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Description
Field of the invention

[0001] The presentinvention relates to medical imag-
ing and related methods. More specifically, embodiments
of the present disclosure relate to non-invasive coronary
artery narrowing detection based on CT scans and 3D
deep learning.

Background art

[0002] There is a need for functional assessment of
arterial capacity in order to screen a patient’s health.
Such screening is preferably based on hemodynamic
characteristics, such as Fractional Flow Reserve (FFR),
which are key indicators to diagnose a patient and, by
extension, to determine the optimal treatment for a pa-
tient with arterial disease. Prior art assessments of these
hemodynamic characteristics are based on invasive
catheterizations. These allow to directly measure blood
flow characteristics, such as pressure and flow velocity.
However, invasive measurement techniques entail risks
to the patient and furthermore constitute a significant cost
to the healthcare system.

[0003] Noninvasive tests overcome these problems
and have been developed based on patientimaging, par-
ticularly, computed tomography (CT). This allows to de-
termine a patient-specific coronary artery model. This
model may then be used to computationally simulate the
blood flow and obtain FFR-related parameter values us-
ing computational fluid dynamics (CFD) with appropriate
physiological boundary conditions and parameters. Ex-
amples of inputs to these patient-specific boundary con-
ditions include the patient’s blood pressure, blood vis-
cosity and the expected demand of blood from the sup-
plied tissue. These inputs may be derived from scaling
laws and a mass estimation of the supplied tissue from
the patient imaging. Although CFD-based estimations of
blood flow characteristics have demonstrated a level of
fidelity comparable to direct (invasive) measurements of
the same quantity of interest, physical simulations de-
mand a substantial computational burden that can make
these virtual, noninvasive tests difficult to execute in a
real-time clinical environment. On the other hand, prior
art methods for obtaining a coronary artery model are
overly complex and/or lack accuracy. Consequently, the
present disclosure describes new methods for obtaining
highly automated, fast and noninvasive estimations of
blood flow characteristics that are computationally inex-
pensive.

[0004] (Zhi-Qiang WANG, Yu-Jie ZHOU, Ying-Xin
ZHAO, Dong-Mei SHI, Yu-Yang LIU, Wei LIU, Xiao-Li
LIU, Yue-Ping LI. Diagnostic accuracy of a deep learning
approach to calculate FFR from coronary CT angiogra-
phy. J Geriatr Cardiol 2019; 16(1): 42-48. doi:
10.11909/j.issn.1671-5411.2019.01.010),  (Sironi A,
Turetken E, Lepetit V, Fua P. Multiscale Centerline De-
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tection. IEEE Trans Pattern Anal Mach Intell. 2016
Jul;38(7):1327-41. doi: 10.1109/TPAMI.2015.2462363),
(Wolte[ink JM, van Hamersvelt RW, Viergever MA, Lein-
er T, Isgum |. Coronary artery centerline extraction in
cardiac CT angiography using a CNN-based orientation
classifier. Med Image Anal. 2019 Jan;51:46-60. doi:
10.1016/j.media.2018.10.005), WO 2018/057529 A1,
WO 2018/015414 A1, US 9,668,699 B2, and US
2020/0205745 A1disclose related methods and systems,
but do not enable fully automatized dertermination of
FFR-related parameter values, and/or are overly com-
plex.

[0005] EP3480730A1 discloses computer-implement-
ed method for identifying features in 3D image volumes
includes dividing a 3D volume into a plurality of 2D slices
and applying a pre-trained 2D multi-channel global con-
volutional network (MC-GCN) to the plurality of 2D slices
until convergence. However, EP3480730A1 does not
disclose applying a 3D NN to the 3D image.

[0006] The present invention aims at addressing the
issues listed above.

