110 is provided with a second hollowed groove 170 in communication with the second spacer groove 160. In this way, the use of the current-conducting part 180, together with the second spacer groove 160 and the second hollowed groove 170, enables the formation of a slow wave structure, thereby increasing the electrical lengths of the radiation arms 110 and thus broadening the operating frequency bands of the radiation unit 10. Wherein the current-conducting part 180 can be provided as a sidewall in the width direction of the second hollowed groove 170 for easy of machining. The current-conducting part 180 can be provided in the form of a strip or sheet.

[0048] Further, a hollowed area of the second hollowed groove 170 is adjustable. As such, the electrical lengths of the radiation arms 110 can be adjusted by adjusting the widths of the second hollowed grooves 170, thus the operating frequency band of the radiation unit 10 is adjusted. Wherein the adjustment of the hollowed area of the second hollowed groove 170 can be achieved by adjusting the width (H₂ as shown in Fig. 1) or length (H₃ as shown in Fig. 1) of the second hollowed groove 170.

[0049] In one embodiment, the hollowed area of the first hollowed groove 140 is adjustable, and the hollowed area of the second hollowed groove 170 is adjustable accordingly. As such, the hollowed area of the first hollowed groove 140 is changed, the hollowed area of the second hollowed groove 170 can be adjusted accordingly, thus the radiation performance of the radiation unit 10 can be ensured.

[0050] In one embodiment, when the hollowed area of the first hollowed groove 140 becomes larger so that the distance (H₁, as shown in Fig. 1) between the sidewall of the first hollowed groove 140 and the sidewall of the second spacer groove 160 becomes narrower, the width of the second hollowed groove 170 is made smaller accordingly, thereby reducing the hollowed area of the second hollowed groove 170 and thereby improving the radiation performance of the radiation unit 10. Preferably, the variation in distance between a sidewall of the first hollowed groove 140 and a sidewall of the second spacer groove 160 ranges from 5.5 mm to 6mm, the variable in width of the second hollowed groove 170 ranges from 11.9 mm to 12.7 mm, and the radiation performance of the radiation unit 10 is ensured.

[0051] Of course, the adjustment of the hollowed area of the first hollowed groove 140, the adjustment of the width of the second hollowed groove 170, the adjustment of the surface area of the first extension branch 120 and the adjustment of the surface area of the second extension branch 130 can be chosen flexibly according to the actual use requirements; these adjustments can be con-

40

ducted simultaneously, separately or in combination, as long as the radiation performance of the radiation unit 10 is ensured. Preferably, respective adjustments to the hollowed area of the first hollowed groove 140, the hollowed area of the second hollowed groove 170, the surface area of the first extension branch 120 and the surface area of the second extension branch 130 are conducted simultaneously, so that a relative bandwidth up to 49.2% can be achieved and the range of the operating frequency band may be 2.3GHz~3.8 GHz.

[0052] As shown in Figs. 1 through 5, in one embodiment, there is also provided a 5G antenna including the radiation unit 10 according to any of the above embodiments and feeding baluns which are in coupling feed with the radiation arms 110.

[0053] The 5G antenna in the above embodiments, when in use, performs coupling feed on the radiation arms 110 by using the feeding baluns, so that it can be ensured that the radiation unit 10 can radiate signals with good radiation performance in a stable and reliable manner. Meanwhile, the first extension branches 120 and the second extension branches 130 which are disposed to be spaced apart from each other are disposed on respective radiation arms 110 of the radiation unit 10, thus the first extension branches 120 and the second extension branches 130 can be utilized to adjust the electrical lengths of the high frequencies and low frequencies of the radiation unit 10, thereby being able to achieve extension of the operating frequency band, achieve a very wide operating frequency band, and fulfil the use requirements of 5G antennas. The 5G antenna of the above embodiment, in the case of ultra-wideband being implemented, also has good impedance characteristics and cross-polarization ratio, and the production cost is low, which is suitable for the use requirements of 5G technol-

[0054] As shown in Fig. 1, in one embodiment, the radiation unit 10 also include a substrate 300 which is provided between the radiation arms 110 and the feeding baluns, the radiation arms 110 being disposed on the surface of the substrate 300.

