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(57)  Mosquito species cause severe and debilitating
illnesses. Despite significant advances in clinical medi-
cine, no specific drugs or vaccines are available for di-
agnosis, treatment, and management of majority of mos-
quito-borne illnesses. A method and system for evaluat-
ing and reducing the degree of mosquito attractiveness
of an individual is provided. The methodology involves
computation of a metric based on analysis of the host’'s
skin microbial profile and is thus expected to estimate
individualized attractiveness profiles. A specific set of
bacterial species contributing to skin attractiveness for
mosquitoes have been identified and relative abundanc-
es of the bacterial species in the identified set have been
custom engineered to generate novel features. These
features have been utilized for computing an index re-
ferred to as a 'Mosquito Attractiveness Quotient (MAQ)’
that quantifies or measures the degree of mosquito-at-
tractiveness of individual. The disclosure also proposes
formulations that can aid/ promote the maintenance of
healthy skin microbiota.
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Description
CROSS-REFERENCE TO RELATED APPLICATIONS AND PRIORITY
[0001] The present application claims priority to Indian application no. 202121028070, filed on 22 June 2021.
TECHNICAL FIELD

[0002] The disclosure herein generally relates to the field of analyzing mosquito attractiveness of an individual, and,
more particularly, to a method and system to evaluate degree of mosquito-attractiveness of an individual and reduce
attractiveness via modulating the skin microbiome of the individual.

BACKGROUND

[0003] The tropical and sub-tropical regions around the globe are inhabited by numerous mosquito species that act
as vehicles or transmitting agents for a milieu of infectious, disease causing viruses, bacteria, and other kinds of parasites.
Mosquito species such as Aedes, Anopheles, Culex, Haemagogus, etc., are delivery vectors for microbial pathogens
causing severe and debilitating illnesses viz., malaria, dengue, yellow fever, chikungunya, West Nile virus disease, Zika
virus disease, filariasis, tularemia, rift-valley fever, Japanese encephalitis, other viral encephalitis, etc. Rapid explosion
in population and urbanization, together with expanding global travel, unparalleled climate change, and large gaps in
health infrastructure provide favorable conditions for rapid proliferation and ubiquitous spread of mosquitoes thereby
resulting in several kinds of life-threatening disease outbreaks.

[0004] Despite significant advances in clinical medicine and pharmacology, no specific drugs or vaccines are available
for diagnosis, treatment, and management of majority of mentioned mosquito-borne illnesses. Hence, to combat the
proliferation and spread of infectious disease-causing agents transmitted through mosquitoes, protection from mosquito
bites continues to remain as the principal and the most efficacious preventive and prophylactic disease-control strategy
against vector borne diseases.

[0005] Traditionally, vector-control strategies and approaches employ one or a combination of insecticides/ pesticides
that deflate mosquito populations by either killing the larvae or the adult form of vectors, or by eliminating the breeding
sites of these vectors. Several insecticidal compounds, including, organophosphates, carbamates, pyrethroids, etc., are
commercially utilized for this purpose. However, insecticidal resistance, particularly against commonly used pyrethroids,
is posing a significant challenge for effective vector control via this route. Furthermore, insecticidal solutions are also
reported to exert adverse effects on human health. Further, different species of mosquito vectors transmit different kinds
of diseases, having distinct epidemiological characteristics and therefore require discrete (and customized) vector control
strategies.

[0006] Mosquitoes locate human hosts through an amalgamation of host-specific thermal, visual, and chemical signals.
Although, mosquitoes primarily rely on chemo-sensory olfactory cues for precise orientation and landing on human host,
palpable and thermal cues, including heat, moisture/ humidity, and host’s visible silhouette additionally guide the mos-
quitoes to fly towards the host. Among the chemical cues, carbon dioxide from human exhaled breath and a blend of
diverse skin odor-related cues regulate the host-seeking behavior of mosquitoes. The plethora of host-specific skin odors
is attributable to certain volatile organic compounds (VOCs), also known as 'sweat metabolites’, which are generated
by metabolic activities of micro-organisms residing on human skin.

[0007] The human skin is an enormous and complex ecosystem, constituting diverse niches inhabited by heteroge-
neous microbial communities. Trillions of micro-organisms, comprising of, bacteria, viruses, fungi, and archaea, populate
the skin surface and together shape the skin microbiota. Physiological factors specific to the host, in particular, age,
gender, skin pH, temperature, humidity, oxygen and nutrient availability, sebum and hormone secretion, immune system,
and the presence of numerous anatomical skin sites contribute to the temporal variability of the skin flora. Distinct groups
of resident skin microbes are capable of biosynthesizing/ metabolizing a myriad of VOCs. Given the immense inter-
individual variability in skin microbiota, the uniqueness and intensity of skin odor is therefore directly correlated with the
relative abundances of certain groups of skin bacteria. The imbalance/ dysbiosis in the healthy repertoire of skin microbiota
is associated with the range of acute and chronic skin disorders, such as acne, psoriasis, dermatitis, leprosy, rosacea,
etc. Furthermore, recent in-vitro and in-vivo studies have shown that VOCs produced by skin bacteria are attractive to
malarial parasite transmitting female Anopheles mosquito.

SUMMARY

[0008] Embodiments of the present disclosure present technological improvements as solutions to one or more of the
above-mentioned technical problems recognized by the inventors in conventional systems. For example, in one embod-
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iment, a system for evaluating and reducing the degree of mosquito-attractiveness of an individual is provided. The
system comprises a sample collection module, an extraction unit, a sequencer, one or more hardware processors, a
memory and an administration module. The sample collection module collecting a biological sample from skin of the
individual, wherein the biological sample is representing skin microbiome of the individual. The extraction unit extracts
microbial nucleic acid content from the collected biological sample. The sequencer sequences the extracted microbial
nucleic acid content, via a sequencer, to get sequence data. The memory is in communication with the one or more
hardware processors, wherein the one or more first hardware processors are configured to execute programmed in-
structions stored in the one or more first memories, to: categorize the sequenced data into a plurality of taxonomic groups
utilizing standardized classification algorithms and a plurality of databases; compute raw abundance values of a plurality
of features, wherein each feature corresponds to a unique taxonomic group from amongst the plurality of taxonomic
groups; normalize and scale the computed raw abundance values of each of the plurality of features, wherein the
normalizing is configured to adjust the raw abundance values to a common scale, thereby correcting a bias in the
computation of the raw abundance values, wherein the bias is due to a plurality of factors; identify a set of features from
the plurality of features based on similarity between a nucleotide sequence corresponding to the feature and the nucleotide
sequences corresponding to a set of pre-identified amplicon sequence variants (ASVs), and wherein the set of features
is identified if the similarity exceeds a predefined range; perform one or more feature engineering techniques on the
normalized and scaled abundance values of the set of features to obtain a collated feature table (CFT), wherein the CFT
comprises of a plurality of novel engineered features and their corresponding engineered raw abundance values; provide
binary classifier utilizing a pre-built classification model; compute a mosquito attractiveness quotient (MAQ) score by
feeding the CFT to the binary classifier; and compare the computed MAQ score with a predefined threshold score, to
categorize the individual to be one of a highly attractive or a poorly attractive to mosquitoes; and an administration
module for administering skin microbe based therapeutic interventions to the individual, if the individual is categorized
as highly attractive to mosquitoes, wherein the therapeutic interventions are configured to: combat the growth of bacterial
groups that metabolize/ bio-synthesize sweat and metabolic compounds that are responsible for the production of skin
odor that makes the individual attractive to mosquitoes, aid in the colonization of bacterial groups that improve skin-
barrier function and maintain skin health, aid in degradation of sweat and metabolic compounds that are responsible for
the production of skin odor that makes the individual attractive to mosquitoes, or bio-synthesize sweat and metabolic
compounds that are responsible for production of skin odor that makes the individual less attractive to mosquitoes.
[0009] In another aspect, a method for evaluating and reducing the degree of mosquito-attractiveness of an individual
is provided. Initially, a biological sample is collected from skin of the individual, wherein the biological sample is repre-
senting skin microbiome of the individual. Further, microbial nucleic acid content is extracted from the collected biological
sample via an extraction unit. The extracted microbial nucleic acid content is then sequenced, via a sequencer, to get
sequence data. In the next step, the sequenced data is categorized into a plurality of taxonomic groups utilizing stand-
ardized classification algorithms and a plurality of databases. Further, raw abundance values of a plurality of features
is computed, wherein each feature corresponds to a unique taxonomic group from amongst the plurality of taxonomic
groups. In the next step, the computed raw abundance values of each of the plurality of features are normalized and
scaled, wherein the normalizing is configured to adjust the raw abundance values to a common scale, thereby correcting
a bias in the computation of the raw abundance values, wherein the bias is due to a plurality of factors. Further a set of
features is identified amongst the plurality of features based on similarity between a nucleotide sequence corresponding
to the feature and the nucleotide sequences corresponding to a set of pre-identified amplicon sequence variants (ASVs),
and wherein the set of features is identified if the similarity exceeds a pre-defined range. One or more feature engineering
techniques are then performed on the normalized and scaled abundance values of the set of features to obtain a collated
feature table (CFT), wherein the CFT comprises of a plurality of novel engineered features and their corresponding
engineered abundance values. In the next step, a binary classifier is provided, wherein the binary classifier utilizing a
pre-built classification model. In the next step a mosquito attractiveness quotient (MAQ) score is computed by feeding
the CFT to the binary classifier. Further, the computed MAQ score is compared with a predefined threshold score, to
categorize the individual to be one of a highly attractive or a poorly attractive to mosquitoes. And finally, skin microbe
based therapeutic interventions is administered to the individual, via an administration module, if the individual is cate-
gorized as highly attractive to mosquitoes, wherein the therapeutic interventions are configured to: combat the growth
of bacterial groups that metabolize/ bio-synthesize sweat and metabolic compounds that are responsible for the pro-
duction of skin odor that makes the individual attractive to mosquitoes, aid in the colonization of bacterial groups that
improve skin-barrier function and maintain skin health, aid in degradation of sweat and metabolic compounds that are
responsible for the production of skin odor that makes the individual attractive to mosquitoes, or bio-synthesize sweat
and metabolic compounds that are responsible for production of skin odor that makes the individual less attractive to
mosquitoes.

