(11) **EP 4 113 045 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **04.01.2023 Bulletin 2023/01**

(21) Application number: 22151335.1

(22) Date of filing: 13.01.2022

(51) International Patent Classification (IPC):

 F28D 1/02 (2006.01)
 D06F 39/00 (2020.01)

 F28D 7/10 (2006.01)
 F28G 7/00 (2006.01)

 F28F 9/02 (2006.01)
 F28D 11/02 (2006.01)

 F28D 11/06 (2006.01)
 F28F 5/02 (2006.01)

F28D 21/00 (2006.01)

(52) Cooperative Patent Classification (CPC): F28D 1/0213; D06F 39/006; F28D 7/103; F28D 11/02; F28D 11/06; F28D 21/0012; F28F 5/02; F28F 9/0275; F28G 7/00

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 28.06.2021 PL 43825621

(71) Applicant: Borawski, Marek 16-010 Nowodworce (PL)

(72) Inventor: Borawski, Marek 16-010 Nowodworce (PL)

(74) Representative: Patpol Kancelaria Patentowa Sp.

z o.o.

Nowoursynowska 162J 02-776 Warszawa (PL)

(54) HEAT EXCHANGER ASSEMBLY

(57) The present invention relates to a heat exchanger assembly to be immersed in a fluid comprising an arrangement of shells (3) wherein the shells (3) are in fluid communication with each other and closed at both ends forming a heat exchange chamber, while between the shells there are spaces (3a) open at both ends through which the fluid in which the exchanger is immersed flows freely, the assembly is fitted with supply means (6,7,10a) that feed another fluid into the shells (3), and with drain means (8,9,10) that drain said fluid from the shells (3). The exchanger assembly is characterised in that it com-

prises a central shaft (11) rotatably supported at both ends, a cylindrical chamber (1) arranged around the shaft (11), said cylindrical chamber (1) being permanently and hermetically fixed around the shaft (11) and rotating with the shaft (11), filled with air, and a driving unit (100) that sets the exchanger assembly in motion, wherein the shells (3) are arranged and permanently fixed around the cylindrical chamber (1) and rotating with the shaft (11) and the cylindrical chamber (1), while the shaft (11), the cylindrical chamber (1) and the shells (3) are arranged concentrically.

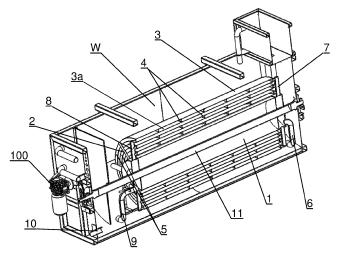


Fig. 2

15

30

35

40

45

Description

[0001] This invention relates to a heat exchanger assembly to be immersed in a fluid comprising an arrangement of shells wherein the shells are in fluid communication with each other and closed at both ends, forming a heat exchange chamber, while between the shells there are spaces open at both ends through which the fluid in which the exchanger is immersed flows freely, and the assembly is fitted with supply means that feed another fluid into the shells, and with drain means that drain said fluid from the shells.

1

[0002] Various types of shell and shell-and-tube heat exchangers are disclosed in the state of the art. Shell heat exchangers wherein shells are in fluid communication with each other and closed at both ends, with spaces being provided between said shells. The first fluid flows through the shells forming a heat exchange chamber, while the second fluid flows in the spaces between the shells. Through this arrangement, one fluid transfers heat to another fluid. The disadvantage of this heat exchange system is that the fluid on both sides of the metal sheet formed by shells creates a boundary layer. This layer prevents efficient heat exchange. Accordingly, such exchangers are often put into motion, e.g. made to rotate around their axis or made to vibrate, to facilitate the flow of fluids and the transfer of heat, and to prevent the buildup of deposits on the walls of the exchanger. The movement of the exchanger causes the boundary layer to "become detached", resulting in the exchanger being cleaned.

