CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] This application also claims priority to
U.S. Provisional Patent Application No. 62/180,255, filed June 16, 2015,
U.S. Provisional Patent Application No. 62/094,465, filed December 19, 2014, and
U.S. Provisional Patent Application No. 62/042,602, filed August 27, 2014 the entire contents of all of which are herein incorporated by reference.
BACKGROUND
[0003] The present invention relates to wrenches, and more particularly to pipe wrenches.
[0004] Pipe wrenches are typically used to rotate, tighten, or otherwise manipulate pipes,
valves, fittings, and other plumbing components. Some types of pipe wrenches include
a fixed jaw and a hook jaw movable with respect to the fixed jaw to adjust the spacing
between the jaws. Because pipe wrenches are often used to apply torque to round work
pieces, the jaws typically include teeth for improved grip.
SUMMARY
[0005] In one embodiment, a pipe wrench includes a head having a first aperture, a first
jaw coupled to the head having a plurality of teeth that define a first contact region,
and a second jaw partially extending through the aperture of the head having a threaded
portion and a plurality of teeth that define a second contact region. The second contact
region extends beyond the first contact region in a direction parallel to side surfaces
of the head. The second contact region defines a width. The pipe wrench also includes
an actuator having threads engaged with the threaded portion of the second jaw such
that rotation of the actuator moves the second contact region of the second jaw relative
to the first contact region of the first jaw, and an extension handle removably coupled
to the head. The extension handle and the second jaw define a length. A ratio of the
width of the second contact region and the length is less than about 0.1.
[0006] In another embodiment, a pipe wrench includes a head having a first aperture, a first
jaw coupled to the head having a plurality of teeth that define a first contact region,
a second jaw partially extending through the aperture of the head having a threaded
portion and a plurality of teeth that define a second contact region, an actuator
having threads engaged with the threaded portion of the second jaw such that rotation
of the actuator moves the second contact region of the second jaw relative to the
first contact region of the first jaw, and a handle having a proximal end portion
and a distal end portion. The distal end portion is adjacent the head and the proximal
end portion is opposite the distal end portion. The proximal end portion includes
a bore. The pipe wrench also includes a first extension handle selectively coupled
within bore.
[0007] In still another embodiment, a pipe wrench includes a head having a first aperture
defining a central axis. The pipe wrench includes a first jaw coupled to the head
having a plurality of teeth defining a first contact region, and a second jaw partially
extending through the aperture of the head having a threaded portion and a plurality
of teeth defining a second contact region. The second contact region extends beyond
the first contact region in a direction parallel to side surfaces of the head. The
pipe wrench includes a biasing mechanism located within the first aperture to align
the threaded portion of the second jaw with the central axis of the first aperture,
and an actuator having threads engaged with the threaded portion of the second jaw
such that rotation of the actuator moves the second contact region of the second jaw
relative to the first contact region of the first jaw.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
FIG. 1 is a front perspective view of a wrench according to an embodiment of the invention.
FIG. 2 is a back perspective view of the wrench of FIG. 1.
FIG. 3 is a partial front view of the wrench of FIG. 1.
FIG. 4 is a partial side view of the wrench of FIG. 1.
FIG. 5 is a cross-sectional view of a thumb wheel of the wrench of FIG. 1.
FIG. 6 is a cross-sectional view taken along 6-6 of the wrench of FIG. 3 including
a hook jaw in a first position.
FIG. 7 is a cross-sectional view taken along 6-6 of the wrench of FIG. 3 including
the hook jaw in a second position.
FIG. 8 is a perspective view of a portion of a floating mechanism of the wrench of
FIG. 1.
FIG. 9 is a detailed view of an end cap taken along 8-8 of the wrench of FIG. 1.
FIG. 10 is a side view of the wrench of FIG. 1 including different extension handle
lengths.
FIG. 11 is a perspective view of a wrench according to another embodiment of the invention.
FIG. 12 is a perspective exploded view of the wrench of FIG. 10 including an insert.
FIG. 13 is a partial cross-sectional view of prior art pipe and cleanout cover.
FIG. 14 is a side view of a wrench according to another embodiment of the invention
including an extension handle in a stored position.
FIG. 15 is a side view of the wrench of FIG. 13 with the extension handle in an extended
position.
FIG. 16 is a side view of a wrench according to another embodiment of the invention
including an extension handle in a stored position.
FIG. 17 is a side view of the wrench of FIG. 15 with the extension handle in an extended
position.
FIG. 18 is a rear view of the wrench of FIG. 16.
FIG. 19 is a partial side view of a handle of a wrench according to another embodiment
of the invention including an extension handle in a stored position.
FIG. 20 is a partial side view of the handle of the wrench of FIG. 18 with the extension
handle in an extended position.
FIG. 21 is a partial side view of a handle of a wrench according to another embodiment
of the invention including an extension handle.
FIG. 22 is a partial side view of a handle of a wrench according to another embodiment
of the invention including an extension handle.