[0010] In yet another aspect, there are provided one or more non-transitory machine-readable information storage
mediums comprising one or more instructions which when executed by one or more hardware processors cause eval-
uating and reducing the degree of mosquito-attractiveness of an individual is provided. Initially, a biological sample is
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collected from skin of the individual, wherein the biological sample is representing skin microbiome of the individual.
Further, microbial nucleic acid content is extracted from the collected biological sample via an extraction unit. The
extracted microbial nucleic acid content is then sequenced, via a sequencer, to get sequence data. In the next step, the
sequenced data is categorized into a plurality of taxonomic groups utilizing standardized classification algorithms and
a plurality of databases. Further, raw abundance values of a plurality of features is computed, wherein each feature
corresponds to a unique taxonomic group from amongst the plurality of taxonomic groups. In the next step, the computed
raw abundance values of each of the plurality of features are normalized and scaled, wherein the normalizing is configured
to adjust the raw abundance values to a common scale, thereby correcting a bias in the computation of the raw abundance
values, wherein the bias is due to a plurality of factors. Further a set of features is identified amongst the plurality of
features based on similarity between a nucleotide sequence corresponding to the feature and the nucleotide sequences
corresponding to a set of pre-identified amplicon sequence variants (ASVs), and wherein the set of features is identified
if the similarity exceeds a pre-defined range. One or more feature engineering techniques are then performed on the
normalized and scaled abundance values of the set of features to obtain a collated feature table (CFT), wherein the CFT
comprises of a plurality of novel engineered features and their corresponding engineered abundance values. In the next
step, a binary classifier is provided, wherein the binary classifier utilizing a pre-built classification model. In the next step
a mosquito attractiveness quotient (MAQ) score is computed by feeding the CFT to the binary classifier. Further, the
computed MAQ score is compared with a predefined threshold score, to categorize the individual to be one of a highly
attractive or a poorly attractive to mosquitoes. And finally, skin microbe based therapeutic interventions is administered
to the individual, via an administration module, if the individual is categorized as highly attractive to mosquitoes, wherein
the therapeutic interventions are configured to: combat the growth of bacterial groups that metabolize/ bio-synthesize
sweat and metabolic compounds that are responsible for the production of skin odor that makes the individual attractive
to mosquitoes, aid in the colonization of bacterial groups that improve skin-barrier function and maintain skin health, aid
in degradation of sweat and metabolic compounds that are responsible for the production of skin odor that makes the
individual attractive to mosquitoes, or bio-synthesize sweat and metabolic compounds that are responsible for production
of skin odor that makes the individual less attractive to mosquitoes.

[0011] It is to be understood that both the foregoing general description and the following detailed description are
exemplary and explanatory only and are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate ex-
emplary embodiments and, together with the description, serve to explain the disclosed principles:

FIG. 1 is a block diagram of a system for evaluating and reducing the degree of mosquito-attractiveness of an
individual according to some embodiments of the present disclosure.

FIG. 2A and 2B is a flowchart illustrating the steps involved in a method for evaluating and reducing the degree of
mosquito-attractiveness of the individual according to some embodiments of the present disclosure.

FIG. 3A and 3B is a flowchart illustrating schematic representation of the methodology used for evaluating and
reducing the degree of mosquito-attractiveness of the individual using empirical data investigation according to
some embodiments of the present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0013] Exemplary embodiments are described with reference to the accompanying drawings. In the figures, the left-
mostdigit(s) of a reference number identifies the figure in which the reference number firstappears. Wherever convenient,
the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and
features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible
without departing from the scope of the disclosed embodiments.

GLOSSARY - TERMS USED IN THE EMBODIMENTS

[0014] The expression "microbiota” in the context of the present disclosure refers to the collection of microorgan-
isms, such as, bacteria, archaea, protists, fungi, and virus, that inhabit a particular ecological niche (e,g. a human body
site such as skin, gut, oral cavity, etc.,) or an environmental/geographical site (e.g. soil surface, air sample, halophilic
locations, kitchen table surface, etc.)

[0015] The term "microbiome” refers to the collection of genetic material of micro-organisms that reside in a
particular geographical niche. The term "pathogen" refers to any organism that can cause disease in a host.
[0016] The term "Vector" refers to any organism that transmits infectious pathogens or parasites from one
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infected organism to another. Examples of common disease-carrying vectors are mosquitoes, ticks, and flies.

[0017] The term "vector-borne diseases" refers to infectious diseases transmitted/ ferried from one infected host
to another through vector organisms. Examples of common vector-borne diseases are malaria, dengue fever, chikun-
gunya, encephalitis, and filariasis etc.

[0018] Mosquito species such as Aedes, Anopheles, Culex, Haemagogus, etc., are delivery vectors for microbial
pathogens causing severe and debilitating illnesses. Despite significant advances in clinical medicine and pharmacology,
no specific drugs or vaccines are available for diagnosis, treatment, and management of majority of mentioned mosquito-
borne ilinesses. Hence, to combat the proliferation and spread of infectious disease-causing agents transmitted through
mosquitoes, protection from mosquito bites continues to remain as the principal and the most efficacious preventive and
prophylactic disease-control strategy against vector borne diseases.

[0019] There are few techniques that exist in the prior art to estimate/ define/ quantify/ evaluate the mosquito attrac-
tiveness of anindividual. These techniques require in-vitro experiments to quantify/ measure the differential attractiveness
of different human skin emanations or VOCs (volatile organic compounds), either alone or in combination, towards
disease-transmitting mosquito vectors. These experiments not only require expensive and highly specialized equipment,
but also need to be carried out under controlled and regulated experimental conditions, with selectively-bred mosquito
populations. Although, such experiments are extremely sensitive, spatial and temporal variations in factors, such as,
external temperature, wind speed and direction, time of the day, etc., can skew the measurements and lead to spurious
results. Moreover, even miniscule heterogeneity in mosquito population densities can result in inaccurate extrapolation
of experimental data/ results. Further, given the high inter-individual variability between host-skin bacteria, and thus skin
odor profiles, deciphering generic odor-producing compounds that can potentially act as a universal magnet/ repellent
for all pathogen-carrying mosquito species still remains a major challenge.

[0020] Inaddition, numerous volatile chemical compounds that contribute to host odor have been quantified and tested
for their degree of attractiveness towards mosquitoes, but none of them have been found to be universally attractive to
all species of mosquitoes. Moreover, owing to the rapidly evolving mosquito population, the traditional vector-control
strategies may be soon deprived of their efficacies. Hence, the demand of the hour necessitates the design and deploy-
ment of novel microbiome-based personalized vector management approaches.

[0021] The present disclosure provides a method and system for quantifying the mosquito-attractiveness of an indi-
vidual based upon the composition and structure of the resident skin microbial community. The method proposed in the
present disclosure is independent of above-mentioned confounding factors that are known to complicate and potentially
misrepresent the results of in-vitro experiments. The proposed method, in one embodiment, estimates differential at-
tractiveness of an individual to mosquitoes through the collection and analysis of a skin swab sample of the individual.
The method of collecting scores over other methods in being relatively simpler, non-invasive/ minimally-invasive, and
also cost-effective. In addition, the methodology proposed in the present disclosure involves computation of a metric
based on analysis of the host’s skin microbial profile and is thus expected to estimate individualized attractiveness
profiles. This would aid in adoption of personalized screening and therapeutic vector-control options.

[0022] Further, the present disclosure provides microbiome-based approach for controlling and minimizing the attrac-
tiveness ofindividuals towards host-seeking mosquitoes. This approach is primarily focused towards targeting the harmful
bacterial groups (residing in skin) that are capable of producing attractive VOCs (i.e. those that are attractive to mos-
quitoes), The targeting (of harmful bacterial groups residing in/ on the skin of the individual) is achieved through admin-
istering (to the individual) a consortium of microbes or a consortium of microbes in combination with antibiotic drugs.
The present disclosure also proposes pre-/ pro-/ anti-/ meta-/post-/syn-biotic formulations that can aid/ promote the
maintenance of healthy skin microbiota.

[0023] A specific set of bacterial species (prevalent in human skin microbiota) contributing to skin attractiveness for
mosquitoes have been identified and the relative abundances of the bacterial species in the identified set have been
custom engineered to design/ generate novel features. These newly designed features have been utilized for computing
a novel metric/ index referred to as a '"Mosquito Attractiveness Quotient (MAQ)’ that quantifies or measures the degree
of mosquito-attractiveness of an individual. The 'MAQ’ is evaluated based on the taxonomic abundance profile of resident
skin microbiota and is indicative of the metabolic/ functional potential of skin bacteria to biosynthesize/ metabolize certain
metabolites that play a role in augmenting/ reducing the attractiveness of an individual to host-seeking mosquitoes. The
MAQ metric is subsequently used to assess, for the individual, the probabilities/ risks (i.e. the attractiveness) of the
individual to mosquito bites.

[0024] Referring now to the drawings, and more particularly to FIG. 1 through FIG. 3B, where similar reference char-
acters denote corresponding features consistently throughout the figures, there are shown preferred embodiments and
these embodiments are described in the context of the following exemplary system and/or method.

[0025] According to an embodiment of the disclosure, a block diagram of a system 100 for evaluating and reducing
the degree of mosquito-attractiveness of an individual is shown in Fig. 1. The system 100 consists of a sample collection
module 102, an extraction unit 104, a sequencer 106, a memory 108, one or more hardware processors (referred as a
processor, herein after) 110 and an administration module 112 as shown in FIG. 1. The processor 110 is in communication
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with the memory 108. The memory 108 further includes a plurality of modules for performing various functions. The
plurality of modules comprises a sequence categorization module 114, a normalization module 116, a feature engineering
module 118, a Mosquito Attractiveness Quotient (MAQ) score calculation module 120 and a mosquito attractiveness
prediction module 122.

[0026] The system 100 comprises the extraction unit 104 and the sequencer 106. DNA is first extracted from the
microbial cells constituting the probiotic sample or microbiome sample using laboratory standardized protocols by em-
ploying the DNA extractor 104. Next, sequencing is performed using the sequencer 106 to obtain the sequenced me-
tagenomic reads. The sequencer 106 performs whole genome shotgun (WGS) sequencing from the extracted microbial
DNA, using a sequencing platform after performing suitable pre-processing steps (such as, sheering of samples, cen-
trifugation, DNA separation, DNA fragmentation, DNA extraction and amplification, etc.).

[0027] The system 100 supports various connectivity options such as BLUETOOTH®, USB, ZigBee and other cellular
services. The network environment enables connection of various components of the system 100 using any communi-
cation link including Internet, WAN, MAN, and so on. In an exemplary embodiment, the system 100 is implemented to
operate as a stand-alone device. In another embodiment, the system 100 may be implemented to work as a loosely
coupled device to a smart computing environment. The components and functionalities of the system 100 are described
further in detail.

[0028] According to an embodiment of the disclosure, the skin (microbiome) sample is collected using the sample
collection module 102. The sample collection module 102 is configured to obtain a sample from the skin of the individual.
[0029] In operation, a flow diagram of a method 200 evaluating and reducing the degree of mosquito-attractiveness
of the individual is shown in FIG. 2A and 2B. The method 200 depicted in the flow chart may be executed by a system,
for example, the system, 100 of FIG. 1. In an example embodiment, the system 100 may be embodied in a computing
device.