[0055] As such, the radiation arms 110 can be disposed on the substrate 300 in form of patches, thus the volume of the radiation unit 10 can be reduced. The substrate 300 can be provided as a printed circuit board (PCB) media board.

[0056] As shown in Figs. 2 through 5, based on the above embodiments, each of the feeding baluns includes a first feeding component 210 for the coupling feed with the first group of dipoles and a second feeding component 200 for the coupling feed with the second group of dipoles, the first feeding component 210 and the second feeding component 220 being disposed to have an angle therebetween. As such, the first feeding component 210 is utilized to perform feeding on the two radiation arms 110 of a group of dipoles, and the second feeding component 220 is utilized to perform feeding on the two radiation arms 110 of another group of dipoles, thus the

transmission of energy can be achieved, and it can be ensured that the radiation unit 10 can radiate signals in a stable and reliable manner.

[0057] As shown in Figs. 2 and 3, in one embodiment, the first feeding component 210 includes a first media 211, a first feeding member and two first grounding members. The first feeding member is disposed on one side of the first media 211 by means such as engaging or bonding, the two first grounding members are disposed on the other side of the first media 211 by means such as engaging or bonding, and the two first grounding members are disposed to be spaced apart relative to each other. The first feeding member is coupled and connected with the two first grounding members, and the two first grounding members are connected with the two radiation arms 110 of the first group of dipoles in one-to-one correspondence. As such, the first feeding member is coupled and connected with each of the two first grounding members, and the two first grounding members are connected with the two radiation arms 110 of the first group of dipoles in one-to-one correspondence, thus the first feed can be utilized to perform coupling feed on the first group of dipoles, so that the radiation unit meets good impedance characteristics.

[0058] It should be noted that the first media 211 can be provided as a plate made of insulating materials. The first feeding member can be provided as a first balun microstrip line 212, as shown in Fig. 2. For example, the first balun microstrip line 212 includes a first branch 2121 and a second branch 2122 which are electrically connected, one end of the first branch 2121 is electrically connected with an external feed network, and the second branch 212 has one end hanging in the air, and the first branch 2121 and the second branch 2122 are respectively disposed in correspondence with the two first grounding members and coupled and connected with them. As shown in Fig. 3, the first grounding member can be provided as a first microstrip ground piece 213, one end of the first microstrip ground piece 213 is electrically connected with a corresponding radiation arm 110 by means such as welding, and the other end of the first microstrip ground piece 213 is connected with ground base plate by means such as welding. The number of the first grounding members can be flexibly adjusted as required, as long as the coupling feed to the radiation arms 110 can be enabled.

[0059] As shown in Figs. 4 and 5, in one embodiment, the second feeding component 220 includes a second media 221 disposed at an angle to the first media 211, a second feeding member and two second grounding members. The second feeding member is disposed on one side of the second media 221 by means such as engaging or bonding, the second grounding member is disposed on the other side of the second media 221 by means such as engaging or bonding, and the two second grounding members are disposed to be spaced apart from each other. The second feeding member is coupled and connected with the two second grounding members,

40

and the two second grounding members are connected with the two radiation arms 110 of second group of dipoles in one-to-one correspondence. As such, the second feeding member is coupled and connected with each of the two second grounding members, and the two second grounding members are connected with the two radiation arms 110 of second group of dipoles in one-to-one correspondence, thus the second feeding member can be utilized to perform coupling feed on second group of dipoles, so that the radiation unit meets good impedance characteristics.

