(11) **EP 4 071 272 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

12.10.2022 Bulletin 2022/41

(21) Application number: 21204425.9

(22) Date of filing: 25.10.2021

(51) International Patent Classification (IPC):

C23C 22/60 (2006.01) C23C 22/66 (2006.01) C23C 22/82 (2006.01) C22C 23/02 (2006.01)

(52) Cooperative Patent Classification (CPC):

C22C 23/02; C23C 22/60; C23C 22/66; C23C 22/82

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 09.04.2021 JP 2021066468

(71) Applicants:

 Mitsubishi Heavy Industries, Ltd. Tokyo 100-8332 (JP)

 National University Corporation Kumamoto University

Kumamoto 860-8555 (JP)

(72) Inventors:

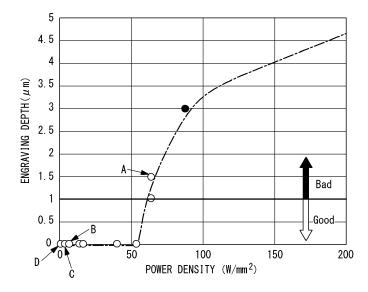
 Tanaka, Akihiro Tokyo, 100-8332 (JP)

 Mori, Hiroki Tokyo, 100-8332 (JP)

 Takahashi, Takayuki Tokyo, 100-8332 (JP)

Kawamura, Yoshihito
 Kumamoto-shi, Kumamoto, 860-8555 (JP)

Yamasaki, Michiaki
 Kumamoto-shi, Kumamoto, 860-8555 (JP)


(74) Representative: Hoffmann Eitle
Patent- und Rechtsanwälte PartmbB
Arabellastraße 30
81925 München (DE)

(54) SURFACE MODIFICATION METHOD OF MG-AL-CA BASED ALLOY

(57) The object is to provide a surface modification method of an Mg-Al-Ca based alloy that enables formation of an oxide film without damaging a base material. The surface modification method of an Mg-Al-Ca based alloy according to the present disclosure includes: immerging an Mg-Al-Ca based alloy in an alkali solution,

and irradiating a surface of the Mg-Al-Ca based alloy immersed in the alkali solution with laser light at a power density that is less than or equal to 60 W/mm^2 and a heat input amount that is less than or equal to 5 mJ. It is preferable that the heat input amount be greater than or equal to 0.3 mJ and less than or equal to 4 mJ.

FIG. 3

EP 4 071 272 A1

Description

10

BACKGROUND OF THE INVENTION

5 1. FIELD OF THE INVENTION

[0001] The present disclosure relates to a surface modification method of an Mg-Al-Ca based alloy.

2. DESCRIPTION OF RELATED ART

[0002] A magnesium (Mg) alloy is lightweight and has high strength but has lower corrosion resistance than an aluminum (Al) alloy or the like. Thus, the magnesium alloy needs to be used after surface treatment and coating are applied thereto. [0003] A typical surface treatment method uses chemical conversion treatment and anodization treatment. The chemical conversion treatment causes a chemical treatment agent to act on the surface of a metal material to be treated, so as to chemically form an oxide film. The anodization treatment uses a metal material to be treated as an anode to carry current in a special electrolysis solution, so as to electrochemically produce an oxide film.

[0004] Japanese Patent Application Laid-Open No. 2008-291310 is an example of the related art.

[0005] In the chemical conversion treatment, a chemical liquid of hexavalent chromium or the like is used as a chemical treatment agent. Since hexavalent chromium has a high environmental load, there is a social demand for refraining from the use thereof. Furthermore, since a chemical liquid is used, there are problems of maintenance cost and disposal cost of the chemical liquid.

[0006] Japanese Patent Application Laid-Open No. 2008-291310 discloses a technique to form an oxide film without using hexavalent chromium. In Japanese Patent Application Laid-Open No. 2008-291310, magnesium alone (having 99.9% purity) is subjected to alkali treatment and then irradiated with laser to form a dense oxide film.

