EP 4 134 827 A1

(19)

Europdisches
Patentamt

European

Patent Office

Office européen
des brevets

(12)

(43) Date of publication:
15.02.2023 Bulletin 2023/07

(21) Application number: 22189590.7

(22) Date of filing: 09.08.2022

(11) EP 4 134 827 A1

EUROPEAN PATENT APPLICATION

(51) International Patent Classification (IPC):

GOG6F 12/0837 (2016.01) GOG6F 12/0842 (2016.01)

GOG6F 12/084 (2016.01)

(52) Cooperative Patent Classification (CPC):

GO6F 12/0837; GO6F 12/084; GO6F 12/0842

(84) Designated Contracting States:
AL ATBE BG CH CY CZDE DKEE ES FI FR GB
GRHRHUIEISITLILTLULVMC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 10.08.2021 US 202163231397 P
28.07.2022 US 202217876110

(71) Applicant: Google LLC

Mountain View, CA 94043 (US)

(72) Inventors:

¢ PURANIK, Kiran Suresh
Mountain View, 94043 (US)
¢ CHAUHAN, Prakash
Los Gatos, 95032 (US)

(74) Representative: Betten & Resch

Patent- und Rechtsanwailte PartGmbB
Maximiliansplatz 14
80333 Miinchen (DE)

(54)

(57) Aspects of the disclosure are directed to hard-
ware interconnects and corresponding devices and sys-
tems for non-coherently accessing data in shared mem-
ory devices. Data produced and consumed by devices
implementing the hardware interconnect can read and
write directly to a memory device shared by multiple de-
vices, and limit coherent memory transactions to rela-
tively smaller flags and descriptors used to facilitate data
transmission as described herein. Devices can commu-
nicate less data on input/output channels, and more data

HARDWARE INTERCONNECT WITH MEMORY COHERENCE

on memory and cache channels that are more efficient
for data transmission. Aspects of the disclosure are di-
rected to devices configured to process data that is read
from the shared memory device. Devices, such as hard-
ware accelerators, can receive dataindicating addresses
for different data buffers with data for processing, and
non-coherently read or write the contents of the data buff-
erson amemory device shared between the accelerators
and a host device.

Host Core(s}
Accelerator Device Coherency g;ﬁ:annel 154
Cache lg-p{ Agent (“DCOH"} o » t
105 115

A t N Coherence LLC
Cache Bridge 158

Channel 162
w| Accelerator Core(s) o 1258 N t

120 < >
Coherence
¢ Memory Engine

A 4 Channel Home Agent j< 152

Address P 125C N 160
Translation Engueue Registers = t

Cache 122

127 /o
Hardware . 156

Hardware Acceleration Device Interconnect Host Device

100 125 150
Data buffer 135A
Data buffer 1358
HDM HAM
135 140
FIG. 1

Processed by Luminess, 75001 PARIS (FR)

1 EP 4 134 827 A1 2

Description
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of the filing
date of United States Provisional Patent Application No.
63/231,397 filed August 10, 2021, the disclosure of which
is hereby incorporated herein by reference.

BACKGROUND

[0002] Hardware interconnects are interfaces for
transmitting data between computing devices. Hardware
interconnects can be standardized, both in the hardware
used to connect a device to a data bus, as well as in
various protocols that devices compatible with certain
types of hardware interconnects are configured to per-
form for transmitting data across the data bus. Different
hardware interconnects can be designed for specific
types of connecting devices, e.g., ahardware accelerator
to a host computing device housing the hardware accel-
erator, a host computing device to a memory device, or
a hardware accelerator to memory device. Hardware in-
terconnect standards include Peripheral Component In-
terconnect (PCl), which includes several variants. Anoth-
er example of a hardware interconnect standard is Com-
pute Express Link™ (CXL), which provides for memory
coherence protocols in memory devices shared between
CXL-compatible devices.

[0003] Memory coherence is an issue related to com-
puting systems in which multiple devices read from
and/or write to the same memory device. The devices
can also include local memory, e.g., a local cache, for
temporarily storing the contents of the memory device.
If one device caches data from the memory device that
is later updated by another device, the first device will
have an outdated copy of the datainits local cache. Mem-
ory coherence protocols mitigate the chance of devices
working on outdated copies of data, for example by ver-
ifying the contents of local caches of the multiple devices
when data stored in the memory device is rewritten and
causing the local caches to be updated as necessary.
These protocols are used to coherently read and write
data from and to a shared device, as opposed to non-
coherent reading and writing, in which these protocols
are not applied. Memory coherence protocols add addi-
tional computational overhead but are needed in some
cases to prevent devices from processing outdated data.

BRIEF SUMMARY

[0004] Aspects of the disclosure are directed to hard-
ware interconnects and corresponding devices and sys-
tems for non-coherently accessing data in shared mem-
ory devices. Data produced and consumed by devices
implementing the hardware interconnect can read and
write directly to a memory device shared by multiple de-
vices, and reduce the number and extent of coherent

10

15

20

25

30

35

40

45

50

55

memory transactions to relatively smaller control infor-
mation, including flags and descriptors used to facilitate
data transmission as described herein.

[0005] Devices can communicate less data on in-
put/output (1/0) channels, and more data on memory and
cache channels of a hardware interconnect that are more
efficient for data transmission. Aspects of the disclosure
are directed to devices configured to process data that
is read from the shared memory device. Devices, such
as hardware accelerators, can receive data indicating
addresses for different data buffers with data for process-
ing, and non-coherently read or write the contents of the
data buffers on a memory device shared between the
accelerators and a host device.

[0006] An aspect of the disclosure is directed to a first
computing device including: a first cache; one or more
processors coupled to a first memory device shared be-
tween the first computing device and a second computing
device, the one or more processors are configured to:
cache control information in the first cache, the control
information including one or more flags indicating the sta-
tus of one or more data buffers in the memory device and
accessed from a second memory device connected to
the second computing device; non-coherently read or
write contents of the one or more data buffers based on
the control information, and after non-coherently reading
or writing the contents of the one or more buffers, coher-
ently write updated control information to the second
memory device, wherein coherently writing the updated
control information causes the control information in the
first or second cache to also be updated.

[0007] The foregoing and other aspects of the disclo-
sure can include one or more of the following features.
In some examples, aspects of the disclosure include all
of the features together in combination.

[0008] The first computing device can be configured
to communicate with the second computing device over
a hardware interconnect including a plurality of channels
and configured for memory-coherent data transmission;
and wherein the one or more processors are further con-
figured to: coherently read or write the control information
over a first channel dedicated to input/output (I/O) data
communication; non-coherently read or write the con-
tents of the one or more data buffers over a second chan-
nel dedicated to communication between memory devic-
es connected to the first or second computing device.
[0009] To coherently write the updated control infor-
mation to the second memory device, the one or more
processors are configured to cause the updated control
information to be sent to the second cache of the second
memory device over a third channel dedicated to updat-
ing contents of the first or second cache.

[0010] The one or more processors can be further con-
figured to: receive, over the I/O channel, acommand de-
scriptor, the command descriptor including respective
addresses for a source data buffer and a destination data
buffer in the first memory device; cache the respective
addresses for the source and destination data buffers to

3 EP 4 134 827 A1 4

the first cache; and non-coherently read or write the con-
tents of the source and destination data buffer using the
respective cached addresses.

[0011] The first computing device can be a hardware
accelerator device including one or more accelerator
cores and the first cache is an accelerator cache for the
hardware accelerator device.

[0012] The one or more processors can be configured
to non-coherently read the contents of the one or more
data buffers based on the value of one or more of the
plurality of flags indicating that the contents of the one or
more data buffers are ready for consumption.

[0013] One or more of the plurality of flags can be set
by the second computing device configured to write the
contents to the one or more data buffers.

[0014] The controlinformation can further include data
descriptors, each data descriptor identifying an address
for a respective source data buffer for the first computing
device to read from, or for a respective destination data
buffer for the first computing to write to.

[0015] An aspect of the disclosure is directed to a sys-
tem including a host device and an accelerator commu-
nicatively coupled over a hardware interconnect support-
ing memory-coherent data transmission between the
host device and the accelerator, the host device including
a host cache and the acceleratorincluding an accelerator
cache; wherein the host device is configured to: read or
write data to one or more data buffers to a first memory
device shared between the host device and the acceler-
ator, write control information to a second computing de-
vice, the control information including one or more flags
indicating the status of one or more data buffers in the
first memory device; and wherein the accelerator is con-
figured to: non-coherently read or write data from or to
the one or more data buffers of the first memory device
based on the control information, and after non-coher-
ently reading or writing the data, coherently write updated
control information to the second memory device, where-
in coherently writing the updated control information
causes the control information in the host cache to be
updated.

