FIELD
[0001] Embodiments herein generally relate to apparatus and methods for reclaiming monoethylene
glycol (MEG), or other glycols, in oil and gas processing. Specifically, methods and
apparatus are described herein for reducing energy consumption in MEG reclamation.
BACKGROUND
[0002] Glycols are used in oil and gas recovery to suppress formation of gas hydrate crystals,
which can negatively impact production and transportation of hydrocarbon products.
The glycols are expensive, so reclamation and reuse of glycols is common in such processes.
Among other processes, glycols, and specifically monoethylene glycol (MEG), are thermodynamically
separated from other materials through application of thermal energy, for example
in a distillation process. There is a continuing need to reduce the energy applied
in reclamation of glycols, and specifically MEG, in oil and gas processing.
SUMMARY
[0004] The present invention resides in a method as defined in claim 1. Preferred embodiments
are defined in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] So that the manner in which the above recited features of the present disclosure
can be understood in detail, a more particular description of the disclosure, briefly
summarized above, may be had by reference to embodiments, some of which are illustrated
in the appended drawings. It is to be noted, however, that the appended drawings illustrate
only exemplary embodiments and are therefore not to be considered limiting of its
scope, may admit to other equally effective embodiments.
Fig. 1 is a schematic process view of a glycol reclamation process 100 according to
one embodiment.
Fig. 2 is a flow diagram summarizing a method according to another embodiment.
Fig. 3 is a flow diagram summarizing a method according to yet another embodiment.
[0006] To facilitate understanding, identical reference numerals have been used, where possible,
to designate identical elements that are common to the figures. It is contemplated
that elements and features of one embodiment may be beneficially incorporated in other
embodiments without further recitation.
DETAILED DESCRIPTION
[0007] Fig. 1 is a schematic process view of a glycol reclamation process 100 according
to one embodiment. The process 100 uses a vaporizer 102 to vaporize glycol from a
feed stream 104. The feed stream 104 is provided to the vaporizer 102 at a feed location
106. A liquid phase 108 is maintained inside the vaporizer 102. The feed location
106 is a port through a sidewall 110 of the vaporizer 102. The feed stream 104 may
flow through the feed location 106 into the liquid phase 108, or, as here, the feed
stream 104 may flow through the feed location 106 into a vapor phase 112 located above
the liquid phase 108. In some cases, as shown here, an optional delivery conduit 114
may extend from the feed location 106 into an interior 116 of the vaporizer 102, such
that the feed stream 104 flows to a location in the interior 116 that is spaced apart
from the sidewall 110.
[0008] The feed stream 104 contains glycol, namely MEG, from an oil and gas processing facility.
The feed stream 104 also contains water and potentially other solid and liquid components.
The liquid phase 108 is maintained at a temperature that vaporizes at least a portion
of the glycol from the feed stream 104. As the feed stream contains MEG and water,
the liquid phase 108 is maintained at a temperature that heats at least a portion
of the feed stream to a temperature between the vaporization temperature of MEG and
water, at an operating pressure of the vaporizer 102, and a degradation temperature
of MEG. Pressure of the vaporizer 102 is maintained such that the vaporization temperature
of the glycol is less than a degradation temperature of the glycol.
[0009] The glycol, and some water, is vaporized by thermal contact with a heating medium
in the vaporizer 102. The heating medium may be the liquid of the liquid phase 108,
or may be separated from the liquid phase 108 by a thermal contact structure, such
as a heat exchanger or thermal coil. A portion of the heating medium is withdrawn
from the vaporizer 102 through a withdrawal line 119 and routed to a thermal section
120, optionally using a recycle pump 121. The thermal section 120 increases a temperature
of the heating medium to a temperature that supports vaporization of glycol in the
vaporizer 102. The heating medium is routed from the thermal section 120 back to the
vaporizer 102 through a recycle line 122. Dissolved materials in the feed stream 104
can precipitate in the liquid phase 108 as vapor leaves the liquid phase 108 and enters
the vapor phase 112. Buildup of these solids can be managed by withdrawing a purge
portion of the liquid phase 108 through a purge line 124, optionally using a purge
pump 126. The purge portion can be routed to disposal through a disposal line 128,
or can optionally be routed to a remediation section 130 that removes some or all
of the solids to form a cleaned heating medium. The cleaned heating medium is then
routed back to the vaporizer 102 through a clean line 132. The remediation section
130 can feature any solids removal unit, or combination thereof, including centrifuges,
hydrocyclones, filters, settlers, and the like.
