

(11) **EP 4 086 393 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.11.2022 Bulletin 2022/45

(21) Application number: 22171204.5

(22) Date of filing: 02.05.2022

(51) International Patent Classification (IPC):

E02F 3/43 (2006.01) E02F 9/20 (2006.01) E02F 9/22 (2006.01) F15B 21/047 (2019.01) E02F 9/26 (2006.01) F15B 21/0427 (2019.01)

(52) Cooperative Patent Classification (CPC):

E02F 9/226; E02F 3/431; E02F 9/2083; E02F 9/264; F15B 21/0427; F15B 2211/327; F15B 2211/633; F15B 2211/6336; F15B 2211/6346;

F15B 2211/6651; F15B 2211/7741

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

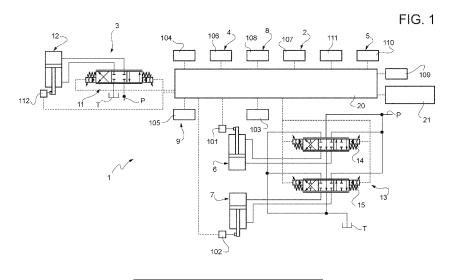
Designated Validation States:

KH MA MD TN

(30) Priority: 03.05.2021 IT 202100011201

(71) Applicant: CNH Industrial Italia S.p.A. 10135 Torino (IT)

(72) Inventors:


- Garramone, Adriano 73100 Lecce (IT)
- Gravili, Andrea
 73100 Lecce (IT)
- Liberti, Stefano 73100 Lecce (IT)
- (74) Representative: CNH Industrial IP Department Leon Claeysstraat 3A 8210 Zedelgem (BE)

(54) AUTOMATIC WARM UP SYSTEM FOR HYDRAULIC CIRCUIT OF A WORK VEHICLE

(57) Earth moving vehicle provided with a bucket carried by a boom to execute a work operation, a torque source (8), a hydrostatic transmission (2), a joystick (5) for controlling actuators (6, 7) for moving said bucket and said boom, a parking brake system (4), a service brake system (9) and an accelerator pedal,

the vehicle comprising a plurality of sensor means (101-112) said vehicle comprising a warm up system (1) comprising an electronic control unit (20) and user input means (21),

the electronic control unit (20) comprising elaboration means configured to acquire the data from sensor means and, if a preset condition of the data retrieved by the sensor means (101-112) is met, and the user requests via input means (21) a warm up procedure, the electronic control unit (20) is configured to provide preset control signals to start an automatic warm-up procedure to torque source (8) and to actuators (6, 7) according to preset steps.

TECHNICAL FIELD

[0001] The present invention concerns an automatic warm up system for a hydraulic circuit, in particular for a work vehicle.

1

[0002] The present invention finds its preferred, although not exclusive, application in a wheel loader.

BACKGROUND OF THE INVENTION

[0003] Work vehicles such as earth moving machines are provided with a plurality of hydraulic circuits for operating their operational systems.

[0004] In particular, earth-moving machines such as wheel loaders are provided with a bucket and a boom operated by a hydraulic circuit and with other essential hydraulic systems such as the hydrostatic transmission, the brake system or the steering.

[0005] As known, the oil in the hydraulic circuit varies its physical properties according to the temperature. Therefore, in very cold operative conditions, e.g. in cold environment wherein the earth moving machine should operate, the oil could be at a very low temperature that may lead to damages to the hydraulic components.

[0006] Accordingly, the driver is requested to execute a procedure consisting in starting the engine and operating the vehicle elements, such as boom or bucket, to warm up the oil so that it is suitable for correctly operating. [0007] However it is clear that the above known procedure is intrinsically unsafe. Indeed, the operator may forget to execute the manual procedure thereby using directly the vehicle than the oil is too cold.

[0008] Furthermore, the operator may execute a not correct procedure that may lead to a not correct warming of the oil or malfunctioning in the vehicle.