[0030] Operations of the flowchart, and combinations of operation in the flowchart, may be implemented by various
means, such as hardware, firmware, processor, circuitry and/or other device associated with execution of software
including one or more computer program instructions. For example, one or more of the procedures described in various
embodiments may be embodied by computer program instructions. In an example embodiment, the computer program
instructions, which embody the procedures, described in various embodiments may be stored by at least one memory
device of a system and executed by at least one processor in the system. Any such computer program instructions may
be loaded onto a computer or other programmable system (for example, hardware) to produce a machine, such that the
resulting computer or other programmable system embody means for implementing the operations specified in the
flowchart. It will be noted herein that the operations of the method 200 are described with help of system 100. However,
the operations of the method 200 can be described and/or practiced by using any other system.

[0031] Initially at step 202 of method 200, a biological sample is collected from skin of the individual using the sample
collection module 102. The biological sample is representing skin microbiome of the individual. In order to study and
evaluate the taxonomic composition of the person’s microbiota, skin sample is collected by either swabbing/ scraping
one or more layers of skin with the help of a sterile scalpel or by repeated rubbing of defined skin sites with a sterile
swab. Both the techniques, individually, or in combination can be used to obtain the skin sample for further investigation.
In another example, biopsy of the skin tissue obtained from a specified/ defined site may also be employed for sample
collection. In addition, tape-stripping methods, which sample the components of the upper layer of skin (i.e. stratum
corneum) using an adhesive tape are also one of the methods of skin sample collection and are also well within the
scope of this disclosure. Further, a cup-scrub sampling technique may also be applied for sample collection. Thus, by
appropriately utilizing the above-mentioned sampling methods, either alone or in combination, skin samples from different
body skin sites, such as arms, feet, palm, ankles, back of neck and knees, elbows, face, etc., can be obtained.

[0032] Further at step 204 of the method 200, microbial nucleic acid content is extracted from the collected biological
sample via the extraction unit 104. At step 206 the extracted microbial nucleic acid content is sequenced, via the
sequencer 106 to get sequence data. The sequence data comprises of a plurality of sequence reads corresponding to
the extracted nucleic acid content of the microbes in the collected biological sample. Microbial nucleic acid content from
the collected skin sample is extracted using suitable molecular biology wet-lab protocols. Nucleic acid extraction is
performed using standardized laboratory isolation and purification kits, such as, Norgen, Purelink, OMNIgene/ Epicenter,
etc.

[0033] Sequencing of microbial nucleic acid content (which is extracted from the skin sample) is performed using one
or more or a suitable combination of molecular biology and wet-lab protocols, including but not limited to, Polymerase
Chain Reaction (PCR), quantitative Polymerase Chain Reaction (qQPCR), pyrosequencing, Denaturing Gradient Gel
Electrophoresis (DGGE), Restriction Fragment Length Polymorphism, microarrays or Next Generation Sequencing
(NGS). Nucleic acid hybridization or any other methods that can identify, detect, extract, and sequence microbial nucleic
acids present in the collected skin samples are well within the scope of this disclosure. Nucleic acid sequences comprise
of DNA, RNA, mRNA, rRNA, etc. In addition, assaying of any protein sequences (other biological components) that may
indicate the presence/ absence and/ or the absolute/ specific abundances of all/ specific bacteria present in the collected
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skin sample may also be employed as a procedure. For the assaying/ detection/ quantification of protein sequences,
gel electrophoresis, mass spectroscopy, AQUA, iTRAQ, etc., or any other methods are within the scope of this disclosure.
[0034] The above-mentioned sequencing procedures, either alone or in combination, are utilized to sequence the
microbial nucleic acid/ gene/ protein content in human readable (and computer analyzable) form/ data formats called
reads. Any of the microbial phylogenetic marker genes, such as, 16S rRNA, 23S rRNA, rpoB, cpn60, etc., may be used
as a target for amplification and for obtaining respective sequence data. In addition, application of Whole genome
sequencing (WGS) to analyze the taxonomic and functional nucleic acid/ gene content of entire microbial content in the
skin sample is within the scope of this disclosure. RNA sequencing, a technique that characterizes and quantifies the
repertoire of active gene transcripts in a sample, may be also be utilized as a method for analyzing the microbial
components in the skin sample. The sequence data, thus generated, is subsequently computationally analyzed by
employing suitable analysis protocols to estimate/ quantify the microbial composition (in both taxonomic and functional
terms) of the collected sample.

[0035] Further at step 208 of the method 200, the sequenced data is categorized into a plurality of taxonomic groups
utilizing standardized classification algorithms and a plurality of databases. The standardized state-of-art classification
algorithms and databases classify and assign sequence reads into distinct bacterial groups at various taxonomic levels.
Standardized methods such as, methods such as, Naive Bayesian classifier as implemented in Ribosomal Data Project,
that classify microbial sequence reads into taxonomic groups, or methods utilizing sequence based matches with different
marker gene databases, such as, Silva, Ribosomal Database Project database can also be applied for analyzing se-
quence data and estimating the raw counts or abundances of various microbial taxonomic groups/ taxonomic units in
the collected skin sample. The disclosure also supports the creation of an in-house 16S rRNA database of strains of
bacterial genomes for customized analysis. Any other method for identifying the microbial composition of a given sample
can also be utilized. It should be noted that the abundances/counts of bacterial groups corresponding to taxonomic
levels, such as, but not limited to, kingdom, phylum, class, order, family, genus, species, strains, OTUs (Operating
Taxonomic Units), Amplicon Sequence Variants (ASVs) etc. may be considered for analysis. Calculation of counts of
microorganisms, other than bacteria in the skin samples, is also within the scope of the disclosure.

[0036] At step 210 of the method 200, raw abundance values of a plurality of features is computed, wherein each
feature corresponds to a unique taxonomic group from amongst the plurality of taxonomic groups. The unique taxonomic
groups are microbial groups present in skin of individuals who are either highly-attractive to mosquitoes or poorly-
attractive to mosquitoes.

[0037] Further at step 212, the computed raw abundance values of each of the plurality of features are normalized
and scaled using the normalization module 116. The normalizing is configured to adjust the raw abundance values to
a common scale, thereby correcting a bias in the computation of the raw abundance values, wherein the bias is due to
a plurality of factors. The plurality of factors may be variation in sampling techniques, library sizes and other technical
discrepancies. Any kind of normalization of bacterial abundance values, including percentage, z-score normalization,
cumulative sum scaling, percentile scaling, quantile scaling, Atkinson’s log transformation, rarefaction, etc., is within the
scope of this disclosure. Further, the count-normalized microbial abundance values are scaled. The ’scaling’ step com-
prises of transforming the microbial abundance values in each sample to represent the abundance in the form of scaled
values, wherein the scaling on microbial counts is performed through one or more of the methods, such as, minmax
scaling, maxAbs scaling, robust scaling, quantile scaling, percentile scaling, cumulative sum scaling or Atkinson’s log-
ratio transformation.

[0038] In the next step 214 of the method 200, a set of features from amongst the plurality of features is identified.
Each feature from amongst the set of features is identified based on similarity between a nucleotide sequence corre-
sponding to the feature and the nucleotide sequences corresponding to a set of pre-identified amplicon sequence variants
(ASVs), and wherein the set of features is identified if the similarity exceeds a pre-defined range. For instance, the
predefined range in case of a sequence homology search technique is between 80-100 percent sequence identity value.
The quantification of similarity is done using one of a plurality of techniques comprising homology search, BLAST
searching, Hidden Markov Model based search, Position Specific Scoring matrices (PSSM), and motif search.

[0039] Further at step 216 of the method 200, one or more feature engineering techniques are performed on the
normalized and scaled abundance values of the set of features to obtain a collated feature table (CFT), wherein the CFT
comprises of a plurality of novel engineered features and their corresponding engineered abundance values. This step
is performed to engineer novel features that amplifies and better represent the microbial signatures (within the sample)
that help in evaluating attractiveness of the individual to mosquito bites. It should be noted that any state-of-art feature
engineering methodologies, such as, mathematical transformations, grouping operations, data or feature splitting, data
binning, etc. can be adopted to extract meaningful features from raw/normalized/scaled/transformed microbial abundance
data. The one or more feature engineering techniques the comprise of applying mathematical transformation on a
predefined combinations of the normalized and scaled abundance values corresponding to an identified set of features
to obtain novel features and corresponding engineered abundance values.

[0040] At step 218, a binary classifier is provided. The binary classifier utilizes a pre-built classification model. The
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binary classifier is one of a Weighted Logistic regression’ (WLR) classifier, random forest classifier, decision trees
technique, naive Bayes classifier, linear discriminant analyses, k-nearest neighbor algorithm, support vector machines,
and a neural networks based classifier. The pre-built classification model encompassing a predefined set of rules helping
predict a skin sample of the individual to be one of a highly attractive or a poorly attractive to mosquitoes, wherein the
classification model is pre-built using a set of novel engineered features, wherein the set of novel engineered features
is generated using normalized and scaled abundance values corresponding to a plurality of unique taxonomic groups,
wherein the set of abundance values is generated via biological samples obtained from a cohort comprising of individuals
known to higher or lower degree of mosquito attractiveness. In other words, the binary classifier utilizes the pre-built
classification model encompassing a predefined set of rules that help predict a skin sample of the individual to be one
of a highly attractive or a poorly attractive to mosquitoes; and wherein the classification model is pre-built using novel
engineered features; and wherein the novel engineered features are generated using normalized and scaled abundance
values corresponding to a plurality of unique taxonomic groups, and wherein the set of values of the mentioned novel
engineered features generated via processing and analysis of biological samples obtained from a cohort comprising of
individuals known to have a high degree of attractiveness to mosquitoes are observed to have a statistically significant
difference as compared to an analogously obtained set of values obtained from a cohort comprising of individuals known
to have a poor or lesser degree of attractiveness to mosquitoes.

[0041] In the next step 220, a mosquito attractiveness quotient (MAQ) score is computed by feeding the CFT to the
binary classifier using the MAQ score calculation module 120. At step 222, the computed MAQ score is compared with
a predefined threshold score, to categorize the individual to be one of a highly attractive or a poorly attractive to mosquitoes
using the mosquito attractiveness prediction module 122. The predefined threshold score is a value obtained as an
output of the binary classifier and the corresponding prebuilt classification model.

[0042] And finally, at step 224, skin microbe based therapeutic interventions is administered to the individual via the
administration module 112, ifthe individual is categorized as highly attractive to mosquitoes. The therapeutic interventions
are configured to: combat the growth of bacterial groups that metabolize/ bio-synthesize sweat and metabolic compounds
thatare responsible forthe production of skin odor that makes the individual attractive to mosquitoes, aid in the colonization
of bacterial groups that improve skin-barrier function and maintain skin health, aid in degradation of sweat and metabolic
compounds that are responsible for the production of skin odor that makes the individual attractive to mosquitoes, or
bio-synthesize sweat and metabolic compounds that are responsible for production of skin odor that makes the individual
less attractive to mosquitoes.