[0010] Vapor evaporated in the vaporizer 102 enters the vapor phase 112, which is withdrawn
from the vaporizer as a vaporized stream through a vapor line 134 coupled to the vaporizer
102 at a vapor withdrawal location 136, which may be located at a top 138 of the vaporizer
102 or in an upper portion 140 of the vaporizer 102. The vapor line 134 is coupled
to a pressurizing unit 142 that increases a pressure of the vapor in the vapor line
134. The pressurizing unit 142 may include a compressor 144 to compress all of, or
part of, the vapor in the vapor line 134. Pressurizing the vaporized stream in the
vapor line raises the vapor pressure of components in the vapor line 134, thus forming
a pressurized stream having a dew point temperature higher than the vaporized stream.
The vaporized stream is pressurized to an extent that the dew point temperature of
the pressurized stream is above the temperature of the heating medium entering the
thermal section 120. The pressurized stream is routed through a pressurized line 146
to the thermal section 120.
[0011] Using a thermal contactor 148, the pressurized stream is thermally contacted with
the heating medium routed to the thermal section 120. The thermal contactor 148 may
be a heat exchanger of any useful type, such as a plate exchanger, a shell and tube
exchanger, a spiral plate exchanger, a wide-gap exchanger, a falling film tube exchanger,
or other type of exchanger. In some embodiments, a scale resistant exchanger design
can be helpful in this service. The heating medium is at a temperature, upon entering
the thermal contactor 148, that results in thermal energy flowing from the pressurized
stream to the heating medium. The thermal energy is extracted from the pressurized
stream mostly as latent heat, so that at least a portion of the pressurized stream
condenses in the thermal contactor 148, forming an extracted stream that exits the
thermal contactor 148 through an extracted stream conduit 150. The extracted stream
conduit 150 is coupled to a phase separator 152, where liquid is withdrawn through
a condensate line 154 and vapor is withdrawn through a reduced vapor line 156, which
can be routed to further processing such as glycol purification.
[0012] The condensate can be returned to the vaporizer 102 through a condensate return line
158, optionally using a condensate pump 159. Condensate can also be withdrawn or purged
using a condensate withdrawal line 161. The condensate return line 158 enters the
vaporizer 102 at a condensate return location 160 of the sidewall 110 that may be
located in the liquid phase 108 or the vapor phase 112 of the vaporizer 102. In this
case, the condensate return location 160 is in the vapor phase 112, and the condensate
return line 158 extends to a central region of the vaporizer 102 and couples to a
distributor 162. The distributor 162 distributes the condensate as droplets in the
interior 116 of the vaporizer 102 to scavenge particles and droplets of the heating
medium that might entrain in the vapor phase 112. Droplets of condensate travel downward
through the vapor phase 112, interacting with droplets of heating medium and other
entrained liquids, encouraging the entrained liquids downward to the liquid phase
108. A surface area structure 170, which may be any convenient type of packing or
tray structure, can optionally be used to increase area of contact between downgoing
condensate and upgoing vapor and entrained liquid droplets to increase removal of
small liquid droplets in the vapor stream. Returning condensate the vaporizer 102
in this way reduces entrainment of liquid in the vapor exiting the vaporizer 102.
Liquid from the heating medium that might emerge in the vaporized stream 134 will
be returned to the vaporizer 102 with the condensate. It should be noted that the
feed stream 104 may also be charged to the vaporizer 102 in a similar way, by spraying
the liquid feed stream into the upgoing vapor of the vapor phase 112 to further reduce
entrained liquid droplets.