[0007] However, according to studies by the present inventors, it has been found that, when a metal material to be treated is replaced with an Mg-Al-Ca based alloy and an oxide film is formed by the method disclosed in Japanese Patent Application Laid-Open No. 2008-291310, a base material of the Mg-Al-Ca based alloy is damaged and the corrosion resistance is reduced.

30 BRIEF SUMMARY OF THE INVENTION

[0008] The present disclosure has been made in view of the above problems and intends to provide a surface modification method of an Mg-Al-Ca based alloy that enables formation of an oxide film without damaging a base material.

[0009] To solve the above problems, the surface modification method of an Mg-Al-Ca based alloy of the present disclosure employs the following measures.

[0010] The present disclosure provides a surface modification method of an Mg-Al-Ca based alloy. The surface modification method includes: immersing an Mg-Al-Ca based alloy in an alkali solution; and irradiating a surface of the Mg-Al-Ca based alloy immersed in the alkali solution with a laser light at a power density that is less than or equal to 60 W/mm² and a heat input amount that is less than or equal to 5 mJ.

[0011] The immersion in the alkali solution causes an Mg(OH)₂ film to be formed on the surface of the Mg-Al-Ca based alloy. When the Mg(OH)₂ film is irradiated with laser, a dehydration reaction occurs. This modifies the Mg(OH)₂ film to be a homogeneous and dense MgO film.

[0012] As long as laser light irradiation is performed under conditions where the power density and the heat input amount are within the range described above, the engraving depth does not exceed the thickness of the $Mg(OH)_2$ film. It is therefore possible to form an oxide film (MgO film) without damaging a base material. This can improve the corrosion

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

50 [0013]

55

resistance.

Fig. 1 illustrates a laser scanning method as an example.

Fig. 2 is a diagram illustrating a relationship between a power density and an engraving depth.

Fig. 3 is an enlarged view of Fig. 2.

Fig. 4 is a diagram illustrating a relationship between a heat input amount and a corrosion rate.

Fig. 5 is a diagram illustrating corrosion resistance evaluation results.

DETAILED DESCRIPTION OF THE INVENTION

[0014] One embodiment of a surface modification method of an Mg-Al-Ca based alloy according to the present invention will be described below with reference to the drawings.

[First Embodiment]

5

10

15

30

35

40

45

50

55

[0015] A surface modification method of an Mg-Al-Ca based alloy according to the present embodiment includes an alkali treatment step and a laser light irradiation step.

[Alkali Treatment Step]

[0016] An Mg-Al-Ca based alloy is immersed in an alkali solution for a predetermined time. This causes an Mg(OH)₂ film to be formed on the surface of the Mg-Al-Ca based alloy.

[0017] After the predetermined time of immersion, the Mg-Al-Ca based alloy on which the Mg(OH)₂ film is formed is taken out from the alkali solution.

[0018] The alkali solution contains at least one of magnesium hydroxide (Mg(OH)₂), sodium chloride (NaCl), magnesium chloride (MgCl₂), and sodium hydroxide (NaOH).

[0019] In the alkali solution, 0.001 g or greater and 0.012 g or less of $Mg(OH)_2$ may be contained as a chemical component in terms of mass in 1 litter of water. In the alkali solution, 0.001 g or greater and 300 g or less of NaCl may be contained as a chemical component in terms of mass in 1 litter of water. In the alkali solution, 0 g or greater and 400 g or less of $MgCl_2$ may be contained as a chemical component in terms of mass in 1 litter of water. In the alkali solution, 0 g greater and 500 g or less of NaOH may be contained as a chemical component in terms of mass in 1 litter of water. [0020] The immersion time is longer than or equal to 10 minutes and shorter than or equal to 120 minutes, preferably, longer than or equal to 30 minutes and shorter than or equal to 60 minutes. When the immersion time is longer than or equal to 10 minutes, an $Mg(OH)_2$ film having a thickness of more than 1 μ m may be formed. Even when immersion is performed for more than 120 minutes, it is not possible to expect a significant increase in the thickness of $Mg(OH)_2$ film. [0021] The Mg-Al-Ca based alloy has a composition that contains Ca of a atom% and Al of b atom%, with the remaining part made of Mg. The symbols "a" and "b" meet Equations (1) to (3) below.