[0003] GB656647A discloses a rotary exchanger mounted on a shaft. The exchanger is set into rotary motion to facilitate the flow of fluids through the exchanger and the transfer of heat. A cylindrical core closed at both ends, on which a spiral duct separating the two exchange chambers is mounted, runs through the exchanger casing, with both chambers being located on the outer side of the core. Both ends of the rotating shaft are hollow and designed to supply the fluid to the exchanger and drain the fluid into one of the ducts, while the other fluid is fed into and discharged through stub pipes in the casing.

[0004] JPS54114851A discloses a rotary exchanger mounted on a shaft. The shaft is hollow and designed to supply the medium to certain chambers of the exchanger. [0005] GB1239320A discloses a shell exchanger with a hollow rotating shaft extending therethrough, the shaft being the only rotating element. A spiral element is fastened to the shaft to move the material within the chamber adjacent to the shaft, with scratch-off elements for cleaning the outer wall of the crystallising material being fastened to said shaft. The hollow shaft allows users to regulate the contact pressure of the scratch-off elements by applying a required level of pressure.

[0006] US3621506A discloses a similar device, also provided with a hollow rotating shaft to which scratch-off elements are attached.

[0007] US3835922A discloses a device wherein a cy-

lindrical rotor is mounted around the rotating shaft (the hollow cylindrical chamber with flattened areas). Scratchoff elements are fastened to the rotor, as in the previous two patent disclosures. The rotor is designed to have a large diameter so that higher speeds of the scratch-off elements can be achieved.

[0008] The object of the present invention is to increase the efficiency of existing devices by:

- facilitating the flow of fluid to improve the heat exchange and how the exchanger surface is cleaned.
- reducing loads on the bearings in shaft-based devices to increase their durability.
- stiffening the construction design to make it more efficient and durable.

[0009] The present invention relates to a heat exchanger assembly to be immersed in a fluid. The heat exchanger comprises an arrangement of shells wherein the shells are in fluid communication with each other and closed at both ends, forming a heat exchange chamber. Between the shells, there are spaces open at both ends through which the fluid in which the exchanger is immersed flows freely. The assembly is fitted with supply means that feed another fluid into the shells, and with drain means that drain said fluid from the shells (3). According to the invention, the heat exchanger assembly comprises:

- a central shaft rotatably supported at both ends,
- a cylindrical chamber arranged around the shaft, said cylindrical chamber being permanently and hermetically fixed around the shaft and rotating with the shaft, and filled with air, and
- a driving unit for moving the exchanger assembly,

wherein the shells are arranged and permanently fixed around the cylindrical chamber and rotating with the shaft and the with the cylindrical chamber, while the shaft, the cylindrical chamber and the shells are arranged concentrically.

[0010] Preferably, the exchanger assembly comprises one, two or three shells.

[0011] Also preferably, the shells are fluidly coupled in pairs, each pair forming a heat exchange chamber.

[0012] Also preferably, the shells are connected via perforated partition walls.

[0013] It is also preferable if the shells are closed at both ends using ring-shaped lids.

[0014] Preferably, the cylindrical chamber has manifolds at its ends, which are connected to the arrangement of shells via radially arranged supply pipes. There are six supply pipes in the preferred embodiment.

[0015] Preferably, the arrangement of shells is ar-

5

ranged around the cylindrical chamber by means of radial connectors. There are preferably four such connectors. **[0016]** Also preferably, the supply means comprise a stub supply pipe, a main supply pipe and distribution pipes.

[0017] Also preferably, the drain means comprise collecting pipes, a main drain pipe and a stub drain pipe.

[0018] Also preferably, the driving unit constitutes an electric motor that swings the shaft forward and backward. The swinging movement is preferably within a range of $\pm 15^{\circ}$ over a time period of approx. Is.

[0019] The driving unit equally preferably constitutes a vibration motor. The vibration motor is preferably adapted to move the exchanger relative to axis of the shaft with a frequency of approx. 17 Hz and an amplitude of approx. 2 mm. Preferably, the exchanger assembly is provided with a frame with a mounting plate on which a vibration motor is mounted.