[0013] A temperature of the heating medium is increased in the thermal contactor 148. The
thermal section 120 generally increases the temperature of the heating medium to a
temperature selected to vaporize glycol in the vaporizer 102. Since the heating medium
flows from the thermal section 120 back to the vaporizer 102, enduring some heat loss
along the way, the temperature of the heating medium upon leaving the thermal section
120 is selected such that the temperature of the heating medium upon re-entering the
vaporizer 102 is such that glycol is vaporized in the vaporizer 102. A heater 164
is provided in the thermal section 120 to achieve a target temperature of the heating
medium. The pressurizing unit 142 and the heater 164 can be used together to optimize
energy input to the heating medium to achieve the desired temperature therein. Depending
on the composition of the vaporized stream, more or less latent heat may be available
in the vaporized stream. Additional energy needed to achieve the target temperature
of the heating medium can be obtained using the heater 164.
[0014] The glycol reclamation process 100 is controlled to maximize glycol recovery per
unit energy consumption. Temperature of the heating medium returned to the vaporizer
102 is measured, and the pressurizing unit 142 and the heater 164 adjusted to maintain
the recycled heating medium temperature. In one case, duty of the heater 164 is adjusted
to maintain the recycled heating medium temperature, and pressurizing unit duty is
then used to minimize energy consumption. Duty of the pressurizing unit 142 will directly
affect flow rate of condensate 154, and will inversely affect flow rate of reduced
vapor 156. The more condensate formed, the more latent heat is used to heat the heating
medium, and the less additional energy added using the heater 164. If an increment
of energy used to create one degree of heating using latent heat is less than achieving
the same degree of heating using the heater 164, pressurizing duty should be increased
until the marginal energy for each unit is the same. Likewise, if an increment of
energy used to create one degree of heating using the heater 164 is less than achieving
the same degree of heating using latent heat, pressurizing duty should be decreased
until the marginal energy for each unit is the same. In one case, energy consumption
of the pressurizing unit 142 and the heater 164 can be directly measured, duty of
the pressurizing unit 142 can be adjusted by a small increment, and the control response
of the heater 164 determined. The overall change in energy consumption can then be
evaluated to determine whether the new operating state consumes less energy than the
old operating state. Such manipulations can be repeated, increasing or decreasing
the pressurizing unit duty to seek an optimum. In another case, pressurizing unit
duty can be adjusted based on recycled heating medium temperature, and heat input
using the heater 164 can be manipulated to reduce overall energy consumption. Simulators
can also be used to predict the effect of changes in pressurizing unit duty or heater
input, by measuring composition of the vaporized stream and simulating the latent
heat available in the stream and it's effect on temperature of the heating medium.
[0015] Fig. 2 is a schematic process view of a glycol reclamation process 200 according
to another embodiment. In the embodiment of Fig. 2, a vaporized stream 202 is recovered
from the vaporizer 102 at the vapor withdrawal location 136 and routed to a treater
204, which may be a distillation column. A treated vapor stream exits from an upper
region 206 of the treater 204, in some cases the top 208 of the treater 204, and is
the routed to the pressurizing unit 142 by a treated vapor line 210. The treated vapor
stream may be a purified glycol stream that has been reduced in water content. A condensate
line 212 routes all or a portion of the condensate from the phase separator 152 to
the upper region 206 of the treater 204. In this case, the condensate line 212 extends
to an interior 214 of the treater 204, through a sidewall 216 thereof to couple to
a distributor 218. In this case, a surface area structure 220, which may be any of
the types of surface area structures listed above in connection with Fig. 1, is disposed
in the treater 204 to enhance the process performed by the treater 204. In one case,
the surface area structure 220 may aid in mass transfer for a distillation process.
Downgoing liquid exits the treater 204 at a bottom of the treater 204 through a bottoms
line 222. The bottoms line 222 is not shown directed to any particular use in Fig.