$$(1) 3 \le a \le 7$$

(2)
$$4.5 \le b \le 12$$
 (preferably, $8 \le b \le 12$)

$$(3) 1.2 \le b/a \le 3.0$$

[0022] The Mg-Al-Ca based alloy may contain Mn of k atom%. The symbol "k" meets Equation (4) below. Mn is an element that improves at least one of corrosion resistance and incombustibility.

(4)
$$0 < k \le 0.3$$
 (preferably, $0.01 \le k \le 0.05$)

[0023] Even a small addition amount of Mn may improve corrosion resistance, while an increased addition amount of Mn causes a reduction in the ductility. To achieve both good corrosion resistance and ductility, it is desirable to suppress addition amount of Mn.

[0024] It is preferable that $(Mg, Al)_2Ca$ of c volume% be contained in the Mg-Al-Ca based alloy. The symbol "c" meets Equation (5) below. $(Mg, Al)_2Ca$ is dispersed in the alloy.

(5)
$$10 \le c \le 35$$
 (preferably, $10 \le c \le 30$)

[0025] The Mg-Al-Ca based alloy may contain Si of x atom%. The symbol "x" meets Equation (6) below.

(6)
$$0.05 \le x \le 0.3$$
 (preferably, $0.05 \le x \le 0.1$)

[0026] Inclusion of Si in the range described above can improve the ductility. If the ductility is reduced due to addition of Mn, the ductility can be improved by addition of Si.

[0027] The Mg-Al-Ca based alloy may contain Zn, a rare earth element (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb), and an inevitable impurity. It is preferable that Zn content be greater than or equal to 0.001 atom% and less than or equal to 3 atom%. It is preferable that rare earth element content be greater than or equal to 0.1 atom% and less than or equal to 5 atom%.

[Laser Light Irradiation Step]

[0028] The Mg-Al-Ca based alloy on which the alkali treatment has been performed is irradiated with laser light by using a laser processing apparatus. The laser light is emitted under conditions where the power density is less than or equal to 60 W/mm² and the heat input amount is less than or equal to 5 mJ. The heat input amount is preferably greater than or equal to 0.3 mJ and less than or equal to 4 mJ, more preferably greater than or equal to 1 mJ and less than or equal to 4 mJ.

[0029] The laser processing apparatus may be, for example, MD-X1500 by KEYENCE CORPORATION having the maximum output of 25 W(ϕ 60 μ m), the wavelength of 1064 nm (in YG laser light), the pulse width of about 500 ns to 1000 ns, the frequency of 1 kHz to 400 kHz, the maximum scanning rate of 12 m/s, and the processing area of 125 mm \times 125 mm \times 42 mm.

[0030] The power density may be adjusted to be a desired value by controlling the laser average output and/or the laser beam diameter.

[0031] The heat input amount may be adjusted to be a desired value by controlling the laser average output, the laser scanning rate, the frequency, and the laser beam diameter.

[0032] It is preferable that the laser light be emitted under conditions where the laser average output is greater than or equal to 0.01 W/mm² and less than or equal to 2 W/mm², the frequency is higher than or equal to 1 kHz and lower than or equal to 500 kHz, the laser scanning rate is greater than or equal to 100 mm/s and less than or equal to 850 mm/s, and the laser beam diameter is greater than or equal to 0.1 mm and less than or equal to 0.5 mm.