[0016] Aspects of the disclosure can include the fol-
lowing features, alone or in combination with other fea-
tures described herein. In some examples, an aspect of
the disclosure includes all of the described features in
combination.

[0017] The accelerator can be further configured to re-
ceive, at an enqueue register, one or more command
descriptors, each command descriptor specifying a re-
spective data descriptor in the accelerator cache, and
wherein to non-coherently read or write data from or to
the one or more data buffers, the accelerator is config-
ured to read addresses from the one or more command
descriptors corresponding to the one or more data de-
scriptors.

[0018] The accelerator can be configured to receive
the one or more command descriptors as a deferred
memory write (DMWr) transaction.

10

15

20

25

30

35

40

45

50

55

[0019] The one or more command descriptors can be
received from an application executed on a virtual ma-
chine hosted by the host device.

[0020] The hardware interconnect can include a plu-
rality of channels; and wherein the accelerator is config-
ured to: receive the one or more command descriptors
over a first channel of the plurality of channels dedicated
to input/output data communication; and non-coherently
read or write data from or to the one or more data buffers
over a second channel of the plurality of channels dedi-
cated to communication between memory devices con-
nected to the first or second computing devices.

[0021] To coherently write the updated control infor-
mation to the second memory device, the accelerator
can be further configured to cause the updated control
information to be sent to the host cache of the host device
over a third channel of the plurality of channels dedicated
to updating contents of the accelerator or host cache.
[0022] An aspect of the disclosure is directed to one
or more non-transitory computer-readable storage media
encoded with instructions that, when executed by one or
more processors of a first computing device including a
first cache and coupled to a first memory device shared
between the first computing device and a second com-
puting device, causes the one or more processors to per-
form operations including: caching control information in
the first cache, the control information including one or
more flags indicating the status of one or more data buff-
ers in the memory device and accessed from a second
memory device connected to the second computing de-
vice; non-coherently reading or writing contents of the
one or more data buffers based on the control informa-
tion, and after non-coherently reading or writing the con-
tents of the one or more buffers, coherently write updated
controlinformation to the second memory device, where-
in coherently writing the updated control information
causes the control information in the first or second cache
to also be updated.

[0023] The firstcomputing device is configured to com-
municate with the second computing device over a hard-
ware interconnect including a plurality of channels and
configured for memory-coherent data transmission, and
wherein the operations further include: coherently read-
ing or writing the control information over a first channel
dedicated to input/output (I/0O) data communication, and
non-coherently reading or writing the contents of the one
or more data buffers over a second channel dedicated
to communication between memory devices connected
to the first or second computing device.

[0024] Coherently writing the updated control informa-
tion to the second memory device can include causing
the updated control information to be sent to the second
cache of the second memory device over a third channel
dedicated to updating contents of the first or second
cache.

[0025] The operations can further include receiving,
over the I/O channel, a command descriptor, the com-
mand descriptor including respective addresses for a

5 EP 4 134 827 A1 6

source data buffer and a destination data buffer in the
first memory device; caching the respective addresses
for the source and destination data buffers to the first
cache; and non-coherently reading or writing the con-
tents of the source and destination data buffer using the
respective cached addresses.

[0026] The first computing device is a hardware accel-
erator device including one or more accelerator cores
and the first cache is an accelerator cache for the hard-
ware accelerator device.

[0027] The operations can further include non-coher-
ently reading the contents of the one or more data buffers
based on the value of one or more of the plurality of flags
indicating that the contents of the one or more data buff-
ers are ready for consumption.

BRIEF DESCRIPTION OF THE DRAWINGS
[0028]

FIG. 1is a block diagram of a hardware acceleration
device and a host device communicating across a
hardware interconnect, according to aspects of the
disclosure.

FIG. 2 is a flow chart of an example producer-con-
sumer process for data transmission between a host
device and an accelerator, according to aspects of
the disclosure.

FIG. 3 is a flow chart of another example producer-
consumer process for data transmission between a
host device and an accelerator, according to aspects
of the disclosure.

FIG. 4 is a flow chart of an example process for non-
coherently reading or writing data to a shared mem-
ory device, according to aspects of the disclosure.
FIG. 5 is a block diagram of a computing device im-
plementing accelerators and a host processor, ac-
cording to aspects of the disclosure.

FIGs. 6A and 6B show a flow chart of an example
process 600 for processing enqueued command de-
scriptors, according to aspects of the disclosure.
FIG. 7 is a flowchart of an example control process
for processing data on a system including a host de-
vice and an accelerator communicatively coupled
over a hardware interconnect, according to aspects
of the disclosure.

FIG. 8 is a block diagram of an example environment
for implementing accelerators and host devices for
memory-coherent data transmission, according to
aspects of the disclosure.

DETAILED DESCRIPTION
Overview:
[0029] Aspects of the disclosure are directed to hard-

ware interconnects and corresponding devices and sys-
tems for non-coherently accessing data in shared mem-

10

15

20

25

30

35

40

45

50

55

ory devices. Data produced and consumed by devices
implementing the hardware interconnect can read and
write directly to a memory device shared by multiple de-
vices, and limit coherent memory transactions to rela-
tively smaller flags and descriptors used to facilitate data
transmission as described herein. Devices can commu-
nicate less data on input/output channels, and more data
on memory and cache channels that are more efficient
for data transmission. Aspects of the disclosure are di-
rected to devices configured to process data that is read
from the shared memory device. Devices, such as hard-
ware accelerators, can receive dataindicating addresses
for different data buffers with data for processing, and
non-coherently read or write the contents of the data buff-
erson amemory device shared between the accelerators
and a host device.

[0030] Aspects of the disclosure are directed to hard-
ware and/or software for implementing a hardware inter-
connect for communicating data between a host device
and one or more hardware acceleration devices (accel-
erators) or other devices. Devices, e.g., accelerators,
configured as described herein can non-coherently ac-
cess data buffers in shared memory devices. Memory
coherence is an issue related to computing systems in
which multiple devices read from and/or write to the same
memory device. If one device caches data from the mem-
ory device that is later updated by another device, the
first device will have an outdated copy of the data in its
local cache. Memory coherence protocols mitigate the
chance of devices working on outdated copies of data,
for example by verifying the contents of local caches of
the multiple devices when data stored in the memory
device is rewritten and causing the local caches to be
updated as necessary. These protocols are used to co-
herently read and write data from and to a shared device,
as opposed to non-coherent reading and writing, in which
these protocols are not applied.

[0031] Data produced and consumed by devices im-
plementing the hardware interconnect as described
herein can read and write directly to a memory device
shared by multiple devices, and limit coherent memory
transactions to flags and descriptors used to facilitate
data transmission as described herein. Aspects of the
disclosure are directed to one or more devices configured
to execute a control flow to receive requests to process
data that is read from the shared memory device.
[0032] A hostdevice can include a number of process-
ing units, cache controllers, and be coupled to host-at-
tached memory (HAM). An accelerator, such as a graph-
ics processing unit (GPU), tensor processing unit (TPU),
video processing unit (VPU), or other types of applica-
tion-specificintegrated circuits (ASIC), can communicate
datawith the hostdevice over adata bus. The accelerator
device can include several accelerated processing units
or cores, an accelerator cache, and be coupled to host-
managed device memory (HDM) for reading and writing
data while performing accelerated operations, e.g., ma-
trix multiplication, or multiply-accumulate operations.

7 EP 4 134 827 A1 8

[0033] The hardware interconnect can have multiple
channels for transmitting different types of data to and
from connected devices. For example, some channels
may be reserved for communicating input/output (1/O),
commands, or other control information, e.g., flags or de-
scriptors, etc., to a device, while other channels may be
dedicated to transferring data for processing to and from
connected devices. Data communicated over a cache
channel can be communicated between local caches for
host devices and connected accelerators or other devic-
es. Data can be communicated over an I/O channel to
communicate commands for initializing and communi-
cating with 1/0 devices, such as network interface cards
(NICs). Data communicated over a memory channel can
include data accessed from the HDM or other memory
attached to the host device or the accelerator. Under this
channel, data is communicated using commands issued
by the host device as a leader, to the accelerator as a
follower.

[0034] The hardware interconnect can specify a par-
ticular protocol for transmitting data across each channel.
Devices configured to communicate data over a data bus
and using the hardware interconnect can be configured
to communicate data over the multiple channels accord-
ing to the respective protocol for the applied channel.
[0035] Aspectsofthedisclosure provide forahardware
interconnect between a host device and an accelerator
that reduces the amount of data transferred over an 1/O
channel to descriptors and flags, as described below.
Instead, the host device and the accelerator can use the
memory channel to communicate more data over the rel-
atively inefficient I/0 channel. The host device and ac-
celerators configured according to aspects of the disclo-
sure non-coherently access data in host-managed de-
vice memory, and only cache data from host-attached
memory in a corresponding accelerator cache for the ac-
celerator. Data from the host-managed device memory
is not cached in the accelerator cache, reserving the
cache for flags and/or descriptors specifying memory ad-
dresses of data buffers for reading from or writing to. A
data producer, e.g., the host device, eliminates the need
to manage a data buffer copy of data transferred to a
consumer, e.g., the accelerator, by writing directly to the
host-managed device memory. Subsequently, a con-
sumer, e.g., the accelerator, can read directly from the
HDM.

