[0001] The present invention relates to a high strength cold rolled and galvannealed steel
sheet and to a method to obtain such steel sheet.
[0002] Decreasing the weight of vehicles to reduce CO2 emissions is a major challenge in
the automotive industry. This weight saving must be coupled with safety requirements.
To meet these requirements, an increased demand of very high strength steels with
tensile strength higher than 1450MPa have led to steelmaking industry to continuously
develop new grades.
[0003] These steels are usually coated with a metallic coating improving properties such
corrosion resistance. The metallic coatings can be deposited by hot-dip galvanizing
after the annealing of the steel sheets. To obtain an improved spot weldability, the
hot dip coating can be followed by an alloying treatment to obtain a galvannealed
steel sheet, so that the iron of the steel sheet diffuses towards the zinc coating
in order to obtain a zinc-iron alloy on the steel sheet.
[0004] The publication
WO2019188190 relates to a high strength galvanized or galvannealed steel sheet, having a tensile
strength higher than 1470MPa. To obtain such a level of tensile strength, the carbon
content of the steel sheet is comprised between 0.200%wt and 0.280%wt, which may reduce
the weldability of the steel sheet. Moreover, the formation of ferrite and bainite,
whose total amount of the sum of the two with pearlite is less than 2%, is avoided
to ensure good level of tensile strength. To do so, the soaking step after cold rolling
has to be performed at a temperature above Ac3.
[0005] The publication
WO2016199922 relates to a high strength galvannealed steel sheet with a tensile strength higher
than 1470MPa. The high amount of carbon between 0.25% and 0.70% allow to obtain this
high level of tensile strength. But the weldability of the steel sheet may be reduced.
After the alloying step, the steel sheet must be cooled in a controlled manner, in
order to obtain at the end of the cooling, more than 10% of retained austenite. After
this cooling step, the galvannealed steel sheet is subjected to a step of tempering
to obtain tempered martensite, to promote bainite transformation and to cause carbon
to concentrate into retained austenite, in order to obtain the desired final microstructure
: between 10% and 60% of retained austenite, less than 5% of high temperature tempered
martensite, less than 5% of low temperature tempered martensite, less than 10% of
fresh martensite, less than 15% of ferrite, less than 10% of pearlite, the balance
being bainite.
[0006] These controlled cooling and tempering steps complicate the manufacturing process.
US 2016/319385 A1 discloses a high-strength galvanized steel sheet excellent in terms of spot weldability,
anti-crash property, and bending formability which can preferably be used as an automotive
steel sheet.
[0007] The purpose of the invention therefore is to solve the above-mentioned problem and
to provide a galvannealed steel sheet having a tensile strength above or equal to1450MPa
and easily processable on conventional process route.
[0008] In a preferred embodiment of the invention, the yield strength YS is above or equal
to 1050MPa.
[0009] The object of the present invention is achieved by providing a steel sheet according
to claim 1. The steel sheet can also comprise characteristics of anyone of claims
2 to 5. Another object is achieved by providing the method according to claim 6. The
method can also comprise characteristics of anyone of claims 7 to 8.
[0010] The invention will now be described in detail and illustrated by examples without
introducing limitations.
[0011] Hereinafter, Ac3 designates the temperature above which microstructure is fully austenitic,
Ac1 designates the temperature above which austenite begins to form.
[0012] The composition of the steel according to the invention will now be described, the
content being expressed in weight percent.
[0013] The carbon content is comprised from 0.15% to 0.25% to ensure a satisfactory strength.
If the carbon content is too high, the weldability of the steel sheet is insufficient.
A carbon content level below 0.15% does not make it possible to achieve a sufficient
tensile strength.
[0014] The manganese content is comprised from 2.4% to 3.5% to ensure satisfactory strength
and to limit bainitic transformation. Above 3.5% of addition, the risk of central
segregation increases to the detriment of the ductility. An amount of at least 2.4%
of manganese is mandatory in order to provide the strength and hardenability of the
steel sheet as well as to stabilize austenite. Preferably, the manganese content is
comprised from 2.5% to 3.2%.
[0015] According to the invention, the silicon content is comprised from 0.30% to 0.90%.