[0033] It is preferable that the entire surface of the Mg(OH)₂ film formed on the surface of the Mg-Al-Ca based alloy be irradiated with the laser light exhaustively. For example, as illustrated in Fig. 1, the surface is scanned with the laser light (L) in the X direction from one end (lower left corner on the sheet) to the opposite end (lower right corner on the sheet) of the Mg-Al-Ca based alloy 1. After reaching the opposite end, the laser light is shifted in the Y direction (to upper side on the sheet), and the surface is scanned in the X direction from the opposite end to the one end. This is repeated to irradiate the entire surface of the Mg(OH)₂ film with the laser light.

[0034] It is preferable that a laser beam overlapping rate (X) be greater than or equal to 0.9% and less than or equal to 0.99%. It is preferable that a laser beam overlapping rate (Y) be greater than or equal to 0.87% and less than or equal to 0.97%.

[0035] When irradiated with the laser light, the $Mg(OH)_2$ film is modified to an MgO film due to a dehydration reaction. The thickness of the formed MgO film is 0.1 μ m to 1 μ m.

[0036] The MgO film contains 90% or greater of Mg as a cation or is an oxide containing Al, An, Mn, and/or a rare earth element in some cases.

[Example]

[0037] According to the embodiment described above, surface modification was performed on a test plate of the Mg-Al-Ca based alloy.

Test plate: Mg-10Al-5Ca-0.05Mn

Alkali solution: an aqueous solution containing $Mg(OH)_2$: 0.012 g as a chemical component in terms of mass in 1 litter of water

[0038] The thickness of the $Mg(OH)_2$ film formed on the surface of the test plate immersed in the alkali solution for a predetermined time was about 0.1 μ m to 1 μ m.

[0039] Table 1 illustrates test conditions and results (engraving depths) obtained by observing the surface of the test plate by using a confocal optical microscope.

55

30

35

40

45

				_	_	_	_	_	_	_	_	_	_	_	_	_			
5			depth	ωπ	30	20	8	င	1.5	_	0	0	0	0	0	0			
10			Heat input amount	ГШ	22	11	2	8	0.4	0.4	0.5	0.3	0.4	9.0	_	0.1			
15			Power density	W/mm ²	1401	1401	350	87.5	63.7	63.7	15.9	53.2	13.3	5.9	2.1	2.1			
20			Beamoverlapping	ומופ ז	0.8	0.8	0.87	0.925	0.87	0.87	0.925	0.87	0.925	96.0	76.0	0.97			
25	e 1]	Laser irrad ia tion	Beam overlapping	late >	0.995	0.995	6.0	0.915	6.0	6.0	0.915	6.0	0.915	0.94	76:0	76.0			
30	[Table 1]	Laser	Scanning rate	s/ww	25	20	200	850	200	200	850	200	850	850	850	850			
35			Frequency	KHz	200	200	20	20	20	20	20	20	20	20	20	20			
40			Beam diam eter (average)	mm	0.05	0.05	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.3	0.5	0.5			
<i>45 50</i>						Output B (average)	M	1	1	11	11	2	2	2	1.7	1.7	1.7	1.7	1.7
55		a cica ca	time	min	10	10	10	10	09	09	09	09	09	09	09	09			
			Test No.	I	-	2	က	4	2	9	7	80	o	10	7	12			

[Power Density]

10

15

20

30

35

40

50

55

[0040] Fig. 2 and Fig. 3 illustrate the relationship between the power density and the engraving depth. Fig. 3 is an enlarged view of Fig. 2. In Fig. 2 and Fig. 3, the horizontal axis represents the power density (W/mm²), the vertical axis represents the engraving depth (μ m), each white circle plot represents a test plate for alkali immersion time of 60 minutes, and each black circle plot represents a test plate for alkali immersion time of 10 minutes.

[0041] Fig. 2 indicates a trend that, as the power density becomes larger, the engraving depth also becomes larger. Moreover, Fig. 2 suggests that there is a conversion point at which the engraving depth increases sharply in a region of a low power density.