2, but may be recycled back to the vaporizer 102, recovered as lean glycol product,
or routed to disposal or further processing elsewhere. The bottoms in the bottoms
line 222 may be mixed with reduced vapor 156, if desired, for routing to further glycol
purification.
[0016] In this embodiment, overall evaporative load on the vaporizer 102 is reduced because
less glycol containing material is recycled to the vaporizer 102 relative to the embodiment
of Fig. 1. Instead of recycling condensate into the vaporizer, the condensate is recycled
to the scrubber 204 and then routed to further processing.
[0017] Fig. 3 is a flow diagram summarizing a method 300 according to one embodiment. The
method 300 is a method of recovering glycol from a mixture. The mixture may be a glycol
containing stream from an oil and/or gas processing facility. In many situations,
the glycol is MEG, and the glycol containing stream also has water and solids. At
302, the glycol containing stream is provided to a vaporizer. The vaporizer is a vessel
for applying thermal energy to the glycol containing stream to vaporize glycol, and
in some cases water or other light materials, from the glycol containing stream.
[0018] At 304, the glycol containing stream is thermally contacted with a heating medium
to form a vaporized stream. Thermal energy is transmitted from the heating medium
to the glycol containing stream to vaporize glycol, and in some cases water, from
the glycol containing stream to form the vaporized stream. The glycol containing stream
may directly contact the heating medium in a liquid pool of the heating medium with
unvaporized components from the glycol containing stream, or the thermal contact may
be mediated by a thermal contact structure, such as a heat exchanger. The heating
medium is maintained at a vaporization temperature selected to vaporize glycol from
the glycol containing stream or from the liquid pool without substantially degrading
the glycol.
[0019] The heating medium is a material that can be heated and can transmit heat to another
material. The material is in direct contact with the glycol containing stream in the
vaporizer, so a material that is immiscible with glycol can be used. Hydrocarbon materials
can be used, and are immiscible with most glycols, including MEG. The hydrocarbon
materials generally have a boiling point significantly higher than the glycol to be
recovered.
[0020] At 306, a pressure of the vaporized stream is increased to form a pressurized stream.
All or a portion of the vaporized stream can be compressed using any suitable compressor,
rotating or reciprocating. A portion of the vaporized stream may be obtained by simple
flow separation, or the portion of the vaporized stream may be obtained by a process,
such as distillation, flashing, or extraction performed on the vaporized stream to
yield a portion thereof. For example, a distillation process performed on the vaporized
stream may yield a portion of the vaporized stream as overhead, which portion can
be increased in pressure and used subsequently in the method 300.
[0021] The pressure of the vaporized stream, or portion thereof, is increased to raise the
vapor pressure of components of the stream such that the pressurized stream will have
a temperature to support heat transfer to the heating medium. Thus, the vaporized
stream, or portion thereof, is pressurized to a pressure that yields a target temperature
for heating the heating medium. The pressurization can be essentially adiabatic or
sub-adiabatic. In this context, sub-adiabatic pressurization is a pressurization process
that yields a temperature rise less than the temperature rise that an adiabatic pressurization
would yield due to thermal losses. The pressurized stream is brought to a thermodynamic
state that is mainly, or completely, gas phase with a temperature at or above the
dew point of the pressurized stream, but near enough to the dew point of the stream
that reducing the temperature of the stream by thermal contact with a cooler stream
will result in some condensation of the pressurized stream, and accompanying release
of latent heat. In some cases, the pressurized stream may be de-superheated.
[0022] In some embodiments, flow rate and thermal condition of the pressurized stream may
be selected to maximize transferrable thermal energy to the heating medium. A controller
can monitor composition of the vaporized stream formed at 304, or a portion of the
vaporized stream derived from other processing. The controller can use a thermodynamic
model to determine the conditions for deriving maximum transferrable thermal energy
from any such streams, and can manipulate control valves to deliver a flow rate of
a selected composition to be pressurized to a selected pressure using a controllable
compressor. Depending on available mass and composition, a slip stream of the vaporized
stream can be routed to the compressor, or a distilled overhead stream can be routed
to the compressor, or a mixture of the two. The controller can also adjust circulation
rate of the heating medium and other variables to maximize or optimize recovery of
thermal energy from the vaporized stream.