[0036] Because a data buffer copy for transferred data
is not necessary, applications, e.g., executed on guest
operating systems of virtual machines in communication
with an accelerator, can perform with less latency, e.g.,
measured in clock time or processing cycles. This is in
contrast to other approaches in which the data buffer
copy is created, which requires additional processing cy-
cles to perform, which can add up in the aggregate when
applications send many requests or queries a minute.
[0037] A computing platform implementing host devic-
es and accelerators as described herein can operate with
improved power efficiency, at least because the afore-

10

15

20

25

30

35

40

45

50

55

mentioned elimination of data buffer copies reduces the
number of operations that the platform has to perform to
respond to requests to process data on the accelerators.
Power efficiency can also be improved because more
data is transferred over a memory channel to communi-
cate data from attached memory devices of a host device,
as compared with an 1/0O channel.

[0038] The accelerator cache stores descriptors and
control flags, which, as described herein, are used to
fetch corresponding data referenced in the descriptors
and located inthe HAM. The size of the accelerator cache
can be linear to the number of accelerator cores of an
accelerator, reducing the need for expensive cache
memory.

[0039] Aspects of the disclosure also include an accel-
erator configured to implement a control flow process
that reduces the amount of data transferred over the 1/O
channel over other hardware interconnects with separate
channels for input/output and data transmission. The ac-
celerator can receive one or more command descriptors
that can be queued in a corresponding command queue
for the accelerator. The command descriptor(s) includes
memory pointers to data descriptors locally cached on
the accelerator and can include information for perform-
ing a requested operation on the accelerator, e.g., the
source and destination addresses for processed data,
semaphore flags, and command information. The accel-
erator can non-coherently read and write the data at the
one or more data buffers whose addresses are included
in the data descriptor over the memory channel. Hard-
ware configured to communicate data over multiple chan-
nels and using memory coherence protocols, e.g., bus
snooping, hardware synchronization, directory-based
protocols, can be augmented according to aspects of the
disclosure.

Example Systems

[0040] FIG. 1is a block diagram of a hardware accel-
eration device (accelerator) 100 and a host device 150
communicating across a hardware interconnect 125, ac-
cording to aspects of the disclosure. The accelerator 100
can be any of a variety of different types of hardware
acceleration devices, e.g., a GPU, afield-programmable
gate array (FPGA), or any type of ASIC, such as a TPU
or VPU. In various examples, the host device 150 com-
municates with any of a variety of other devices besides
accelerators configured to transmit data over the hard-
ware interconnect as described herein.

[0041] The accelerator 100 can include an accelerator
cache 105 managed by a cache controller 110. The ac-
celerator cache 105 can be any of a variety of different
types of memory, e.g., an L1 cache, and be of any of a
variety of different sizes, e.g., 8 kilobytes to 64 kilobytes.
The accelerator cache 105 is local to the accelerator 100.
A cache controller (not shown) can read from and write
to contents of the accelerator cache 105, which may be
updated many times throughout the execution of opera-

9 EP 4 134 827 A1 10

tions by the accelerator 100.

[0042] The accelerator 100 can include a device co-
herency agent (DCOH) 115. The DCOH 115 is config-
ured to manage bias states, e.g., device bias and host
bias modes, described in more detail herein with refer-
ence to FIGs. 2-3. The hardware interconnect 125 can
support a bias switch to preferentially transfer data, de-
pending on the current mode. In device bias mode, the
accelerator 100 can communicate directly with the HDM
135 without communicating first with a coherence engine
152, configured to handle operations related to preserv-
ing memory coherence among memory devices shared
by the host device 150 and the accelerator 100. In host
bias mode, the accelerator 100 communicates with the
host device 150 and the coherence engine 152 to read
or write data to the HDM 135, providing additional over-
sight versus device bias mode.

[0043] The DCOH 115 is also configured to update,
e.g., directly or through a cache controller, the contents
of the accelerator cache 105 as part of maintaining mem-
ory coherence between the contents of the accelerator
cache 105 and other memory devices shared by the ac-
celerator 100 and other devices.

[0044] The accelerator 100 can include one or more
accelerator cores 120. The accelerator core(s) 120 can
be individual processing units, e.g., processing cores or
one or more integrated circuits, configured for performing
hardware accelerated operations. In some examples, the
accelerator 100 can host multiple individual hardware ac-
celeration devices, each of which may have one or more
cores.

[0045] HDM 135 can include one or more memory de-
vices communicatively coupled to the accelerator 100,
and one or more other devices. HAM 140 can be any of
a variety of different memory devices attached or con-
nected to the host device 150. Example memory devices
can include solid state drives, RAM, hard drives, and any
combination of volatile and non-volatile memory. The
HDM 145 and HAM 140 can also be connected to one
or more other memory devices and/or computing devices
with one or more processors, e.g., other host devices or
other accelerators.

[0046] As described in more detail herein with refer-
ence to FIGs. 2-3, the HAM 140 can store different flags
F1, F2, S1, and S2 used by the host device 150 and the
accelerator 100 for performing non-coherent reads and
writes directly from and to the HDM 135, according to
aspects of the disclosure. Flags can be bit flags or rep-
resented as some fixed amount of data, with a binary
state to indicate when the flag is set or cleared. The ac-
celerator 100 can store the values of the flags in the ac-
celerator cache 105, and update the flags to track when
data is ready to be consumed or when data is ready to
be written again, depending on whether the accelerator
100 is functioning as a data consumer or data producer.
[0047] The DCOH 115 can be implemented in hard-
ware and/or software and be configured to manage co-
herent and non-coherent memory accesses to and from

10

15

20

25

30

35

40

45

50

55

the HDM 135 and the HAM 140. Example processes for
coherent and non-coherent memory accesses are de-
scribed herein with reference to FIGs. 2-3.

[0048] The core(s) 120 can each be connected to one
or more enqueue registers 122. As described herein with
reference to FIGs. 5-7, the core(s) 120 can receive com-
mands to process data from one or more sources, e.g.,
applications running on guest operating systems of one
or more virtual machines communicating with the accel-
erator 100 along the same hardware interconnect 125.
The accelerator 100 can also include an address trans-
lation cache 127 configured for storing memory address-
es translated from virtual to physical memory.

[0049] The host device 150 can include one or more
host cores 154, an I/O circuit 156, a last level cache (LLC)
158, a home agent 160, the coherence engine 152, a
coherence bridge 162. The host core(s) 154 can be any
of a variety of different circuits or processing cores, e.g.,
cores of a central processing unit. The LLC 158 can be
cache memory to which the host device 150 stores the
status of the flags in the HAM 140, as described herein
with reference to FIGs. 2-3. During a coherent write to
the flags in the HAM 140, the contents of the LLC 158
are also updated. The home agent 160 can be configured
to implement any of a variety of protocols for managing
memory coherency between caches or memory devices
of the host device 150 and connected accelerators, e.g.,
the accelerator 100.

[0050] The coherence bridge 162 can include one or
more circuits configured for implementing one or more
protocols for communicating data along the hardware in-
terconnect 125, including protocols for how and what type
of data is communicated through the 1/0 channel 125A,
the cache channel 125B, and the memory channel 125C.
The DCOH 115 on the device 100 can also implement
various protocols for communicating data over the chan-
nels 125A-C.

[0051] Instead of caching the contents of data buffers
135A, 135B in the HDM 135 to the accelerator cache
105, the accelerator 100 can cache the flags stored in
the HAM 140 and read or write directly to the HDM 135.
For each core 120, the HAM 140 can store a correspond-
ing set of flags (F1, F2, S1, S2). In some examples, an
accelerator designed to implement the hardware inter-
connect 125 as described herein can be designed with
an accelerator cache 105 linear in size to the number of
cores 120 implemented by the accelerator 100. For ex-
ample, if each flag is encoded in x bits, then the total
amount of memory needed to represent flags for y cores
is x * y. As accelerator cache is generally made up of
high-performance memory that is costly to implement,
the hardware interconnect 125 as described herein al-
lows for corresponding devices implementing the inter-
connection 101 to include less accelerator cache over
devices implementing other interconnections.

[0052] FIG. 2 is a flow chart of an example producer-
consumer process 200 for data transmission between a
host device and an accelerator, according to aspects of

11 EP 4 134 827 A1 12

the disclosure.