[0060] It should be noted that second media 221 can be provided as a plate made of insulating materials. The second feeding member can be provided as a second balun microstrip line 222, as shown in Fig. 4. For example, the second balun microstrip line 222 includes a third branch 2221 and a fourth branch 2222 which are electrically connected, one end of the third branch 2221 is electrically connected with an external feed network, and the fourth branch 2222 has one end hanging in the air, and the third branch 2221 and the fourth branch 2222 are respectively disposed in correspondence with the two first grounding members and coupled and connected with them. As shown in Fig.5, the second feeding member can be provided as a second microstrip ground piece 223, one end of the second microstrip ground piece 223 is electrically connected with a corresponding radiation arm 110 by means such as welding, and the other end of the second microstrip ground piece 223 is connected with ground base plate by means such as welding. The number of the two grounding members can be flexibly adjusted as required, as long as the coupling feed to the radiation arms 110 can be enabled.

[0061] The first media 211 and the second media 221 which are disposed to have an angle therebetween can be implemented by means of pluggable fitting, are easy for disassembly and assembly, and are of high assembling efficiency. Preferably, the first media 211 is disposed perpendicular to the second media 221 in a compact layout.

[0062] As shown in Figs. 2 to 5, in one embodiment, the first media 211 is provided with a first socket 2111, and the second media 221 is provided with a second socket 2211 which is disposed corresponding to the first socket 2111. In this way, the first media 211 is above the second media 221, so that the second socket 2211 corresponds to the first socket 2111, and then the second media 221 is inserted into the first socket 2111 until the first media 211 is inserted into the second socket 2211, and then the first media 211 and the second media 221 can be stably and reliably connected together to form a support structure for providing stable support for the radiation unit 10.

[0063] The width of the first socket 2111 and the width of the second socket 2211 can be flexibly adjusted according to the thicknesses of the second media 221 and the first media 211.

[0064] As shown in Figs. 2 and 3, in one embodiment,

one end of the first grounding member is provided with a first bump 2131 for pluggable fitting with a respective radiation arm 110. As shown in Figs. 4 and 5, one end of the second grounding member is provided with a second bump 2231 for pluggable fitting with a respective radiation arm 110. As such, a corresponding feeding socket 1000 can be provided on a radiation arm 110 for plugging the first bump 2131 and the second bump 2231 into the feeding socket 1000, thus the electrical connection between the first grounding member and the second grounding member and the radiation arm 110 can be implement in a simple and convenient manner. Of course, in order to improve the stability and reliability of the pluggable fitting, as shown in Fig. 3, the first media 211 may also be provided with a third bump 2112 which is disposed corresponding to the first bump 2131; as shown in Fig. 5, the second media 221 may also be provided with a fourth bump 2212 which is disposed corresponding to the second bump 2231; thus the plugging strength of the first bump 2131 and the second bump 2231 are increased. Jacks corresponding to the feeding sockets 1000 also need to be opened on the substrate 300.

[0065] In one embodiment, the 5G antenna includes at least three radiation units 10 which are disposed to be equally spaced apart from each other in a preset distance. As such, three radiation units 10 are utilized to constitute a subarray, and the spacing between two adjacent radiation units 10 is preferably 62.5 mm. Further, four subarrays can constitute a 5G antenna array, and the spacing between adjacent subarrays is preferably 52 mm. Therefore, the sizes of the radiation units 10 can be adjusted according to actual frequency requirements to meet the different operating frequency requirements, and the radiation units 10 are used in combination to meet 5G antenna requirements, so that as compared with other array antennas, the pattern of the 5G array antenna are improved significantly and have good standing waves, as shown in Fig. 6; the beam widths in the horizontal plane all reach 60° or more, as shown in Fig. 7.

[0066] The various technical features in the above embodiments may be combined arbitrarily. For brevity of description, not all possible combinations of various technical features in the above embodiments have been described. However, as long as the combinations of these technical features are not contradictory, they shall be regarded as falling within the scope of the specification.

[0067] The above embodiments represent only several embodiments of the present invention, which have been described concretely and in detail, but should not be construed as limiting the patent scope of the invention.

[0068] It should be pointed out that to a person skilled in the art, under the circumstance without deviating from the principle of the present invention, several modifications and improvements can be made, where these modifications and improvements should fall within the protection scope of the present invention.