[0009] Therefore, the need is felt to provide a warm up system for work vehicles that is efficient and safe and that remove the burden of such operation from the driver.
[0010] An aim of the present invention is to satisfy the above mentioned needs in a cost effective and optimized way.

SUMMARY OF THE INVENTION

[0011] The aforementioned aim is reached by a warm up system and method for oil into a hydraulic circuit as claimed in the appended set of claims.

BRIEF DESCRIPTION OF DRAWINGS

[0012] For a better understanding of the present invention, a preferred embodiment is described in the following, by way of a non-limiting example, with reference to the attached drawing wherein the only figure 1 is a schematic representation of the oil warm up system of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0013] Figure 1 discloses a hydraulic warm up system 1 according to the invention for an earth-moving machine such as a wheel loader (not shown in its entirety for sake of brevity).

[0014] In particular, the earth moving machine comprises a main hydrostatic transmission 2 (as per se known, comprising a hydraulic pump and a hydraulic motor), a steering system 3, a parking brake 4, a boom and a bucket. These latter are controlled via a joystick 5 suitable for actuating respective actuators 6, 7 configured to control the operation of the boom and of the bucket.

[0015] The earth-moving machine further comprises a torque source 8, e.g. an internal combustion engine, and a brake system 9.

[0016] In particular, the steering system 3 may be a electrohydraulic steering system provided with an electric valve 11 configured to control the steering actuator 12 in function of control signals acting on respective sides of the valve 11 itself.

[0017] In particular valve 11 may be a four ways - three positions proportional valve wherein the four ways are fluidly connected respectively to a tank T of the vehicle, to a source P of fluid in pressure and to two sides of the steering actuator 12. The valve 11 may therefore assume at least the following limit positions: a first position wherein fluid may flow from source P to a first side of the actuator 12 and the opposite one is fluidly connected to tank T, a second position opposite with respect to the preceding and a third position wherein both tank T and source P are not fluidly connected to actuator 12 (as represented in figure 1).

[0018] In greater detail, the actuators 6, 7 of the boom and bucket are controlled by valve arrangement 13 that may be designed as an open center distribution system provided with a pair of electric valves 14, 15 respectively voted to control the actuators 6, 7 in function of control signals acting on respective sides of the valves 14, 15 themselves.

[0019] In particular, valves 14, 15 may be proportional six ways - three position valves wherein the six ways are fluidly connected, respectively (making reference to one of valves 14, 15) to tank T, two of them to source P, to two sides of the actuator 6, 7 and one to the other valve 14, 15. The valves 14, 15 may therefore assume at least the following limit positions: a first position wherein fluid may flow from source P to a first side of the actuator 6, 7 and the opposite one is fluidly connected to tank T, a second position opposite with respect to the preceding and a third position wherein the source P is directly connected to tank (the one represented in figure 1).

[0020] The oil warm up system 1 comprises an electronic control unit 20 comprising elaboration means configured to detect data from a plurality of sensor means, as described in the following, related to the different above described elements of the vehicle.

[0021] In particular the sensor means comprises at

least the following:

 A boom position sensor 101 configured to detect an inclination or a relative position (vertical or horizontal) of a point of the boom with respect to a fixed point on the vehicle

3

- A bucket position sensor 102, configured to detect an inclination or a relative position (vertical or horizontal) of a point of the bucket of the vehicle with respect to a fixed point on the /boom or on the vehicle;
- An accelerator sensor 103, e.g. a pedal position sensor, configured to detect an acceleration input provided by the user;
- A vehicle speed sensor 104, e.g. a speed sensor housed in the transmission of the vehicle, configured to detect vehicle speed;
- A service brake sensor 105 configured to detect an activation of service brake system 9;
- A park brake sensor 106, configured to detect an activation of park brake system 4;
- A travel direction sensor 107, e.g. a FNR switch, configured to detect the setting of the displacement of the pump of the hydrostatic transmission in forward position(positive displacement) or in rearward position(negative displacement) or in neutral position(displacement = 0);
- An input speed sensor 108, configured to detect the speed provided by torque source 8, e.g. an output shaft of the torque source 8, i.e. of the internal combustion engine;
- A hydraulic function switch 109, configured to detect enabling the hydraulic circuit that moves the bucket and the boom; and
- A joystick position sensor 110, configured to detect the position of the joystick, i.e. the input to be provided to boom and bucket actuators 6, 7;

[0022] Optionally, the system 1 may further comprises a:

- An oil temperature sensor 111 configured to detect the temperature of the oil flowing into circuit 1; and
- A steering actuator position sensor 112, configured to detect the steering angle.