FIG. 23 is a partial side view of a handle of a wrench according to another embodiment
of the invention including an extension handle.
FIG. 24 is a cross-sectional view of a non-rotational feature of a wrench.
FIG. 25 is a partial side view of a handle of a wrench according to another embodiment
of the invention.
[0009] Before any embodiments of the invention are explained in detail, it is to be understood
that the invention is not limited in its application to the details of construction
and the arrangement of components set forth in the following description or illustrated
in the following drawings. The invention is capable of other embodiments and of being
practiced or of being carried out in various ways. Also, it is to be understood that
the phraseology and terminology used herein is for the purpose of description and
should not be regarded as limiting.
DETAILED DESCRIPTION
[0010] FIG. 1 illustrates a wrench 10 according to an embodiment of the invention. The wrench
10 includes a handle 12 and a head 14. The handle 12 is an elongated cylindrical member
having a proximal end portion 16 and a distal end portion 18 that is adjacent the
head 14. In addition, the handle 12 is integrally formed with the head 14 as a single
component. The handle 12 defines a bore 13 (FIG. 6) with internal threads 15 adjacent
the distal end portion 18. The head 14 includes recessed portions 19 located on opposite
side surfaces of the head 14 defining a quantity of material that has been removed
from the head 14. Stated another way, a first recessed portion 19 is located on a
first side surface of the head 14, and a second recessed portion 19 is located on
a second side surface of the head 14. The illustrated head 14 also includes a second
recessed portion 21 adjacent one of the recessed portions 19. In other embodiments,
the head 14 may include two second recessed portions 21 located on opposite sides
of the head 14. The head 14 also includes a generally planar surface 45 usable as
a hammering surface located on a rear surface of the head 14. In particular, the wrench
10 is operable as a hammer in that the planar surface 45 strikes an object (e.g.,
a work piece), or the wrench 10 is operable as an anvil surface in that an object
(e.g., a hammer) strikes the planar surface 45. In the illustrated embodiment, the
handle 12 and the head 14 are made from a metallic material (e.g., ductile iron).
[0011] With reference to FIGS. 1 and 2, the wrench 10 includes a first or fixed jaw 28,
and a second or hook jaw 30. In the illustrated embodiment, the fixed jaw 28 is removably
coupled to the head 14 via a pin 25 so that the fixed jaw 28 can be replaced when
it becomes worn. In one embodiment, the pin 25 allows the fixed jaw 28 to pivot relative
to the head 14. In other embodiments, the fixed jaw 28 can be permanently fixed to
the head 14. The fixed jaw 28 and the hook jaw 30 each include a plurality of teeth
32, 34 that define contact regions 36 and 38, respectively. With reference to FIGS.
3 and 6, the plurality of teeth 32 includes a width W
1 extending from one recessed portions 19 (e.g., a first side surface of the head 14)
to the other recessed portion (e.g., a second side surface of the head 14) and a length
L
1 extending parallel to the recessed portions 19 (e.g., parallel to the first and the
second side surfaces). In the illustrated embodiment, the width W
1 is about 0.9 inches and the length L
1 is about 1.3 inches. In other embodiments, the width W
1 may be about 0.7 inches to about 1.3 inches, and/or the length L
1 may be about one inch to about 1.8 inches.
[0012] The hook jaw 30 is movable relative to the fixed jaw 28 generally in directions of
arrows 40 and 42, to increase or decrease a distance 44 (FIG. 4) between the jaws
28 and 30 (i.e., the perpendicular distance between the contact regions 36 and 38)
in order to accommodate differently sized work pieces (e.g., pipes, fittings, etc.).
With reference to FIGS. 3 and 6, the plurality of teeth 34 includes a width W
2 extending in a direction between the recessed portions 19, similarly to the width
W
1, and a length L
2 extending parallel to the recessed portions 19, similarly to the length L
1. In the illustrated embodiment, the width W
2 is about 0.85 inches, which is less than the width W
1, and the length L
2 is about 1.6 inches. In other embodiments, the width W
1 of the plurality of teeth 32 is less than the width W
2 of the plurality of teeth 34, and the length L2 may be about one inch to about 1.92
inches. In further embodiments, the widths W
1, W
2 may be equal. In the illustrated embodiment, the hook jaw 30 includes a threaded
portion 54 having a plurality of grooves 56 and defining a longitudinal axis A. The
illustrated hook jaw 30 also includes indicia 61 (FIG. 10) to indicate the relative
distance 44 between the jaws 28, 30.