[0069] Therefore, the protection scope of the present

40

invention should be defined by the appended claims.

Claims

- 1. A radiation unit, comprising: two groups of dipoles the polarizations of which are orthogonal, each group of the dipoles comprises two radiation arms which are disposed to be spaced apart relative to each other, and each of the radiation arms is provided with a first extension branch and a second extension branch which are disposed to be spaced apart from each other.
- 2. The radiation unit according to claim 1, wherein the surface area of the first extension branch is adjustable and/or the surface area of the second extension branch is adjustable.
- The radiation unit according to claim 2, wherein the surface area of the first extension branch is greater than or equal to the surface area of the second extension branch.
- **4.** The radiation unit according to claim 1, wherein each of the radiation arms is provided with a first connecting portion for coupling feed with a feeding balun.
- **5.** The radiation unit according to claim 1, wherein an outer sidewall of each of the radiation arms is provided with a cut-off corner.
- 6. The radiation unit according to any one of claims 1-5, wherein each of the radiation arms is provided with a first hollowed groove, each of one end of the first extension branch and one end of the second extension branch is connected with the outer sidewall of each of the radiation arms, a first spacer groove in communication with the first hollowed groove is provided between the first extension branch and the second extension branch, and each of the first extension branch and the second extension branch is disposed towards the inside of the first hollowed groove.
- 7. The radiation unit according to claim 6, wherein a second spacer groove and a current-conducting part for connecting two adjacent radiation arms are provided between the two adjacent radiation arms, and each of the two adjacent radiation arms is provided with a second hollowed groove in communication with the second spacer groove.
- **8.** The radiation unit according to claim 7, wherein a hollowed area of the first hollowed groove is adjustable and/or a hollowed area of the second hollowed groove is adjustable.

- 9. The radiation unit according to claim 7, wherein a distance between a sidewall of the first hollowed groove and a sidewall of the second spacer groove ranges from 5.5 mm to 6mm; and a width of the second hollowed groove ranges from 11.9 mm to 12.7 mm.
- 10. A 5G antenna, comprising:
 - the radiation unit according to any one of claims 1-9, and
 - feeding baluns which are in coupling feed with the radiation arms.
- 11. The 5G antenna according to claim 10, wherein the radiation unit further comprises a substrate which is provided between the radiation arms and the feeding baluns, and the radiation arms are disposed on a surface of the substrate.
- 12. The 5G antenna according to claims 10 or 11, wherein each of the feeding baluns comprises a first feeding component for the coupling feed with the first group of dipoles and a second feeding component for the coupling feed with the second group of dipoles, the first feeding component and the second feeding component being disposed to have an angle therebetween.