[0023] Advantageously, vehicle 1 comprises user input means 21, e.g. realized as a button or a display, configured to be electronically connected, by wire or wireless, to the electronic control unit 20. The button or the display are configured to receive, e.g. by pressure, an input by the user and generate a signal that may be detected by the electronic control unit 20.

[0024] The electronic control unit 20 comprises elaboration means configured to acquire the data from the above sensors 101- 112 and, if a preset condition of the data retrieved by the sensors 101-112 is met, and the user request via input means 21 a warm up procedure, the electronic control unit 20 is configured to provide pre-

set control signals to start an automatic warm-up procedure.

[0025] Such automatic warm-up procedures foresees the control of torque source 8 and of boom and bucket actuators 6, 7 and steering actuator 12, if it is present an electronic control steering system, to make oil circulating into the described circuits thereby warming up this latter. The above procedure is aborted if at least one of a preset list of conditions is met, as detailed below.

10 [0026] In particular, the preset conditions that allows the starting of automatic warm-up procedure is the following:

- i) Hydraulic function is enabled;
- ii) Engine is ON at low idle;
- iii) Vehicle speed is equal to zero;
- iv) Joystick is released;
- v) Accelerator pedal is released;
- vi) Parking brake is engaged; and
- vii) Hydraulic transmission is in neutral position.

[0027] If the above conditions i) to vii) are all met, then the following actions are controlled by electronic control unit 20, one in succession to the other:

- Step 1) control the torque source 8 to run at a preset speed, e.g. 1200 rpm, for a first predetermined period of time, e.g. four minutes;
- Step 2) activate floating of the boom actuator 6 to lay the bucket on ground;
- Step 3) activate rolling back of the bucket till an end stroke position for a second predetermined period of time, e.g. two minutes;
- Step 4) activate lifting of the boom and dumping of the bucket till preset positions that allow to move boom and bucket without any contacts with ground and suitable to avoid any end stroke positions during the movements to be executed in following Step 5);
- Step 5) activate boom and bucket actuators 6, 7 with a control signal having a variable value for a third predetermined period of time, e.g. one minute;
- Step 6) activate lifting of the boom till another preset position that allows to steer the unit without any contacts of the boom and bucket with ground;

[0028] If it is present an electronic control steering system, the further steps may be foreseen in addition to the preceding ones:

- Step 7) activate the steering actuator 12 till a preset position that allows to steer the unit suitable to avoid any end stroke positions during the movements to be executed in following next Step 8);
- Step 8) activate the steering actuator 12 with a control signal having a variable value for a fourth predetermined period of time, e.g. one minute; and
- Step 9) control the steering actuator 12 to be positioned into a straight position.

25

15

20

30

35

40

45

50

55

[0029] In particular, the control signal in step 5 and 8 are a sinusoidal signal. In particular, such sinusoidal signal may have a variable amplitude and frequency in function of data related to the oil temperature detected by sensor means 111, if present.

[0030] In particular, the torque source speed in step 1, and/or the first, the second, the third and the fourth predetermined periods of timeand/or may be varied according to in function of data related to the oil temperature detected by sensor means 111, if present.

[0031] If anyone among the below conditions is met, the electronic control unit 20 will abort the automatic procedure:

- a. Accelerator pedal is pressed;
- b. Joystick is moved;
- c. Service brake is activated;
- d. Hydraulic function is deactivated;
- e. Parking brake is disengaged; or
- f. Hydraulic transmission is set in forward or rearward motion.