[0013] In reference to FIG. 4, the fixed jaw 28 and the hook jaw 30 are orientated such
that the hook jaw 30 extends beyond the fixed jaw 28. In particular, the contact region
38 of the hook jaw 30 extends a distance 31, which is perpendicular to the widths
W
1, W
2, past the contact region 36 of the fixed jaw 28. The distance 31 extends parallel
to the recessed portions 19 (e.g., side surfaces of the head 14). In other words,
the distance 31 extends oppositely from the rear surface of the head 14 defined by
the planar surface 45. In the illustrated embodiment, the distance 31 can vary from
about 1/8 of an inch to about ½ of an inch. The distance 31 can also vary between
different sized of wrenches. For example, a 14 inch wrench may include a different
distance 31 than an 18 inch wrench. In addition, the contact region 38 of the hook
jaw 30 is orientated at an angle θ relative to the contact region 36 of the fixed
jaw 28. With the contact regions 36, 38 orientated at an angle θ, the fixed jaw 28
and the hook jaw 30 are better suited to grip a circular object (e.g., a pipe). In
the illustrated embodiment, the angle θ is about 9 degrees. In other embodiments,
the angle θ is greater than about 5 degrees and less than about 15 degrees. The angle
θ can also vary between different sized of wrenches. For example, a 14 inch wrench
may include a different angle θ than an 18 inch wrench.
[0014] The wrench 10 further includes an actuator or thumb wheel 52 operable to vary the
distance 44 between the jaws 28, 30 and is engaged with the threaded portion 54 of
the hook jaw 30. In the illustrated embodiment, the thumb wheel 52 includes a plurality
of vertically orientated grooves 60 that are generally parallel to the handle 12.
The grooves provide a slip resistant surface to operate the thumb wheel 52. The thumb
wheel 52 also includes internal threads 58 that mesh with the grooves 56 to move the
hook jaw 30 in the direction of arrow 40 or 42 relative to the fixed jaw 28 in response
to rotation of the thumb wheel 52. The thumb wheel 52 is located within a recess 62
formed by the head 14 and flanges 64 projecting from the distal end portion 18 of
the handle 12 to prevent the thumb wheel 52 from moving with the hook jaw 30 in the
directions of arrows 40 and 42. The flanges 64 are of a robust design to promote durability.
A portion of the flanges 64 adjacent the handle 12 include additional material compared
to a conventional wrench to inhibit impact fracture of the flanges 64 if the wrench
10 is dropped. In addition, the flanges 64 generally define a curved portion with
a radius 65 (FIG. 4). In the illustrated embodiment, the flanges 64 are positioned
below the thumb wheel 52. In other embodiments, a portion of the flanges 64 may extend
partially within the thumb wheel 52.
[0015] With reference to FIG. 5, the thumb wheel 52 is configured as a double-lead thumb
wheel 52 (also referred to as a double-start or double-threaded thumb wheel). The
threads 58 of the thumb wheel 52 define a pitch distance 66 (referred to hereafter
as "pitch") and a lead distance 68 (referred to hereafter as "lead"). The pitch 66
is the axial distance between adjacent crests of the threads 58. The lead 68 is the
linear distance that the hook jaw 30 is advanced (in the direction of arrow 40 or
42) for each complete rotation of the thumb wheel 52. A conventionally threaded thumb
wheel includes a single thread wrapped helically within the thumb wheel. The pitch
66 and the lead 68 of the conventional thumb wheel are equal; therefore the conventional
thumb wheel would advance the hook gear 30 a linear distance equal to the pitch 66
for each complete rotation. In contrast, the illustrated thumb wheel 52 includes two
separate threads 58a and 58b, offset 180 degrees and wrapped helically within the
thumb wheel 52. As such, the hook jaw 30 advances twice the pitch 66 per rotation
of the thumb wheel 52 (i.e., the lead 68 is twice the pitch 66), thereby requiring
less rotation of the thumb wheel 52 to adjust the distance 44 between the jaws 28
and 30.
[0016] With reference to FIG. 6, a portion of the threaded portion 54 of the hook jaw 30
is received in an aperture 70 that extends through the head 14. The aperture 70 includes
a front wall 72 and a back wall 74 that converge slightly toward each other, being
farthest apart at a distal end 76 of the aperture 70. The aperture 70 defines a central
axis B being substantially parallel with the handle 12.
[0017] In continued reference to FIG. 6, the wrench 10 includes a floating or biasing mechanism
78 that centers the threaded portion 54 of the hook jaw 30 within the aperture 70
to define a floating position of the hook jaw 30. In other words, the floating mechanism
78 biases the threaded portion 54 in line with the central axis B. In the illustrated
embodiment, the floating mechanism 78 includes two coil springs 84 and an intermediate
member 75 having a pair of longitudinally extending guide walls 86 and 88 connected
by a web 90 (FIG. 8). In the illustrated embodiment, the guide wall 86 is longer than
the guide wall 88. In addition, the guide wall 86 is adjacent the front wall 72 as
the guide wall 88 is adjacent the back wall 74. The guide walls 86, 88 are located
between the coil springs 84 and the hook jaw 30. The coil springs 84 are disposed
within corresponding recesses 94 located on the back wall 74 and the front wall 72
with the recesses 94 being offset relative to each other. Stated another way, the
coil springs 84 are nonconcentric relative to each other. In the illustrated embodiment,
one coil spring 84 is received in one recess 94 on the back wall 74, and one coil
spring 84 is received in one recess 94 on the front wall 72. In particular, the coil
spring 84 associated with the front wall 72 is positioned closer to the distal end
76 of the aperture 70 along the central axis B than the coil spring 84 associated
with the back wall 74. In other embodiments, the coil spring 84 associated with the
back wall 74 may be positioned closer to the distal end 76 of the aperture 70 along
the central axis B than the coil spring 84 associated with the front wall 72. In further
embodiments, there may be more than two coil springs 84. For example, two coil springs
may be located on one of the front and the rear walls 72, 74, or two coil springs
may be located on both the front and the rear walls 72, 74. The coil springs 84 are
deformable to allow a distal end 96 of the hook jaw 30 to move generally in the directions
of arrows 98 and 99, to an extent limited by engagement between the hook jaw 30 and
the walls 72 and 74.