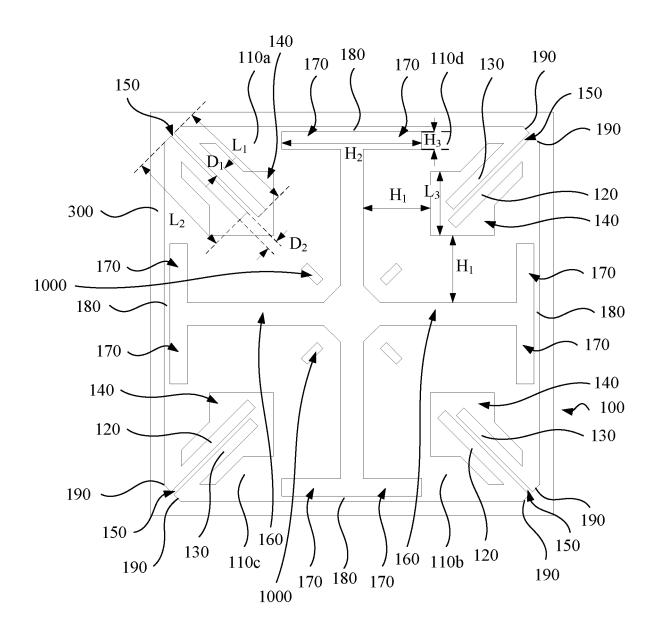


Figure 1

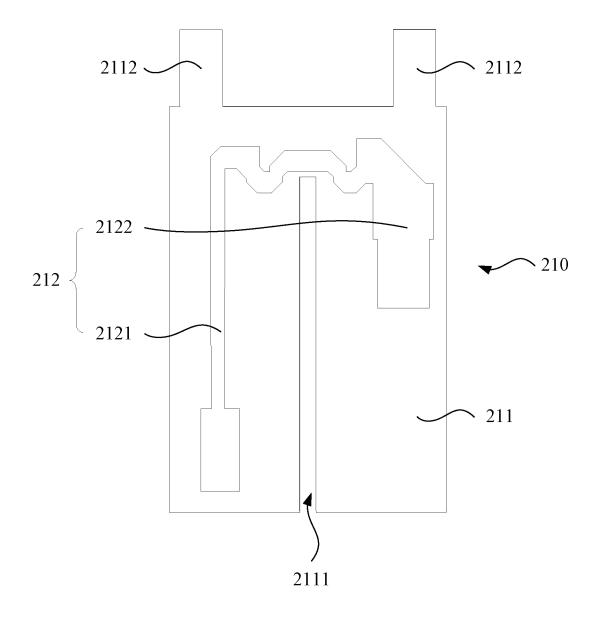


Figure 2

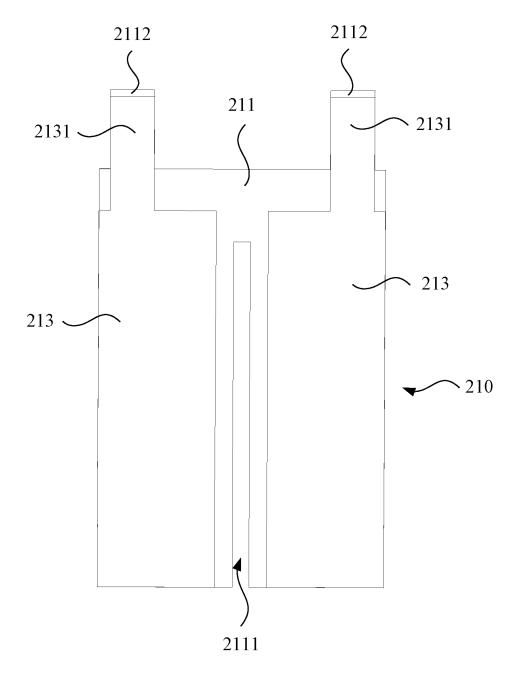


Figure 3

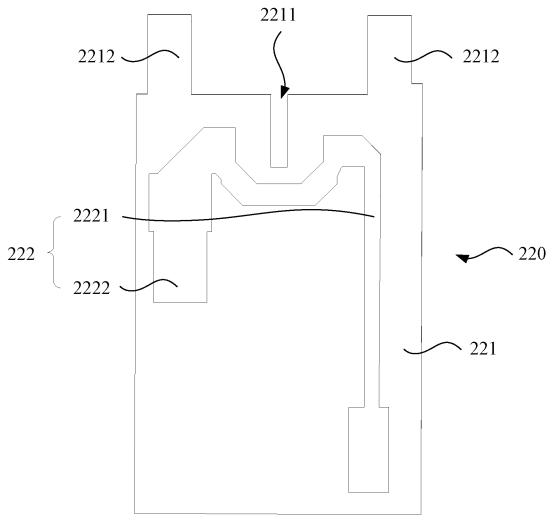