[0043] The skin bacteria based pre-/pro-/anti-/anti-/meta-/post-/synbiotics or bioengineered beneficial bacteria may
be administered in the form of one (or a combination) of routes/ mechanisms/ administration modes, such as, transdermal
skin-patches, woven or non-woven transdermal fabric, anti-bacterial textiles, detergents, lotions, oils, ointments, or
sprays that repel mosquitoes by maintaining/ promoting the growth of healthy skin microbes. Microbe-based mosquito
traps/ screens /nets can be fabricated to control mosquito population and/ or eradicate their breeding sites. Additionally,
bacteriophage and clustered regularly interspaced short palindromic repeats (CRISPR) mediated technology can be
utilized to curb the growth of bacterial groups that are responsible for high attractiveness of an individual’s skin towards
mosquitoes.

[0044] According to an embodiment of the disclosure, the system 100 can also be explained with the help of various
examples.

[0045] A flowchart 300 illustrating schematic representation of the methodology used for evaluating and reducing the
degree of mosquito-attractiveness of the individual using empirical data investigation is shown in FIG. 3A-3B. In an
example, for detailed understanding of various methods/ steps employed for obtaining a microbial taxonomic profile of
a skin sample, publicly available microbial 16S rRNA amplicon sequence data pertaining to skin samples generated in
following published study have been utilized: "Composition of Human Skin Microbiota Affects Attractiveness to Malaria
Mosquitoes" by Verhulst et al., 2011, with PMCID: PMC3247224. In the mentioned study, skin samples from healthy
male volunteers were collected and 16S rRNA sequencing of the microbial nucleic acid content of these samples was
performed with objective of evaluating the skin microbiota with respect to the attractiveness/ susceptibility of the individual
(from whom the respective samples were obtained) towards malaria mosquito bites. As part of the experiments, skin
emanations from feet of volunteers were collected by rubbing glass beads to the feet of individual volunteers. Beads
with skin emanations from volunteers were assessed for attractiveness to female Anopheles gambiae mosquitoes (vec-
tors for malarial parasite Plasmodium) through olfactometer bio-assay analysis. A Generalized Linear model (GLM) was
used to examine the differences in the relative attractiveness to malarial mosquitoes based on the proportion of mos-
quitoes caught in olfactometer trapping device containing beads releasing skin emanation of volunteers. The GLM was
followed by t-test to identify volunteers with skin odor highly attractive to mosquitoes. The identified subset of volunteers
was designated as highly-attractive (HA) cohort. The remaining volunteers found to have feet skin odor that was less
attractive to Anopheles mosquitoes were assigned into another group, namely, poorly-attractive (PA) cohort. Table 1
provides the details for skin-microbiome samples corresponding to HA and PA cohort in the above mentioned study.
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Table 1: Details corresponding to 16S rRNA skin microbiome samples from two distinct groups, HA and PA, collected
from healthy male volunteers from a preexisting study.

Cohort No. of samples Body site
Highly-attractive (HA) 21 Foot Skin
Poorly-attractive (PA) 10 Foot Skin

[0046] Further, the 16S rRNA sequence data corresponding to the above-mentioned skin samples are provided as
input to Divisive Amplicon Denoising Algorithm2 (DADAZ2) version 1.10.0. The DADAZ2 pipeline classifies the raw 16S
rRNA sequence data corresponding to a given sample into 'Amplicon Sequence Variants (ASVs). To estimate the
abundance of various bacterial taxonomic groups present in the skin sample, the generated ASVs are subsequently
compared/ matched to sequences in the bacterial 16s rRNA *Greengenes version 13.8’ database. It may be noted that
ASVs are unique microbial nucleic acid sequences which differ by as little as a single nucleotide. Detection of ASVs
from high-throughput marker gene analysis data provides better resolution in identification of taxonomic composition of
the samples. Other methods such as, Naive Bayesian classifier as implemented in Ribosomal Data Project, that classify
microbial sequence reads into taxonomic groups, or methods utilizing sequence based matches with different marker
gene databases, such as, Silva, Ribosomal Database Project database can also be applied for analyzing sequence data
and estimating the raw counts or abundances of various microbial species/ taxonomic groups/ taxonomic units in the
collected skin sample. The disclosure also supports the creation of an in-house 16S rRNA database of strains of bacterial
genomes for customized analysis. Any other method for identifying the microbial composition of a given sample can
also be utilized.

[0047] The abundances of ASVs obtained in form of raw counts are stored in form of simple mathematical data matrix,
referred henceforth as ASV abundance matrix. For samples from HA cohort, the ASV abundance matrix is represented
by M1. Similarly, for samples from PA cohort, the ASV abundance matrix is denoted by M2. In both the matrices, individual
ASVs are represented as row headers and samples corresponding to skin microbiome of individuals are depicted as
column headers. Values in individual cells in the matrices represent the raw abundance counts for respective ASVs in
the corresponding input samples. Table 2 shows a subset of the raw abundance at ASV level corresponding to an HA
and a PA sample from M1 and M2, respectively.

Table 2: Subset of raw ASV abundance values corresponding to an HA and a PA sample from two populations under

study.

ASVs HA 1 PA1
ASV_1 596 92
ASV_2 115 278
ASV_3 103 16
ASV_4 0 345
ASV_5 33 53
ASV_6 44 149

[0048] Normalization of taxonomic abundance profiles: Once the microbiome composition (in form of ASV abun-
dance matrices) of skin samples from two distinct cohorts (HA and PA) is obtained, the matrices, M1 and M2 are provided
as input to a hardware processor with software instructions to count-normalize the raw counts/ abundances of ASVs
into relative abundance values. The count-normalization adjusts the raw abundance values of individual ASVs in each
of the samples so that values of individual ASV’s across samples are suitably adapted to a common scale, thereby
aiding in correcting unintended biases in the estimation of microbial abundances, wherein the said biases may arise
due to variation in sampling techniques, library sizes and other technical discrepancies. In the present disclosure, the
raw counts of each ASV in matrices M1 and M2 are transformed into percent-normalized proportions that are obtained
by dividing the raw ASV counts in a sample by total number of ASV abundance counts in the corresponding sample.
The percent-normalized matrices obtained by count-normalizing values of various ASVs in matrices M1 and M2 are
denoted by M1N and M2N, respectively.

Percent-normalized ASV abundance matrix for M1 = M1N
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Percent-normalized ASV abundance matrix for M2 = M2N

[0049] In M1N and M2N, ASVs are represented as rows and samples corresponding to skin microbiome of volunteers
are depicted as columns. The values for each cell in M1N and M2N are percent-normalized proportions for each ASV
in the corresponding input samples. Table 3 shows a subset of the percent-normalized abundance at ASV level corre-
sponding to an HA and a PA sample from M1N and M2N, respectively.

Table 3: Subset of percent-normalized ASV abundance values corresponding to an HA and a PA sample from two
cohorts under study

ASVs HA 1 PA 1
ASV_1 9.71 2.17
ASV_2 1.87 6.57
ASV_3 1.67 0.37
ASV_4 0 8.15
ASV_5 0.53 1.25
ASV_6 0.71 3.52

[0050] It should be noted that the use of any kind of normalization or scaling of bacterial abundance values, including
percentage, z-score normalization, cumulative sum scaling, percentile scaling, quantile scaling, Atkinson’s log transfor-
mation, rarefaction, etc., is within the scope of this disclosure.

[0051] In order to select the features that better represent the segregation/ classification between the skin microbiome
samples of HA and PA cohorts, the percent-normalized abundance matrices, M1N and M2N are utilized. Prior to feature
engineering, the abundance matrices M1N and M2N are provided as input into a hardware processor configured with
software instructions to scale the proportions of microbial abundance values.

[0052] In the present disclosure, MinMax Scalar module from python’s scikit-learn library (version 0.22.1) is utilized
to scale percent-normalized counts of ASVs from 0 to 1 in each sample.

[0053] The scaling on microbial counts is performed through one or more of the other methods, such as, maxAbs
scaling, robust scaling, quantile scaling, percentile scaling, cumulative sum scaling or Atkinson’s log-ratio trans-
formation is also within the scope of the invention.

[0054] Further, log transformation of scaled ASV abundances (for a given input sample) is performed by calculating
the logarithm base 10 values of MinMax scaled ASV abundances. To tackle log value error that might arise due to null/
zero values in abundance matrices, prior to log transformation, a minuscule numerical value is added to all ASV abundance
counts of a sample.

[0055] Further, for the purpose of engineering the novel features for each sample, the taxonomic groups/ units that
are significantly enriched in the two study cohorts (HA and PA) are identified and utilized. The significantly differentiating
ASVs associated with abundance matrices M1 (for HA cohort) and M2 (for PA cohort) are stored in lists 'diffM1’ and
'diffM2’, respectively. Further, for each sample novel features in one embodiment are designed by calculating the ratio
or quotient of log transformed scaled abundances of all ASVs in 'diffM1’ to log transformed scaled abundances of all
ASVs in 'diffM2’ , that is described by the following equation:

Fy; = log(dif fM1)/log (dif fM2)

where F represents the novel engineered feature obtained by dividing log transformed scaled values of each ASV "i"
that is differentially abundant in M1 (listed in ’diffM1’) with the log transformed scaled values of each ASV "j" that is
differentially abundant in M2 (listed in 'diffM2’). For a skin microbiome sample, a higher value of a feature Fij would
indicate a greater risk of being bitten by mosquito bites as opposed to a lower value of feature Fij. A total of 12 features
are designed. Table 4 below contains the values of engineered features for a subset of test samples from M1 and M2.

Table 4: Table showing engineered features fora subset of test samples

Features Test Sample 1 Test Sample 2
Feature 1 0.14 -2.04
Feature 2 0.53 -2.6
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(continued)
Features Test Sample 1 Test Sample 2
Feature 3 0.49 -2
Feature 4 1.01 -0.76

[0056] It should be noted that any state-of-art feature engineering methodologies, such as, mathematical transforma-
tions, grouping operations, data or feature splitting, data binning, etc. are well within the scope of this disclosure to
extract meaningful features from raw/ normalized/ scaled/ transformed microbial abundance data.

[0057] The values of the engineered features are provided as an input to a pre-computed binary classification model
that identifies putative biomarkers segregating the two distinct cohorts under study. For the purpose of model generation,
‘'Weighted Logistic regression’ (WLR) classifier (from python’s linear-model module of scikit-learn package version 0.22.1)
is utilized. WLR is a predictive analysis algorithm based on the concept of probability. Mathematically, it outputs the
probability values of individual samples predicted to be present in either of the two categories used in classification (PA
& HA, in this case). For each sample (provided as an input to the classifier), the WLR model generates a probability/
likelihood for the sample to be classified into either highly-attractive class or into poorly-attractive class. Thus, for a given
microbiome sample obtained from the skin of an individual, the Mosquito Attractiveness Quotient (MAQ) is defined as
predicted probability value obtained through the constructed WLR model.