[0032] In particular, if it is present an electronic control steering system also the further condition may be detected by control unit 20 to abort the automatic procedure: g. Steering is activated.

[0033] The operation of the above defined warm up system is the following.

[0034] The electronic control unit 20 is activated by input of the user by user input means 21 and starts to continuously control the data retrieved by sensor means 101-112. If all the above conditions i) to vii) are met, then the automatic procedure is started. The automatic procedure is continued till

- 1) To the end; or
- 2) Till further input on button 21.

[0035] Clearly, if the electronic control unit 20 detects one of data a) to g), then the warm up procedure is interrupted.

[0036] In view of the above, the present invention further relates to oil warm up method for a earth moving vehicle as described in the preceding and comprising the following phases:

- Retrieving data from sensors 101-112 of the vehicle;
- Receiving an input from the user to start a warm-up procedure;
- Executing the warm-up procedure comprising the above mentioned steps 1) to 9).

[0037] In particular the method further comprises the step of:

Interrupting the warm up procedure if one of the conditions a. to g. is detected by sensors 101-112.

[0038] In view of the foregoing, the advantages of the warm up system and method according to the invention are apparent.

[0039] Thanks to the proposed system and method an automatic and efficient warm-up procedure may be carried our without risk of stall of the engine, or incorrect execution by the driver.

[0040] Moreover, the automatic detailed warm-up procedure is optimized for wheel loaders machine provided with an open center main valve, as described that allows a complete circulation of the oil, thereby making a quick warm-up.

[0041] Furthermore, the provided warm up procedure is safe since if it is detected that the users is making operations that may lead to moving the vehicle (i.e. conditions a. to g. listed above), then the procedure is automatically stopped to avoid hydraulic problems.

[0042] It is clear that modifications can be made to the described warm up system and method which do not extend beyond the scope of protection defined by the claims.

[0043] For example, the electronic control steering system, as said, is optional such as the temperature sensor. Moreover, the described valve may be realized in different ways.

Claims

30

35

45

50

1. Earth moving vehicle provided with a bucket carried by a boom to execute a work operation, said vehicle comprising a torque source (8), a hydrostatic transmission (2), a joystick (5) for controlling actuators (6, 7) for moving said bucket and said boom, a parking brake system (4), a service brake system (9) and an accelerator pedal,

> said vehicle comprising a plurality of sensor means among which:

- · A boom position sensor (101) configured to detect a position of a point of said boom with respect to a fixed point on said vehicle
- · A bucket position sensor (102) configured to detect a positon of a point of said bucket with respect to a fixed point on the boom or on the vehicle;
- · An accelerator sensor (103) configured to detect an acceleration input provided by the user via said accelerator pedal;
- A vehicle speed sensor (104), e.g. a speed sensor housed in the transmission of the vehicle, configured to detect vehicle speed;
- · A service brake sensor (105) configured to detect an activation of service brake system (9);
- · A park brake sensor (106), configured to detect an activation of park brake system

10

15

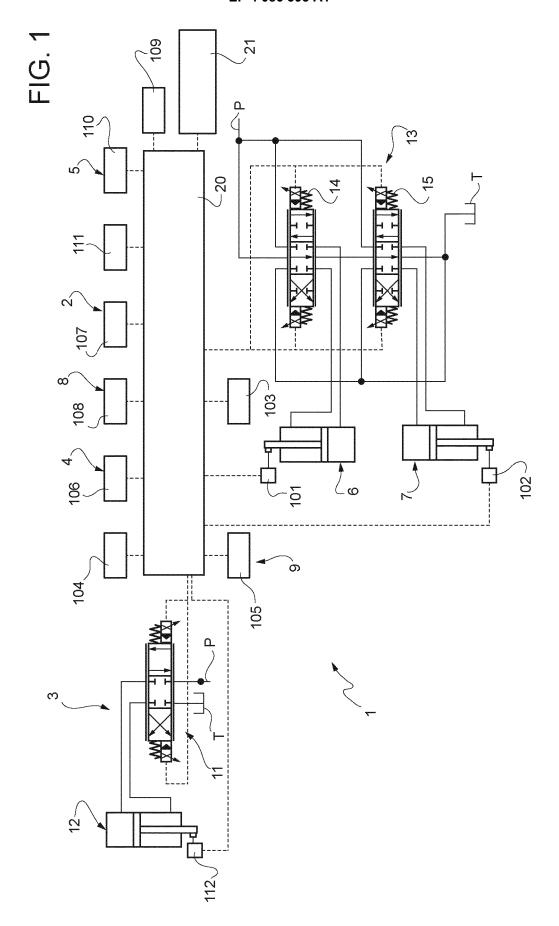
(4);