Silicon is an element participating in the hardening in solid solution. A silicon
addition of at least 0.30% makes it possible to obtain sufficient hardening of the
ferrite and bainite. Above 0.90%, silicon oxides form at the surface, which impairs
the coatability of the steel. Moreover, silicon can impair the weldability. In a preferred
embodiment, the silicon content is comprised from 0.30% to 0.70%. In an other preferred
embodiment, the silicon content is comprised from 0.30% to 0.50%.
[0016] According to the invention, the chromium content is comprised from 0.30% to 0.70%.
Chromium is an element participating in the hardening in solid solution. A chromium
content level below 0.30% does not make it possible to achieve a sufficient tensile
strength. The chromium content has to be below or equal to 0.70% to obtain a satisfactory
elongation at break and limit costs. According to the invention, the molybdenum content
is comprised between 0.05% and 0.35%. A molybdenum addition of at least 0.05% improves
the hardenability of the steel and limits bainitic transformation before and during
the hot dip coating. Above 0.35%, the addition of molybdenum is costly and ineffective
in view of the properties which are required. Preferably, the molybdenum content is
comprised between 0.05% and 0.20%.
[0017] According to the invention, the aluminium content is comprised between 0.001% and
0.09% as it is a very effective element for deoxidizing the steel in the liquid phase
during elaboration. The aluminium content is lower than 0.09% to avoid oxidation problems
and ferrite formation during cooling after intercritical soaking. Preferably the aluminium
amount is between 0.001% and 0.06%.
[0018] Titanium is added in an amount between 0.01% and 0.06% to provide precipitation strengthening
and to protect boron against the formation of BN. According to the invention, the
boron content is comprised between 0.0010% and 0.0040%. As molybdenum, boron improves
the hardenability of the steel. The boron content is lower than 0.0040% to avoid a
risk of breaking the slab during continuous casting. Niobium is added between 0.01%
and 0.05% to refine the austenite grains during hot-rolling and to provide precipitation
strengthening.
[0019] The remainder of the composition of the steel is iron and impurities resulting from
the smelting. In this respect, P, S and N at least are considered as residual elements
which are unavoidable impurities. Their content is less than 0.010 % for S, less than
0.020 % for P and less than 0.008 % for N.
[0020] The microstructure of the cold rolled and galvannealed steel sheet according to the
invention will now be described.
[0021] After cold rolling, the cold rolled steel sheet is heated to a soaking temperature
T
soak and maintained at said temperature for a holding time t
soak, both chosen in order to obtain, at the end of this intercritical soaking, a steel
sheet with a microstructure consisting of between 85% and 95% of austenite and between
5% and 15% of ferrite.
[0022] A part of austenite is transformed in bainite after the cooling after the intercritical
soaking, during the hot dip coating.
[0023] During the cooling step at room temperature after the galvannealing step, austenite
transforms in martensite. The cold rolled and galvannealed steel sheet has a final
microstructure consisting of, in surface fraction, between 80% and 90% of martensite,
the balance being ferrite and bainite.
[0024] These 80% to 90% of martensite ensures a good level of tensile strength.
[0025] This martensite comprises auto tempered martensite and fresh martensite. The sum
of ferrite and bainite is between 10% and 20% in order to ensure that the galvannealing
step is successful.
[0026] In a preferred embodiment of the invention, the ferrite is above or equal to 5%.
In an other preferred embodiment of the invention, the bainite is above or equal to
5%.
[0027] The cold rolled and galvannealed steel sheet according to the invention has a tensile
strength TS above or equal to 1450 MPa. In a preferred embodiment of the invention,
the yield strength YS is above or equal to 1050 MPa. TS and YS are measured according
to ISO standard ISO 6892-1.
[0028] The steel sheet according to the invention can be produced by any appropriate manufacturing
method and the man skilled in the art can define one. It is however preferred to use
the method according to the invention comprising the following steps:
A semi-product able to be further hot-rolled, is provided with the steel composition
described above. The semi product is heated to a temperature comprised from 1150°C
to 1300°C, so to make it possible to ease hot rolling, with a final hot rolling temperature
FRT comprises from 850°C to 950°C.
[0029] The hot-rolled steel is then cooled and coiled at a temperature Tcoil comprised from
250°C to 650°C.