[0058] Following methodology have been used for feature engineering and model generation using empirical data
investigation. By utilizing the results of olfactometer bioassay analysis on skin emanations of healthy male volunteers,
the volunteers were grouped into two cohorts, viz., highly-attractive (HA) and poorly-attractive (PA) to mosquito bites as
explained earlier.

[0059] The feature engineering and model computation comprises of the following steps:

1. Pre-processing of microbial abundance data: For removing sparsity and inconsistencies in microbial count/ abun-
dance data, the percent-normalized abundance matrices M1N and M2N are pre-processed and de-noised. In this step,
the rows corresponding to the ASVs having missing/ null abundance values in at-least 90% of the samples (represented
as columns) of either percent-normalized abundance matrix M1N or M2N are removed. The corresponding pre-processed
abundance matrices obtained by removal of sparse ASVs from M1N and M2N are denoted by M1P and M2P, respectively.

Pre-processed ASV abundance matrix for MIN = M1P
Pre-processed ASV abundance matrix for M2N = M2P

In both M1P and M2P, ASVs having non-zero abundance values in at-least 90% of the samples corresponding to M1N
and M2N, respectively, are represented as rows headers and skin microbiome samples are depicted as columns headers.
The values for each cell in M1P and M2P are percent-normalized proportions for each of the filtered ASVs in the
corresponding samples.

2. Identification of differentially abundant taxonomic groups/ units: After pre-processing, the matrices, M1P and
M2P, are fed into a hardware processor with software instructions to compare the abundances of bacterial groups
between the two cohorts (HA and PA). These comparisons can be performed through univariate or multivariate parametric
or non-parametric statistical tests. This step is imperative in identifying the subset of microbes showing a statistically
significant difference in their abundance/ proportions between each of studied cohorts. Any of the standardized statistical
methods or models for comparison of microbiome data, such as, standard t-test, non-parametric Wilcoxon rank-sum
test, analysis of variance, Kruskal-Wallis test, chi-square test, or machine learning based algorithms including decision
trees, neural networks, random forests, etc., are within the scope of the disclosure.

In another implementation, a single skin sample can be collected from an individual, and the abundances of bacteria in
the sample can be compared against a reference or pre-determined threshold values for the corresponding bacteria in
a different sample obtained from the same individual at different time-point(s). In the present disclosure, in one imple-
mentation, ASVs (corresponding to distinct bacterial groups) having significantly different abundances between the two
analyzed groups are identified using Lefse tool with an LDA cut-off of >=2, at a p-value of 0.05. Further, ’significantly
differentiating’ ASVs (i.e. ASVs having a statistically significant difference in their abundance/ proportions between the
two groups viz., HA and PA) having non-zero abundance values in at least 50% of the samples of M1P and M2P are
stored in lists 'diffASVM1’ and 'diffASVMZ2’, respectively. The processor is then configured to map/ taxonomically classify/
assign the nucleotide sequences of ASVs stored in 'diffASVM1’ and 'diffASVM2’ to the closest bacterial groups at specie
or strain level, by utilizing homology based search of sequences of ASVs against sequences in reference databases.
3. Feature extraction and engineering: Further, the abundance values of the significantly differentiating ASVs between
the two cohorts (HA and PA), stored in lists 'diffASVM1’ and 'diffASVM2’, are employed to design novel features that
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better represent the segregation or classification between the skin microbiome samples of HA and PA cohorts. To
achieve this, the percent-normalized abundance matrices, M1N and M2N are provided as inputinto a hardware processor
configured with software instructions to scale the proportions of microbial abundance values. This ’scaling’ step com-
prises of transforming the microbial abundance values in each sample to represent the abundance in form of scaled
values, wherein the scaling on microbial counts is performed through one or more of the methods, such as, MinMax
scaling, MaxAbs scaling, robust scaling, quantile scaling, percentile scaling, cumulative sum scaling or Atkinson’s
log-ratio transformation. For instance, MinMax scaling is performed using the following equation:

Xmin

X=X-

- X min
max

where, X represents the percent-normalized abundance count of ASV,
Xmin represents the minimum percent-normalized abundance value of all ASVs in the corresponding sample,
Xmax denotes the maximum percent-normalized abundance value of all ASVs in the corresponding sample.

4. In the present disclosure, MinMax Scalar module from python’s scikit-learn library (version 0.22.1) is utilized to scale
percent-normalized counts of ASVs from 0 to 1 in each sample. The corresponding scaled matrices obtained by trans-
forming the percent-normalized matrices M1N and M2N are denoted by M1S and M2S, respectively.

MinMax Scaled ASV abundance matrix for M1N = M1S
MinMax Scaled ASV abundance matrix for M2N = M2S

Table 5 shows a subset of the MinMax scaled abundances at ASV level corresponding to an HA and a PA sample from
M1S and M2S, respectively.

Table 5: Subset of MinMax scaled ASV abundance values corresponding to an HA and a PA sample from two
populations under study.

ASVs HA 1 PA 1
ASV_1 0.63 0.26
ASV 2 0.12 0.8
ASV_3 0.11 0.04
ASV_4 0 1
ASV 5 0.03 0.15
ASV_6 0.04 0.43

Log transformation of matrices M1S and M2S is subsequently performed by calculating the logarithm base 10 values
of MinMax scaled ASV abundances. In order to tackle log value error that might arise due to null values in matrices,
prior to log transformation, a minuscule numerical value is added to all abundance values. For every sample in M1S
and M28S, the log transformed scaled abundance values of ASVs from list 'diffASVM1’ are extracted and stored in matrix
"diffM1’. Similarly, for every sample in M1S and M2S, the log transformed scaled abundance values of ASVs from list
"diffASVM2’ are extracted and stored in matrix 'diffM2’.

Further, for each sample in M1S and M2S, novel features are designed by calculating the ratio or quotient of log
transformed scaled abundances of all ASVs in 'diffM1’ to log transformed scaled abundances of all ASVs in 'diffM2’ that
is described by the following equation as explained above:

Fy; = log(dif fM1)/log (dif fM2)

where F represents the novel engineered feature obtained by dividing log transformed scaled values of each ASV "i"
that is differentially abundant in M1N (listed in 'diffASVM1’) with the log transformed scaled values of each ASV "j" that
is differentially abundant in M2N (listed in 'diffASVMZ2’). A total of 12 features are designed. The novel engineered
matrices, for M1N and M2N are denoted by FM1 and FM2 respectively.
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Engineered feature abundance matrix for M1 = FM1
Engineered feature abundance matrix for M2 = FM2

The rows in matrices FM1 and FM2, represent individual samples in M1 and M2 and the columns contain the novel
engineered features. Each cell of the matrices FM1 and FM2 contains computed values of engineered features corre-
sponding to a particular sample. For a skin microbiome sample, a higher value of a feature Fij would indicate a greater
risk of being bitten by mosquito bites as opposed to a lower value of feature Fij. It should be noted that any state-of-art
feature engineering methodologies, such as, mathematical transformations, grouping operations, data or feature splitting,
data binning, etc. can be adopted to extract meaningful features from raw/normalized/scaled/transformed microbial
abundance data. Further, the feature matrices FM1 and FM2 are concatenated/ joined to generate a Collated Feature
Table (CFT) that encompasses the engineered features for all the samples from HA and PA cohort. The column headers
of CFT represent the engineered features and the row headers correspond to sample names of HA and PA cohort
respectively. Each cell of CFT corresponding to a sample contains the values of engineered features for the respective
sample. Table 6 below represents a prototype of CFT containing a subset of engineered features for an HA sample and
a PA sample.

Table 6: Subset of Collated Feature Table (CFT) showing features engineered for an HA and a PA sample.

Samples Feature 1 Feature 2 Feature 3 Feature 4
HA_1 1.64 0.21 0.1 0.22
PA_1 0.95 -0.05 -0.01 -0.02

5. Generation of classification model: The values of the engineered features are fed into a processor configured with
software instructions to generate a binary classification model to identify putative biomarkers that segregates the two
experimental cohorts under study. For this purpose, 'Weighted Logistic regression’ (WLR) classifier (from python’s linear-
model module of scikit-learn package version 0.22.1) is utilized. Weighted logistic regression is a classification technique
that penalizes mistakes during model fit by telling the model to pay more attention to the minority class. This kind of
penalization effectively addresses the challenges of class prediction in slightly skewed or highly imbalanced datasets.
The novel engineered features in CFT are used as features for training the WLR classifier. The sample set of the two
cohorts (21 HA samples and 10 PA samples) present in CFT are randomly divided into training and test set samples,
in a ratio of 70:30 ( 70% of the samples as training set and the remaining 30% as the test set). Stratified random sampling
is utilized to selectrandom samples for train and test sets. This ensures that each class under study is properly represented
in both train and test sets. Before training the model, top features are selected using scikit-learn feature selection module
(version 0.22.1). WLR model is built using the train set with stratified cross-fold validations (5-fold, repeated 100 times).
To mitigate the risk of over-fitting while training the model and to increase the model’s interpretation, penalized L2-
regularization (with a C penalty of 0.1) is applied during model generation. After training and repeated cross-validation,
the final model is validated using the test set. Further, the performance of the model obtained is evaluated through values
of accuracy ,’area under curve’ (AUC) of the ’receiver operating characteristics’ (ROC), precision, recall and F-
measure of the model obtained from python’s metrics module of scikit-learn package (version 0.22.1). It is should be
noted that any of the standardized machine learning algorithms, similar to but not limited to, random forest, decision
trees techniques, naive Bayes, linear discriminant analyses, k-nearest neighbor algorithm, Support Vector Machines,
Neural Networks, etc. may be utilized for binary classification.

6. Defining prediction rules and threshold: Logistic regression is a predictive analysis algorithm based on the concept
of probability. Mathematically, it outputs the probability values of individual samples predicted to be present in either
class 0 or 1 (PA & HA, in this case). For each sample, at threshold probability value of 0.5, the probability values equal
to or greater than the threshold are assigned to class 1 (HA) and values less than the threshold are assigned to class
0 (PA). Thus, for a given microbiome sample obtained from the skin of an individual, the mosquito attractiveness quotient
(MAQ) is defined as predicted probability value obtained through the constructed WLR model. The risk of an individual
to mosquito bites can be predicted based upon the following rules derived from WLR model.

MAQ > 0.5 indicates significant risk of mosquito bites.
MAQ <= 0.5 indicates low or no risk of mosquito bites.