[0018] In addition, the hook jaw 30 includes a thumb release portion 97 (FIG. 1) on an end
opposite from the distal end 96. The thumb release portion 97 is generally a flat
surface adjacent the threaded portion 54 and the handle 12. As described above, the
hook jaw 30 can move in the directions of arrows 98 and 99 by the floating mechanism
78. In addition, the floating mechanism 78 can be manipulated by the thumb release
portion 97. For example, a force applied to the thumb release portion 97 towards the
handle 12 pivots the hook jaw 30 away from the fixed jaw 28 (in the direction of arrow
99) such that the distance 44 increases.
[0019] With reference to FIGS. 1 and 9, an extension member or handle 91 including an end
cap 23 is received within the bore 13 to provide additional length to the handle 12.
The extension handle 91 is designed with external threads 93 (FIG. 6) such that the
extension handle 91 is threadably secured to the threaded portion 15 (FIG. 6) within
the bore 13. In addition, the threads of both the extension handle 91 and the bore
13 are designed with a standard National Pipe Thread Taper (NPT). For example, the
extension handle 91 includes a ¾" NPT thread configuration. The standard NPT size
of the bore 13 provides the operator to couple any extension member to the head 14
with the corresponding NPT size. In other embodiments, the bore 13 is designed to
accommodate a different NPT thread configuration (e.g., a ½" diameter, a 5/8" diameter,
etc.).
[0020] The illustrated handle 91 can vary in length to increase leverage of the wrench 10.
For example, FIG. 10 illustrates two lengths of the handle 91. In the illustrated
embodiment, a total length of a shorter handle 91a including the end cap 23 is about
11.8 inches in length, and a total length of a longer handle 91b including the end
cap 23 is about 17.1 inches in length. In addition, the shorter handle 91a includes
a length greater than the handle 12. In other embodiments, the handles 91a, 91b may
be any length to provide a desired leverage of the wrench 10.
[0021] The illustrated end cap 23 includes a bore 33 having a first radial groove 29 that
aligns with a second radial groove 27 formed in the handle 91. A ring member 35 is
positioned within the radial grooves 27, 29 such that the end cap 23 can rotate relative
to the handle 91, but the end cap 23 is inhibited from axial movement (in the direction
of arrows 40, 42) relative to the handle 91. The ring member 35 is defined as a circle
spring with a break point such that the ring member 35 extends less than 360 degrees.
The ring member 35 is resilient in order to be snapped into and expand within the
first radial groove 29 upon assembly of the end cap 23 and the handle 91. In the illustrated
embodiment, the ring member 35 is metallic.
[0022] In addition, the wrench 10 can be hung (e.g., stored) using an aperture 22 formed
through the end cap 23, and the head 14-along with the handle 91-can be rotated for
condensed storage and to improve storage of the wrench 10.
[0023] In operation, the user can use the wrench 10 to turn a work piece, such as a pipe
or fitting. As an operator manipulates the wrench 10, the recessed portions 19, 21
provide better balance, i.e., weight distribution, as well as decreasing the total
weight of the wrench 10. To position the wrench 10 about the work piece, the user
rotates the thumb wheel 52 to adjust the distance 44 between the jaws 28 and 30. As
the user rotates the thumb wheel 52, the meshing between the threads 58 of the thumb
wheel 52 and the threaded portion 54 of the hook jaw 30 causes the hook jaw 30 to
move in the direction of either arrow 40 or 42, depending on which direction the thumb
wheel 52 is rotated. With reference to FIG. 10, a maximum distance D
1 between the teeth 32, 34 can be adjusted to about 3.1 inches. In other embodiments,
the distance D
1 may vary depending on the size of the wrench 10. With the distance 44 between the
jaws 28, 30 slightly larger than the outer diameter of the work piece, the jaws 28
and 30 easily fit onto the work piece because the jaws 28 and 30 do not bind on the
work piece. Then, the user further rotates the thumb wheel 52 to reduce the distance
44 between the jaws 28 and 30 until the contact regions 36 and 38 of the jaws 28 and
30 contact the work piece.