[0020] The subject of the invention is shown in the embodiments of the invention in the drawing in which Fig. 1 shows a perspective view of one embodiment of the present invention wherein the exchanger assembly is placed in the tub, Fig. 2 shows a perspective view of the tub with the assembly according to the same embodiment in the longitudinal section, Fig. 3 shows a perspective view of the exchanger assembly in the same embodiment, Fig. 4 shows a cross-sectional view of the exchanger assembly in the same embodiment, Fig. 5 shows a longitudinal section of the exchanger assembly in the same embodiment, Fig. 6 shows a perspective view of another embodiment of the invention wherein the exchanger assembly is placed in the tub, Fig. 7 shows a perspective view of the tub together with the exchanger assembly according to the same embodiment in the longitudinal section, Fig. 8 shows a schematic axial view of the movement of the exchanger in the same embodiment, Fig. 9 shows a perspective view of the exchanger assembly in the same embodiment, Fig. 10 shows a cross-sectional view of the exchanger in the same embodiment.

[0021] The drawings show embodiments of the present invention wherein it is common to all the embodiments that the invention is a heat exchanger assembly which is immersed in a fluid. The heat exchanger assembly comprises an arrangement of shells 3 wherein the shells 3 are in fluid communication with each other and closed at both ends, forming a heat exchange chamber. Between the shells, there are spaces 3a open at both ends through which the fluid in which the exchanger is immersed flows freely. The above features are best seen in Figs. 2, 4, 7, 10. Fig. 1 further shows that the exchanger is placed in the tub (W), i.e. immersed in a fluid such as wastewater.

[0022] As shown in Figs. 3, 9 (and partially in other figures), the assembly is fitted with supply means 6,7,10a that feed another fluid into the shells 3, and with drain means 8,9,10 that drain said fluid from the shells 3.

[0023] The invention is characterised in that it compris-

es

- a central shaft 11 rotatably supported at both ends (as shown in Figs. 2, 3, 5, 7, 9,11),
- a cylindrical chamber 1 arranged around the shaft 11 (as shown in Figs. 2, 4, 5, 7, 11), said cylindrical chamber 1 being permanently and hermetically fixed around the shaft 11 and rotating with the shaft 11, filled with air, and
- a driving unit 100 for moving the exchanger assembly, best seen in Figs. 1, 2, 6, 7,8).

[0024] The shells 3 are arranged and permanently fixed around the cylindrical chamber 1 and rotating with the shaft 11 and the cylindrical chamber 1, while the shaft 11, the cylindrical chamber 1 and the shells 3 are arranged concentrically.

[0025] The exchanger assembly may comprise one or more shells 3, the most preferred number of shells 3 being one, two or three. Figs. 1-5 show an embodiment with three shells 3 (one of the preferred embodiments of the exchanger assembly wherein a motor is provided that swings the shaft forward and backward), while Figs. 6-10 show an embodiment with only one shell 3 (the preferred embodiment of the exchanger assembly wherein a vibration motor is provided). In the preferred embodiment, shells 3 are separated using perforated partition walls 4, as shown in the embodiment of, among others, Fig. 2, and - equally preferably - are closed at both ends using ring-shaped lids 5 (Fig. 3).

[0026] In one embodiment, the cylindrical chamber 1 has manifolds 2a at its ends, which are connected to the arrangement of shells 3 via radially arranged supply pipes 7, preferably there are six supply pipes 7 (Fig. 3). [0027] In one embodiment, the arrangement of shells 3 is mounted around the cylindrical chamber 1 by means of radial connectors 3,4, preferably four (Figs. 3,4).

[0028] According to the embodiment of the present invention shown in Fig. 7, the supply means 6,7,10a comprise a stub supply pipe 10a, a main supply pipe 6 and distribution pipes 7.