Many physiological factors specific to the host, such as, age, gender, skin pH, temperature, humidity, oxygen and nutrient
availability, sebum and hormone secretion, immune system, etc., are also responsible for the variability of skin flora. In
addition, geographic and ethnic differences majorly contribute towards inter-individual fluctuations in skin microbiota.
Therefore, any kind of feature engineering from raw abundances of skin bacteria or any method to estimate skin micro-
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biota’s taxonomic or functional repertoires that alone, or in any combination, measure the likelihood of mosquito-attrac-
tiveness of a given sample, may prove to be an efficient assessment/ screening method for individuals from a different
geography or/ and of different ethnicity/ lifestyle.

[0060] Following methodology have been used for performance evaluation of the computed classification model and
for threshold generation for risk assessment of attractiveness/ susceptibility to mosquito bites.

[0061] In order to train and validate the model, the feature matrix (CFT) was randomly split into training and test set
samples in a ratio of 70:30 (70% of the samples were randomly chosen as training set and the remaining 30% as the
test set). After training and validations, the performance of the model obtained is evaluated through accuracy, ’area
under curve’ (AUC), precision, recall and F-measure values obtained from python’s metrics module of scikit-learn
package (version 0.22.1). The parameters showing the model efficiencies for training and test sets, averaged over 100
repetitions are provided below in Table 7.

Table 7: Parameters depicting the model’s performance and classification efficiencies.

Classifier | Train accuracy | Train AUC | Test accuracy | Test AUC | Precision | Recall | F-measure

WLR 0.84 0.89 0.8 0.86 1 0.71 0.83

[0062] It should be noted that the WLR classifier used in the current implementation of the disclosure, predicts math-
ematical probabilities of samples to be classified into either of the two experimental classes or groups (highly-attractive
or poorly-attractive cohorts, in this case). In case of binary classification, the WLR model selects a probability threshold
of 0.5 which mathematically indicates the possibility of a sample to belong to either of the two classes. In view of this,
for each sample (present in both training and test data) used in classification, the probabilities of class memberships
are predicted by the fitted and validated WLR model. Table 8 shown below provides the percentage of samples from
the two study groups and their predicted class membership based upon the output probabilities of WLR model.

Table 8: The proportion of samples from two studied cohorts and their predicted class membership obtained through

WLR.
Class Membership
Proportion of samples (%)
HA PA
HA 86 14
PA 10 90

[0063] It is also observed that model generation and validation using raw bacterial abundance/ count data strikingly
reduces the model’s efficiency and performance. Hence, engineering meaningful features amplify the microbiome signals
of a given sample and consequently result in improved classification. Table 9 shows the model performance parameters
using raw bacterial counts/ abundances.

+Table 9: Parameters showing model efficiency and classification parameters based on raw ASV abundance profiles.

Classifier | Train accuracy | Train AUC | Test accuracy | Test AUC | Precision Recall F-measure

WLR 0.8 0.7 0.7 0.59 0.75 0.85 0.8

[0064] Mathematicallyinan example, the threshold probability value of 0.5 is assigned for risk assessment as described
in the later part of the disclosure. The risk for attractiveness/ susceptibility to mosquito bites is ascertained through the
rules described below -

MosAQuo > 0.5 indicates significant risk of mosquito bites.
MosAQuo <= 0.5 indicates low or no risk of mosquito bites.

[0065] By computing probability value of MAQ and comparing the same with the pre-defined threshold, via one or
more software processors, any new skin microbiome sample can be predicted to be either highly-attractive or poorly-
attractive to mosquitoes. Thus, the risk of a person to mosquito bites can thus be assessed through the composition of
their skin microbes.

[0066] Further, following methodology has been used for formulation of microbe-based screening/ preventive/ thera-
peutic interventions to effectively reduce and manage the mosquito-attractiveness of the individual. For the formulation
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of these microbiome-based vector-management approaches, it is imperative to identify specific bacterial groups that
either produce attractive volatile organic compounds (VOCs) or inhibit the release of VOCs. In this view, the skin micro-
biome samples from individuals having skin odor experimentally characterized to be highly-/poorly-attractive to mosqui-
toes are investigated. In the present disclosure, the bacterial groups that are significantly enriched in the skin-microbiome
data of either HA or PA group are identified. The Amplicon Sequence Variants (ASVs) (corresponding to distinct bacterial
groups) having significantly different abundances between the two analyzed groups (HA and PA) are predicted using
Lefse tool, with an LDA cut-off of >=2, at a p-value of 0.05. Further, significant differential ASVs having non-zero abun-
dance values in at least 50% of the samples of both highly-attractive and poorly-attractive cohorts are stored in lists
'diffM1’ and 'diffM2’, respectively. The taxonomic abundance profiles/ matrices for HA samples and PA samples are
denoted by M1 and M2 as explained earlier. Hence, for the purpose of consistency in notations, the lists for differential
taxonomic groups/ units enriched in HA and PA samples are denoted as 'diffM1’ and ’diffM2’, respectively. It may be
noted that any of the standardized statistical methods or models for comparison of microbiome data, such as, standard
t-test, non-parametric Wilcoxon rank-sum test, analysis of variance, Kruskal-Wallis test, chi-square test, or machine
learning based algorithms including decision trees, neural networks, random forests, etc., are well within the scope of
this disclosure. In some other methods, a single sample can be collected from an individual, and the abundances of
bacteria in the sample can be compared against a reference or threshold values for the corresponding bacteria in a
different sample obtained from the same individual at different time-point(s). It should be appreciated that many physi-
ological factors specific to the host, such as, age, gender, skin pH, temperature, humidity, oxygen and nutrient availability,
sebum and hormone secretion, immune system, etc., are responsible for the variability of skin flora. In addition, geographic
and ethnic differences majorly contribute towards inter-individual fluctuations in skin microbiota. Therefore, in alternative
implementations, for samples collected from a different geography or from volunteers from another ethnicity, the taxo-
nomic groups/ units identified and listed in *diffM1’ and 'diffM2’ may vary according to the structure and composition of
the resident skin bacteria showing prevalence/ presence in individuals from the said geography/ ethnicity.

[0067] Further, nucleotide sequences of ASVs stored in’diffM1’ and 'diffM2’ are mapped to the closest bacterial groups
at specie or strain level, by utilizing sequence homology based search against reference genome databases. The
nucleotide sequences (of differentially abundant ASVs) are queried using BLAST tool against an array of reference
databases, such as, bacterial marker gene databases, reference RNA databases, and representative genome databases,
etc. It should be noted that any other method for querying nucleotide or protein sequences, which may include but are
not limited to gene homology, Hidden Markov Model based identification (Protein Family or PFAM Database etc.),
Position Specific Scoring matrices (PSSM), motif search etc., are within the scope of this disclosure. Table 10 shown
below lists ASVs in 'diffM1’, along with their sequences and the corresponding closest organism mapped through BLAST.

Table 10: List of significantly increased ASVs in skin samples of HA group (diffM1), along with their nucleotide
sequences and closest organism mapped through BLAST.

BLAST hit at strain level (Threshold of >=
Nucleotide Sequence 99 % sequence identity, 100% coverage
and e-value <=1e-5)

Staphylococcus caprae strain DSM 20608
CTGGACCGTGTCTCAGTTCCAGTGTGGCCG Staphylococcus capitis strain ATCC 27840
ATCACCCTCTCAGGTCGGCTACGCATCGTT

GCCTTGGTAAGCCGTTACCTTACCAACTAG Staphylococcus capitis strain JCM 2420

ASV_1 CTAATGCGGCGCGGATCCATCTATAAGTGA Staphylococcus caprae strain ATCC 35538
CAGCAAGACCGTCTTTCACTGTTGAACCAT Staphylococcus capitis subsp. urealyticus
GCGGTTCAACATGTTATCCGGTATTAGCTC strain MAW 8436 Staphylococcus capitis
CGG TTCCCGAAGTTATCCC ,

strain LK 499
CTGGGCCGTATCTCAGTCCCAATGTGGCCGT . . .
CCACCCTCTCAGGCCGGCTACCCGTCGCCGC Corynebacterium tuberculostearicum strain
CTTGGTAGGCCATTACCCCACCAACAAGCTG Medalle X,

ASV_2 ATAGGCCGCGAGCTCATCCTACACCGAAAA Corynebacterium tuberculostearicum strain
AACTTTCCAACCATCACACTAAAAATGGTTC ATCC 35692
CTATCCGGTATTAGACCCAGTTTCCCAGGCT
TATCCCGAAGTGCAG

[0068] Similarly, Table 11 shown below lists ASVs in ’diffM2’, along with their sequences and the corresponding closest
organism mapped through BLAST.
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Table 11: List of significantly increased ASVs in skin samples of PA cohort diffM2), long with their nucleotide sequences
and closest organism mapped through BLAST.

Nucleotide Sequence

BLAST hit at strain level (Threshold of >= 99
% sequence identity, 100% coverage and e-
value <=1e5)

CTGGGCCGTGTCTCAGTCCCAGTGTGGC
TGGTCGTCCTCTCAGACCAGCTACAGAT
CGTCGGCTTGGTGAGCCTTTACCTCACC

Pelomonas puraquae strain Ps10g

ASV 3 AACTACCTAATCTGATATCGGCCGCTCC
- AATCGCGCGAGGTCTTGCGATCCCCCGC
TTTCACCCTCAGGTCGTATGCGGTATTA
GCTGCTCTTTCGAGCAGTTATCCCCCAC
GACT
TTGGGCCGTGTCTCAGTCCCAATGTGGC Bradyrhizobium sty/osanthis strain BR 446
ASV_4 TGATCATCCTCTCAGACCAGCTACTGAT Bradyrhizobium ingae strain BR 10250
CGTCGCCTTGGTAGGCCATTACCCTACC
AACTAGCTAATCAGACGCGGGCCGATC Bradyrh/‘zob/.um ganzhouensg strau‘7 RITF806
TITCGGCGATAAATCTTTCCCCGTAAGG Bradyrhizobium centrosematis strain A9
GCTTATCCGGTATTAGCACAAGTTTCCC Bradyrhizobium iriomotense strain NBRC
TGTGTTGTTCCGAACCAAAAGGTACGTT 102520
cceac Bradyrhizobium denitrificans strain IFAM 1005
Bradyrhizobium huanghuaihaiense strain
CCBAU
23303 Bradyrhizobium arachidis strain CCBAU
051107
Bradyrhizobium iriomotense strain EK05
Bradyrhizobium denitrificans strain LMG 8443
Bradyrhizobium guangxiense strain CCBAU
53363
Bradyrhizobium guangdongense strain CCBAU
51649
Roseateles aquatilis strain CCUG 48205
CTGGGCCGTGTCTCAGTCCCAGTGTGGC
TGGTCGTCCTCTCAGACCAGCTACAGAT
CGTCGGCTTGGTAGGCCTTTACCCCACC
ASV 5 AACTACCTAATCTGATATCGGCCGCTCC
- AATCGCGCGAGGTCCGAAGATCCCCCG
CTTTCACCCTCAGGTCGTATGCGGTATT
AGCTGCTCTTTCGAGCAGTTATCCCCCA
CGACT
Bradyrhizobium elkanii strain USDA 76
CTGGGCCGTGTCTCAGTCCCAGTGTGGCT
GATCATCCTCTCAGACCAGCTACTGATCG
TCGCCTTGGTGAGCCATTACCTCACCAAC
ASV_6 TAGCTAATCAGACGCGGGCCGATCTTTC
GGCGATAAATCTTTCCCCGTTAGGGCTTA
TCCGGTATTAGCTGAAGTTTCCCTCAGTT
GTTCCGAACCAAAAGGTACGTTCCCAC
Bacteroides vulgatus ATCC 8482
TTGGACCGTGTCTCAGTTCCAATGTGGGG . .
GACCTTCCTCTCAGAACCCCTATCCATCG Bacteroides vulgatus strain JCM 5826
AAGACTAGGTGGGCCGTTACCCCGCCTA Bacteroides vulgatus strain JCM 5826
ASV_T7 CTATCTAATGGAACGCATCCCCATCGTCT