[0024] With reference to FIG. 6, the floating mechanism 78 holds the hook jaw 30 in a central
position between the walls 72 and 74, but permits the distal end 96 of the hook jaw
30 to be moved in the direction of arrow 98 or 99. The hook jaw 30 may thus be accurately
positioned to engage the work piece, and when the handle 12 is rotated, the hook jaw
30 tilts within the aperture 70 in the direction of arrow 98 or 99. In addition, the
hook jaw 30 can pivot in the direction of arrow 99 by applying a force to the thumb
release portion 97. For example, an operator of the wrench 10 can apply force to the
thumb release portion 97 by their thumb to increase the distance 44 to easily remove
the wrench from a work piece.
[0025] In the illustrated embodiment, the wrench 10 is adaptable into multiple sized wrenches.
For example, the wrench 10 may be used without the extension handle 91 with the operator
gripping the handle 12 between the thumb release portion 97 and the proximal end 16.
As such, a total length D
2 of the handle 12 with the moveable jaw 30 at the maximum distance D
1 is about 13.2 inches. Therefore, a ratio between the width W
1 of the jaw 28 and the total length D
2 is about 0.07, and a ratio between the width W
2 of the jaw 30 and the total length D
2 is about 0.06. In other embodiments, the total length D
2 may be different by changing the maximum distance D
1 and/or by changing the length of the handle 12. The handle 12 is operable by the
operator in applications where relatively low torque or leverage is required. Alternatively,
the extension handle 91a may be coupled to the handle 12 such that a total length
D
3 of the wrench 10 is about 18.9 inches. Therefore, a ratio between the width W
1 of the jaw 28 and the total length D
3 is about 0.05, and a ratio between the width W
2 of the jaw 30 and the total length D
3 is about 0.04. Furthermore, the extension handle 91b may be coupled to the handle
12 such that a total length D
4 of the wrench 10 is about 24.2 inches. Therefore, a ratio between the width W
1 of the jaw 28 and the total length D
4 is about 0.04, and a ratio between the width W
2 of the jaw 30 and the total length D
4 is about 0.03. In other embodiments, the distances D
3, D
4 may vary depending on the size of the wrench 10.
[0026] FIGS. 11 and 12 illustrate a wrench 110 according to another embodiment of the invention.
The wrench 110 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 100 and only differences between the wrenches 10 and 110
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0027] The wrench 110 includes a handle 112, and ultimately a bore 113, manufactured from
aluminum. However, an extension handle 191 is manufactured from steel to provide additional
strength against torsional forces applied to the extension handle 191 during operation
of the wrench 110. Therefore, the operator could potentially strip the internal threads
of the bore 113 while tightening the extension handle 191 to the handle 112 due to
the weaker aluminum material. As a result, a sleeve 187 defining a hollow cylindrical
member is inserted and secured (e.g., press fit, adhesive, etc.) within the bore 113.
The sleeve 187 includes internal threads able to engage the external threads of the
extension handle 191. The sleeve 187 is also manufactured from steel to inhibit potential
damage to the internal threads of the sleeve 187.
[0028] With reference to FIG. 12, the wrench 110 further includes an auxiliary drive 150
having a first auxiliary drive surface 146 associated with a head 114 of the wrench
110 and a second auxiliary drive surface 148 associated with a hook jaw 130 of the
wrench. The illustrated the auxiliary drive 150 is shaped as two parallel surfaces
particularly suited to rotate a cleanout cover 151 of a pipe 153 (FIG. 13). In operation,
the surfaces 146, 148 receive opposite sides of a square projection 155 of the cover
151 by rotating a thumb wheel 152 to adjust a distance between the surfaces 146, 148.
The wrench 110 is then used to rotate the cover 151 relative to the pipe 153 to install
or remove the cover 151.
[0029] FIGS. 14 and 15 illustrate a wrench 210 according to another embodiment of the invention.
The wrench 210 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 200 and only differences between the wrenches 10 and 210
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0030] The wrench 210 includes an extension member 291 pivotally coupled to a handle 212
via a pin 268. In addition, the wrench 210 includes a recess 267 (FIG. 15) able to
receive the extension member 291 within the handle 212. The pin 268 is received within
an aperture 270 adjacent a proximal end portion 216. In a storage position (FIG. 14),
the extension member 291 is generally disposed between the proximal end portion 216
and a distal end portion 218. In an extended position (FIG. 15), the extension member
291 extends beyond the proximal end portion 216. The extension member 291 can include
a range of cross sectional geometries (e.g., square, circle, rectangle, etc.).
[0031] The extension member 291 of the handle 212 is selectively pivotable between the storage
position and the extended position to increase the amount of leverage to jaws 228,
230. In the extended position, the extension member 291 and the handle 212 form an
overlapping area 276 such that the extension member 291 is not moveable relative to
the handle 212 in the direction defined by direction arrows 272, 274.