- A travel direction sensor (107) configured to retrieved the displacement of the pump of the hydrostatic transmission in forward, rearward or neutral position;
- An input speed sensor (108) configured to detect the speed provided by said torque source (8);
- A hydraulic function switch (109), configured to detect the enabling of the hydraulic circuit that moves the bucket and the boom; and
- A joystick position sensor (110), configured to detect the position of said joystick (5)

said vehicle comprising a warm up system (1) comprising an electronic control unit (20) and user input means (21),

said electronic control unit (20) comprising elaboration means configured to acquire the data from said sensors means and, if a preset condition of the data retrieved by said sensor means (101-112) is met, and the user requests via said input means (21) a warm up procedure, the electronic control unit (20) is configured to provide preset control signals to start an automatic warm-up procedure to said torque source (8) and to said actuators (6, 7), said automatic warm-up procedure comprising the following steps:

- Step 1) control said torque source (8) to run at a preset speed for a first predetermined period of time;
- Step 2) activate floating of said boom actuator (6) to lay the bucket on ground;
- Step 3) activate rolling back of said bucket till an end stroke position for a second predetermined period of time;
- Step 4) activate lifting of said boom and dumping of said bucket till preset positions; and
- Step 5) activate said boom and bucket actuators (6, 7) with a control signal having a variable value for a third predetermined period of time.
- 2. Earth moving vehicle according to claim 1, said vehicle further comprising an electronic control steering system configured to control a steering actuator (12) and a steering actuator position sensor (112) configured to detect the steering angle, said warm-up procedure then further comprising the following steps in addition to steps 1) to 5):
 - Step 6) activate lifting of said boom till another preset position to steer the unit;
 - Step 7) activate said steering actuator (12) till


a preset position;

- Step 8) activate said steering actuator (12) with a control signal having a variable value for a fourth predetermined period of time; and
- Step 9) control said steering actuator (12) to be positioned into a straight position.
- 3. Earth moving vehicle according to claim 1 or 2, said vehicle further comprising an oil temperature sensor (111) configured to detect the temperature of oil flowing into circuit (1), wherein said control signal having a variable value is variable in function of such oil temperature detected by said temperature sensor (111).
- **4.** Earth moving vehicle according to claims 1 to 3, wherein said control signal having a variable value is a sinusoidal signal.
- 5. Earth moving vehicle according to any of the preceding claims, wherein said user input means (21) comprises a button or display means electrically connected to said electronic control unit (20).
- 25 6. Earth moving vehicle according to any of the preceding claims, wherein said preset condition of the starting of the warm up procedure comprises the following conditions:
 - i) Hydraulic function is enabled;
 - ii) Engine is ON at low idle;
 - iii) Vehicle speed is equal to zero;
 - iv) Joystick is released;
 - v) Accelerator pedal is released;
 - vi) Parking brake is engaged; and
 - vii) Hydraulic transmission is in neutral position.
 - 7. Earth moving vehicle according to any of the preceding claims, wherein said warm up procedure is interrupted if at least one among the following conditions is met:
 - a. Accelerator pedal is pressed;
 - b. Joystick is moved;
 - c. Service brake is activated;
 - d. Hydraulic function is deactivated;
 - e. Parking brake is disengaged; or
 - f. Hydraulic transmission is set in forward or rearward motion.
 - 8. Earth moving vehicle according to claim 7 when depending on claim 2, wherein said warm up procedure is interrupted also if the following conditions is met: g. steering is activated.
 - **9.** Method for warming up oil temperature in a earth moving vehicle as claimed in any of the preceding claims and comprising the following phases:

5

55

- Retrieving data from said sensors (101-112);
- Receiving an input from the user to start a warm-up procedure;
- Executing the warm-up procedure comprising said steps 1) to 9) .
- **10.** Method according to claim 9, further comprising the phase of:
 - \bullet Interrupting the warm up procedure if one of 10 the conditions a. to g. is met.