[0029] According to an embodiment of the present invention, e.g. the one shown in Fig. 2, the drain means (8,9,10) comprise collecting pipes 8, a main drain pipe 9 and a stub drain pipe 10.

[0030] In the embodiment shown in Figs. 1-5, the driving unit 100 constitutes an electric motor that swings the shaft 11 forward and backward. Preferably, the electric motor 100 is adapted to swing the shaft 11 forward and backward within a range of $\pm 15^{\circ}$ over a time period of approx. Is.

[0031] In the embodiment shown in Figs. 6-10, the driving unit 100 constitutes a vibration motor. Preferably, the vibration motor 100 is adapted to move the exchanger relative to axis of the shaft 11 with a frequency of approx. 17 Hz and an amplitude of approx. 2 mm (Δu); the arrow

in Fig. 10 indicates the direction of the vibrations. In the embodiment shown, the exchanger assembly is preferably provided with a frame 101 with a mounting plate 102 on which a vibration motor 100 is mounted.

[0032] The exchanger assembly, e.g. intended for use in laundry activities, can be installed in the chamber (tub) W, which is also a supporting structure for the heat exchanger and the drive system with motor 100, and a tank for a fluid therein, e.g. wastewater, from which heat is received. The frame structure of the tub can be formed by a frame welded from steel profiles, while tank Z (shown in Fig. 1), which forms an initial buffer for the flow from wastewater and receives the filtered water from the laundry, can be installed in the upper part of the frame. The water is fed into the tub through tubing by gravity (not shown). The system can be provided with means for preventing overflow. The motor 100, in an embodiment of the present invention wherein said motor makes the shaft swing forward and backward, can be mounted on the shorter side wall of tub W, as shown in Figs. 1-2. In an embodiment of the invention wherein vibration motor 100 is provided, said motor can be mounted above the exchanger assembly, e.g. using frame 101 with mounting plate 102, as clearly seen in Figs. 6-8.

[0033] As already mentioned, once the exchanger is set in motion, a boundary layer "becomes detached", which prevents efficient heat transfer. The exchanger is cleaned when it moves. In the present invention, a cylindrical air-filled chamber mounted on the shaft and moving therewith moves relative to the fluid in the exchanger so that the stream of fluid runs parallel to the axis of said chamber

[0034] If the exchanger rotated, as it is disclosed in the prior art, a driving force similar to that of the mixer would arise from the friction between the walls of the exchanger and the fluid (e.g. wastewater) and the fluid would circulate as a result of the exchanger chamber rotating. The disadvantage of this is that the driving force behind the heat exchange is the difference in relative speed (affecting the alpha coefficient, which is essential to heat exchange). Horizontal movement of the wastewater results from the fact that the reservoir (e.g. a tub) housing the exchanger is fitted with an inlet at one side and an outlet at the other side. Since all elements are arranged horizontally, the fluid also flows horizontally. The container is additionally fitted with a perforated partition to direct and redirect the wastewater in particular directions. The flow of the fluid is determined by the geometry of the heat exchanger. Since the element operates under pressure, in the present invention, the chamber arranged around the shaft "takes away" a significant part of the load, which is essential to energy (heat) recovery. The casing is typically made of stainless steel, which performs poorly in heat exchangers due to its low lambda value - the rate at which heat passes through a material. This can be improved by increasing the heat exchange surface by making the metal sheet thicker (water pressure hazard). The disadvantage of such a solution is an increase in

weight. Therefore, the central chamber arranged around the shaft is essential to the present invention.

[0035] The chamber also cleans itself as a result of the movement due to the inertial force of the fluid. Another function of the chamber is that supporting points (bearings) of the exchanger as a whole are less loaded due to the buoyancy of said chamber. Given that the heat exchange surface is often very large, the pressure load can be around 1000T. The construction design must be strong, which requires the use of a fairly thick sheet of considerable weight. Under certain conditions, the central chamber on the shaft can take up to 300 kg away from the shaft, resulting in the construction design being less loaded.