[0030] After the coiling, the sheet is pickled to remove oxidation.
[0031] The steel sheet is annealed to an annealing temperature T
A comprised from 500°C and 650°C and maintaining at said temperature T
A for a holding time t
A in order to improve the cold-rollability.
[0032] After the annealing, the sheet can be pickled to remove oxidation.
[0033] The steel sheet is then cold rolled with a reduction rate between 20% and 80%, to
obtain a cold rolled steel sheet, having a thickness that can be, for example, between
0.7 mm and 3 mm, or even better in the range of 0.8 mm to 2 mm. The cold-rolling reduction
ratio is comprised between 20% and 80%. Below 20%, the recrystallization during subsequent
heat-treatment is not favored, which may impair the ductility of the cold-rolled and
galvannealed steel sheet. Above 80%, the force required to deform during cold-rolling
would be too high.
[0034] The cold rolled steel sheet is then reheated to a soaking temperature T
soak comprised from Ac1 and Ac3 and maintained at said temperature T
soak for a holding time t
soak comprised from 30s and 200s so to obtain, at the end of this intercritical soaking,
a microstructure comprising between 85% and 95% of austenite and between 5% and 15%
of ferrite.
[0035] The cold rolled steel sheet is then cooled to a temperature comprised from 440°C
to 480°C in order for the sheet to reach a temperature close to the coating bath,
before to be coated by continuous dipping in a zinc bath at a temperature T
Zn comprised from 450° C to 480° C. The hot dip coated steel sheet is then reheated
to a galvannealed temperature T
GA comprised from 510°C to 550°C, and maintained at said temperature T
GA for a holding time t
GA comprised from 10s to 30s.
[0036] The steel sheet is then cooled to room temperature to obtain a cold rolled and galvannealed
steel sheet.
[0037] In a preferred embodiment of the invention, the annealing step of the hot rolled
steel sheet is performed by batch in an inert atmosphere, at a heat-treating temperature
T
A comprised from 500°C to 650°C and maintaining at said T
A temperature for a holding time t
A comprised from 1800s to 36000s.
[0038] In an other preferred embodiment of the invention, the annealing step of the hot
rolled steel sheet is performed by continuous annealing, at a heat-treating temperature
T
A comprised from 550°C to 650°C. and maintaining at said T
A temperature for a holding time t
A comprised from 30s to 100s.
[0039] The invention will be now illustrated by the following examples, which are by no
way limitative.
Examples
[0040] 2 grades, which compositions are gathered in table 1, were cast in semi-products
and processed into steel sheets following the process parameters gathered in table
2.
Table 1 - Compositions
| The tested compositions are gathered in the following table wherein the element contents
are expressed in weight percent. |
| Steel |
C |
Mn |
Si |
Cr |
Mo |
Al |
Ti |
B |
Nb |
P |
S |
N |
Ac1(° C) |
Ac3 (°C) |
| A |
0.18 |
2.8 |
0.49 |
0.41 |
0.10 |
0.04 |
0.03 |
0.0022 |
0.02 |
0.01 |
0.002 |
0.004 |
735 |
805 |
| B |
0.15 |
2.6 |
0.45 |
0.48 |
0.03 |
0.01 |
0.03 |
0.0020 |
0.013 |
0.01 |
0.002 |
0.004 |
715 |
820 |
Steel A is according to the invention. Steel B out of the invention
Underlined values: not corresponding to the invention |
[0041] For a given steel, Ac1 and Ac3 are measured through dilatometry tests and metallography
analysis.
Table 2 - Process parameters
| Steel semi-products, as cast, were reheated to 1200°C, hot rolled with finish rolling
temperature FRT of 910°C, coiled at a temperature Tcoil of 550°C. Some steel sheets are first annealed to a temperature TA of 600°C, and maintained at said TA temperature for a holding time tA before to be pickled. Steel sheets are then cold rolled at a reduction rate of 45%.