[0032] In addition, the wrench 210 includes a detent mechanism 278 to inhibit pivoting motion
of the extension member 291. The detent mechanism 278 includes a detent protrusion
280 located on the handle 212 and a detent aperture 282 located on the extension member
291. The detent protrusion 280 and the detent aperture 282 are located the same distance
from the pin 268 such that the detent aperture 282 is engaged with the detent protrusion
280 to temporarily lock the extension member 291 in the storage position. In another
embodiment, the detent protrusion 280 may be located on the extension member 291 and
the detent aperture 282 may be located on the handle 212.
[0033] FIGS. 16-18 illustrate a wrench 310 according to another embodiment of the invention.
The wrench 310 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 300 and only differences between the wrenches 10 and 310
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0034] The extension member 391 includes a hook and recess mechanism 378. The hook and recess
mechanism 378 includes an arm 386 that extends over a top portion of a handle 312
in a storage position (FIG. 16) to temporarily lock the hook mechanism 378 in the
storage position. In particular, a recess 367 of the handle 312 receives the extension
member 391 in the storage position. The illustrated extension member 391 is pivotable
about a pin 368 into an extended position (FIG. 17). A rear view of the wrench 310
is illustrated in FIG. 18 with the extension member 391 in the extended position.
The hook and recess mechanism 378 includes a cavity 384 that is able to receive a
side portion of the handle 312 when the extension member 391 is in the storage position.
[0035] FIGS. 19 and 20 illustrate a wrench 410 according to yet another embodiment of the
invention. The wrench 410 is similar to the wrench 10; therefore, like components
have been given like reference numbers plus 400 and only differences between the wrenches
10 and 410 will be discussed in detail. In addition, components or features described
with respect to only one or some of the embodiments described herein are equally applicable
to any other embodiments described herein.
[0036] The extension member 491 includes an outer extension member 488 that is slidably
received over an inner extension member 490. In addition, the inner extension member
490 is slidably received over a handle 412. In the storage position (FIG. 19), the
outer extension member 488 and the inner extension member 490 abut a head 414 of the
wrench 410. To move the extension member 491 to an extended position (FIG. 20), the
user slides the outer extension member 488 relative to the inner extension member
490, and the inner extension member 490 slides relative to the handle 412 away from
the head 414. In other embodiments, to move the extension member 491 from the storage
position into an extended position, the user may only slide the outer extension member
488 relative to the inner extension member 490 and the handle 412. In further embodiments,
to move the extension member 491 from the storage position into an extended position,
the user may slide the outer extension member 488 with the inner extension member
490 relative to the handle 412.
[0037] FIG. 21 illustrates a wrench 510 according to yet another embodiment of the invention.
The wrench 510 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 500 and only differences between the wrenches 10 and 510
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0038] The illustrated wrench 510 includes an extension member 591 including an inner extension
member 590 that is slidably received within an outer extension member 588 and the
outer extension member 588 is slidably received within a handle 512. In the illustrated
embodiment, the inner extension member 590 extends from the outer extension member
588 about 5 inches. The outer extension member 588 is substantially hollow and the
outer extension member 588 extends from the handle 512 about 4 inches. In sum, the
extension member 591 extends about 9 inches from the handle 512 in the extended position.
In addition, the wrench 510 includes two overlapping areas 576. In the illustrated
embodiment, the overlapping area 576 between the handle 512 and the outer extension
member 588 is about 2 inches and the over lapping area 576 between the outer extension
member 591 and the inner extension member 590 is about 1 inch. In other embodiments,
the extension member 591 may include varying dimensions of the outer and the inner
extension members 588, 590 and the overlapping areas 576 to account for varying wrench
510 sizes.
[0039] FIG. 22 illustrates a wrench 610 according to yet another embodiment of the invention.
The wrench 610 is similar to the wrench 510; therefore, like components have been
given like reference numbers plus 100 and only differences between the wrenches 510
and 610 will be discussed in detail. In addition, components or features described
with respect to only one or some of the embodiments described herein are equally applicable
to any other embodiments described herein.
[0040] The illustrated wrench 610 includes a detent mechanism 678 having a positive lock
button 696 coupled to an extension member 691. The positive lock button 696 protrudes
outwardly from the extension member 691 and is biased by a spring. A cavity 698 is
located on an inner surface of a handle 612 that receives the positive lock button
696 in an extended position. In another embodiment, the positive lock button 696 may
be coupled to the handle 612 and the cavity 698 may be located on the extension member
691. To remove the extension member 691 from the handle 612, the positive lock button
696 is depressed towards the extension member 691 such that the positive lock button
696 is able to slide within the cavity 698.
[0041] FIG. 23 illustrates a wrench 710 according to another embodiment of the invention.