Summary of the invention

[0007] According to a first aspect of the present inven-
tion, a method is provided for determining an FFR-related
parameter value, preferably an FFR, comprising:

providing a CT image comprising coronary arteries
obtained from coronary CT angiography, CCTA;

extracting, from said CT image and for each of said
coronary arteries, a respective centerline;

extracting, from said CT image and for each of said
coronary arteries, a respective artery contour; and

preferably, determining, based atleaston a coronary
artery model comprising said respective centerlines
and said respective artery contours, said FFR-relat-
ed parameter value;

wherein said CT image is a 3D CT image comprising
voxels, each voxel being associated with a radioden-
sity value, preferably a Hounsfield unit value;

wherein said extracting of said respective center-
lines comprises applying, on said 3D CT image com-
prising voxels, a first NN being a 3D NN trained with
respect to the centerline;

wherein said extracting of said respective artery con-
tours comprises applying, on said CT image, a sec-
ond NN trained with respect to a radius from the cen-
terline; and

wherein preferably said determining of said FFR-re-
lated parameter value comprises applying, on said
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coronary artery model, a third NN trained with re-
spect to FFR-related training data.

[0008] A main advantage of such a method is the con-
venient automation and non-intrusive nature of the de-
termination of an FFR-related parameter value.

[0009] In preferred embodiments, the method includes
the step of determining, based at least on a coronary
artery model comprising said respective centerlines and
said respective artery contours, said FFR-related param-
eter value, wherein said determining of said FFR-related
parameter value preferably comprises applying, on said
coronary artery model, a third NN trained with respect to
FFR-related training data. In other embodiments, the
method does not include said step of determining said
FFR-related parameter value, and instead is a method
for determining a coronary artery model comprising said
respective centerlines and said respective artery con-
tours. In such other embodiments, the obtained coronary
artery modelmay be used, e.g., fordetermining said FFR-
related parameter value based on CFD and/or based on
a 3D printing of said obtained coronary artery model.
[0010] (Sironi A, Turetken E, Lepetit V, Fua P. Multi-
scale Centerline Detection. IEEE Trans Pattern Anal
Mach Intell. 2016 Jul;38(7):1327-41. doi: 10.1109/TPA-
MI.2015.2462363) discloses the handling of 2D and 3D
image stacks but merely discloses a regression formu-
lation applied on 2D images comprised in a 3D image
stack. Moreover, the regression method is Gradient-
Boost, see Sect. 3.1, which is one of the traditional re-
gression methods known to the skilled person.

[0011] Onthe other hand, (Wolterink JM, van Hamers-
veltRW, Viergever MA, Leiner T, Isgum |. Coronary artery
centerline extraction in cardiac CT angiography using a
CNN-based orientation classifier. Med Image Anal. 2019
Jan;51:46-60. doi: 10.1016/j.media.2018.10.005) dis-
closes 2D centerline extraction and contour extraction
but not the determination of FFR-related parameter val-
ues.

[0012] In preferred embodiments, said applying of said
first NN for extracting said respective centerlines com-
prises generating a 3D heat map comprising a confi-
dence value per voxel followed by performing a regres-
sion on said confidence values. This is in contrast with
the approach of (doi: 10.1016/j.media.2018.10.005)
which is based on semantic segmentation, which, as the
inventors have found, is suboptimal particularly for cen-
terline extraction. The semantic segmentation in (doi:
10.1016/j.media.2018.10.005) is carried out by means
of CNNs and deep learning but does not consider regres-
sion. The problem hereby may be that centerline extrac-
tion based on segmentation leads to a binary approach
with respect to pixels (in case of 2D images) either be-
longing to the centerline or not belonging to the center-
line. Likewise, 3D approaches with voxels based on se-
mantic segmentation without regression may attribute
voxels only to mutually exclusive categories. Such an
attribution of pixels or voxels, respectively, to mutually
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exclusive categories, leads to drastic loss in accuracy.
Addressing this problem, the inventors surprisingly have
found that a 3D NN, preferably a 3D CNN, if used as
regressor, may outperform the methods for centerline
and contour extraction known in the prior art. CNN archi-
tectures such as 3D U-net, while being commonly used
for segmentation tasks, have proven particularly advan-
tageous. This may relate to the ability of U-net to use
only the valid part of each convolution without necessi-
tating fully connected layers, which may make it more
suitable for regression tasks than fully connected NNs
and CNNs.

[0013] According to a second aspect of the present
invention, a device is provided. The device comprises a
processor and memory comprising instructions which,
when executed by the processor, cause the device to
execute a method according to the present invention.
[0014] According to a further aspect of the present in-
vention, a computer program product is provided. The
computer program product comprises instructions which,
when carried out on a processor, cause the processor to
carry out the steps of the method according to

[0015] Preferred embodiments and their advantages
are provided in the description and the dependent claims.