The cold rolled steel sheets are reheated to a soaking temperature Tsoak and maintained at said temperature during tsoak, and coated by hot dip coating in a zinc bath at temperature TZn of 460°C, followed by galvannealing, with a galvannealed temperature TGA comprised from 510°C to 550°C and maintained at said temperature during tGA of 20s. The following specific conditions were applied: |
| Trials |
Steel |
Annealing |
Soaking |
Galvannealing |
| |
|
TA(°C) |
Tsoak(°C) |
tsoak(S) |
TGA(°C) |
| 1 |
A |
600 |
790 |
180 |
540 |
| 2 |
A |
600 |
790 |
138 |
520 |
| 3 |
A |
600 |
843 |
138 |
520 |
| 4 |
A |
600 |
810 |
138 |
520 |
| 5 |
B |
- |
790 |
180 |
520 |
| Underlined values: not corresponding to the invention |
[0042] The cold rolled steel sheets were analyzed after soaking and the corresponding microstructure
elements were gathered in table 3.
Table 3: Microstructure of the cold rolled steel sheets after soaking
| Trials |
Austenite (%) |
Ferrite (%) |
| 1 |
94 |
6 |
| 2 |
94 |
6 |
| 3 |
100 |
0 |
| 4 |
100 |
0 |
| 5 |
90 |
10 |
| Underlined values: not corresponding to the invention |
[0043] In order to quantify this microstructure at the end of the soaking, the steel sheets
are quenched after the soaking to transform 100% of austenite in martensite, austenite
being instable at room temperature. Martensite amount thus corresponds to the austenite
amount at the end of the soaking. Martensite and ferrite amounts are then quantified
through image analysis.
[0044] The cold rolled and galvannealed steel sheets were then analyzed and the corresponding
microstructure elements and properties were respectively gathered in table 4 and 5.
Table 4: Microstructure of the cold rolled and qalvannealed steel sheets
| Trials |
Martensite (%) |
Ferrite + Bainite (%) |
Ferrite (%) |
Bainite (%) |
| 1 |
85 |
15 |
5 |
10 |
| 2 |
89 |
11 |
5 |
6 |
| 3 |
98 |
2 |
0 |
2 |
| 4 |
92 |
8 |
0 |
8 |
| 5 |
75 |
25 |
15 |
10 |
| Underlined values: not corresponding to the invention |
[0045] The surface fractions are determined through the following method: a specimen is
cut from the cold-rolled and galvannealed steel sheet, polished and etched with a
reagent (Nital), to reveal the microstructure. The determination of the surface fraction
of each constituent are performed with image analysis through optical microscope:
Martensite has a darker contrast than ferrite and bainite. Bainite is quantified by
measuring the difference of martensite fractions of the sample quenched after soaking
and of the sample cooled after galvannealing. The bainite is identified thanks to
the carbides inside this bainite.
Table 5: Properties of the cold rolled and galvannealed steel sheets
| Trials |
TS (MPa) |
YS (MPa) |
Success of GA |
| 1 |
1522 |
1095 |
Yes |
| 2 |
1634 |
1055 |
Yes |
| 3 |
1519 |
1163 |
No |
| 4 |
1611 |
1096 |
No |
| 5 |
1363 |
954 |
Yes |
| Underline values: Insufficient TS or YS, or fail of the galvannealing step. |
[0046] The success of the galvannealing step is checked by measuring the amount of iron
in the coating. The steel is galvannealed if the iron content in the coating is between
7% and 12%.
[0047] The examples show that the steel sheet according to the invention, namely examples
1 and 2 are the only one to show all the targeted mechanical properties with success
of the galvannealing, thanks to their specific composition and microstructures. The
mechanical properties are ensured thanks to the martensite between 80% and 90%. The
galvannealing step is ensured thanks to the presence of ferrite and bainite in a total
comprised between 10% and 20%.
[0048] In trials 3 and 4 steel A is heated above a temperature T
soak ensuring between 85% and 95% of austenite and between 5% and 15% of ferrite at the
end of the soaking, thus forming too many austenite and not enough ferrite. This leads
to the formation of less than 10% of the sum of ferrite and bainite at the end of
the hot dip coating, which hinder the galvannealing step.
[0049] In Trial 5, the absence of molybdenum, which is a hardening element delaying the
bainitic transformation, leads to the formation of 25% of the sum of ferrite and bainite
at the end of the hot dip coating. Then, martensite formed during the last cooling
step is less than 80% which leads to a low value of mechanical properties.