[0036] The invention is not limited to the embodiments described. A person skilled in the art could make modifications to the invention claimed in this patent without departing from the essence of the invention.

Claims

20

25

30

35

40

45

- 1. A heat exchanger assembly to be immersed in a fluid comprising an arrangement of shells (3) wherein the shells (3) are in fluid communication with each other and closed at both ends forming a heat exchange chamber, while between the shells there are spaces (3a) open at both ends through which the fluid in which the exchanger is immersed flows freely, and the assembly is fitted with supply means (6,7,10a) that feed another fluid into the shells (3), and with drain means (8,9,10) that drain said fluid from the shells (3), characterised in that it comprises:
 - a central shaft (11) rotatably supported at both ends
 - a cylindrical chamber (1) arranged around the shaft (11), said cylindrical chamber (1) being permanently and hermetically fixed around the shaft (11) and rotating with the shaft (11), and filled with air, and
 - a driving unit (100) for moving the exchanger assembly,
 - wherein the arrangement of shells (3) surrounds and is permanently fixed around the cylindrical chamber (1) and rotating with the shaft (11) and with the cylindrical chamber (1), while the shaft (11), the cylindrical chamber (1) and the shells (3) are arranged concentrically.
- 2. The exchanger assembly according to claim 1 characterised in that it comprises one shell (3).
- 3. The exchanger assembly according to claim 1 characterised in that it comprises two shells (3).
- The exchanger assembly according to claim 1 characterised in that it comprises three shells.

55

5

20

25

30

35

40

45

50

55

- **5.** The exchanger assembly according to claim 1 **characterised in that** shells (3) are fluidly coupled in pairs, each pair forming a heat exchange chamber.
- **6.** The exchanger assembly according to claim 1 **characterised in that** shells (3) are connected via perforated partition walls (4).
- 7. The exchanger assembly according to claim 1 characterised in that shells (3) are closed at both ends with ring-shaped lids (5).
- 8. The exchanger assembly according to claim 1 characterised in that the cylindrical chamber (1) has manifolds (2a) at its ends, which are connected to the arrangement of shells (3) via radially arranged supply pipes (7).
- **9.** The exchanger assembly according to claim 8 **characterised in that** there are six supply pipes (7).
- 10. The exchanger assembly according to claim 1 characterised in that the arrangement of shells (3) is mounted around the cylindrical chamber (1) by means of radial connectors (2).
- **11.** The exchanger assembly according to claim 10 **characterised in that** there are four radial connectors (2).
- **12.** The exchanger assembly according to claim 1 **characterised in that** supply means (6,7,10a) comprise a stub supply pipe (10a), a main supply pipe (6) and distribution pipes (7).
- **13.** The exchanger assembly according to claim 1 **characterised in that** drain means (8,9,10) comprise collecting pipes (8), a main drain pipe (9) and a stub drain pipe (10).
- **14.** The exchanger assembly according to claim 1 **characterised in that** the driving unit (100) constitutes an electric motor that swings the shaft (11) forward and backward.
- **15.** The exchanger assembly according to claim 14 **characterised in that** the electric motor (100) is adapted to swing the shaft (11) forward and backward within a range of $\pm 15^{\circ}$ over a time period of approx. Is.
- **16.** The exchanger assembly according to claim 1 **characterised in that** the driving unit (100) constitutes a vibration motor.
- **17.** The exchanger assembly according to claim 16 **characterised in that** the vibration motor (100) is adapted to move the exchanger relative to axis of

- the shaft (11) with a frequency of approx. 17 Hz and an amplitude of approx. 2 mm.
- **18.** The exchanger assembly according to claim 16 characterised in that it is provided with a frame (101) with a mounting plate (102) on which a vibration motor (100) is mounted.