Brief description of the drawings

[0016] The presentinvention will be discussed in more
detail below, with reference to the attached drawings.

Fig. 1 illustrates example embodiments of methods
according to the invention.

Fig. 2A provides an example of FFR values of an
artery relating to the invention.

Fig. 2B provides an example of a distribution of FFR
values relating to the invention.

Description of embodiments

[0017] The following descriptions depict only example
embodiments and are not considered limiting in scope.
Any reference herein to the disclosure is not intended to
restrict or limit the disclosure to exact features of any one
or more of the exemplary embodiments disclosed in the
present specification.

[0018] Furthermore, the terms first, second, third and
the like in the description and in the claims are used for
distinguishing between similar elements and not neces-
sarily for describing a sequential or chronological order.
The terms are interchangeable under appropriate cir-
cumstances and the embodiments of the invention can
operate in other sequences than described or illustrated
herein.

[0019] Furthermore, the various embodiments, al-
though referred to as "preferred" are to be construed as
exemplary manners in which the invention may be im-
plemented rather than as limiting the scope of the inven-
tion.
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[0020] The term "comprising", used in the claims,
should not be interpreted as being restricted to the ele-
ments or steps listed thereafter; it does not exclude other
elements or steps. It needs to be interpreted as specifying
the presence of the stated features, integers, steps or
components as referred to, but does not preclude the
presence or addition of one or more other features, inte-
gers, steps or components, or groups thereof. Thus, the
scope of the expression "a device comprising A and B"
should not be limited to devices consisting only of com-
ponents A and B, rather with respect to the present in-
vention, the only enumerated components of the device
are A and B, and further the claim should be interpreted
as including equivalents of those components.

[0021] Inthisdocument,theterm"” FFR-related param-
eter", or, equivalently, "blood flow characteristic”, is an
umbrella term for any parameter characteristic of blood
flow in coronary arteries of a patient. This may comprise,
e.g., any or any combination of fractional flow reserve
(FFR), instantaneous wave-free ratio (iFR), pressure,
flow, pressure gradient, flow rate, proximal pressure, dis-
tal pressure, medial pressure, microvascular resistance
(MVR), stenosis resistance (SR), coronary flow reserve
(CFR), absolute coronary flow, Doppler flow, as known
to the skilled person, and disclosed, e.g., in (Morris, P D,
Gosling, R, et al. A novel method for measuring absolute
coronary blood flow and microvascular resistance in pa-
tients with ischaemic heart disease. Cardiovascular Re-
search, 2020, cvaa220, doi:10.1093/cvr/cvaa220). The
term "FFR" is thereby used with reference to both a tech-
nique and a parameter. Particularly, the technique of FFR
may relate to, e.g., coronary catheterization to measure
pressure differences across a coronary artery stenosis
caused by, e.g., atherosclerosis, typically with the aim of
determining the likelihood that the stenosis impedes ox-
ygen delivery to the heart muscle (myocardial ischemia).
Related, the FFR parameter, or FFR, is preferably de-
fined as the pressure distal to a stenosis relative to the
pressure proximal to the stenosis, yielding a fraction be-
ing an absolute number. Equivalently or alternatively, the
FFR expresses the maximal flow down a vessel in the
presence of a stenosis compared to the maximal flow in
the hypothetical absence of the stenosis. Equivalently or
alternatively, the FFR may express any fraction of a sec-
ond pressure and a first pressure at respective second
and first positions within a coronary artery, wherein the
first value is proximal (or more proximal) and the second
value is distal (or more distal). Related, an "FFR-related
parameter" may refer to any quantitative parameter char-
acteristic of a blood flow within a coronary artery, and
may relate to any absolute measurement (flow, pressure,
resistance) with respect to a single point in the artery,
and/or any relative fraction of a first measurement and a
second measurement, either with respect to a single
point in the artery (e.g., with first and second measure-
ment relating to different time instants) or with respect to
a first and second point in the artery. Related, "FFR-re-
lated training data" may refer to any data available for
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either said FFR-related parameter or another FFR-relat-
ed parameter. In other words, the FFR-related training
data may relate to a second FFR-related parameter
which may or may not be different from the FFR-related
parameter for which the FFR-related parameter value is
being determined. Therein, it is assumed that the data
for the second FFR-related parameter has sufficient rel-
evance for the determination of the FFR-related param-
eter value. In embodiments, the training data may be
obtained from any source. The training data may relate
to any invasive or non-invasive measurement or calcu-
lation as described in this document.