[0023] Adjusting thermal condition of the pressurized stream includes adjusting temperature
and/or pressure. In some cases, one or both of temperature and pressure may be adjusted
to move the thermal condition of the pressurized stream to a state that maximizes
available transferrable thermal energy. For example, where increasing pressure to
form the pressurized stream produces a small amount of condensate, the pressurized
stream can be heated using a trim heater to vaporize the condensate. Alternately,
or additionally, compressor duty can be reduced to avoid condensation. In other cases,
a trim cooler can be used to de-superheat the pressurized stream, or even to subcool
the pressurized stream in some cases.
[0024] At 308, the pressurized stream is thermally contacted with the heating medium. A
portion of the heating medium is withdrawn from the vaporizer and routed to a thermal
contactor. The pressurized stream is also routed to the thermal contactor, where thermal
exchange occurs between the pressurized stream and the heating medium. The thermal
contactor is typically an apparatus that provides a thermally conductive interface
between the pressurized stream and the heating medium. One or more metal walls may
contact both the pressurized stream and the heating medium to facilitate flow of thermal
energy from the pressurized stream to the heating medium.
[0025] At 310, the flow of thermal energy from the pressurized stream to the heating medium
condenses at least a portion of the pressurized stream. The condensed portion of the
pressurized stream can be separated from the noncondensed portion, if desired, and
the condensed portion can be returned to the vaporizer or routed to other processing.
[0026] At 312, a temperature of the heating medium is increased to a target temperature
selected to vaporize at least a portion of the glycol in the vaporizer. A second heater
may be used to achieve the target temperature. The temperature of the heating medium
is initially increased by thermal contact with the pressurized stream, and processing
in the second heater brings the temperature to the target. The heating medium is then
routed back to the vaporizer.
[0027] In the inventive embodiment, MEG and water are vaporized in a vaporizer. The MEG
and water are brought into direct contact with a heating medium that is immiscible
with MEG. The heating medium in the vaporizer is maintained at a vaporization temperature
that is between a boiling temperature of MEG and a boiling temperature of water. In
some cases, the vaporizer is operated under reduced pressure so that the heating medium
can be maintained at a lower temperature. Maintaining the heating medium at a lower
temperature to vaporize MEG can reduce degradation rate of the MEG.
[0028] The MEG/water vapor is taken overhead in the vaporizer and routed to a compressor.
The compressor boosts the pressure of the MEG/water vapor substantially adiabatically,
raising the temperature of the MEG/water vapor along, or near, a saturation limit.
Meanwhile, a portion of the heating medium is withdrawn from the vaporizer and routed
to a thermal contactor. Upon entering the thermal contactor, the heating medium is
at an inlet temperature that may be below the temperature of the heating medium in
the vaporizer due to thermal losses. The compression of the MEG/water vapor is configured
to raise the temperature of the MEG/water vapor to a level at or above the inlet temperature
of the heating medium. The compressed MEG/water vapor is then routed to the thermal
contactor to heat the heating medium. The compressed MEG/water vapor is cooled somewhat
in the thermal contactor and caused to condense, at least partially. The heat released
by the condensation heats the heating medium to an outlet temperature at the thermal
contactor. The heating medium is then routed to a trim heater that raises the temperature
of the heating medium to a target temperature such that the heating medium is maintained
at the vaporization temperature.
[0029] The cooled MEG/water stream is routed to a settler to separate vapor from liquid.
The liquid may be routed back to the vaporizer for further purification, or may be
sent on to subsequent purification operations. The vapor is also typically routed
to subsequent purification operations. In this way, heat of vaporization added to
the MEG/water vapor is at least partially recovered into the heating medium to conserve
energy.