[0053] As shown in FIG. 1, the HAM 140 can store
several flags F1, F2, S1, and S2 that are used for man-
aging non-coherent reading and writing to the HDM 135.
The example producer-consumer processes 200, 300 as
shown in FIGs. 2-3 illustrate how accelerators can be
configured to read and write directly to the HDM in a non-
coherent manner, even when the HDM itself is shared
among other devices.

[0054] In one example, the producer is a host device.
The producer 210 allocates memory in an HDM for a data
buffer 250. The HDM can be connected to a consumer
220, e.g., an accelerator. The producer 210 writes to the
data buffer 250, according to line 202. The size of the
data buffer 250 can vary from implementation to imple-
mentation, for example depending on the nature of the
data being written or the operations to be performed by
the consumer 220 on the written data. Memory pages in
the HDM allocated to the data buffer 250 are initially set
to host bias mode. As part of allocating memory for the
data buffer 250, the last level cache of the producer 210
can be initialized with default values for the flags, and
updated as flags are set or cleared.

[0055] For example, the host device executes one or
more operations to write data to the first data buffer in
the HDM over the memory channel. Data is also written
to the last level cache of the host device. In some exam-
ples, instead of the host device writing to the first data
buffer as the producer 210, an 1/O device, e.g., a sensor
unit collecting sensor data from an environment proxi-
mate to the sensor unit, can instead write to the data
buffer 250. In those examples, a "no snoop" setting can
be used to prevent data from also being written to the
last level cache of the host device.

[0056] The producer 210 sets the flag F1 allocated in
the HAM to indicate that the data buffer 250 is available,
according to line 204. The flag F1 is set to indicate that
the contents of the data buffer 250 are ready to be con-
sumed by a consumer 220.

[0057] When the consumer 220, e.g., an accelerator,
is ready to consume data from the HDM, the consumer
polls the flag F1 in the HAM, according to line 206. The
accelerator cache of the consumer 220 can be initialized
with default values of the flags F1 and S1, e.g., 0, and
updated when polling the HAM and detecting that the
values of the flags F1 or S1 have been changed. After
the flag F1 is polled, the cache line in the accelerator
cacheincluding the flag F1 is invalidated, and an updated
cache line is pushed into the last level cache of the pro-
ducer 210, over the cache channel of the hardware in-
terconnect.

[0058] The producer 210 can set the bias of the mem-
ory pages of the data buffer 250 from host bias to device
bias mode, as part of preparing the contents of the data
buffer 250 to be read. The producer 210 can be config-
ured to set the bias of the memory pages to device bias
mode in response to receiving the updated cache line.
The memory pages include the data produced by the

10

15

20

25

30

35

40

45

50

55

producer 210 in the data buffer 250 that the consumer
220 will consume.

[0059] The consumer 220 detects that the flag F1 is
set, according to line 208, and clears the flag F1, accord-
ing to line 212. The consumer 220 invalidates the cache
line containing the flag F1 in the accelerator cache, and
an updated cache line is pushed to the accelerator cache
over the cache channel. The accelerator cache is updat-
ed to maintain coherence between the contents of the
accelerator cache and the contents of the HAM

[0060] The consumer 220 non-coherently reads data
from the data buffer 250, according to lines 214 and 216.
After reading the data, the consumer 220 sets the flag
S1 allocated in the HAM, according to line 218. In setting
the flag S1, the cache line in the last level cache of the
producer 210 is invalidated, and an updated cache line
for the new value of the flag S1 is pushed into the last
level cache of the producer 210, over the cache channel.
[0061] The producer 210 polls the flag S1, according
to line 222. When the producer detects that flag S1 has
been set, according to line 224, the producer 210 clears
the flag, according to line 226. By line 226, the producer
210 and consumer 220 have completed an iteration of
memory writing and reading. The consumer 220 can poll
the flag F 1 again, for the next transfer of data, according
to line 228. The producer 210 can write new data to the
data buffer, according to line 232. After writing new data
to the buffer 250, the producer 210 can set the flag F1
again, which the consumer 220 can continue to poll and
detect when set, indicating when the consumer 220 can
begin to read the data from the buffer 250 again.
[0062] Aspects of the disclosure can provide for a re-
duction of computational overhead in managing memory
coherence, at least because only data from the HAM,
e.g., flags, are cached to the accelerator cache of a con-
suming accelerator. Data from the HDM is never cached
in the accelerator cache of a consuming accelerator, re-
ducing or eliminating discrepancies between the two
memory locations. Instead, a data producer, e.g., a host
device, can write directly to the HDM, and a data con-
sumer, e.g., an accelerator, can read directly from the
HDM. By not caching contents of the HDM to the accel-
erator cache of the consumer, latency is improved, e.g.,
as measured in processing cycles, at least because the
additional writing and reading operations to and from the
accelerator cache are eliminated. The reduction of oper-
ations for accessing data in the HDM can also improve
the power efficiency of the system in which the producer
and consumers are implemented, atleast because fewer
operations performed translations to reduce energy con-
sumption overall.

[0063] Data can be shared over a channel of the hard-
ware interconnect that is configured to send and receive
data more efficiently than other 1/0 channels dedicated
to receiving and sending commands to one or more ac-
celerators from the host device.

[0064] FIG. 3 is a flow chart of another example pro-
ducer-consumer process 300 for data transmission be-

13 EP 4 134 827 A1 14

tween a host device and an accelerator, according to
aspects of the disclosure.

[0065] In the example process 300, a producer 310 is
an accelerator and a consumer 320 is a host device. Host
devices and accelerators at different points of execution
can behave as producers and consumers. A separate
set of flags, e.g., F2 and S2, can be managed for a data
buffer 350. The producer 320, e.g., the host device, can
allocate data buffer 350 in the HDM. Memory pages in
the data buffer 350 are setto device bias mode. The data
buffer 350 can be allocated concurrently with the data
buffer 430 of FIG. 4, or at a different time or location as
the data buffer 430. The last level cache of the consumer
320, e.g., the host device, can be initialized with default
values for the flags F2 and S2, as part of the buffer allo-
cation.

[0066] The producer 310, e.g., the accelerator, non-
coherently writes processed data to the data buffer 350,
according to line 302. The producer 310 sets the flag F2
in the HAM, according to line 304, indicating that the non-
coherent write has ended and that the contents of the
data buffer 350 are available. The cache line in the ac-
celerator cache of the producer 310 corresponding to the
flag F2 is updated to reflect the change in the flag F2.
[0067] The consumer 320 polls the flag F2 in the HAM,
according to line 306. Upon detecting that the flag F2 has
been set, according to line 308, the consumer 320 clears
the flag F2, according to line 312. The cache line in the
last level cache of the consumer 320 corresponding to
the flag F2 is invalidated, and an updated cache line is
pushedtothelastlevel cache toreflectthe updated value.
Also, memory pages containing the data buffer 350 are
moved from device to host bias mode. No action may be
needed by the producer 310 to make this switch.
[0068] The consumer 320 begins to read the data buff-
er 350, according to lines 314 and 316. The contents of
the data buffer 350 are read over the memory channel
of the hardware interconnect. After the contents of the
data buffer 350 are read, the consumer 320 sets the flag
S2, according to line 318. The cache line in the acceler-
ator cache storing the flag S2 is invalidated. An updated
cache line is pushed into the accelerator cache, over the
cache channel, reflecting the updated value for the flag
S2.

[0069] The producer 310 polls the flag S2, according
to line 322. When the producer detects that flag S2 has
been set, according to line 324, the producer 310 clears
the flag, according to line 326. By line 326, the producer
310 and consumer 320 have completed one iteration of
memory writing and reading. The consumer 320 can poll
the flag F2 again, for the next transfer of data, according
to line 328. The producer 310 can write new data to the
data buffer 350, according to line 332. After writing new
data to the buffer 350, the producer 310 can set the flag
F1 again, which the consumer 320 can continue to poll
and detect when set, indicating when the consumer 320
can begin to read the data from the buffer 350 again.
[0070] FIG. 4 is a flow chart of an example process

10

15

20

25

30

35

40

45

50

55

400 for non-coherently reading or writing data to a shared
memory device, according to aspects of the disclosure.
[0071] A first computing device receives control infor-
mation stored in a second memory device of a second
computing device, according to block 410. The control
information can include flags or data descriptors corre-
sponding to the status and location, respectively, of one
or more data buffers. The first computing device can be
aconsumer device, e.g., the consumer 220 as described
with reference to FIG. 2. The second computing device
can be the HAM 140, for example as described herein
with reference to FIG. 1. In some examples, to receive
the control information, the first computing device can
poll a respective flag for each of the one or more data
buffers, such as the flag F1 described with reference to
the first data buffer and FIG. 2. In examples in which a
data buffer is newly allocated, the cache for the first com-
puting device can receive initialized values for flags cor-
responding to the newly allocated data buffer.