[0042] Fig. 3 shows an enlarged view of the region of a low power density. With reference to Fig. 3, it is found that, while the engraving depth is 0 μ m when the power density is below 53.2 W/mm² (test No. 8), some of the engraving depths exceed 1 μ m when the power density is 63.7 W/mm² (test Nos. 5, 6). According to Fig. 3, as long as the power density is less than or equal to 60 W/mm², the engraving depth can be less than or equal to 1 μ m.

[0043] According to the result obtained by intensive studies by the present inventors, when magnesium alone is immersed in the alkali solution, the $Mg(OH)_2$ film having a thickness of about 30 μ m is formed. On the other hand, when an Mg-Al-Ca based alloy is immersed in the alkali solution, it has been confirmed that the thickness of the $Mg(OH)_2$ film formed on the surface is about 1 μ m.

[0044] As long as the engraving depth due to the laser light does not exceed the thickness of the Mg(OH)₂ film, the base material is not damaged. Thus, when the power density is less than or equal to 60 W/mm², it is possible to form an oxide film (MgO film) without damaging the base material and improve corrosion resistance.

[Corrosion Resistance]

[0045] Test plates of test No. 16 to No. 19 described above were immersed in 1 mass% of NaCl aqueous solution for 168 hours, and then the corrosion rates were calculated.

[0046] Calculation of the corrosion rate was performed by using Equation (1) below.

$$Cr = 87600 \times \Delta W$$
 (weight change) / (A × t × r)...(1)

Cr: corrosion rate (mm/year)

 Δ W: weight difference before and after the test (g)

r: density of the test plate (g/cm⁻³)

A: initial surface area of the test plate (cm²)

t: immersion time (hr)

[0047] Fig. 4 illustrates the relationship between the heat input amount and the corrosion rate, where the corrosion rate of the test plate (Mg-Al-Ca based alloy) on which no surface modification is performed is one. In Fig. 4, the horizontal axis represents the corrosion rate ratio (a.u.), and the vertical axis represents the heat input amount (mJ).

[0048] According to Fig. 4, it is confirmed that, in irradiation of laser light, when the heat input amount exceeds 5 mJ, the test plate is more likely to be corroded than before the surface modification is performed. When the heat input amount is greater than or equal to 0.3 mJ and less than or equal to 4 mJ, preferably, greater than or equal to 1 mJ and less than or equal to 4 mJ, the corrosion resistance of the test plate is improved due to surface modification.

[0049] Fig. 5 illustrates corrosion resistance evaluation results of test No. 16 to No. 19 (conditions A to D). In Fig. 5, the vertical axis represents the corrosion rate ratio (a.u.). For the corrosion rate ratio, a test plate on which no surface modification is performed (no alkali treatment and no irradiation) is used as a reference.

[0050] According to Fig. 5, in the condition A, the corrosion rate was increased by about 500% compared to a test plate whose surface was not modified. On the other hand, in the conditions B, C, and D, the corrosion rates were reduced compared to a test plate whose surface was not modified. The reduction rates in conditions B, C, and D were 18%, 32%, and 2%, respectively.

[0051] According to Table 1, in condition A, while the heat input amount is less than or equal to 5 mJ, the power density exceeds 60 W/mm². On the other hand, in conditions B, C, and D, each of the heat input amount is less than or equal to 5 mJ, and each of the power density is less than or equal to 60 W/mm². From these results, it was suggested that it is important not only to set the heat input amount to be less than or equal to 5 mJ but also to set the power density to be less than or equal to 60 W/mm² for improvement of corrosion resistance of an Mg-Al-Ca based alloy.

[Supplementary Notes]

[0052] The surface modification method of an Mg-Al-Ca based alloy described in the above embodiment is understood as described below, for example.

[0053] In the surface modification method of an Mg-Al-Ca based alloy according to the present disclosure, an Mg-Al-Ca based alloy is immersed in an alkali solution, and the surface of the Mg-Al-Ca based alloy immersed in the alkali solution is irradiated with laser light at a power density that is less than or equal to 60 W/mm² and a heat input amount that is less than or equal to 5 mJ.