[0030] Use of latent heat to heat the heating medium can generally be maximized by measuring
flow rates of reduced vapor and condensate after the MEG/water stream is cooled. Maximizing
condensate maximizes use of latent heat, but incremental compression duty to achieve
incremental condensation may take more energy to heat the heating medium than using
the trim heater. Energy consumption by a compressor can be directly measured by measuring
electrical current to the compressor. Energy consumption by the trim heater can be
measured by measuring inlet and outlet temperatures, and flow rate, of thermal fluid
used in the trim heater, or by measuring current if the trim heater is electrical.
In any case, marginal changes in energy consumption by the compressor and by the trim
heater can be compared to determine whether to increase compressor duty to capture
more latent heat. Compressor duty or trim heating can then be adjusted. The component
that is not adjusted can be slaved to temperature of the heating medium so that as
compression duty is increased, trim heating will automatically decrease, and vice
versa.
1. A method (300), comprising:
providing a feed stream (104) to a vaporizer (102), the feed stream comprising MEG
and water;
vaporizing (302, 304) the MEG by thermal contact with a heating medium in the vaporizer
(102) to form a vaporized MEG stream, wherein the heating medium is immiscible with
MEG;
increasing (206) a pressure of at least a portion of the vaporized MEG stream using
a pressurizing unit (142) to form a pressurized MEG vapor stream having a dew point
temperature greater than the temperature of the heating medium;
withdrawing a portion of the heating medium from the vaporizer (102) and routing the
withdrawn portion to a thermal section (120);
increasing (308, 312) a temperature of the withdrawn heating medium in the thermal
section (120) by thermally contacting the heating medium with the pressurized vapor
stream to form a recycled heating medium, wherein the thermal section (120) includes
a heater (164) configured to achieve a target temperature of the recycled heating
medium;
routing the recycled heating medium from the thermal section (120) back to the vaporizer
(102);
measuring a temperature of the recycled heating medium returned to the vaporizer (102)
or measuring energy consumption of the pressurizing unit and the heater (164); and
adjusting operation of the pressurizing unit (142) and/or the heater (164) to maintain
the recycled heating medium temperature and reduce overall energy consumption.
2. The method of claim 1, wherein thermally contacting (308) the withdrawn heating medium
with the pressurized vapor MEG stream is performed using a heat exchanger.
3. The method of any preceding claim, wherein increasing (306) the pressure of the at
least a portion of the vaporized MEG stream comprises compressing at least a portion
of the vaporized MEG stream.
4. The method of any preceding claim, wherein increasing the temperature of the heating
medium condenses (310) at least a portion of the pressurized MEG vapor stream.
5. The method of any preceding claim, wherein the portion of the vaporized stream is
a distillation overhead stream.
6. The method of claim 5, wherein the increasing (306) a pressure of at least a portion
of the vaporized MEG stream comprises distilling the vaporized MEG stream to form
the overhead stream and compressing the overhead stream.
7. The method of claim 1, further comprising adjusting a temperature of the pressurized
MEG vapor stream prior to the thermally contacting the heating medium with the pressurized
MEG vapor stream.
8. The method of claim 7, wherein the adjusting a temperature of the pressurized MEG
vapor stream comprises heating the pressurized MEG vapor stream.
9. The method of claim 8, wherein heating the pressurized MEG vapor stream comprises
vaporizing condensate formed by the increasing a pressure of at least a portion of
the vaporized MEG stream to form a pressurized MEG vapor stream.
10. The method of claim 1, further comprising
distilling the vaporized MEG stream to form a purified MEG stream and
increasing a pressure of at least a portion of the purified MEG stream to form the
pressurized MEG vapor stream; and
at least partially condensing the pressurized MEG vapor stream.