ACCGGAATACCTTTAATCATGTGAACAT
GTGAACTCATGATGCCATCTTGTATTAAT
CTTCCTTTCAGAAGGCTGTCCAAGAGTA
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(continued)

BLAST hit at strain level (Threshold of >=99
Nucleotide Sequence % sequence identity, 100% coverage and e-
value <=1e5)

Roseateles aquatilis strain CCUG 48205
CTGGGCCGTGTCTCAGTCCCAGTGTGGCT

GGTCGTCCTCTCAGACCAGCTACAGATC
GTCGGCTTGGTAGGCCTTTACCCCACCAA
ASV_38 CTACCTAATCTGATATCGGCCGCTCCAAT
CGCGCGAGGTCCGAAGATCCCCCGCTTIT
CACCCTCAGGTCGTATGCGGTATTAGCTG
CTCTTTCGAGCAGITATCCCCCAGACTG

[0069] Afterthe Mosquito Attractiveness Quotient (MAQ) evaluation, if an individual is found at a greater risk to mosquito
bites (orisidentified as highly attractive to mosquitoes), skin microbiome based therapeutic interventions can be designed
that combat the growth of bacterial groups listed in 'diffM1’. The growth of bacterial groups (listed in *diffM1’) found to
be enriched in skin of individuals identified as highly-attractive to mosquito bites can be curbed by application of transder-
mal (application on skin) antibiotic patches or formulations, and/ or through bacteriophage and CRISPR mediated tech-
nologies

[0070] Further, microbiome based therapeutic interventions in form of pre-/pro-/meta-/post-/synbiotics can be designed
that aid colonization of bacterial groups listed in 'diffM2’. The members of the bacterial groups listed in 'diffM2’ are
experimentally characterized to be producers of an important health-modulating metabolite, butyrate. This short chain
fatty acid (SCFA) produced by skin commensals attenuates skin inflammation by stimulating the resident skin T regulatory
(Treg) cells. Treg cells constitute a subset of CD4+ T cells that primarily maintain skin barrier function by inhibiting/
suppressing cutaneous inflammation during the events of skin dysregulation.

[0071] In addition, the bacterial groups listed in 'diffM2’ bio-synthesize the beneficial SCFA propionate and aid in the
metabolism of essential vitamins, such as, niacin, biotin, riboflavin, and thiamine. Improper metabolism of the above-
mentioned vitamins on skin-barrier enhances the relative degree of attractiveness towards mosquitoes. For instance,
faulty oxidation of riboflavin leads to the release of amine trimethylamine in sweat, urine, and breath. Similarly, improper
metabolism of biotin on skin enhances the production of branched chain fatty acids, particularly isovaleric acid. Both
trimethylamine and isovaleric acid are important mosquito attractant chemicals contributing to the attractive skin odor.
Given the role of skin bacterial groups in biosynthesis/ metabolism of metabolites that deter/ repel the host-seeking
mosquitoes, the bacterial strains listed in diffM2 may be provided as pre-/ pro-/meta-/post-/synbiotic formulations in order
to maintain healthy skin microbiome. Further, chemical-free, safe and effective mosquito repellents can be designed
that either inhibit the colonization of bacteria listed in Table 10, or block the release of volatile attractive metabolites
produced by them. Such metabolites, include, ammonia and a range of branched-chain organic acids, thiols and alde-
hydes that are produced by the action of skin bacteria on components of human sweat. The skin-bacteria based
pre-/pro-/anti-/meta-/post-/synbiotics may be administered in the form of any one (or a combination) of routes, such as,
transdermal skin-patches, woven and non-woven transdermal fabric, anti-bacterial textiles, detergents, lotions, oils,
ointments, sprays thatrepel mosquitoes by maintaining the consortium of healthy skin microbes. Microbe-based mosquito
traps/ screens/ nets can be fabricated to control mosquito population and eradicate the breeding sites.

[0072] It may also be noted that the risk-assessment method proposed in the present disclosure can be incorporated
into routine health screening protocols as a simple, cost-effective and non-invasive/ minimally-invasive (using skin
samples) solution to measure/ evaluate the risk/ susceptibility of an individual to mosquito bites. Such screening protocols
can widely facilitate the applicability of early and effective preventive/ therapeutic regimens, especially in scenarios
wherein an individual plans to travel to geographic areas/ locations/ countries with high abundance of disease carrying
mosquito population.

[0073] The written description describes the subject matter herein to enable any person skilled in the art to make and
use the embodiments. The scope of the subject matter embodiments is defined by the claims and may include other
modifications that occur to those skilled in the art. Such other modifications are intended to be within the scope of the
claims if they have similar elements that do not differ from the literal language of the claims or if they include equivalent
elements with insubstantial differences from the literal language of the claims.

[0074] The disclosure herein addresses unresolved problem related to design and deployment of microbiome-based
personalized vector management approaches reducing mosquito attractiveness in an individual. The embodiment thus
provides the method and system for evaluating and reducing the degree of mosquito-attractiveness of an individual.
[0075] It is to be understood that the scope of the protection is extended to such a program and in addition to a
computer-readable means having a message therein; such computer-readable storage means contain program-code
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means for implementation of one or more steps of the method, when the program runs on a server or mobile device or
any suitable programmable device. The hardware device can be any kind of device which can be programmed including
e.g. any kind of computer like a server or a personal computer, or the like, or any combination thereof. The device may
also include means which could be e.g. hardware means like e.g. an application-specific integrated circuit (ASIC), a
field-programmable gate array (FPGA), or a combination of hardware and software means, e.g. an ASIC and an FPGA,
or at least one microprocessor and at least one memory with software processing components located therein. Thus,
the means can include both hardware means and software means. The method embodiments described herein could
be implemented in hardware and software. The device may also include software means. Alternatively, the embodiments
may be implemented on different hardware devices, e.g. using a plurality of CPUs, GPUs etc.

[0076] The embodiments herein can comprise hardware and software elements. The embodiments that are imple-
mented in software include but are not limited to, firmware, resident software, microcode, etc. The functions performed
by various components described herein may be implemented in other components or combinations of other components.
For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can
comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction
execution system, apparatus, or device.

[0077] The illustrated steps are set out to explain the exemplary embodiments shown, and it should be anticipated
that ongoing technological development will change the manner in which particular functions are performed. These
examples are presented herein for purposes of illustration, and not limitation. Further, the boundaries of the functional
building blocks have been arbitrarily defined herein for the convenience of the description. Alternative boundaries can
be defined so long as the specified functions and relationships thereof are appropriately performed. Alternatives (including
equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the
relevant art(s) based on the teachings contained herein. Such alternatives fall within the scope of the disclosed embod-
iments. Also, the words "comprising,” "having," "containing,” and "including,"” and other similar forms are
intended to be equivalent in meaning and be open ended in that an item or items following any one of these words
is not meant to be an exhaustive listing of such item or items or meant to be limited to only the listed item or items. It
must also be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include
plural references unless the context clearly dictates otherwise.

[0078] Furthermore, one or more computer-readable storage media may be utilized in implementing embodiments
consistent with the present disclosure. A computer-readable storage medium refers to any type of physical memory on
which information or data readable by a processor may be stored. Thus, a computer-readable storage medium may
store instructions for execution by one or more processors, including instructions for causing the processor(s) to perform
steps or stages consistent with the embodiments described herein. The term "computer-readable medium" should
be understood to include tangible items and exclude carrier waves and transient signals, i.e., be non-transitory.
Examples include random access memory (RAM), read-only memory (ROM), volatile memory, nonvolatile memory, hard
drives, CD ROMSs, DVDs, flash drives, disks, and any other known physical storage media.

[0079] Itisintended thatthe disclosure and examples be considered as exemplary only, with a true scope of disclosed
embodiments being indicated by the following claims.

Claims

1. A processor implemented method (200) for evaluating and reducing the degree of mosquito-attractiveness of an
individual, the method comprising:

collecting a biological sample from skin of the individual, wherein the biological sample is representing skin
microbiome of the individual (202);

extracting, via an extraction unit, microbial nucleic acid content from the collected biological sample (204);
sequencing the extracted microbial nucleic acid content, via a sequencer, to get sequence data (206);
categorizing, via one or more hardware processors, the sequenced data into a plurality of taxonomic groups
utilizing standardized classification algorithms and a plurality of databases (208);

computing, via the one or more hardware processors, raw abundance values of a plurality of features, wherein
each feature corresponds to a unique taxonomic group from amongst the plurality of taxonomic groups (210);
normalizing and scaling, via the one or more hardware processors, the computed raw abundance values of
each of the plurality of features, wherein the normalizing is configured to adjust the raw abundance values to
a common scale, thereby correcting a bias in the computation of the raw abundance values, wherein the bias
is due to a plurality of factors (212);

identifying, via the one or more hardware processors, a set of features amongst the plurality of features based
on similarity between a nucleotide sequence corresponding to the feature and the nucleotide sequences cor-
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responding to a set of pre-identified amplicon sequence variants (ASVs), and wherein the set of features is
identified if the similarity exceeds a pre-defined range (214);

performing, via the one or more hardware processors, one or more feature engineering techniques on the
normalized and scaled abundance values of the set of features to obtain a collated feature table (CFT), wherein
the CFT comprises of a plurality of novel engineered features and their corresponding engineered abundance
values (216);

providing, via the one or more hardware processors, a binary classifier, wherein the binary classifier utilizing a
pre-built classification model (218);

computing, via the one or more hardware processors, a mosquito attractiveness quotient (MAQ) score by feeding
the CFT to the binary classifier (220);

comparing, via the one or more hardware processors, the computed MAQ score with a predefined threshold
score, to categorize the individual to be one of a highly attractive or a poorly attractive to mosquitoes (222); and
administering, via an administration module, skin microbe based therapeutic interventions to the individual, if
the individual is categorized as highly attractive to mosquitoes (224), wherein the therapeutic interventions are
configured to:

combat the growth of bacterial groups that metabolize/ bio-synthesize sweat and metabolic compounds
that are responsible for the production of skin odor that makes the individual attractive to mosquitoes,

aid in the colonization of bacterial groups that improve skin-barrier function and maintain skin health,

aid in degradation of sweat and metabolic compounds that are responsible for the production of skin odor
that makes the individual attractive to mosquitoes, or

bio-synthesize sweat and metabolic compounds that are responsible for production of skin odor that makes
the individual less attractive to mosquitoes.