[0054] The immersion in the alkali solution causes an $Mg(OH)_2$ film to be formed on the surface of the Mg-Al-Ca based alloy. When the $Mg(OH)_2$ film is irradiated with laser, a dehydration reaction occurs. This modifies the $Mg(OH)_2$ film to be a homogeneous and dense MgO film.

[0055] Since the power density and the heat input amount are defined in the range described above, an oxide film (MgO film) can be formed with the engraving depth not exceeding the thickness of the Mg(OH)₂ film. Accordingly, it is possible to improve corrosion resistance without damaging a base material.

[0056] In the disclosure described above, the heat input amount is preferably greater than or equal to 0.3 mJ and less than or equal to 4 mJ, more preferably greater than or equal to 1 mJ and less than or equal to 4 mJ.

[0057] Corrosion resistance can be more reliably improved when the heat input amount is within the range described above.

[0058] In the disclosure described above, it is preferable that the power density be less than or equal to 53.2 W/mm².

[0059] This enables the engraving depth of 0 μ m.

[0060] In the disclosure described above, it is preferable that the power density be less than or equal to 15.9 W/mm².

[0061] This can reduce the corrosion rate compared to a case where no surface modification is performed.

[0062] In the disclosure described above, it is more preferable that the power density be greater than or equal to 3.3 W/mm².

⁵ **[0063]** This can further increase the reduction amount of the corrosion rate compared to a case where no surface modification is performed.

[0064] In the disclosure described above, the immersion time may be longer than or equal to 10 minutes and shorter than or equal to 120 minutes.

[0065] When the immersion is performed for 10 minutes or longer, an $Mg(OH)_2$ film having a thickness of more than 1 μ m can be formed. Even when the immersion is performed for more than 120 minutes, the effect of a significant increase in the thickness of the $Mg(OH)_2$ film is not expected.

[List of Reference Symbols]

³⁵ [0066]

30

40

45

10

1 Mg-Al-Ca based alloy

Claims

1. A surface modification method of an Mg-Al-Ca based alloy, the surface modification method comprising:

immersing an Mg-Al-Ca based alloy in an alkali solution; and irradiating a surface of the Mg-Al-Ca based alloy immersed in the alkali solution with laser light at a power density that is less than or equal to 60 W/mm² and a heat input amount that is less than or equal to 5 mJ.

2. The surface modification method of an Mg-Al-Ca based alloy according to claim 1, wherein the heat input amount is greater than or equal to 0.3 mJ and less than or equal to 4 mJ.

3. The surface modification method of an Mg-Al-Ca based alloy according to claim 2, wherein the power density is less than or equal to 53.2 W/mm².

4. The surface modification method of an Mg-Al-Ca based alloy according to claim 2, wherein the power density is less than or equal to 15.9 W/mm².

5. The surface modification method of an Mg-Al-Ca based alloy according to claim 2, wherein the power density is greater than or equal to 3.3 W/mm².

7

50

55

	6.	The surface modification method of an Mg-Al-Ca based alloy according to any one of claims 1 to 5, wherein time of the immersing is longer than or equal to 10 minutes and shorter than or equal to 120 minutes.
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