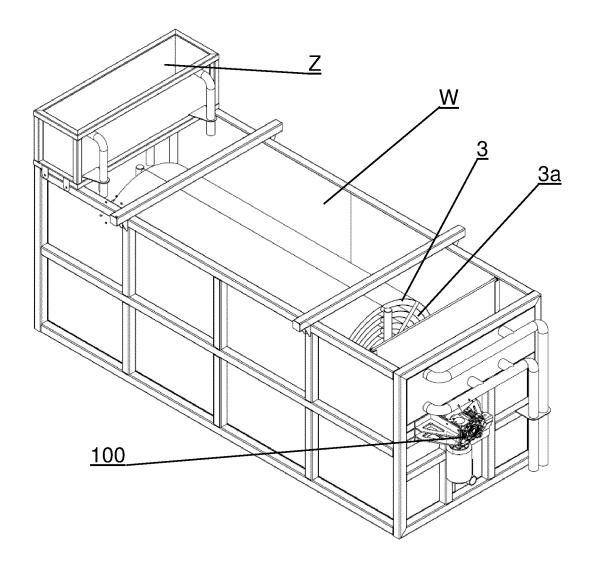


Fig. 1

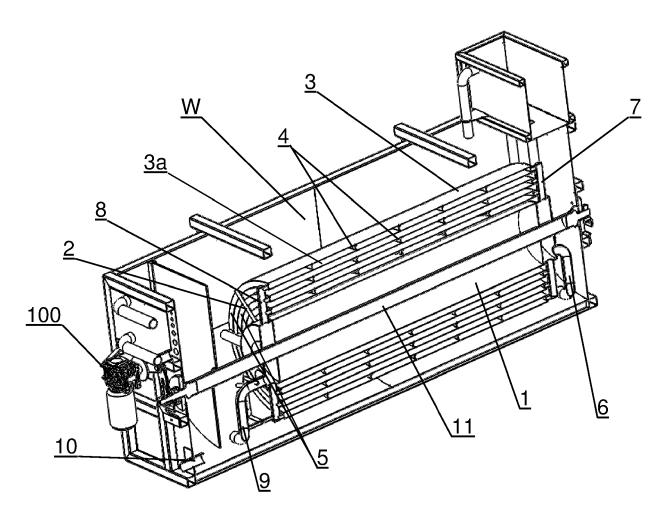
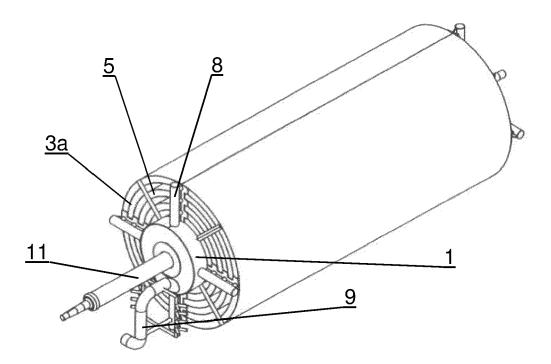
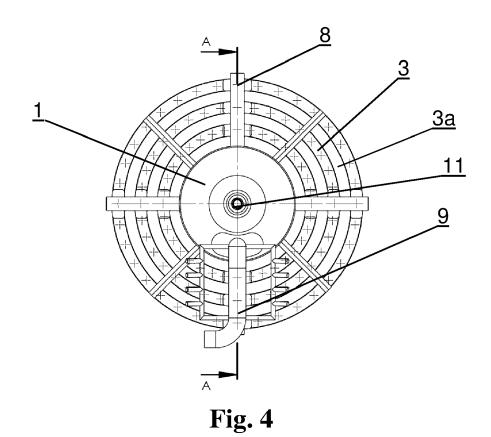
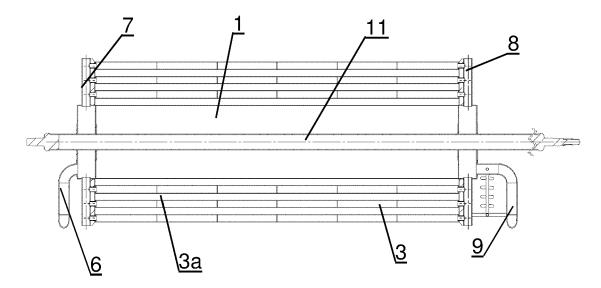