1. Verfahren (300), umfassend:
Bereitstellen eines Zulaufstroms (104) an einen Verdampfer (102), wobei der Zulaufstrom
MEG und Wasser umfasst,
Verdampfen (302, 304) des MEGs durch thermischen Kontakt mit einem Erhitzungsmedium
im Verdampfer (102), um einen in Dampf überführten MEG-Strom zu bilden, wobei das
Erhitzungsmedium mit dem MEG-Strom unmischbar ist;
Erhöhen (206) eines Drucks wenigstens eines Teils des in Dampf überführten MEG-Stroms
unter Verwendung einer Druckbeaufschlagungseinheit (142), um einen druckbeaufschlagten
MEG-Dampfstrom zu bilden, der eine Taupunkttemperatur aufweist, die größer ist als
die Temperatur des Erhitzungsmediums;
Entnehmen eines Teils des Erhitzungsmediums aus dem Verdampfer (102) und Leiten des
entnommenen Teils zu einem thermischen Abschnitt (120);
Erhöhen (308, 312) einer Temperatur des entnommenen Erhitzungsmediums im thermischen
Abschnitt (120) durch thermisches Inkontaktbringen des Erhitzungsmediums mit dem druckbeaufschlagten
Dampfstrom, um ein rezykliertes Erhitzungsmedium zu bilden, wobei der thermische Abschnitt
(120) eine Heizvorrichtung (164) umfasst, die dazu ausgelegt ist, eine Solltemperatur
des rezyklierten Erhitzungsmediums zu erzielen;
Leiten des rezyklierten Erhitzungsmediums aus dem thermischen Abschnitt (120) zurück
zum Verdampfer (102);
Messen einer Temperatur des zum Verdampfer (102) rückgeführten rezyklierten Erhitzungsmediums
oder Messen des Energieverbrauchs der Druckbeaufschlagungseinheit und der Heizvorrichtung
(164); und
Einstellen des Betriebs der Druckbeaufschlagungseinheit (142) und/oder der Heizvorrichtung
(164), um die Temperatur des rezyklierten Erhitzungsmediums aufrechtzuerhalten und
den Gesamtenergieverbrauch zu reduzieren.
2. Verfahren nach Anspruch 1, wobei das thermische Inkontaktbringen (308) des entnommenen
Erhitzungsmediums mit dem druckbeaufschlagten DampfMEG-Strom unter Verwendung eines
Wärmetauschers durchgeführt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Erhöhen (306) des Drucks
von wenigstens einem Teil des in Dampf überführten MEG-Stroms umfasst, wenigstens
einen Teil des in Dampf überführten MEG-Stroms zu verdichten.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Erhöhen der Temperatur
des Erhitzungsmediums wenigstens einen Teil des druckbeaufschlagten MEG-Dampfstroms
kondensiert (310).
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Teil des in Dampf überführten
Stroms ein Destillations-Kopfstrom ist.
6. Verfahren nach Anspruch 5, wobei das Erhöhen (306) eines Drucks wenigstens eines Teils
des in Dampf überführten MEG-Stroms umfasst, den in Dampf überführten MEG-Strom zu
destillieren, um den Kopfstrom zu bilden, und den Kopfstrom zu verdichten.
7. Verfahren nach Anspruch 1, ferner umfassend Einstellen einer Temperatur des druckbeaufschlagten
MEG-Dampfstroms vor dem thermischen Inkontaktbringen des Erhitzungsmediums mit dem
druckbeaufschlagten MEG-Dampfstrom.
8. Verfahren nach Anspruch 7, wobei das Einstellen einer Temperatur des druckbeaufschlagten
MEG-Dampfstroms umfasst, den druckbeaufschlagten MEG-Dampfstrom zu erhitzen.
9. Verfahren nach Anspruch 8, wobei das Erhitzen des druckbeaufschlagten MEG-Dampfstroms
umfasst, Kondensat, das durch das Erhöhen eines Drucks wenigstens eines Teils des
in Dampf überführten MEG-Stroms gebildet wird, zu verdampfen, um einen druckbeaufschlagten
MEG-Dampfstrom zu bilden.