FIG. 1

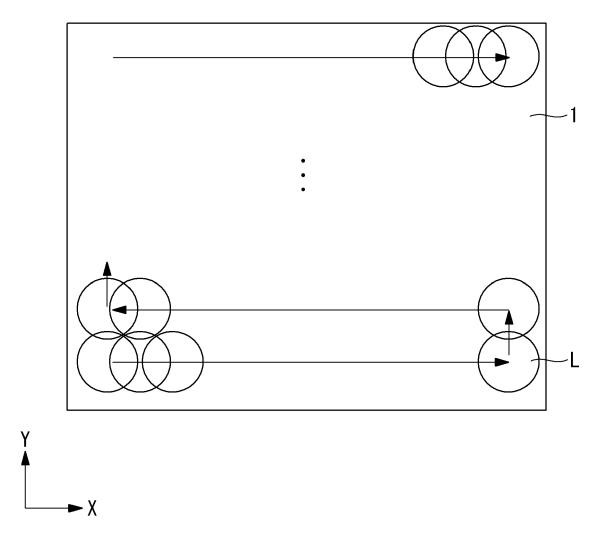


FIG. 2

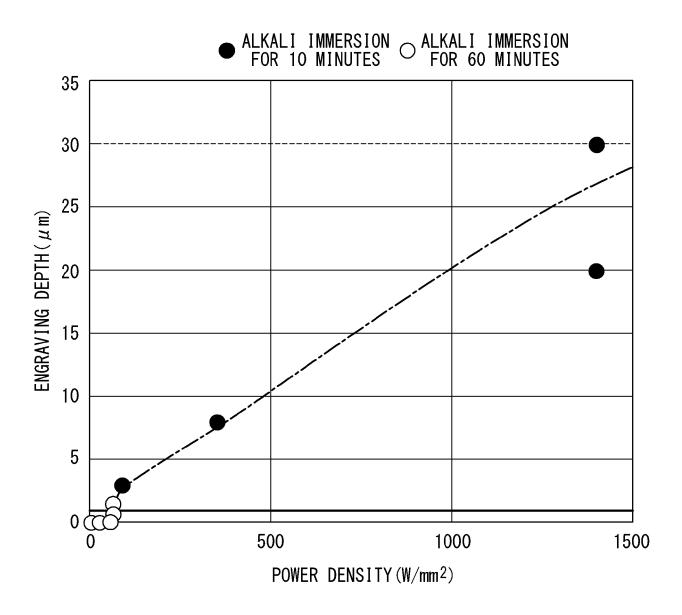


FIG. 3

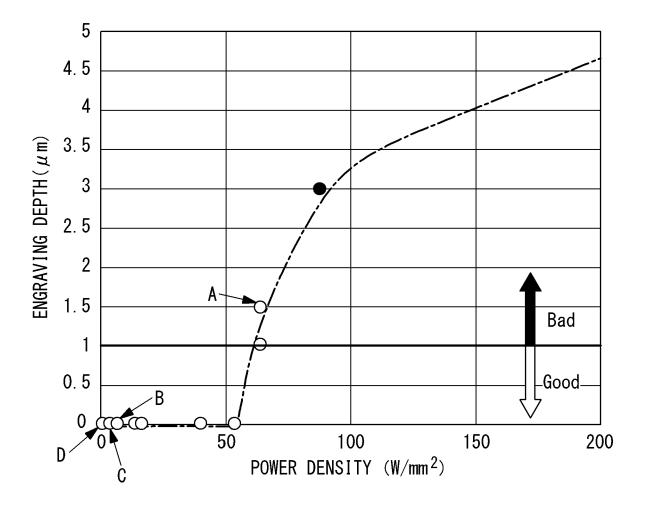
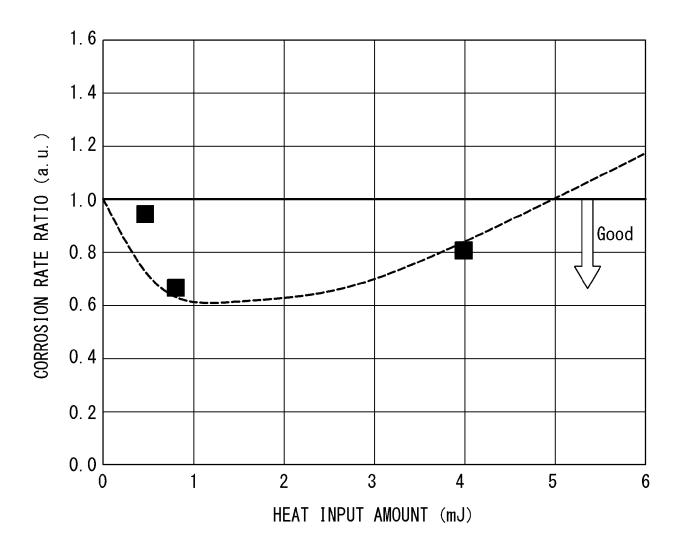
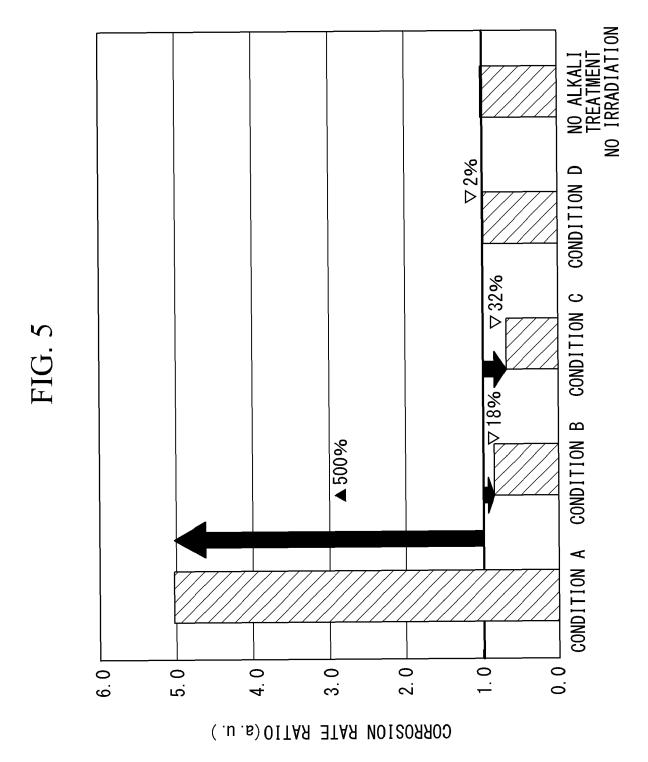