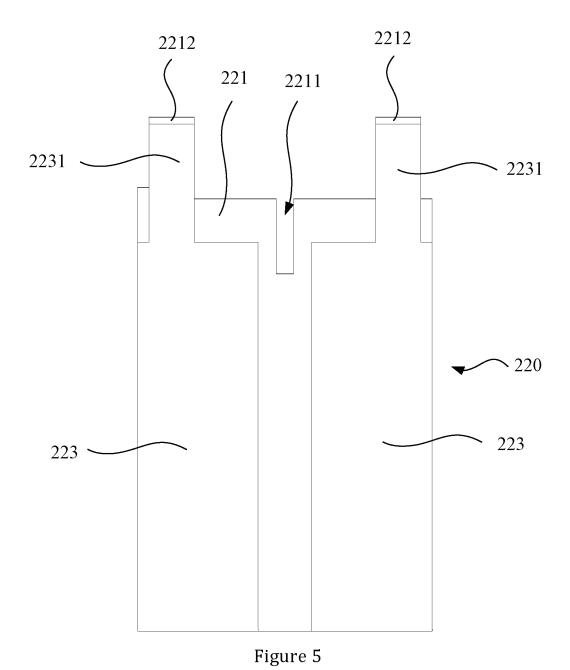
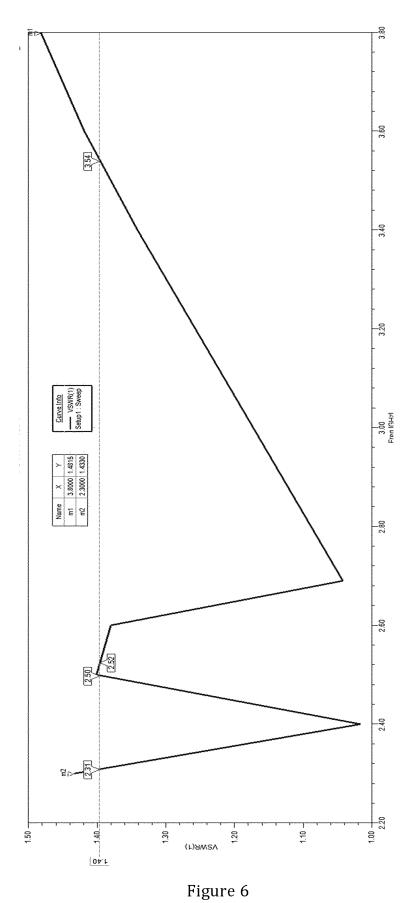




Figure 4

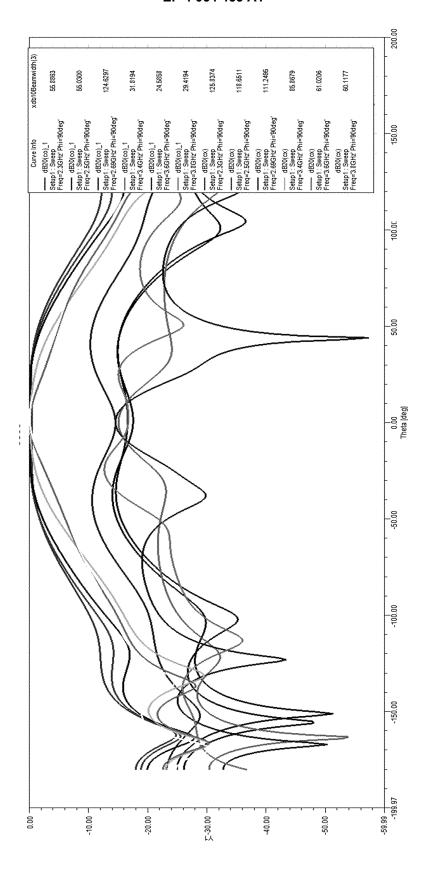


Figure 7

EP 4 064 453 A1

International application No.