[0022] The term neural network, NN, refers to any neu-
ral network model. The NN may comprise any or any
combination of a multilayer perceptron, MLP, a convolu-
tional neural network, CNN, and a recurrent neural net-
work, RNN. A trained NN relates to training data associ-
ated with a neural network based model.

[0023] Neural networks need to be trained to learn the
features that optimally represent the data. Such deep
learning algorithms includes a multilayer, deep neural
network that transforms input data (e.g. images, CT im-
ages)to outputs while learning higher level features. Suc-
cessful neural network models for image analysis are
referred to semantic segmentation NNs, and find appli-
cationin avariety of tasks, whichis notlimited to semantic
segmentation alone, but may also include, e.g., regres-
sion. One example is the so-called convolutional neural
network (CNN). CNNs contain many layers that trans-
form their input using kernels, also known as convolution
filters, consisting of a relatively small sized matrix. Other
successful neural network models forimage analysis are
instance segmentation NNs. As known to the skilled per-
son, instance segmentation NNs differ from semantic
segmentation NNs in terms of algorithm and output, even
in cases where the input, e.g. the images, are identical
or very similar.

[0024] In general, semantic segmentation may relate,
without being limited thereto, to detecting, for every pixel
(in 2D) or voxel (in 3D), to which class the pixel/voxel
belong. Regression may relate to determining other
quantitative or qualitative metadata in relation to the pix-
el/voxel.

[0025] Instance segmentation, on the other hand, may
relate, without being limited thereto, to detecting, for eve-
ry pixel/voxel, a belonging instance with respect to a plu-
rality of similar objects. It may detect each distinct object
of interest in an image.

[0026] In embodiments, 2D instance segmentation,
preferably operating on 2D images, relates to Mask R-
CNN, DeepMask, and/or TensorMask.

[0027] In embodiments, 3D instance segmentation,
preferably operating on a 3D point cloud generated from
2D images, relates to 3D-BoNet and/or ASIS.

[0028] In embodiments, the at least one trained NN is
rotation equivariant. In embodiments, the NN is transla-
tion and rotation equivariant.

[0029] In embodiments, said first, second and/or third
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NN may comprise a semantic segmentation NN used for
regression and/or segmentation. In embodiments, said
first, second and/or third NN may comprise a NN that is
commonly referred to as a semantic segmentation NN,
but is used instead for regression. U-net is found to be
particularly suitable due to increased speed and/or in-
creased reliability, enabled by data augmentation and
elastic deformation, as described for the 2D case in more
detail in, e.g., (Ronneberger, Olaf; Fischer, Philipp; Brox,
Thomas (2015). "U-net: Convolutional Networks for Bio-
medical Image Segmentation. arXiv:1505.04597").
[0030] In embodiments, the first, second and/or third
NN may relate to a rotation equivariant NN. are known
for specific applications, see, e.g., the "e2cnn" software
library, see (Maurice Weiler, Gabriele Cesa, General
E(2)-Equivariant Steerable CNNs, Conference on Neural
Information Processing Systems (NeurlPS), 2019). The
inventors have found such rotation equivariant NNs to
be particularly useful for objects with symmetry along an
axis such as arteries.

[0031] In embodiments, the first, second and/or third
NN may comprise any or any combination of a graph NN,
a recurrent NN (RNN), a bidirectional neural network
(BRNN or BiRNN), a U-net, a Deeplabv3+.