FIG. 4

13

DOCUMENTS CONSIDERED TO BE RELEVANT

EUROPEAN SEARCH REPORT

Application Number

EP 21 20 4425

10		
15		
20		
25		
30		
35		
40		
45		

5

	DOCUMENTS CONSIDI	INLD TO BE RELEVANT		
Category	Citation of document with in of relevant passa	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A,D	JP 2008 291310 A (U 4 December 2008 (20 * paragraph [0011] * paragraph [0021] * claims 1-6 *	08-12-04)	1-6	INV. C23C22/60 C23C22/66 C23C22/82 C22C23/02
A	plasma electrolytic electrolyte", CORROSION SCIENCE,	522 magnesium alloy by oxidation in phosphate OXFORD, GB, r 2011 (2011-12-27), 58283, I: 11.12.032	1-6	
A	US 2016/369378 A1 (3 ET AL) 22 December 3 * claims 1-33 *	KAWAMURA YOSHIHITO [JP] 2016 (2016-12-22)	1-6	TECHNICAL FIELDS SEARCHED (IPC) C23C C22C
T	SPIEKERMANN P: "Al problem of patent 1 NONPUBLISHED ENGLIS DOCUMENT, 31 December 1993 (1 XP002184689, * page 3 - page 6 *	aw",		
	The present search report has be	Date of completion of the search	Vod	Examiner
	The Hague	30 March 2022	Nei	becker, Pascal
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another and the same category anological background another disclosure rmediate document	L : document cited for	ument, but publi e i the application r other reasons	shed on, or

EPO FORM 1503 03.82 (P04C01)

2

50

55

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 21 20 4425

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-03-2022

10	ci	Patent document ted in search report		Publication date	Patent fa member	Publication date	
	JР	2008291310	A	04-12-2008	NONE		
15	us	2016369378	A1	22-12-2016	JP WO20150604 US 20163693	378 A 1	04-09-2019 09-03-2017 22-12-2016
					WO 20150604		30-04-2015
20							
25							
30							
35							
40							
45							
50							
	459						
55	FORM P0459						

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2008291310 A [0004] [0006] [0007]