EUROPEAN SEARCH REPORT

Application Number

EP 22 17 1204

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

1

EPO FORM 1503 03.82 (P04C01)

Y	EP 3 779 073 A1 (KON			APPLICATION (IPC)			
Y	17 February 2021 (20 * paragraph [0153];	1-10	0 INV. E02F3/43 E02F9/20 E02F9/22				
	ET AL) 14 November 2	2019/345691 A1 (HABERMAN WILLIAM E [US] 1-10 LL) 14 November 2019 (2019-11-14) Aragraph [0058] - paragraph [0059]; Are 4 *					
Y	JP H08 165678 A (YAM 25 June 1996 (1996-0 * abstract; figure 1	•	4				
Y	US 2017/275851 A1 (FAL) 28 September 201 * paragraph [0063];		5				
Y	US 2008/290694 A1 (SET AL) 27 November 2 * paragraph [0078];	•	5	TECHNICAL FIELDS			
A	US 2016/305093 A1 (F 20 October 2016 (201 * paragraphs [0056], [0088] *	1	E02F F15D F15B				
A	US 2017/114521 A1 (WET AL) 27 April 2017 * figure 3 *	5					
A	US 2016/003265 A1 (CAL) 7 January 2016 * paragraph [0035] - figure 3 *		1,9				
	The present search report has b	een drawn up for all claims					
	Place of search	Date of completion of the search		Examiner			
	Munich	22 August 2022	Pap	padimitriou, S			
X : part Y : part doc	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anoth under the same category anological background	L : document cited for	ument, but puble e n the application or other reasons	ished on, or			

EP 4 086 393 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 22 17 1204

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-08-2022

10	C	Patent document cited in search report		Publication date	Patent family member(s)			Publication date
	EI	9 3779073	A1	17-02-2021	CN	112166218	A	01-01-2021
					EP	3779073	A1	17-02-2021
					JP	2020045633	A	26-03-2020
15					US	2021310216	A1	07-10-2021
					WO	2020054411	A1	19-03-2020
	US	S 2019345691	A1	14-11-2019	CA	3099784	A1	14-11-2019
					EΡ	3791025		17-03-2021
20					US	2019345691		14-11-2019
					WO.	2019217961 		14-11-2019
	JI	Р Н08165678	A	25-06-1996		3537520		14-06-2004
					JP	H08165678	A 	25-06-1996
25	US 	S 2017275851	A1	28-09-2017	NON	1E 		
	US	s 2008290694	A1	27-11-2008	DE	102007023568	в3	11-12-2008
					EP	2028033	A2	25-02-2009
					JP	2009001263	A	08-01-2009
30					US	2008290694	A1 	27-11-2008
	US	s 2016305093	A1	20-10-2016	JP	6148399	в2	14-06-2017
					JP	WO2015151582	A1	13-04-2017
					US	2016305093		20-10-2016
35					WO	2015151582 	A1 	08-10-2015
	US	S 2017114521	A1	27-04-2017	BR	102016019912		02-05-2017
					CN	106609529		03-05-2017
					US	2017114521	A1 	27-04-2017
40	US	S 2016003265	A1	07-01-2016	CN	104981615		14-10-2015
					EΡ	2960529		30-12-2015
					KR	20150136053		04-12-2015
					US	2016003265		07-01-2016
45					WO.	201 4 129676 	A1 	28-08-201 4
,0								
50								
	0459							
	FORM P0459							
55	요							

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82