INTERNATIONAL SEARCH REPORT

PCT/CN2020/110587 5 CLASSIFICATION OF SUBJECT MATTER H01Q 1/38(2006.01)i; H01Q 1/50(2006.01)i; H01Q 9/16(2006.01)i; H01Q 21/00(2006.01)i; H01Q 21/24(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS, CNTXT, VEN, USTXT, EPTXT, WOTXT, CNKI, IEEE: 天线, 偶极子, 枝节, 极化, 正交, 槽, 缝隙, 基板, antenna, dipole, branch, polarization, orthogonality, slot, groove, substrate C. DOCUMENTS CONSIDERED TO BE RELEVANT 20 Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* CN 111129750 A (COMBA TELECOM TECHNOLOGY (GUANGZHOU) LTD.) 08 May PX 1-12 2020 (2020-05-08) description, paragraphs [0030]-[0067], and figures 1-7 CN 210957003 U (COMBA TELECOM TECHNOLOGY (GUANGZHOU) LTD.) 07 July PX 1-12 25 2020 (2020-07-07) description, paragraphs [0030]-[0067], and figures 1-7 X CN 107069197 A (SHANGHAI AMPHENOL AIRWAVE COMMUNICATION 1-5, 11-12 ELECTRONICS CO., LTD.) 18 August 2017 (2017-08-18) description paragraphs [0047]-[0067], [0084]-[0090], figures 1-8, 15-19 Y CN 107069197 A (SHANGHAI AMPHENOL AIRWAVE COMMUNICATION 6-9 30 ELECTRONICS CO., LTD.) 18 August 2017 (2017-08-18) description paragraphs [0047]-[0067], [0084]-[0090], figures 1-8, 15-19 Y CN 209730180 U (XI'AN JIANDA INFORMATION TECHNOLOGY CO., LTD.) 03 6-9 December 2019 (2019-12-03) description, paragraphs [0028]-[0029], and figures 1-2 35 Further documents are listed in the continuation of Box C. ✓ See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international filing date 40 "A" document of particular relevance; the claimed invention cannot be "E" considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed 45 document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 10 October 2020 29 October 2020 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/ No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing 100088 China Facsimile No. (86-10)62019451 Telephone No. 55 Form PCT/ISA/210 (second sheet) (January 2015)

EP 4 064 453 A1

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2020/110587 5 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. CN 101465475 A (COMBA TELECOM SYSTEMS (CHINA) CO., LTD.) 24 June 2009 Y 7-9 10 description, pages 3 and 4, and figures 1 and 2 US 6028563 A (CIT ALCATEL) 22 February 2000 (2000-02-22) 1-12 A entire document CN 209730163 U (GUANGZHOU JIESAI COMMUNICATION PLANNING AND DESIGN INSTITUTE CO., LTD. et al.) 03 December 2019 (2019-12-03) 1-12 A 15 entire document CN 103647140 A (GUANGZHOU JIESAI COMMUNICATION PLANNING AND DESIGN 1-12 Α INSTITUTE CO., LTD. et al.) 19 March 2014 (2014-03-19) entire document 20 25 30 35 40 45 50

17

Form PCT/ISA/210 (second sheet) (January 2015)

EP 4 064 453 A1

5

10

15

20

25

30

35

40

45

50

55

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2020/110587 Patent document Publication date Publication date Patent family member(s) (day/month/year) cited in search report (day/month/year) 111129750 08 May 2020 210957003 U 07 July 2020 CN CN210957003 U 07 July 2020 111129750 08 May 2020 CN CN A 107069197 CN A 18 August 2017 None CN 209730180 U 03 December 2019 None CN 101465475 24 June 2009 2011291905 01 December 2011 A US A119 October 2011 EP 2378610 **A**1 WO 2010078797 15 July 2010 A1EP 2378610 **B**1 25 July 2018 US 8866688 В2 21 October 2014 EP 2378610 A4 12 August 2015 08 March 2001 US 6028563 В2 22 February 2000 ΑU 730484 20 April 2006 19829714 DE B4 DE 19829714 21 January 1999 Α1 7399798 21 January 1999 AU Α CA 2240114 **A**1 03 January 1999 209730163 11004821623 July 2019 CN U 03 December 2019 CN Α CN 103647140 19 March 2014 103647140 В 18 May 2016 A CN

18

Form PCT/ISA/210 (patent family annex) (January 2015)