1. A cold rolled and galvannealed steel sheet having a chemical composition comprising,
in weight %:
C: 0.15-0.25%
Mn: 2.4 -3.5%
Si: 0.30-0.90%
Cr: 0.30-0.70%
Mo: 0.05-0.35%
Al: 0.001-0.09%
Ti: 0.01-0.06%
B: 0.0010-0.0040%
Nb 0.01-0.05%
P≤0.020%
S≤0.010%
N≤0.008%
the remainder of the composition being iron and unavoidable impurities resulting from
the smelting, said steel sheet having a microstructure consisting of, in surface fraction:
- from 80% to 90% of martensite,
- the balance being ferrite and bainite.
2. A cold rolled and galvannealed steel sheet according to claim 1, wherein the ferrite
is above or equal to 5%.
3. A cold rolled and galvannealed steel sheet according to claim 1, wherein the bainite
is above or equal to 5%.
4. A cold rolled and galvannealed steel sheet according to any one of claims 1 to 3,
wherein the silicon content is comprised between 0.30% and 0.70%.
5. A process for manufacturing a cold rolled and galvannealed steel sheet comprising
the following and successive steps:
- casting a steel to obtain a semi-product, said semi product having a composition
according to claim 1,
- reheating the slab to a temperature Treheat comprised from 1150°C to 1300°C,
- hot rolling the reheated slab with a final rolling temperature comprised from 850°C
to 950°C, so to obtain a hot rolled steel sheet, then
- cooling said steel sheet to a coiling temperature Tcoil comprised from 250°C to 650°C, then
- coiling the steel sheet at said temperature Tcoil so to obtain a coiled steel sheet, then
- pickling the steel sheet
- annealing the steel sheet to an annealing temperature TA comprised from 500°C to 650°C and maintaining the steel sheet at said temperature
TA for a holding time tA
- optionally pickling the steel sheet
- cold rolling the hot-rolled steel sheet with a reduction rate between 20% and 80%,
to obtain a cold rolled steel sheet,
- heating the cold rolled steel sheet to a soaking temperature Tsoak comprised from Ac1 to Ac3 and maintaining the steel sheet at said temperature Tsoak for a holding time tsoak comprised from 30s to 200s, in order to obtain between 85% and 95% of austenite and
between 5% and 15% of ferrite,
- cooling the steel sheet to a temperature comprised from 440°C to 480°C,
- coating the steel sheet by continuous dipping in a zinc bath at a temperature Tzn
comprised from 450°C to 480°C,
- reheating the steel sheet to a galvannealed temperature TGA comprised from 510°C and 550°C, and maintaining the steel sheet at said temperature
TGA for a holding time tGA comprised from 10s and 30s
- cooling the reheated steel sheet to room temperature to obtain a cold rolled and
galvannealed steel sheet.
6. A process for manufacturing a cold rolled and galvannealed steel sheet according to
claim 5,
wherein said annealing of the hot rolled steel sheet is performed by batch in an inert
atmosphere, at a heat-treating temperature TA comprised from 500°C to 650°C, the duration tA at said annealing temperature being comprised from 1800s to 36000s.
7. A process for manufacturing a cold rolled and galvannealed steel sheet according to
claim 5, wherein said annealing of the hot rolled steel sheet is performed by continuous
annealing, at a heat-treating temperature TA comprised from 550°C to 650°C, the duration tA at said annealing temperature being comprised from 30s to 100s.
1. Kaltgewalztes und galvannealtes Stahlblech, das eine chemische Zusammensetzung aufweist,
umfassend in Gewichtsprozent:
C: 0,15 - 0,25 %
Mn: 2,4 - 3,5 %
Si: 0,30 - 0,90 %
Cr: 0,30 - 0,70 %
Mo: 0,05 - 0,35 %
AI: 0,001 - 0,09 %
Ti: 0,01 - 0,06 %
B: 0,0010 - 0,0040 %
Nb 0,01-0,05 %
P ≤ 0,020 %
S ≤ 0,010 %
N ≤ 0,008 %
wobei der Rest der Zusammensetzung aus Eisen und unvermeidlichen Verunreinigungen
aus der Verhüttung besteht, das Stahlblech eine Mikrostruktur aufweist, das in Oberflächenfraktion
aus Folgendem besteht:
- von 80 % bis 90 % Martensit,
- der Rest ist Ferrit und Bainit.