[0032] Theacquisitionof CT images may be conducted
according to methods known to the skilled person, and
may involve, e.g., contrast agent and ECG gating to ac-
quire images at diastolic phase when contrast agent is
fully perfused in the coronary arteries. The acquisition of
CTimages may involve adequate techniques forimrprov-
ing acquisitation quality and/or preprocessing, such as
ECG synchronization, motion blurring suppression, stair-
step artifact compensation, and/or noise reduction.
[0033] The acquisition of FFR data, preferably FFR
training data for the purpose of training at least one of
said first, second and third NN, may be conducted inva-
sively or non-invasively. It may be performed invasively
according to methods known to the skilled person. This
may relate, e.g., to combining an instrument and a cor-
onary pressure wire. Measurement may for instance
comprise a step of calibration and equalization, followed
by advancing the pressure wire distally to a certain zone,
e.g., a potential stenosis zone, and then further until a
smooth coronary segmentis reached. Pullback FFR data
may, e.g., be recorded from the immediate downstream
of a distal stenosis to the ostium. Pullback FFR data may
relate to, e.g., the techniques disclosed in (Sonck, J, Col-
let, C, Mizukami, T, et al. Motorized fractional flow reserve
pullback: Accuracy and reproducibility. Catheter Cardio-
vasc Interv. 2020; 96: E230- E237,
doi:10.1002/ccd.28733). The acquisition of FFR data
may also be performed non-invasively, e.g., by perform-
ing measurements, such as a single FFR measurement
and/or a motorized FFR pullback measurement, on a 3D
printed geometry of one of said coronary arteries. The
3D printed geometry may comprise geometries available
from an external source and/or may comprise geometries
printed based at least on a training coronary artery model
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determined in the same way as the coronary artery model
determined according to the invention. In embodiments,
the pullback FFR measurement generates a plurality of
at least three measurement points, more preferably at
least four or five or six or seven or eight or nine meas-
urement points, most preferably at least ten measure-
ment points, as this may correspond to a quasi-continu-
ous or continuous measurement along the artery.
[0034] In embodiments, said applying of said first NN
for extracting said respective centerlines comprises gen-
erating a 3D heat map comprising a confidence value
per voxel followed by performing a regression on said
confidence values. This may have the advantage of pro-
viding more accurate determination of the centerline. Ad-
ditionally, or complementarily, this may have the advan-
tage of enabling a more accurate artery contour extrac-
tion, since it enables considering the centerline not as a
mere "binary" set of voxels, but as a more detailed con-
fidence map for possible points belonging to the center-
line.

[0035] Inembodiments, said extracting of said respec-
tive artery contours comprises determining a seed based
on a maximum confidence value on said 3D heat map
corresponding to a voxel not belonging to said centerline.
In embodiments, this relates to said extracting said re-
spective centerlines comprising generating a 3D heat
map comprising a confidence value per voxel followed
by performing a regression on said confidence values.
In other embodiments, the centerlines may be deter-
mined differently, and the 3D heat map is determined
dedicatedly for artery contour extraction.

[0036] In embodiments, said first NN is a 3D U-Net or
a 3D Deeplabv3+. The inventors have found that such
NNs, if used as regressor, may outperform the methods
for centerline and contour extraction known in the prior
art.

[0037] Inembodiments, said third NN is applied on the
combination of said coronary artery model and voxel por-
tions of said 3D CT image, wherein each voxel is asso-
ciated with a radiointensity value. This may provide for
more and more relevant input for the NN, enabling more
accurate determination of the FFR-related parameter
value. In embodiments, this relates to voxel portions that
are non-overlapping. In embodiments this relates to at
least one voxel portion at the centerline. In embodiments
this relates to voxels portions at the artery contour. In
embodiments this relates to non-overlapping voxel por-
tions at the centerline and at the artery contour.

[0038] In embodiments, said voxel portions relate to
respective voxel cuboids extracted from said 3D CT im-
age at respective positions on the extracted artery con-
tour, wherein more preferably said voxel cuboids have a
cuboid size of x by y by z voxels whereby min(x,y,z) is
three or more, preferably five or more, most preferably
wherein said voxel cuboids are voxel cubes.

[0039] In embodiments, said third NN is a graph NN.
The inventors have found that such NNs, which are as-
sociated with a graph structure, may be particularly ad-
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equate for problems involving artery contours, which
have a specific, well-known geometry that may corre-
spond to a graph abstraction.