[0072] The first computing device caches the control
information in a first cache at the first computing device,
according to block 420.

[0073] The first computing device non-coherently
reads or writes contents of one or more data buffers of
a first memory device based on the control information,
wherein the first memory device is shared between the
first and second computing device, according to block
430. The first computing device can begin and end read-
ing or writing to the one or more data buffers in response
to the values of the one or more flags, as described herein
with reference to FIGs. 2-3. The first computing device
reads or writes directly into the one or more data buffers,
and does not need to create additional copies. Also, the
contents of the one or more data buffers are not cached,
and so reading or writing according to block 430 does
not require checking the contents of the caches of either
the first or second computing devices. The operations of
reading or writing can be done over the memory channel
of the hardware interconnect between the first memory
device and the first computing device, instead of over a
less efficient channel.

[0074] The firstcomputing device coherently writes up-
dated control information to the second memory device,
according to block 440. For example, the accelerator
writes to the flag S1 as shown in line 218 of FIG. 2, caus-
ing the corresponding cache line with the flag in the last
level cache of the producer 210, e.g., the host device, to
be invalidated and updated.

[0075] As described in more detail with reference to
FIGs. 5-7, the control information received by the accel-
erators can include descriptors, including data and com-
mand descriptors, indicating the various data buffers for
the accelerator or host device to write to or read from.
[0076] FIG. 5is ablock diagram of a computing device
500 implementing accelerators and a host processor
504, according to aspects of the disclosure. The device
500 can include an accelerator cache 506 accessible by
accelerator cores (Acc. Cores) 508A-B. The accelerator

15 EP 4 134 827 A1 16

cores 508A-B can be time-shared, and may have con-
text-free operation.

[0077] Contents of the accelerator cache 506 and an
HDM 512 can be communicated over a memory/cache
channel 514. The memory/cache channel 614 can be a
combination of a memory channel and a cache channel
as described herein with reference to FIGs. 1-2. In some
examples, the channels are separate, e.g., as shown and
described with reference to FIG. 1. Host processor 516
can be an example of a host device, e.g., as described
herein with reference to FIGs. 1-5. In this example, the
computing device 500 includes components for both an
accelerator and a host device, communicating over mul-
tiple channels according to a protocol described present-
ly with reference to FIGs. 5-7. The computing device 500
can also receive data over an I/O channel 518.

[0078] The computing device 500 can receive com-
mands from guest operating systems (guest OSs) 522A-
B. The computing device 500 can execute a virtualized
platform running a hypervisor 550 and the guest OSs
522A-B. Each guest OS can be implemented on one or
more virtual machines. Although shown as separate from
the computing device 500, in some examples the com-
puting device 600 is configured to execute one or more
virtual machines, which in turn may execute the guest
OSs 522A-B. In other examples, the guest OSs 522A-B
are instead operating systems executed on bare hard-
ware of one or more computing devices in communica-
tion with the computing device 500. For example, the
computing device 500 can be a server to a number of
client devices. More or fewer guest OSs can communi-
cate with the device 500, according to differentexamples.
[0079] The host processor 504 can be configured to
support single-root input/output virtualization, allowing
multiple different virtual machines to share the same
hardware interconnect.

[0080] Guest OSs 522A-B can execute one or more
applications 524A-B. The applications 524A-B can be
configured to send requests to process data by the com-
puting device 500. Specifically, the applications 624A-B
may provide some service or function that involves
processing data by the accelerator cores 608A-B. The
guest OSs 622A-B can send commands to the computing
device 500 as command descriptors.

[0081] The host processor 504 can initialize a descrip-
tor table in the HAM 516. The descriptor table can be set
up as partof a driver initialization for the accelerator cores
508A-B to communicate with the host processor 504. A
descriptor is a unit of data that can include control flags,
command information, and physical address (PA) point-
ers. Each descriptor can be initialized to have a source
(SRC) flag and SRC status equal to zero, a (destination)
DST flag set to zero, and a (destination) DST status set
to one. The flag and status values can correspond to the
status of different data buffers whose addresses are
stored in the descriptor.

[0082] A command descriptor can include an address
to a data descriptor in the accelerator cache of the ac-

10

15

20

25

30

35

40

45

50

55

celerator receiving the command descriptor from its re-
spective command queue. For example, a command de-
scriptor can be 64 bytes, with some amount of reserved
space, e.g., 15 bytes, and some amount of space, e.g.,
48 bytes, dedicated to the address of the data descriptor.
The data descriptor can be larger, e.g., 128 bytes, with
an address pointing to the location of a source data buffer
in the HDM 512, and another address pointing to the
location of the destination data buffer, which can also be
in the HDM 512. The contents of the data buffers can be
read from or written into over the memory/cache channel
514, for example as described herein with reference to
FIGs. 2-3.

[0083] Because the command descriptors are smaller
than the data descriptors, the command descriptors can
be more efficiently transmitted over the 1/0O channel 518
to the various command queues 536A-C. As part of trig-
gering a command queue update, acommand descriptor
including a physical address of a data descriptor speci-
fying the command to perform on the accelerator is sent
over the I/O channel. The command descriptor can be
sent as one or more DMWr (deferred memory write)
transactions. The data descriptor can include semaphore
flags, a command, e.g., an indication of what operation
to perform on the contents or the source or destination
buffer, and a buffer source and destination address in-
formation. In a DMWr transaction, no write completion is
sentinresponse to indicate that the write was successful.
In other words, command descriptors can be sent faster
over the relatively inefficient1/O channel, to allow for more
data to instead be read or written more efficiently over
the cache and memory channels, as described herein.
[0084] Each accelerator core 508A-B communicates
with a respective command queue 536A-B, which stores
commands issued from the applications and distributed
to enqueue registers 556A-B according to an arbiter 544
and through a device controller 546. Each Guest OS
522A-B can implement a circular ring descriptor buffer
525A-B or another type of data structure for managing
commands queued by the applications 524A-B. The ring
descriptor buffers 525A-B maintain pending command
descriptors not yet sent to a command queue of an ac-
celerator.

[0085] The hypervisor 550 causes command descrip-
tors to be enqueued in the command queues of the var-
ious accelerator cores 508A-B. The hypervisor 550 can
include a descriptor ring control 525C configured to store
command descriptors before they are enqueued at com-
mand 536C. The hypervisor 550 can also implement a
control application 524 C configured to control operations
of the hypervisor 550, and a quality of service (QoS) con-
troller 528 configured to manage the policy of the arbiter
544 in enqueuing command descriptors.

[0086] The cores 508A-B reads the physical address
included in a command descriptor in an enqueue register
to read the data descriptor in the accelerator cache. The
cores 508A-B fetch physical addresses for source and
destination data buffers from the data descriptor from the

17 EP 4 134 827 A1 18

accelerator cache 506. The accelerator cores 508A-B
translate buffer physical addresses to local interconnect
physical addresses.

[0087] The accelerator cores 508A-B update, e.g., set
or clear appropriate control flags in the data descriptor
stored in the accelerator cache 506, to indicate when
processing starts, e.g., that the source buffer has been
read, and when processing ends, e.g., that the destina-
tion buffer has been written. The accelerator cores 508A-
B can then poll the enqueue registers 556A-B for the next
command descriptors, provided by the device controller
546 through the arbiter 544.

[0088] Furtherimprovements can be achieved through
the use of partial cache updates In addition, a single
cache line fetch can transfer multiple command descrip-
tors, because multiple command descriptors can fit in a
single cache line. Poll mode on local interconnect and
the use of enqueue registers can also reduce latency of
operation

[0089] FIGs. 6A-B shows a flow chart of an example
process 600 for processing enqueued command descrip-
tors, according to aspects of the disclosure.

[0090] The accelerator reads an enqueue register, ac-
cording to block 602. The accelerator checks for a com-
mand descriptor in the register, according to diamond
604. Upon detecting a command descriptor ("YES" from
diamond 604), the accelerator sets the device bias using
the source and destination buffer addresses, according
to block 606.

[0091] The accelerator reads the accelerator cache for
the data descriptor whose address is specified by the
command descriptor, according to block 608. According
to diamond 610, the accelerator checks if the SRC status
flag is set to 1, and if so ("YES"), continues to read the
accelerator cache. If the SRC status flag is not set to 1
("NO"), then the reads from the accelerator cache for the
data descriptor using addresses from the command de-
scriptor, according to block 612.

[0092] According to diamond 614, the accelerator
checks if the SRC flag is set to 1. If not ("NO"), the ac-
celerator continues to read the accelerator cache. Oth-
erwise ("YES"), the accelerator sets the SRC flag to 0,
by writing to the cache using the address from the com-
mand descriptor address, according to block 616.
[0093] The accelerator translates the address of the
source data buffer address to a local source data buffer
address, the local source data buffer address corre-
sponding to the physical address for the source data buff-
er in the shared memory device, according to block 618.
The accelerator reads from the source buffer, according
to block 620.