The processor implemented method of claim 1 further comprises fabricating microbe-based mosquito traps to control
mosquito population and eradicate mosquito breeding sites.

The processor implemented method of claim 1, the therapeutic interventions are administered in the form of one or
a combination of skin bacteria based transdermal skin-patches, woven and non-woven transdermal fabric, anti-
bacterial textiles, lotions, oils, ointments, mosquito repelling sprays, bacteriophage and clustered regularly inter-
spaced short palindromic repeats (CRISPR) mediated technology to curb the growth of bacterial groups bio-syn-
thesizing compounds responsible for high attractiveness of the individual’s skin towards mosquitoes.

The processor implemented method of claim 1, wherein the sample is collected from a one or more body sites
comprising arms, feet, palms, ankles, back of neck, knees, elbows, or face.

The processorimplemented method of claim 1, wherein the pre-built classification model encompassing a predefined
set of rules helping predict a skin sample of the individual to be one of a highly attractive or a poorly attractive to
mosquitoes, wherein the classification model is pre-built using a set of engineered features, wherein the set of novel
engineered features is generated using normalized and scaled abundance values corresponding to a plurality of
unique taxonomic groups, wherein the set of abundance values is generated via biological samples obtained from
a cohort comprising of individuals known to higher or lower degree of mosquito attractiveness.

The processor implemented method of claim 5, wherein the plurality of unique taxonomic groups are microbial
groups presentin skin of individuals who are either highly-attractive to mosquitoes or poorly-attractive to mosquitoes.

The processor implemented method of claim 1, wherein the predefined threshold score is a value obtained as an
output of the binary classifier and the corresponding prebuilt classification model.

The processorimplemented method of claim 1, wherein the one or more feature engineering techniques the comprise
of applying mathematical transformation on a predefined combinations of the normalized and scaled abundance
values corresponding to an identified set of features to obtain novel features and corresponding engineered abun-
dance values.

The processor implemented method of claim 1, wherein the predefined range is between 80-100 percent sequence
identity value.

10. The processor implemented method of claim 1, wherein quantification of similarity is done using one of a plurality
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of techniques comprising a homology search, a BLAST searching, a Hidden Markov Model based search, a Position
Specific Scoring matrices (PSSM), and a motif search.

The processor implemented method of claim 1, wherein the binary classifier is one of a Weighted Logistic regression’
(WLR) classifier, a random forest classifier, a decision trees technique, a naive Bayes classifier, linear discriminant
analyses, a k-nearest neighbor technique, a support vector machines, and a neural networks based classifier.

The processor implemented method of claim 1, wherein the plurality of factors comprises variation in sampling
techniques, library sizes and technical discrepancies during the extracting and sequencing steps.

13. A system (100) for evaluating and reducing the degree of mosquito-attractiveness of an individual, the system

comprises:

a sample collection module (102) for collecting a biological sample from skin of the individual, wherein the
biological sample is representing skin microbiome of the individual;

an extraction unit (104) for extracting microbial nucleic acid content from the collected biological sample;

a sequencer (106) for sequencing the extracted microbial nucleic acid content, via a sequencer, to get sequence
data;

one or more hardware processors (110);

a memory (108) in communication with the one or more hardware processors, wherein the one or more first
hardware processors are configured to execute programmed instructions stored in the one or more first mem-
ories, to:

categorize the sequenced data into a plurality of taxonomic groups utilizing standardized classification
algorithms and a plurality of databases;

compute raw abundance values of a plurality of features, wherein each feature corresponds to a unique
taxonomic group from amongst the plurality of taxonomic groups;

normalize and scale the computed raw abundance values of each of the plurality of features, wherein the
normalizing is configured to adjust the raw abundance values to a common scale, thereby correcting a bias
in the computation of the raw abundance values, wherein the bias is due to a plurality of factors;

identify a set of features from the plurality of features based on similarity between a nucleotide sequence
corresponding to the feature and the nucleotide sequences corresponding to a set of pre-identified amplicon
sequence variants (ASVs), and wherein the set of features is identified if the similarity exceeds a pre-defined
range;

perform one or more feature engineering techniques on the normalized and scaled abundance values of
the set of features to obtain a collated feature table (CFT), wherein the CFT comprises of a plurality of novel
engineered features and their corresponding engineered raw abundance values;

provide binary classifier utilizing a pre-built classification model;

compute a mosquito attractiveness quotient (MAQ) score by feeding the CFT to the binary classifier; and
compare the computed MAQ score with a predefined threshold score, to categorize the individual to be
one of a highly attractive or a poorly attractive to mosquitoes; and

an administration module (112) for administering skin microbe based therapeutic interventions to the individual,
if the individual is categorized as highly attractive to mosquitoes, wherein the therapeutic interventions are
configured to:

combat the growth of bacterial groups that metabolize/ bio-synthesize sweat and metabolic compounds
that are responsible for the production of skin odor that makes the individual attractive to mosquitoes,

aid in the colonization of bacterial groups that improve skin-barrier function and maintain skin health,

aid in degradation of sweat and metabolic compounds that are responsible for the production of skin odor
that makes the individual attractive to mosquitoes, or

bio-synthesize sweat and metabolic compounds that are responsible for production of skin odor that makes
the individual less attractive to mosquitoes.

14. One or more non-transitory machine-readable information storage mediums comprising one or more instructions

which when executed by one or more hardware processors cause:

collecting a biological sample from skin of the individual, wherein the biological sample is representing skin
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microbiome of the individual;

extracting, via an extraction unit, microbial nucleic acid content from the collected biological sample;
sequencing the extracted microbial nucleic acid content, via a sequencer, to get sequence data;

categorizing, the sequenced data into a plurality of taxonomic groups utilizing standardized classification algo-
rithms and a plurality of databases;

computing, via the one or more hardware processors, raw abundance values of a plurality of features, wherein
each feature corresponds to a unique taxonomic group from amongst the plurality of taxonomic groups;
normalizing and scaling, via the one or more hardware processors, the computed raw abundance values of
each of the plurality of features, wherein the normalizing is configured to adjust the raw abundance values to
a common scale, thereby correcting a bias in the computation of the raw abundance values, wherein the bias
is due to a plurality of factors;

identifying, via the one or more hardware processors, a set of features amongst the plurality of features based
on similarity between a nucleotide sequence corresponding to the feature and the nucleotide sequences cor-
responding to a set of pre-identified amplicon sequence variants (ASVs), and wherein the set of features is
identified if the similarity exceeds a pre-defined range;

performing, via the one or more hardware processors, one or more feature engineering techniques on the
normalized and scaled abundance values of the set of features to obtain a collated feature table (CFT), wherein
the CFT comprises of a plurality of novel engineered features and their corresponding engineered abundance
values;

providing, via the one or more hardware processors, a binary classifier, wherein the binary classifier utilizing a
pre-built classification model;

computing, via the one or more hardware processors, a mosquito attractiveness quotient (MAQ) score by feeding
the CFT to the binary classifier;

comparing, via the one or more hardware processors, the computed MAQ score with a predefined threshold
score, to categorize the individual to be one of a highly attractive or a poorly attractive to mosquitoes; and
administering, via an administration module, skin microbe based therapeutic interventions to the individual, if
the individual is categorized as highly attractive to mosquitoes, wherein the therapeutic interventions are con-
figured to:

combat the growth of bacterial groups that metabolize/ bio-synthesize sweat and metabolic compounds
that are responsible for the production of skin odor that makes the individual attractive to mosquitoes,

aid in the colonization of bacterial groups that improve skin-barrier function and maintain skin health,

aid in degradation of sweat and metabolic compounds that are responsible for the production of skin odor
that makes the individual attractive to mosquitoes, or

bio-synthesize sweat and metabolic compounds that are responsible for production of skin odor that makes
the individual less attractive to mosquitoes.
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Mormalize and scale the computed raw abundance values of each of the plurality of
features, wherein the normalizing is configured to adjust the raw abundance values to a
common scale, thereby correcting a bias in the computation of the raw abundance values,
wherein the bias is due to a plurality of factors
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sequence corresponding to the feature and the nucleotide sequences correspondingto a
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engineered abundance values
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respectively
|
From M1, remove rows pertaining to the subset of microbes whose normalized/
scaled abundance is less than a predetermined value in a predetermined proportion
of all samples across M1N to generate M1P

:

From M2, remove rows pertaining to the subset of microbes whose normalized/
scaled abundance is less than a predetermined value in a predetermined proportion
of all samples across M2N to generate M2P

FIG. 3A
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300

N )

Employ one or a combination of statistical measures to identify the subset of
microbes whose abundances in M1P are significantly higher than that in M2P and
store the identified subset in List diffM1

¥

Employ one or a combination of statistical measures to identify the subset of
microbes whose abundances in M2P are significantly higher than that in M1P and
store the identified subset in List diffM2

h

Scaling the percent-normalized abundance values/ counts of various microbes listed
in M1N and M2N to obtain respective scaled abundance values/ counts of the
microbes in corresponding tables M1N and M2N to generate scaled abundance
matrices M15 and M25, respectively

h

For each sample in HA and PA, apply mathematical transformation technigques on
specific combinations of the scaled abundance values/ counts corresponding
to the subset of microbes mentioned in Lists diffM1 and diffM2 to obtain one or
more engineered values (hereafter referred to as 'engineered features'). For samples
in M1 {HA cohort), the engineered features are stored in matrix FM1, similarly, for
samples in M2 (PA cohort}, the engineered features are stored in matrix FM2

k4

Generate a collated feature table (CFT) from FM1 and FM2 wherein column headers
correspond to engineered features and row headers correspond to samples names
in cohorts HA and PA respectively

Y

Employ one or a combination of statistical measures/ methods to generate a

classification model that uses the values of the subset of engineered features

collated in CFT to differentiate between PA and HA samples with accuracy of
differentiation above a predetermined threshold.

FIG. 3B
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