[0040] In embodiments, said method comprises the
further step of training of said third NN with respect to
said FFR-related training data, said training data com-
prising at least one distribution of flow, pressure or re-
sistance along one of said coronary arteries. In embod-
iments, said distribution of flow, pressure or resistance
comprises at least one measured distribution of epicar-
dial resistance measured in a patient. In embodiments,
said at least one measured distribution of epicardial re-
sistance in said patient relates to a measurement based
on motorized FFR pullback. Inembodiments, this relates
to the motorized FFR pullback as further disclosed in,
e.g., (Sonck, J, Collet, C, Mizukami, T, et al. Motorized
fractional flow reserve pullback: Accuracy and reproduc-
ibility. Catheter Cardiovasc Interv. 2020; 96: E230- E237,
doi:10.1002/ccd.28733). In embodiments, said at least
one distribution of flow, pressure or resistance comprises
at least one distribution calculated based on CFD, as
further disclosed in, e.g., (Morris, P D, Gosling, R, et al.
A novel method for measuring absolute coronary blood
flow and microvascular resistance in patients with ischae-
mic heart disease. Cardiovascular Research, 2020,
cvaa220, doi:10.1093/cvr/cvaa220). In embodiments,
said at least one distribution of flow, pressure or resist-
ance comprises atleast one measured distribution meas-
ured on a 3D printed geometry of one of said coronary
arteries, said geometry printed based at least on a train-
ing coronary artery model determined in the same way
as said coronary artery model. This may relate, e.g., to
methods involving 3D printing as disclosed in (Morris, P
D, Gosling, R, et al. A novel method for measuring ab-
solute coronary blood flow and microvascular resistance
in patients with ischaemic heart disease. Cardiovascular
Research, 2020, cvaa220, doi:10.1093/cvr/cvaa220).
[0041] Inembodiments, said second NN isagraph NN.
The inventors have found that such NNs, which are as-
sociated with a graph structure, may be particularly ad-
equate for problems involving artery contours, which
have a specific, well-known geometry that may corre-
spond to a graph abstraction. In embodiments, both the
second NN and the third NN are graph NNs.

[0042] Inembodiments, said extracting of said respec-
tive artery contours comprises extracting both respective
outer artery contours and respective inner artery con-
tours. This has the advantage of capturing artery wall
thickness, which may be highly relevant to the determi-
nation of FFR-related parameters.

[0043] Example embodiments of the invention will be
described with reference to Figs. 1-2B.

Example 1: example methods according to the inven-
tion

[0044] Fig. 1 illustrates example embodiments of
methods according to the invention. This relates to meth-
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ods for determining an FFR-related parameter value,
such as the FFR value of Example 2.

[0045] The example method comprising several steps.
In a first step, a CT image (10) comprising coronary ar-
teries obtained from coronary CT angiography, CCTA,
is provided. The CT image (10) is a 3D CT image com-
prising voxels, each voxel being associated with a
Hounsfield unit value. The CT image being a 3D image
comprising voxels, itis equivalent to a stack of 2D images
of pixels, as illustrated in Fig. 1.

[0046] Inafirst phase (1), the centerlines and contours
are extracted. This comprises, first, the step of extracting,
from said CT image and for each of said coronary arter-
ies, a respective centerline. Second, this comprises the
step of extracting, from said CT image and for each of
said coronary arteries, a respective artery contour. The
result of these steps, or, equivalently, of the first phase
(1), is a coronary artery model (20).

[0047] In asecond phase (2), the FFR-related param-
eter value is determined. This may, e.g., be the FFR, as
in Example 2, but may be any FFR-related parameter
value. This determination is based at least on the coro-
nary artery model (20) comprising said respective cen-
terlines and said respective artery contours.

[0048] By determining a sufficient number of FFR-re-
lated parameter values, a textured representation (40)
of the artery contour model may be generated. Herein,
the texture may provide a visual indication of the numer-
ical value of the FFR-related parameter. For instance, in
the case of FFR with value ranging between 0 and 1,
higher FFR values may be associated with sparser tex-
ture and lower FFR values with denser texture, as illus-
trated. Additionally, or complimentarily, higher FFR val-
ues may be associated with a first texture color and lower
FFR values with a second texture color, with a color gra-
dient in-between (not illustrated).

[0049] The example method comprises the use of sev-
eral NNs.