[0094] The accelerator sets the SRC status to 1 and
writes to the cache using the address from the command
descriptor, according to block 622.

[0095] The accelerator reads from the accelerator
cache for the data descriptor using the address from the
command descriptor, according to block 624.

[0096] According to diamond 626, the accelerator

10

15

20

25

30

35

40

45

50

55

10

checks if the DST status flag is setto 1, and if not ("NO"),
continues to read the accelerator cache. Ifthe DST status
flagis setto 1 ("YES"), then the accelerator sets the DST
status flag to 0 and writes to the cache using the address
from the command descriptor, according to block 628.
[0097] The accelerator reads from the accelerator
cache for the data descriptor using the address from the
command descriptor, according to block 630.

[0098] According to diamond 632, the accelerator
checks if the DST flag is set to 1. If not ("NQO"), the ac-
celerator continues to read the accelerator cache. Oth-
erwise ("YES"), the accelerator translates the address of
the destination data buffer address to a local destination
data buffer address, the local destination data buffer ad-
dress corresponding to the physical address for the des-
tination data buffer in the shared memory device, accord-
ing to block 634. The accelerator reads from the source
buffer, according to block 636, and the process 600 can
begin for the new command descriptor in the enqueue
register, according to block 602.

[0099] The control process 600 can have a number of
technical advantages. First, the use of a command de-
scriptor to send the address of a data descriptor reduces
the amount of data needed to transmit over the I/O chan-
nel, which is generally less efficient than the memory and
cache channels of the hardware interconnect. Multiple
command descriptors can be sent through a single DMWr
transaction, further improving the rate at which com-
mands and relevantdata for performing those commands
are passed to the accelerators. The data descriptor spec-
ified in the command descriptor can be fetched over the
cache channel, and the contents of the source/destina-
tion data buffers whose addresses are indicated in the
data descriptor can be fetched non-coherently over the
memory channel. In some examples, this fetching can
be done using the process 200, 300 described herein
with reference to FIGs. 2-3, taking advantage of the im-
proved data transmission as previously discussed.
[0100] FIG. 7 is aflowchart of an example control proc-
ess 700 for receiving and processing a command de-
scriptor by an accelerator, according to aspects of the
disclosure.

[0101] The accelerator receives a command descrip-
tor, according to block 710. The command descriptor can
be received from an enqueue register coupled to the ac-
celerator, the accelerator configured to poll the register
for new command descriptors. Multiple command de-
scriptors can be received, for example using a single
DMWr transaction, as described herein with reference to
FIG. 5. The command descriptors can be received from
one or more virtual machines communicatively coupled
to the accelerator.

[0102] The accelerator reads a data descriptor using
the command descriptor, from an accelerator cache, ac-
cording to block 720. The command descriptor can in-
clude an address for the data descriptor, which the ac-
celerator can use to identify the data descriptor in the
accelerator cache.

19 EP 4 134 827 A1 20

[0103] The accelerator non-coherently reads or writes
data from or to one or more data buffers using the data
descriptor, according to block 730. The addresses for the
one or more data buffers can be specified in the data
descriptor. For example, the one or more data buffers
can be in a shared memory device between the acceler-
atorand a host device. The accelerator can be configured
to read or write contents of the data buffers, for example,
using the processes 200-300 as described herein with
reference to FIGs. 2-3.

[0104] FIG. 8 is a block diagram of an example envi-
ronment 800 for implementing accelerators and host de-
vices for memory-coherent data transmission, according
to aspects of the disclosure. Server computing device
815 can be an example host device housing an acceler-
ator 800. The server computing device 815 can include
multiple accelerators, including the accelerator 800. In
some examples, the server computing device 800 can
be connected over a hardware interconnect with a plu-
rality of other types of devices configured to transmit data
over a hardware interconnect 801. The hardware inter-
connect 801 can include a combination of software and
hardware for transmitting data across a data bus accord-
ing to one or more data transmission protocols.

[0105] As described herein with reference to FIG. 1,
compatible devices canimplement agents or other digital
circuits configured to prepare and transmit data over the
data bus, in accordance with protocols associated with
the hardware interconnect 125.

[0106] Usercomputing device 812 andthe servercom-
puting device 815 can be communicatively coupled to
one or more storage devices 830 over a network 860.
The storage device(s) 830 can be a combination of vol-
atile and non-volatile memory, and can be at the same
ordifferent physical locations than the computing devices
812, 815. For example, the storage device(s) 830 can
include any type of non-transitory computer readable me-
dium capable of storing information, such as a hard-drive,
solid state drive, tape drive, optical storage, memory
card, ROM, RAM, DVD, CD-ROM, write-capable, and
read-only memories.

[0107] The server computing device 818 can include
one or more processors 813 and memory 814. The mem-
ory 814 can store information accessible by the proces-
sor(s) 813, including instructions 821 that can be execut-
ed by the processor(s) 813. The memory 814 can also
include data 823 that can be retrieved, manipulated or
stored by the processor(s) 813. The memory 814 can be
a type of non-transitory computer readable medium ca-
pable of storing information accessible by the proces-
sor(s) 813, such as volatile and non-volatile memory. The
processor(s) 813 can include one or more central
processing units (CPUs), graphic processing units
(GPUs), field-programmable gate arrays (FPGAs),
and/or application-specific integrated circuits (ASICs),
such as tensor processing units (TPUs) or video process-
ing units (VPUs).

[0108] The instructions 821 can include one or more

10

15

20

25

30

35

40

45

50

55

1"

instructions that when executed by the processor(s) 813,
causes the one or more processors to perform actions
defined by the instructions. The instructions 821 can be
stored in object code format for direct processing by the
processor(s) 813, or in other formats including interpret-
able scripts or collections of independent source code
modules that are interpreted on demand or compiled in
advance. The instructions 821 can include instructions
for implementing at least portions of the hardware inter-
connect 801 between the accelerator 800 and the server
computing device 815.

[0109] The data 823 can be retrieved, stored, or mod-
ified by the processor(s) 513 in accordance with instruc-
tions 821. The data 823 can be stored in computer reg-
isters, in a relational or non-relational database as a table
having a plurality of different fields and records, or as
JSON, YAML, proto, or XML documents. The data 823
can also be formatted in a computer-readable format
such as, but not limited to, binary values, ASCII, or Uni-
code. Moreover, the data 823 can include information
sufficient to identify relevant information, such as num-
bers, descriptive text, proprietary codes, pointers, refer-
ences to data stored in other memories, including other
network locations, or information that is used by a func-
tion to calculate relevant data.

[0110] The user computing device 812 can also be
configured similar to the server computing device 815,
with one or more processors 816, memory 817, instruc-
tions 818, and data 819. The user computing device 812
can alsoinclude a user output 826, and a user input 824.
The user input 824 can include any appropriate mecha-
nism or technique for receiving input from a user, such
as from a keyboard, mouse, mechanical actuators, soft
actuators, touchscreens, microphones, and sensors.
[0111] The server computing device 815 can be con-
figured to transmit data to the user computing device 812,
and the user computing device 812 can be configured to
display atleast a portion of the received data on a display
implemented as part of the user output 826. The user
output 826 can also be used for displaying an interface
between the user computing device 812 and the server
computing device 815. The user output 826 can alterna-
tively or additionally include one or more speakers, trans-
ducers, or other audio outputs, a haptic interface or other
tactile feedback that provides non-visual and non-audible
information to the platform user of the user computing
device 812.

[0112] Although FIG. 8 illustrates the processors 813,
816 and the memories 814, 817 as being within the com-
puting devices 815, 812, components described in this
specification, including the processors 813, 816 and the
memories 814, 817 can include multiple processors and
memories that can operate in different physical locations
and not within the same computing device. For example,
some of the instructions 821, 818 and the data 823, 819
can be stored on a removable SD card and others within
aread-only computer chip. Some or all of the instructions
and data can be stored in a location physically remote

21 EP 4 134 827 A1 22

from, yet still accessible by, the processors 813, 816.
Similarly, the processors 813, 816 can include a collec-
tion of processors that can perform concurrent and/or
sequential operation. The computing devices 815, 812
can each include one or more internal clocks providing
timing information, which can be used for time measure-
ment for operations and programs run by the computing
devices 815, 812.

[0113] The server computing device 815 can be con-
figured to receive requests to process data from the user
computing device 812. For example, the environment
800 can be part of a computing platform configured to
provide a variety of services to users, through various
user interfaces and/or APls exposing the platform serv-
ices. One or more services can be a machine learning
framework or a set of tools for generating neural networks
or other machine learning models according to a speci-
fied task and training data. The user computing device
512may receive and transmit data specifying target com-
puting resources to be allocated for executing a neural
network trained to perform a particular neural network
task.