The wrench 710 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 700 and only differences between the wrenches 10 and 710
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0042] The illustrated wrench 710 includes a detent mechanism 778. The handle 712 includes
a bore 713 extending into the handle 712, and the bore 713 includes a cavity 798 located
near a proximal end portion 716 of the handle 712. The cavity 798 extends around an
inner circumference of the bore 713 in a direction generally perpendicular to a longitudinal
axis C. An extension member 791 includes a positive lock button 796 that are inserted
into the bore 713 such that the positive lock button 796 is received within the cavity
798. The extension handle 791 is rotated relative to the handle 712 to lock the positive
lock button 796 into a portion of the cavity 798. As a result, the extension handle
791 is secured to the handle 712 in an extended position.
[0043] FIG. 24 illustrates a cross section of a non-rotational feature 800 located within
a bore 813 of a handle 812 and is applicable to wrenches 410, 510, 610. More generally,
the non-rotational feature 800 may be utilized in a wrench including a sliding linear
engagement between an extension member and a handle. In addition, the non-rotational
feature 800 includes guide rails 899 that guide linear movement between two members
(i.e., extension member and handle or inner extension member and outer extension member)
yet inhibit rotational movement between two members.
[0044] FIG. 25 illustrates a wrench 910 according to yet another embodiment of the invention.
The wrench 910 is similar to the wrench 10; therefore, like components have been given
like reference numbers plus 900 and only differences between the wrenches 10 and 910
will be discussed in detail. In addition, components or features described with respect
to only one or some of the embodiments described herein are equally applicable to
any other embodiments described herein.
[0045] The illustrated wrench 910 includes an extension member 991 having a first extension
member 992 and a second extension member 994. The first extension member 992 is pivotably
coupled to a handle 912 via a pin 968, and the second extension member 994 is pivotably
coupled to the first extension member 992 via a pin 968. To move the extension member
991 to a storage position (not shown), the second extension member 994 is rotated
into the first extension member 992 and the first extension member 992 is rotated
into the handle 912 such that the extension member 991 is disposed within the handle
912. To move the extension member 991 to an extended position (not shown), the opposite
sequence is performed. For example, the first extension member 992 is rotated out
of the handle 912 and then the second extension member 994 is rotated out of the first
extension member 992 so that the extension member 991 is substantially parallel with
the handle 912.
[0046] Preferred embodiments of the present invention are set out below in the following
numbered clauses.
Clause 1. A pipe wrench comprising: a head including a first aperture; a first jaw
coupled to the head, the first jaw including a plurality of teeth that define a first
contact region; a second jaw partially extending through the aperture of the head,
the second jaw including a threaded portion and a plurality of teeth that define a
second contact region, the second contact region extending beyond the first contact
region in a direction parallel to side surfaces of the head, the second contact region
defining a width; an actuator including threads engaged with the threaded portion
of the second jaw such that rotation of the actuator moves the second contact region
of the second jaw relative to the first contact region of the first jaw; and an extension
handle removably coupled to the head, the extension handle and the second jaw defining
a length; wherein a ratio of the width of the second contact region and the length
is less than about 0.1.
Clause 2. The pipe wrench of clause 1, wherein the width of the second contact region
is about 0.9 inches.
Clause 3. The pipe wrench of clause 2, wherein the length of the extension handle
and the second jaw is about 19 inches.
Clause 4. The pipe wrench of clause 2, wherein the length of the extension handle
and the second jaw is about 24 inches.
Clause 5. The pipe wrench of clause 1, wherein the second contact region extends about
1/8 of an inch to about ½ of an inch beyond the first contact region.
Clause 6. A pipe wrench comprising: a head including a first aperture; a first jaw
coupled to the head, the first jaw including a plurality of teeth that define a first
contact region; a second jaw partially extending through the aperture of the head,
the second jaw including a threaded portion and a plurality of teeth that define a
second contact region; an actuator including threads engaged with the threaded portion
of the second jaw such that rotation of the actuator moves the second contact region
of the second jaw relative to the first contact region of the first jaw; a handle
including a proximal end portion and a distal end portion, the distal end portion
adjacent the head and the proximal end portion opposite the distal end portion, the
proximal end portion including a bore; and a first extension handle selectively coupled
within bore.
Clause 7. The pipe wrench of clause 6, wherein the handle defines a first length and
the first extension handle defines a second length greater than the first length,
and wherein the bore selectively receives a second extension handle defining a third
length greater than the second length.
Clause 8. The pipe wrench of clause 6, wherein the bore includes threads and the first
extension handle includes a threaded portion engagable with the threads of the bore
to removably couple the first extension handle to the head.
Clause 9. The pipe wrench of clause 6, wherein the handle is integrally formed with
the head as a single component.
Clause 10. The pipe wrench of clause 6, further comprising an end cap rotatably coupled
to the first extension handle such that the end cap is axially fixed relative to the
first extension handle.