10. Verfahren nach Anspruch 1, ferner umfassend
Destillieren des in Dampf überführten MEG-Stroms, um einen gereinigten MEG-Strom zu
bilden und
Erhöhen eines Drucks wenigstens eines Teils des gereinigten MEG-Stroms, um den druckbeaufschlagten
MEG-Dampfstrom zu bilden, und
wenigstens teilweises Verdampfen des druckbeaufschlagten MEG-Dampfstroms.
1. Procédé (300) comprenant :
la fourniture d'un flux d'alimentation (104) à un vaporisateur (102), le flux d'alimentation
comprenant du monoéthylène glycol (MEG) et de l'eau ;
la vaporisation (302, 304) du MEG par contact thermique avec un milieu chauffant dans
le vaporisateur (102) pour former un flux de MEG vaporisé, dans lequel le milieu chauffant
est non miscible avec le MEG ;
l'augmentation (206) de la pression d'au moins une partie du flux de MEG vaporisé
à l'aide d'une unité de pressurisation (142) pour former un flux de vapeur de MEG
sous pression présentant une température de point de rosée supérieure à la température
du milieu chauffant ;
le retrait d'une partie du milieu chauffant du vaporisateur (102) et l'acheminement
de la partie retirée vers une section thermique (120) ;
l'augmentation (308, 312) de la température du milieu chauffant retiré dans la section
thermique (120) par la mise en contact thermique du milieu chauffant avec le flux
de vapeur sous pression pour former un milieu chauffant recyclé, dans lequel la section
thermique (120) comprend un dispositif de chauffage (164) conçu pour obtenir une température
cible du milieu chauffant recyclé ;
l'acheminement du milieu chauffant recyclé à partir de la section thermique (120)
de retour au vaporisateur (102) ;
la mesure de la température du milieu chauffant recyclé renvoyé au vaporisateur (102)
ou la mesure de la consommation d'énergie de l'unité de pressurisation et du dispositif
de chauffage (164) ; et
l'ajustement de l'unité de pressurisation (142) et/ou du dispositif de chauffage (164)
est réglé pour maintenir la température du milieu chauffant recyclé et réduire la
consommation d'énergie globale.
2. Procédé selon la revendication 1, dans lequel la mise en contact thermique (308) du
milieu chauffant retiré avec le flux de MEG à vapeur sous pression est effectuée à
l'aide d'un échangeur de chaleur.
3. Procédé selon une quelconque revendication précédente, dans lequel l'augmentation
(306) de la pression de ladite au moins une partie du flux de MEG vaporisé comprend
la compression d'au moins une partie du flux de MEG vaporisé.
4. Procédé selon une quelconque revendication précédente, dans lequel l'augmentation
de la température du milieu chauffant condense (310) au moins une partie du flux de
vapeur de MEG sous pression.
5. Procédé selon une quelconque revendication précédente, dans lequel la partie du flux
vaporisé est un flux de tête de distillation.
6. Procédé selon la revendication 5, dans lequel l'augmentation (306) d'une pression
d'au moins une partie du flux de MEG vaporisé comprend la distillation du flux de
MEG vaporisé pour former le flux de tête et la compression du flux de tête.
7. Procédé selon la revendication 1, comprenant en outre l'ajustement d'une température
du flux de vapeur de MEG sous pression avant la mise en contact thermique du milieu
chauffant avec le flux de vapeur de MEG sous pression.
8. Procédé selon la revendication 7, dans lequel l'ajustement d'une température du flux
de vapeur de MEG sous pression comprend le chauffage du flux de vapeur de MEG sous
pression.
9. Procédé selon la revendication 8, dans lequel le chauffage du flux de vapeur de MEG
sous pression comprend la vaporisation du condensat formé par l'augmentation d'une
pression d'au moins une partie du flux de MEG vaporisé pour former un flux de vapeur
de MEG sous pression.
10. Procédé selon la revendication 1, comprenant en outre :
la distillation du flux de MEG vaporisé pour former un flux de MEG purifié et
l'augmentation de la pression d'au moins une partie du flux de MEG purifié pour former
le flux de vapeur de MEG sous pression ; et
la condensation au moins partiellement du flux de vapeur de MEG sous pression.