[0050] The extracting of said respective centerlines
comprises applying, on said 3D CT image comprising
voxels, a first NN being a 3D NN trained with respect to
the centerline. Hereby, training may be performed with
invasive training data and/or non-invasive training data.
The first NN is a U-net trained on centerline data. It gen-
erates a 3D heat map comprising a confidence value per
voxel. This allows to perform a regression on said confi-
dence values, e.g., by means of a gradient-based tech-
nique. Furthermore, the 3D heat map enables improved
artery contour extraction (see below). As for the center-
line extraction, based on the regression, and preferably
some criterion on continuity of different portions of the
centerline, the centerlines are determined.

[0051] The extracting of said respective artery con-
tours comprises applying, on said CT image, a second
NN trained with respect to a radius from the centerline.
Again, training may be performed with invasive training
data and/or non-invasive training data. For the extraction
of the respective artery contours, multiple seeds are de-
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termined along the centerline, preferably based on a
maximum confidence value on said 3D heat map. This
may correspond to a voxel belonging to said centerline
but may as well lie outside the centerline, since the quality
of seeds is primarily determined by the confidence value,
rather than being exactly on the centerline. In this regard,
contour extraction according to Example 1 uses an aug-
mented input, using not only the extracted (continuous)
centerlines but also the heat map generated during cen-
terline extraction, leading to a more accurate perform-
ance with respect to contour extraction. For the contour
extraction, a graph NN is used which is trained with re-
spect to a radius between the seed/centerline and the
contour. Thereby, the graph structure of the NN, suitable
captures the geometry of the coronary arteries. In em-
bodiments, said extracting of said respective artery con-
tours comprises extracting both respective outer artery
contours and respective inner artery contours. This has
the advantage of capturing artery wall thickness, which
may be highly relevant to the determination of FFR-re-
lated parameters. In embodiments, the graph NN is ap-
plied, for respective positions on the centerline, to 2D
slices extracted from the CT image at the respective po-
sition along a direction orthogonal to the centerline. In
other embodiments, the graph NN is applied, for respec-
tive positions on the centerline, to 3D cuboids, i.e. voxel
portions with cuboid shape and with each voxel associ-
ated with a radiointensity value, extracted from the CT
image in the vicinity of the respective position.

[0052] The determining of said FFR-related parameter
value comprises applying, on said coronary artery model,
a third NN trained with respect to FFR-related training
data. Also here, training may be performed with invasive
training data and/or non-invasive training data.

[0053] In this example, the training data is a distribu-
tion, i.e. a pullback along the centerline, obtained from
motorized FFR pullback, similar to, e.g., the data illus-
trated in Example 2. Thereby, the raw data obtained from
motorized FFR pullback may be pre-processed based
on CFD to detect outliers and improve continuity. In an-
other example, the training data may be obtained from
actual fluid dynamics testing on a 3D printed geometry
of one of said coronary arteries, whereby said geometry
thatis printed is based on a training coronary artery model
determined in the same way as the coronary artery mod-
el.

[0054] The third NN is applied on the combination of
the coronary artery model and voxel portions of said 3D
CT image. The voxel portions are non-overlapping voxel
portions at the centerline and at the artery contour having
a cuboid shape with size of x by y by z voxels whereby
min(x,y,z) is three, five, ten, or more than ten. The third
NN may be either a BiRNN or a graph NN.

Example 2: example embodiments with 2D segmen-
tation according to the invention

[0055] Fig. 2A provides an example of FFR values of
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an artery relating to the invention. Fig. 2B provides an
example of a distribution of FFR values relating to the
invention. Particularly, Fig. 2A illustrates an example ar-
tery contour model, wherein a distribution of FFR values
(3) across the coronary artery is shown, ranging from
1.00 at the proximal end to 0.78 near the distal end (4).
[0056] In examples, Fig. 2A may relate to the output
of the method according to the invention, wherein Fig.
2Aillustrates both the artery contour model and the FFR-
related parameter values, i.e. FFR values (3) generated
by the method, as generated based on aninput CT image
and the trained NNs.

[0057] In other examples, Fig. 2A may relate to an in-
trusive measurement based on motorized FFR pullback,
with FFR values (3) displayed as measured. The intrusive
measurement may be used as training data for training
the third NN. The position with FFR value equal to 1.00
may correspond to the proximal position of the pressure
wire, whereas the position with FFR value equal to 0.78
may correspond to the distal position of the pressure wire.
Fig. 2B may thereby show the FFR (y) (without unit) as
function of distance (x), expressed in mm. The different
curves (5a, 5b) may relate to respective first and second
pullbacks.