Fig. 2

Fig. 3

Fig. 5

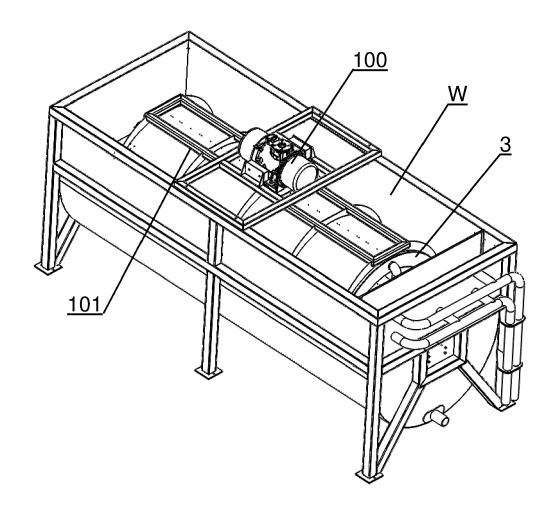
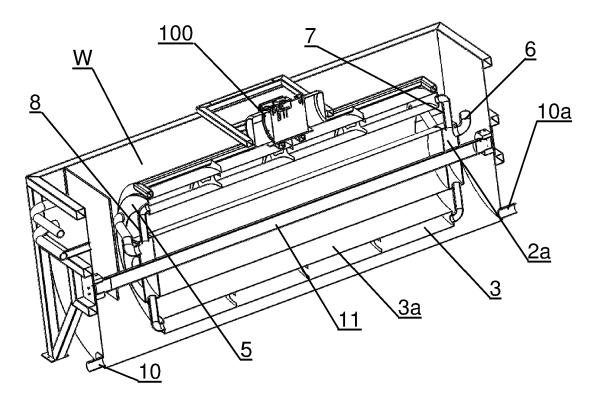



Fig. 6

Fig. 7

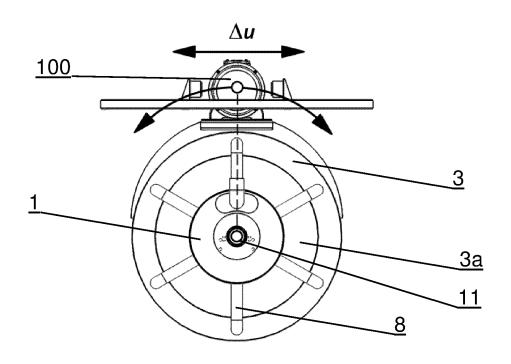


Fig. 8

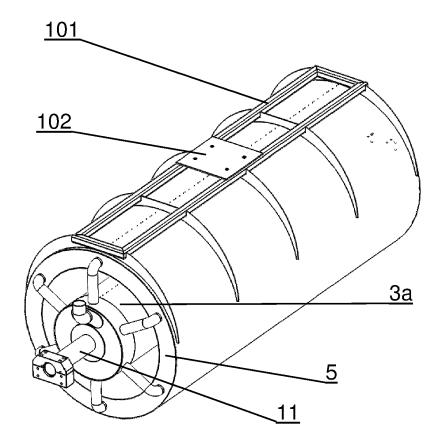
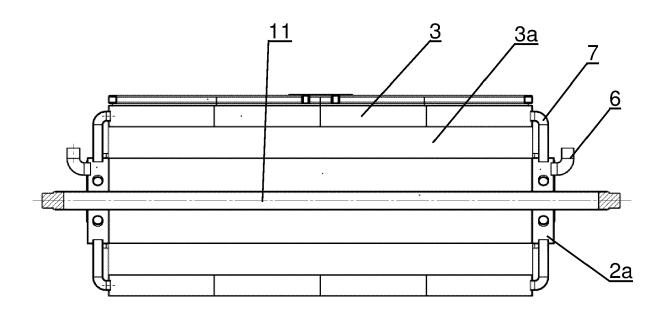