2. Kaltgewalztes und galvannealtes Stahlblech nach Anspruch 1, wobei der Ferritgehalt
über oder gleich 5 % ist.
3. Kaltgewalztes und galvannealtes Stahlblech nach Anspruch 1, wobei der Bainitgehalt
über oder gleich 5 % ist.
4. Kaltgewalztes und galvannealtes Stahlblech nach einem der Ansprüche 1 bis 3, wobei
der Silikongehalt zwischen 0,30 % und 0,70 % liegt.
5. Verfahren zum Herstellen eines kaltgewalzten und galvannealten Stahlblechs, umfassend
die folgenden aufeinanderfolgenden Schritte:
- Gießen eines Stahls, um ein Halbzeug zu erhalten, wobei das Halbzeug eine Zusammensetzung
gemäß Anspruch 1 aufweist,
- Wiedererhitzen der Bramme auf eine Temperatur Treheat von 1150 °C bis 1300 °C,
- Warmwalzen der wiedererhitzten Bramme mit einer abschließenden Walztemperatur, die
zwischen 850 °C und 950 °C liegt, um ein warmgewalztes Stahlblech zu erhalten, dann
- Abkühlen des Stahlblechs auf eine Wickeltemperatur Tcoil von 250 °C bis 650 °C, dann
- Wickeln des Stahlblechs bei der Temperatur Tcoil, um ein gewickeltes Stahlblech zu erhalten, dann
- Beizen des Stahlblechs,
- Glühen des Stahlblechs auf eine Glühtemperatur TA von 500 °C bis 650 °C und Halten des Stahlblechs bei der Temperatur TA für eine Haltezeit tA,
- optionales Beizen des Stahlblechs,
- Kaltwalzen des warmgewalzten Stahlblechs mit einem Reduktionsgrad zwischen 20 %
und 80 %, um ein kaltgewalztes Stahlblech zu erhalten,
- Erhitzen des kaltgewalzten Stahlblechs auf eine Tränktemperatur Tsoak , die zwischen Ac1 und Ac3 liegt, und Halten des Stahlblechs bei der Temperatur Tsoak während einer Haltezeit tsoak , die zwischen 30 s und 200 s liegt, um zwischen 85 % und 95 % Austenit und zwischen
5 % und 15 % Ferrit zu erhalten,
- Abkühlen des Stahlblechs auf eine Temperatur zwischen 440 °C und 480 °C,
- Beschichten des Stahlblechs durch kontinuierliches Eintauchen in ein Zinkbad bei
einer Temperatur TZn von 450 °C bis 480 °C,
- Wiedererwärmen des Stahlblechs auf eine Galvannealungsttemperatur TGA von 510 °C bis 550 °C und Halten des Stahlblechs bei der Temperatur TGA für eine Haltezeit tGA von 10 s bis 30 s.
- Abkühlen des wiedererhitzten Stahlblechs auf Raumtemperatur, um ein kaltgewalztes
und galvannealtes Stahlblech zu erhalten.
6. Verfahren zum Herstellen eines kaltgewalzten und galvannealten Stahlblechs nach Anspruch
5,
wobei das Glühen des warmgewalzten
Stahlblechs chargenweise in einer inerten Atmosphäre bei einer Wärmebehandlungstemperatur
TA von 500 °C bis 650 °C ausgeführt wird, wobei die Dauer tA bei der Glühtemperatur zwischen 1800 s und 36000 s liegt.
7. Verfahren zum Herstellen eines kaltgewalzten und galvannealten Stahlblechs nach Anspruch
5, wobei das Glühen des warmgewalzten Stahlblechs durch kontinuierliches Glühen bei
einer Wärmebehandlungstemperatur TA von 550 °C bis 650 °C erfolgt, wobei die Dauer tA bei der Glühtemperatur zwischen 30s und 100 s liegt.