[0058] In yet other examples, Fig. 2A may relate to a
non-intrusive computation of FFR, based, e.g., on CFD.
Such CFD-computed values may be used as training da-
ta for training the third NN.

[0059] In still other examples, Fig. 2A may relate to a
non-intrusive determination of FFR, based, e.g., on fluid
dynamics measurement on a 3D printed artery. Such 3D
printed artery may be obtained from a coronary artery
model determined by the centerline extraction and artery
contour extraction according to the invention. Such val-
ues measured by fluid dynamics may be used as training
data for training the third NN.

Claims

1. A method for determining an FFR-related parameter
value (3), comprising:

providing a CT image (10) comprising coronary
arteries obtained from coronary CT angiogra-
phy, CCTA;

extracting, from said CT image (10) and for each
of said coronary arteries, a respective center-
line;

extracting, from said CT image (10) and for each
of said coronary arteries, a respective artery
contour; and

determining, based at least on a coronary artery
model (20) comprising said respective center-
lines and said respective artery contours, said
FFR-related parameter value (3);

wherein said CT image (10) is a 3D CT image
comprising voxels, each voxel being associated
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with a radiodensity value, preferably a Houns-
field unit value;

wherein said extracting of said respective cen-
terlines comprises applying, on said 3D CT im-
age (10) comprising voxels, a first NN being a
3D NN trained with respect to the centerline;
wherein said extracting of said respective artery
contours comprises applying, on said CT image,
a second NN trained with respect to a radius
from the centerline; and

wherein said determining of said FFR-related
parameter value comprises applying, on said
coronary artery model, a third NN trained with
respect to FFR-related training data.

Method of claim 1, wherein said applying of said first
NN for extracting said respective centerlines com-
prises generating a 3D heat map comprising a con-
fidence value per voxel followed by performing a re-
gression on said confidence values.

Method of claim 2, wherein said extracting of said
respective artery contours comprises determining a
seed based on a maximum confidence value on said
3D heat map corresponding to a voxel not belonging
to said centerline.

Method of claims 2-3, wherein said first NN is a 3D
U-Net or a 3D Deeplabv3+.

Method of claims 1-4, wherein said third NN is ap-
plied on the combination of said coronary artery mod-
el (20) and voxel portions of said 3D CT image; pref-
erably wherein said voxel portions relate to respec-
tive voxel cuboids extracted from said 3D CT image
at respective positions on the extracted artery con-
tour, wherein more preferably said voxel cuboids
have a cuboid size of x by y by z voxels whereby
min(x,y,z) is three or more, preferably five or more,
most preferably wherein said voxel cuboids are voxel
cubes.

Method of claims 1-5, wherein said third NN is a
graph NN.

Method of claims 1-6, wherein said method compris-
es the further step of training of said third NN with
respect to the FFR-related training data, said training
data comprising atleast one distribution of flow, pres-
sure or resistance at a plurality of positions along
one of said coronary arteries.

Method of claim 7, wherein said at least one distri-
bution of flow, pressure or resistance comprises at
least one measured distribution of epicardial resist-
ance.

Method of claim 8, wherein said at least one meas-
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10.

1.

12.

13.

14.

15.

ured distribution of epicardial resistance relates to a
motorized FFR pullback (5a, 5b).

Method of claims 7-9, wherein said at least one dis-
tribution of flow, pressure or resistance comprises
at least one distribution calculated based on a CFD
model.

Method of claims 7-10, wherein said at least one
distribution of flow, pressure or resistance comprises
at least one measured distribution measured on a
3D printed geometry of one of said coronary arteries,
said geometry printed based at least on a training
coronary artery model determined in the same way
as said coronary artery model (20).

Method of claims 1-11, wherein said second NN is
a graph NN.

Method of claims 1-12, wherein said extracting of
said respective artery contours comprises extracting
both respective outer artery contours and respective
inner artery contours.

A device comprising a processor and memory com-
prising instructions which, when executed by the
processor, cause the device to execute a method
according to any of claims 1-13.

A computer program product comprising instructions
which, when carried out on a processor, cause the
processor to carry out the steps of the method ac-
cording to claims 1-13.
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