[0114] The devices 812, 815 can be capable of direct
and indirect communication over the network 860. The
devices 815, 812 can set up listening sockets that may
accept an initiating connection for sending and receiving
information. The network 860 itself can include various
configurations and protocols including the Internet, World
Wide Web, intranets, virtual private networks, wide area
networks, local networks, and private networks using
communication protocols proprietary to one or more com-
panies. The network 860 can support a variety of short-
and long-range connections. The short- and long-range
connections may be made over different bandwidths,
such as 2.402 GHz to 2.480 GHz (commonly associated
with the Bluetooth® standard), 2.4 GHz and 5 GHz (com-
monly associated with the Wi-Fi® communication proto-
col); or with a variety of communication standards, such
as the LTE® standard for wireless broadband communi-
cation. The network 860, in addition, or alternatively, can
also support wired connections between the devices 812,
815, including over various types of Ethernet connection.
[0115] Although asingle server computing device 815,
user computing device 512 are shown in FIG. 8, it is un-
derstood that the aspects of the disclosure can be imple-
mented according to a variety of different configurations
and quantities of computing devices, including in para-
digms for sequential or parallel processing, or over a dis-
tributed network of multiple devices. In some implemen-
tations, aspects of the disclosure can be performed on a
single device, and any combination thereof.

[0116] Aspects of this disclosure can be implemented
in digital circuits, computer-readable storage media, as
one or more computer programs, or a combination of one
or more of the foregoing. The computer-readable storage
media can be non-transitory, e.g., as one or more instruc-
tions executable by a cloud computing platform and
stored on a tangible storage device.

10

15

20

25

30

35

40

45

50

55

12

[0117] In this specification the phrase "configured to"
is used in different contexts related to computer systems,
hardware, or part of a computer program, engine, or mod-
ule. When a system is said to be configured to perform
one or more operations, this means that the system has
appropriate software, firmware, and/or hardware in-
stalled on the system that, when in operation, causes the
system to perform the one or more operations. When
some hardware is said to be configured to perform one
or more operations, this means that the hardware in-
cludes one or more circuits that, when in operation, re-
ceive input and generate output according to the input
and corresponding to the one or more operations. When
acomputer program, engine, or module is said to be con-
figured to perform one or more operations, this means
thatthe computer program includes one or more program
instructions, that when executed by one or more com-
puters, causes the one or more computers to perform
the one or more operations.

[0118] While operations shown in the drawings and re-
cited in the claims are shown in a particular order, it is
understood that the operations can be performed in dif-
ferent orders than shown, and that some operations can
be omitted, performed more than once, and/or be per-
formed in parallel with other operations. Further, the sep-
aration of different system components configured for
performing different operations should not be understood
as requiring the components to be separated. The com-
ponents, modules, programs, and engines described can
be integrated together as a single system, or be part of
multiple systems.

[0119] Unless otherwise stated, the foregoing alterna-
tive examples are not mutually exclusive, but may be
implemented in various combinations to achieve unique
advantages. As these and other variations and combi-
nations of the features discussed above can be utilized
without departing from the subject matter defined by the
claims, the foregoing description of the embodiments
should be taken by way of illustration rather than by way
of limitation of the subject matter defined by the claims.
In addition, the provision of the examples described here-
in, as well as clauses phrased as "such as," "including”
and the like, should not be interpreted as limiting the sub-
ject matter of the claims to the specific examples; rather,
the examples are intended to illustrate only one of many
possible embodiments. Further, the same reference
numbers in different drawings can identify the same or
similar elements.

Claims
1. A first computing device comprising:
a first cache;
one or more processors coupled to a first mem-

ory device shared between the first computing
device and a second computing device, the one

23 EP 4 134 827 A1 24

or more processors are configured to:

cache control information in the first cache,
the control information comprising one or
more flags indicating the status of one or
more data buffers in the memory device and
accessed from a second memory device
connected to the second computing device;
non-coherently read or write contents of the
one or more data buffers based on the con-
trol information, and after non-coherently
reading or writing the contents of the one or
more buffers, coherently write updated con-
trol information to the second memory de-
vice, wherein coherently writing the updated
control information causes the control infor-
mation in the first or second cache to also
be updated.

The first computing device of claim 1, wherein the
first computing device is configured to communicate
with the second computing device over a hardware
interconnect comprising a plurality of channels and
configured for memory-coherent data transmission;
and

wherein the one or more processors are further con-
figured to:

coherently read or write the control information
over a first channel dedicated to input/output
(I/O) data communication;

non-coherently read or write the contents of the
one or more data buffers over a second channel
dedicated to communication between memory
devices connected to the first or second com-
puting device.

The first computing device of claim 2, wherein to co-
herently write the updated control information to the
second memory device, the one or more processors
are configured to cause the updated control informa-
tion to be sent to the second cache of the second
memory device over a third channel dedicated to up-
dating contents of the first or second cache; and
wherein optionally the one or more processors are
further configured to:

receive, over the 1/0O channel, a command de-
scriptor, the command descriptor comprising re-
spective addresses for a source data buffer and
a destination data buffer in the first memory de-
vice;

cache the respective addresses for the source
and destination data buffers to the first cache;
and

non-coherently read or write the contents of the
source and destination data buffer using the re-
spective cached addresses.

10

15

20

25

30

35

40

45

50

55

13

4.

7.

The first computing device of one of claims 1 to 3,
wherein the first computing device is a hardware ac-
celerator device comprising one or more accelerator
cores and the first cache is an accelerator cache for
the hardware accelerator device;

wherein optionally the one or more processors
are configured to non-coherently read the con-
tents of the one or more data buffers based on
the value of one or more of the plurality of flags
indicating that the contents of the one or more
data buffers are ready for consumption; and
wherein optionally the one or more of the plural-
ity of flags are set by the second computing de-
vice configured to write the contents to the one
or more data buffers.

The first computing device of one of claims 1 to 4,
where the control information further comprises data
descriptors, each data descriptor identifying an ad-
dress for a respective source data buffer for the first
computing device to read from, or for a respective
destination data buffer for the first computing to write
to.

A system comprising:

a host device and an accelerator communica-
tively coupled over a hardware interconnect
supporting memory-coherent data transmission
between the host device and the accelerator,
the host device comprising a host cache and the
accelerator comprising an accelerator cache;
wherein the host device is configured to:

read or write data to one or more data buff-
ers to afirstmemory device shared between
the host device and the accelerator,

write control information to a second com-
puting device, the control information com-
prising one or more flags indicating the sta-
tus of one or more data buffers in the first
memory device; and

wherein the accelerator is configured to:
non-coherently read or write data from or to the
one or more data buffers of the first memory de-
vice based on the control information, and after
non-coherently reading or writing the data, co-
herently write updated control information to the
second memory device, wherein coherently
writing the updated control information causes
the control information in the host cache to be
updated.

The system of claim 6, wherein the accelerator is
further configured to receive, at an enqueue register,
one or more command descriptors, each command

25

descriptor specifying a respective data descriptor in
the accelerator cache, and

wherein to non-coherently read or write data from or
to the one or more data buffers, the accelerator is
configured to read addresses from the one or more
command descriptors corresponding to the one or
more data descriptors.

The system of claim 7, wherein the accelerator is
configured to receive the one or more command de-
scriptors as a deferred memory write (DMWr) trans-
action; and/or

wherein the one or more command descriptors are
received from an application executed on a virtual
machine hosted by the host device.

The system of claim 7 or 8,

wherein hardware interconnect comprises a plu-
rality of channels; and
wherein the accelerator is configured to:

receive the one or more command descrip-
tors over a first channel of the plurality of
channels dedicated to input/output data
communication; and

non-coherently read or write data from or to
the one or more data buffers over a second
channel of the plurality of channels dedicat-
ed to communication between memory de-
vices connected to the first or second com-
puting devices.

10. The system of claim 9, wherein to coherently write

1.

the updated control information to the second mem-
ory device, the accelerator is further configured to
cause the updated control information to be sent to
the host cache of the host device over a third channel
of the plurality of channels dedicated to updating
contents of the accelerator or host cache.

One or more non-transitory computer-readable stor-
age media encoded with instructions that, when ex-
ecuted by one or more processors of a first comput-
ing device comprising a first cache and coupled to a
first memory device shared between the first com-
puting device and a second computing device, caus-
es the one or more processors to perform operations
comprising:

caching control information in the first cache, the
control information comprising one or more flags
indicating the status of one or more data buffers
in the memory device and accessed from a sec-
ond memory device connected to the second
computing device;

non-coherently reading or writing contents of the
one or more data buffers based on the control

10

15

20

25

30

35

40

45

50

14

EP 4 134 827 A1

12.

13.

14.

15.