1. Tôle d'acier laminée à froid et galvanisée ayant une composition chimique comprenant,
en % en poids :
C : de 0,15 à 0,25 %
Mn : de 2,4 à 3,5 %
Si : de 0,30 à 0,90 %
Cr : de 0,30 à 0,70 %
Mo : de 0,05 à 0,35 %
AI : de 0,001 à 0,09 %
Ti : de 0,01 à 0,06 %
B : de 0,0010 à 0,0040 %
Nb de 0,01 à 0,05 %
P ≤ 0,020 %
S ≤ 0,010 %
N ≤ 0,008 %
le reste de la composition étant du fer et des impuretés inévitables résultant de
la fusion, ladite tôle d'acier ayant une microstructure constituée, en fraction de
surface :
- de 80 à 90 % de martensite,
- le reste étant constitué de ferrite et de bainite.
2. Tôle d'acier laminée à froid et galvanisée selon la revendication 1, dans laquelle
la ferrite est supérieure ou égale à 5 %.
3. Tôle d'acier laminée à froid et galvanisée selon la revendication 1, dans laquelle
la bainite est supérieure ou égale à 5 %.
4. Tôle d'acier laminée à froid et galvanisée selon l'une quelconque des revendications
1 à 3, dans laquelle la teneur en silicium est comprise entre 0,30 % et 0,70 %.
5. Procédé de fabrication d'une tôle d'acier laminée à froid et galvanisée, comprenant
les étapes successives suivantes :
- coulée d'un acier pour obtenir un semi-produit, ce semi-produit ayant une composition
selon la revendication 1,
- réchauffement de la brame à une température Treheat comprise entre 1 150 °C et 1 300 °C,
- laminage à chaud de ladite brame réchauffée à une température de laminage finale
comprise entre 850 °C et 950 °C, de façon à obtenir une tôle d'acier laminée à chaud,
puis
- refroidissement de ladite tôle d'acier à une température d'enroulement Tcoil comprise entre 250°C et 650°C, puis
- enrouler la tôle d'acier à ladite température Tcoil afin d'obtenir une tôle d'acier enroulée, puis
- décapage de la tôle d'acier
- recuit de la tôle d'acier à une température de recuit TA comprise entre 500°C et 650°C et maintien de la tôle d'acier à ladite température
TA pendant un temps de maintien tA
- décapage éventuel de la tôle d'acier
- laminage à froid de la tôle d'acier laminée à chaud avec un taux de réduction compris
entre 20 et 80 %, de manière à obtenir une tôle d'acier laminée à froid,
- chauffage de la tôle d'acier laminée à froid à une température de trempage Tsoak comprise entre Ac1 et Ac3 et maintenir la tôle d'acier à ladite température Tsoak pendant un temps de maintien tsoak compris entre 30 s et 200 s, afin d'obtenir entre 85 et 95 % d'austénite et entre
5 et 15 % de ferrite,
- refroidissement de la tôle d'acier à une température comprise entre 440 °C et 480
°C,
- revêtement de la tôle d'acier par immersion continue dans un bain de zinc à une
température TZn comprise entre 450 °C et 480 °C,
- réchauffage de la tôle d'acier à une température TGA de galvanisation comprise entre 510°C et 550°C, et maintien de la tôle d'acier à
cette température TGA pendant un temps de maintien tGA compris entre 10 s et 30 s
- refroidissement de la tôle d'acier réchauffée jusqu'à la température ambiante pour
obtenir une tôle d'acier laminée à froid et galvanisée.
6. Procédé de fabrication d'une tôle d'acier laminée à froid et galvanisée selon la revendication
5,
dans lequel ledit recuit de ma feuille d'acier laminée à chaud
est effectué par lot dans une atmosphère inerte, à une température de traitement thermique
TA comprise entre 500 °C et 650 °C, la durée tA à ladite température de recuit étant comprise entre 1 800 s et 36 000 s.
7. Procédé de fabrication d'une tôle d'acier laminée à froid et galvanisée selon la revendication
5, dans lequel ledit recuit de la tôle d'acier laminée à chaud est effectué par un
recuit continu, à une température de traitement thermique TA comprise entre 550 °C et 650 °C, la durée tA à ladite température de recuit étant comprise entre 30 s et 100 s.