Fig. 9

Fig. 10

DOCUMENTS CONSIDERED TO BE RELEVANT

EUROPEAN SEARCH REPORT

Application Number

EP 22 15 1335

10	
15	
20	
25	
30	
35	
40	

45

50

55

Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
x	WO 2012/125586 A2 (ZAKIS JANIS [US] ET 20 September 2012 (* figure 3 *		1-18	INV. F28D1/02 D06F39/00 F28D7/10 F28G7/00
x	US 3 363 676 A (HUN 16 January 1968 (19 * figures *		1,2	F28F9/02 F28D11/02 F28D11/06 F28F5/02
x	WO 02/072251 A1 (HO [US]; HOLL RICHARD 19 September 2002 (* figures *		1,2	F28D21/00
x	BE 655 025 A (.) 15 February 1965 (1 * figures *	965-02-15)	1,2	
A	CN 106 362 427 B (U 1 January 2019 (201	1-18		
	* the whole documen			TECHNICAL FIELDS SEARCHED (IPC)
				F28D F28F F28G D06F
	The process against report has	boon drown up for all claims	_	
	The present search report has	Date of completion of the search		Examiner
	Munich	6 June 2022	Mel	llado Ramirez, J
X : parti Y : parti	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anotument of the same category inological background	T : theory or principl E : earlier patent do after the filing da	e underlying the cument, but publete te n the application	invention ished on, or

EPO FORM 1503 03.82 (P04C01)

EP 4 113 045 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 22 15 1335

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-06-2022

10			Patent document ed in search report		Publication date		Patent family member(s)		Publication date
		WO	2012125586	A2	20-09-2012	DK	2684004	т3	09-01-2017
						EP	2684004		15-01-2014
						US	2015083366		26-03-2015
15						WO	2012125586		20-09-2012
		us	3363676	 А	16-01-1968	NON	 E		
			02072251	 A1	19-09-2002	 AT	317292		15-02-2006
00		WO	02072251	ΑI	19-09-2002	BR	0208180		16-08-2005
20									
						CA	2440871		19-09-2002
						CN	1503690		09-06-2004
						CY	1107462		19-12-2012
						DE	60209110		28-09-2006
25						DK	1385609		19-06-2006
						EA	200300969		24-06-2004
						EP	1385609		04-02-2004
						ES	2258617		01-09-2006
						HK	1064629	A1	04-02-2005
						IL	157789	A	03-06-2007
30						JP	2004538125	A	24-12-2004
						KR	20040020887	A	09-03-2004
						MX	PA03008148	A	10-03-2004
						PT	1385609	E	30-06-2006
						US	6471392	в1	29-10-2002
35						US	2003043690	A1	06-03-2003
33						WO	02072251	A1	19-09-2002
						ZA	200307545	В	29-12-2004
		BE	 655025	 A	15-02-1965	BE	655025		15-02-1965
						DE	1269145		30-05-1968
40						DK	107945		24-07-1967
						GB	1039900		24-08-1966
						NL	6412499		10-05-1965
						SE	328321		14-09-1970
						บร	3235002		15-02-1966
45			106363437				105727581		06.07.2016
		CN	106362427	В	01-01-2019	CN			06-07-2016
						CN 	106362427	A 	01-02-2017
50									
- -									
	o								
	FORM P0459								
	M.								
55	Ë								

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 4 113 045 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB 656647 A [0003]
- JP S54114851 A **[0004]**
- GB 1239320 A [0005]

- US 3621506 A [0006]
- US 3835922 A [0007]