Clause 11. A pipe wrench comprising: a head including a first aperture, the first
aperture defining a central axis; a first jaw coupled to the head, the first jaw including
a plurality of teeth that define a first contact region; a second jaw partially extending
through the aperture of the head, the second jaw including a threaded portion and
a plurality of teeth that define a second contact region, the second contact region
extending beyond the first contact region in a direction parallel to side surfaces
of the head; a biasing mechanism located within the first aperture to align the threaded
portion of the second jaw with the central axis of the first aperture; and an actuator
including threads engaged with the threaded portion of the second jaw such that rotation
of the actuator moves the second contact region of the second jaw relative to the
first contact region of the first jaw.
Clause 12. The pipe wrench of clause 11, wherein the biasing mechanism includes coil
springs located on opposing sides of the second jaw.
Clause 13. The pipe wrench of clause 12, further comprising an intermediate member
located between the second jaw and the coil springs, wherein the coil springs directly
engage the intermediate member.
Clause 14. The pipe wrench of clause 12, wherein a plurality of recesses are formed
in the head and positioned adjacent the first aperture, each of the plurality of recesses
receives a coil spring.
Clause 15. The pipe wrench of clause 12, wherein the biasing mechanism includes two
coil springs that are nonconcentric.
Clause 16. The pipe wrench of clause 11, wherein the second jaw includes a thumb release
portion located distally from the second contact region, the thumb release portion
is depressed to misalign the second jaw with the central axis of the first aperture.
Clause 17. The pipe wrench of clause 16, wherein when the thumb release portion is
depressed, the second contact region moves away from the first contact region.
Clause 18. The pipe wrench of clause 11, further comprising a handle integrally formed
with the head as a single component.
Clause 19. The pipe wrench of clause 18, further comprising an extension handle selectively
coupled to the head.
Clause 20. The pipe wrench of clause 19, further comprising an end cap rotatably coupled
to the extension handle distal from the head such that the end cap is axially fixed
relative to the extension handle.
[0047] Although the invention has been described in detail with reference to certain preferred
embodiments, variations and modifications exist within the scope and spirit of one
or more independent aspects of the invention as described.
1. A pipe wrench comprising:
a head including an aperture, the aperture defining a central axis;
a first jaw coupled to the head, the first jaw including a plurality of teeth that
define a first contact region;
a second jaw partially extending through the aperture of the head, the second jaw
including a threaded portion and a plurality of teeth that define a second contact
region, the second contact region extending beyond the first contact region in a direction
parallel to side surfaces of the head;
a biasing mechanism located within the aperture to align the threaded portion of the
second jaw with the central axis of the aperture; and
an actuator including threads engaged with the threaded portion of the second jaw
such that rotation of the actuator moves the second contact region of the second jaw
relative to the first contact region of the first jaw.
2. The pipe wrench of claim 1, wherein the biasing mechanism includes coil springs located
on opposing sides of the second jaw.
3. The pipe wrench of claim 2, further comprising an intermediate member located between
the second jaw and the coil springs, wherein the coil springs directly engage the
intermediate member.
4. The pipe wrench of claim 2, wherein a plurality of recesses are formed in the head
and positioned adjacent the aperture, each of the plurality of recesses receives a
coil spring.
5. The pipe wrench of claim 2, wherein the biasing mechanism includes two coil springs
that are nonconcentric.
6. The pipe wrench of claim 1, wherein the second jaw includes a thumb release portion
located distally from the second contact region, the thumb release portion is depressed
to misalign the second jaw with the central axis of the aperture.
7. The pipe wrench of claim 6, wherein when the thumb release portion is depressed, the
second contact region moves away from the first contact region.
8. The pipe wrench of claim 1, further comprising a handle integrally formed with the
head as a single component.
9. The pipe wrench of claim 8, further comprising an extension handle selectively coupled
to the head.
10. The pipe wrench of claim 9, further comprising an end cap rotatably coupled to the
extension handle distal from the head such that the end cap is axially fixed relative
to the extension handle.
11. A pipe wrench comprising:
a head including an aperture;
a first jaw coupled to the head, the first jaw including a plurality of teeth that
define a first contact region;
a second jaw partially extending through the aperture of the head, the second jaw
including a threaded portion and a plurality of teeth that define a second contact
region, the second contact region extending beyond the first contact region in a direction
parallel to side surfaces of the head, the second contact region defining a width;
an actuator including threads engaged with the threaded portion of the second jaw
such that rotation of the actuator moves the second contact region of the second jaw
relative to the first contact region of the first jaw; and
an extension handle removably coupled to the head, the extension handle and the second
jaw defining a length;
wherein a ratio of the width of the second contact region and the length is less than
about 0.1.
12. The pipe wrench of claim 11, wherein the width of the second contact region is about
0.9 inches.
13. The pipe wrench of claim 12, wherein the length of the extension handle and the second
jaw is about 19 inches.
14. The pipe wrench of claim 12, wherein the length of the extension handle and the second
jaw is about 24 inches.
15. The pipe wrench of claim 11, wherein the second contact region extends about 1/8 of
an inch to about ½ of an inch beyond the first contact region.