26

information, and after non-coherently reading or
writing the contents of the one or more buffers,
coherently write updated control information to
the second memory device, wherein coherently
writing the updated control information causes
the control information in the first or second
cache to also be updated.

The non-transitory computer-readable storage me-
dia of claim 11, wherein the first computing device
is configured to communicate with the second com-
puting device over a hardware interconnect compris-
ing a plurality of channels and configured for mem-
ory-coherent data transmission, and

wherein the operations further comprise:

coherently reading or writing the control infor-
mation over a first channel dedicated to in-
put/output (I/0) data communication, and
non-coherently reading or writing the contents
of the one or more data buffers over a second
channel dedicated to communication between
memory devices connected to the first or second
computing device.

The non-transitory computer-readable storage me-
diaofclaim 12, coherently writing the updated control
information to the second memory device comprises
causing the updated control information to be sent
to the second cache of the second memory device
over a third channel dedicated to updating contents
of the first or second cache.

The non-transitory computer-readable storage me-
dia of one of claims 11 to 13, wherein the operations
further comprise:

receiving, over the I/O channel, a command de-
scriptor, the command descriptor comprising re-
spective addresses for a source data buffer and
a destination data buffer in the first memory de-
vice;

caching the respective addresses for the source
and destination data buffers to the first cache;
and

non-coherently reading or writing the contents
of the source and destination data buffer using
the respective cached addresses; and/or
wherein the first computing device is a hardware
accelerator device comprising one or more ac-
celerator cores and the first cache is an accel-
erator cache for the hardware accelerator de-
vice.

The non-transitory computer-readable storage me-
dia of claim 13 or 14, wherein the operations further
comprise non-coherently reading the contents of the
one or more data buffers based on the value of one

27 EP 4 134 827 A1

or more of the plurality of flags indicating that the
contents of the one or more data buffers are ready
for consumption.

10

15

20

25

30

35

40

45

50

55

15

EP 4 134 827 A1

[DIH

ovi GET
WVH WaH
€5 o gGET Jo4ng eleq
LS 5 VSET 424nq eleq
0s1 SZ1 00T

391A3(] 1SOH 1oouuodialu] 01A3(] UOI1RID|D20Y BiEMpPIBH
941 slempleH
o/ LTT

[44) ayoe)

0 si1915182y ananbu3z uoliejsued |

091 o821 SS2UPPY
st | 1U08Yy DWOH [auuey) 0 T

duigu3 Alowaip
ERTETEN oy}
0zt

0 a5¢1 (s)2107) J01R43j200y [

It [ouuey)
89T 23pug . ﬂ
1 ESlIEIETog) v
0 STl SOL

VST (,HODQ,) wedy (&P ayoed

121" jsuueyy ol Asualayo) a21na(1031RI2[200Y

{s)a40D 150H

16

EP 4 134 827 A1

¢ DI

o~
~
VA
"
14
o
L
v

AN

90z PH IIed
0szJiopngeieq TS Seyd 14 Seld 02z Jownsuo) 0TZ 499npoid

17

EP 4 134 827 A1

¢ DId

W

n goed Y

- m.vom

L=
R R

..

NnNom

0S¢t Joying eieqg Zs Seyd z4 deid 0zZg 12uWnsuc) 01¢€ 492npodd

18

EP 4 134 827 A1

Ny

Receive, by a first computing device, control information 410
stored in a second memory device of a second computing j\
device.

Cache control information in a first cache at the first f 420
computing device.

Non-coherently read or write contents of one or more

data buffers of a first memory device based on the control j\ 430

information, wherein the first memory device is shared
between the first and second computing device.

Coherently write updated control information to the j\ 440
second memory device.

FIG. 4

19

EP 4 134 827 A1

¢ DId
005 a0naq Suiandwo)
: 4955
8805 9100 0 el oo S e
4 >
2
5101 99 Y955 121729 g~ VIEGONSND effrmmmmmmen
V0§ 9400 10V lgp 1915182y ou3 > 13]|011U0D) | ._mwﬂmz
v p| S0lA3Q . g Q9EgeNsnNy
905 3y2e) 22y s e
WAaH g— D9£GoNAND |-
J § y Y
VLG [2UURYD
ayoeD/AIOWaIN 814 [suueyy of
A4 A 4
05 4055200.d 1SOH
0s5§
ots 10SIA19dAH
WVH
87¢ uvmwa 0 LT4%
0430 SOD ucnesjaay [ouo) &
| [0JIU0D 8ury Joxdiiosag
4Z7s SO 1sehp VZZ5§ SO 1seng
45¢s VSZS
cc_mmﬂm_maa 103u03 Bl (g :o_<mﬂm_wa |043u0) Buty
HedNady J01duiosaq HENddy Jo1duosaq

20

Read engueue register.
N
602

EP 4 134 827 A1

v

Command
descriptor?
604

Set device bias on source,
destination buffer addresses
in command descriptor.
606

!

Read accelerator cache for
data descriptor using address
from command descriptor.
608

SRC Status == 17
610

Read accelerator cache for

data descriptor using address
from command descriptor.
612

SRC Flag set to 0; Write to the
cache using address from
command descriptor.
616

:

Translate source buffer
address to local source buffer
address on shared memory
device.

618

.

Read from source data
buffer.
620

v

SRC Status set to 1; write to
the cache using address from

command descriptor.
622

v

Read accelerator cache for
data descriptor using address
from command descriptor.
624

NO

Set DST Status = 0; Write to
the cache using address from

command descriptor.
628

Block 630, FIG. 6B

FIG. 6A

21

EP 4 134 827 A1

Block 628, FIG. 6A

3

Read accelerator
cache for data

descriptor using <
address from

command
descriptor.
630

Translate source buffer
address to local source buffer
address on shared memory
device.

632

s

Write to destination data
buffer.
634

¥

Set DST Status = 0; Write to
the cache using address from
command descriptor.
636

¥

Block 602, FIG. 6A.

FIG. 6B

22

0

EP 4 134 827 A1

Receive command descriptor.

J'\ 710

Read data descriptor from accelerator cache using
command descriptor.

j\ 720

Non-coherently reads or writes data from or to one
or more data buffers using the data descriptor.

J'\ 730

FIG. 7

23

EP 4 134 827 A1

18 I\l

gzg 1ndinQ Jasn

rzg induj Jasn

618 eied

QT8 suoionJisu|

218 Alowapn

918 {s)405532044d

301na Bunndwon 4asn

008

8 DId

098

0€s8

418 I\l

008 J01RJ[220Y

108 J03BJI9|900Y

£Z8 eleg

TZR SuoIIoNJIsu|
I8 AJowaipy

£18 (s)4oss300.d

201A2(Bunndwo?n JaAIas

24

10

15

20

25

30

35

40

45

50

55

EP 4 134 827 A1

des

Europdisches
Patentamt

0’ European

Office européen

Patent Office

brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 22 18 9590

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (IPC)
A US 2002/103948 Al (OWEN JONATHAN M [US] ET|1-15 INV.
AL) 1 August 2002 (2002-08-01) GO06F12/0837
* paragraph [0012] - paragraph [0018] * GO6F12/0842
* paragraph [0059] - paragraph [0064] * GO6F12/084
* paragraph [0086] - paragraph [0102] *
A US 2019/042455 Al (AGARWAL ISHWAR [US] ET |1-15
AL) 7 February 2019 (2019-02-07)
* paragraph [0054] - paragraph [0066] *
A US 9 996 487 B2 (INTEL CORP [US]) 1-15
12 June 2018 (2018-06-12)
* column 8, line 31 - column 11, line 6 *
A US 2021/240655 A1l (DAS S D; SHARMA D D) 1-15
5 August 2021 (2021-08-05)
* paragraph [0068] - paragraph [0075] *
TECHNICAL FIELDS
SEARCHED (IPC)
GO6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
The Hague 8 December 2022 Toader, Elena Lidia
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application
document of the same category L : document cited for other reasons
A technological background s
O : non-written disclosure & : member of the same patent family, corresponding
P :intermediate document document

25

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

ANNEX TO THE EUROPEAN SEARCH REPORT

EP 4 134 827 A1

ON EUROPEAN PATENT APPLICATION NO.

EP 22 18 9590

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-12-2022
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2002103948 Al 01-08-2002 NONE

US 2019042455 Al 07-02-2019 CN 110442532 A 12-11-2019
uUs 2019042455 Al 07-02-2019

US 9996487 B2 12-06-2018 CN 107667358 A 06-02-2018
EP 3314445 Al 02-05-2018
us 2016378701 Al 29-12-2016
WO 2016209519 A1 29-12-2016

US 2021240655 Al 05-08-2021 NL 2029511 A 28-06-2022
Us 2021240655 Al 05-08-2021
WO 2022103485 Al 19-05-2022

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

26

EP 4 134 827 A1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

* US 63231397 [0001]

27

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

