# 

## (11) EP 4 140 339 A1

(12)

## **EUROPEAN PATENT APPLICATION**

published in accordance with Art. 153(4) EPC

(43) Date of publication: 01.03.2023 Bulletin 2023/09

(21) Application number: 21792877.9

(22) Date of filing: 22.04.2021

- (51) International Patent Classification (IPC):

  A24F 47/00 (2006.01)

  A24F 40/42 (2020.01)

  A24F 40/42 (2020.01)
- (52) Cooperative Patent Classification (CPC): A24F 40/20; A24F 40/42; A24F 47/00
- (86) International application number: **PCT/JP2021/016275**
- (87) International publication number: WO 2021/215491 (28.10.2021 Gazette 2021/43)

(84) Designated Contracting States:

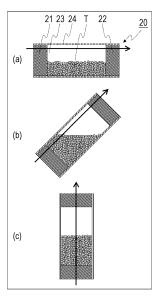
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

**BA ME** 

**Designated Validation States:** 

KH MA MD TN


- (30) Priority: 22.04.2020 JP 2020075783
- (71) Applicant: Japan Tobacco Inc. Tokyo 105-6927 (JP)

- (72) Inventors:
  - NAKAZONO, Takayuki Tokyo 130-8603 (JP)
  - YAMAUCHI, Yuji Tokyo 130-8603 (JP)
  - YOSHIMURA, Tetsuya Tokyo 130-8603 (JP)
  - NAKAAE, Hiroki Tokyo 130-8603 (JP)
- (74) Representative: Hoffmann Eitle
  Patent- und Rechtsanwälte PartmbB
  Arabellastraße 30
  81925 München (DE)

### (54) HEAT-NOT-BURN TOBACCO PRODUCT AND ELECTRICALLY HEATED TOBACCO PRODUCT

(57) This heat-not-burn tobacco product is a tubular tobacco product having: a first filter part; a second filter part; and a wrapping paper that wraps the filter parts to form a space between the first filter part and the second filter part. A granular tobacco material is disposed to be movable in the space. The tobacco material has an angle of repose of 43° or less.

FIG. 2



EP 4 140 339 A1

#### Description

Technical Field

<sup>5</sup> **[0001]** The present invention relates to a non-combustion-heating-type tobacco and an electrically heated tobacco product.

**Background Art** 

- [0002] A common cigarette (cigarette) is made as follows. A tobacco rod obtained by wrapping dried tobacco leaves shredded to a width of about 1 mm and added with a flavor, a humectant, and adequate moisture with a wrapper mainly made of paper into a cylindrical shape, and a mouthpiece rod obtained by wrapping fiber made of cellulose acetate or the like or crimped paper with a wrapper made of paper into a cylindrical shape are butted end to end and connected with a lining paper.
- [0003] When a common cigarette is used, a user lights up the end of the tobacco rod with a lighter or the like and inhales from the mouthpiece end to smoke. A torch at the distal end of the tobacco rod burns at a temperature over 800°C.
   [0004] As an alternative to such a common cigarette, a non-combustion-heating-type flavor inhalation article that uses electric heating without burning, a non-combustion-heating-type tobacco flavor inhalation system, and a non-combustion-heating-type flavor inhalation article used in this system have been developed (Patent Literatures 1 to 7).
- [0005] A general non-combustion-heating-type tobacco flavor inhalation system (non-combustion-heating-type tobacco product) is made up of a cylindrical non-combustion-heating-type tobacco flavor inhalation article (non-combustion-heating-type tobacco) similar to a common cigarette, and a heating device including a battery, a controller, a heater, and the like. The heater may be of an electric resistance type or an IH type. For an electric resistance-type heater, a contact with the non-combustion-heating-type tobacco is configured to heat from outside the cylindrical non-combustion-heating-type tobacco or the contact in a needle shape or on a blade is configured to be inserted into a tobacco filling layer from the distal end of the non-combustion-heating-type tobacco. Various heating temperatures can be set. In comparison with 800°C for a combustible type, most of the articles are heated at lower temperatures (200 to 400°C).

**[0006]** Various characteristics are required for a non-combustion-heating-type tobacco product, and one of the particularly important characteristics is a flavor intensity. A flavor intensity is the degree of the intensity of flavor given to a user when the user uses the non-combustion-heating-type tobacco product, and is able to be controlled by changing the amount of volatile component delivered into the oral cavity of the user. In a non-combustion-heating-type tobacco product, generally, a cartridge containing tobacco material made up of a composition including shredded tobacco, aerosol-source material, flavor material, and the like (non-combustion-heating-type tobacco) is used, and the flavor intensity is controlled by changing the type and use of shredded tobacco, flavor material, and the like contained in the cartridge and the type and thickness of filters.

Citation List

Patent Literature

#### [0007]

30

35

40

45

50

- PTL 1: Japanese Patent No. 05292410
- PTL 2: Japanese Patent No. 05771338
- PTL 3: Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2013-507906
- PTL 4: International Publication No. 2017/198838
- PTL 5: International Publication No. 2017/036951
- PTL 6: Japanese Patent No. 05877618
- PTL 7: Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 2016-506729

Summary of Invention

**Technical Problem** 

[0008] As described above, a method of controlling the flavor intensity is generally a method of changing the type and use of shredded tobacco, flavor material, and the like contained in the cartridge (non-combustion-heating-type tobacco) and the type and thickness of filters. However, with this method, a certain flavor intensity is set for each non-combustion-heating-type tobacco, so a user is not able to optionally change the flavor intensity of a manufactured non-combustion-

heating-type tobacco. In other words, when a user intends to use non-combustion-heating-type tobaccos with different flavor intensities, the user needs to get multiple types of non-combustion-heating-type tobaccos. It is general to use non-combustion-heating-type tobaccos with different flavor intensities according to situations, and, when this is dealt with the above method, there arise a problem that cost increases to get multiple types of non-combustion-heating-type tobaccos from the standpoint of users and a problem that productivity decreases because multiple types of non-combustion-heating-type tobaccos are manufactured from the standpoint of manufacturers.

**[0009]** To solve the above problems, the present invention is directed to providing a non-combustion-heating-type tobacco capable of controlling a flavor intensity, and an electrically heated tobacco product using the non-combustion-heating-type tobacco.

Solution to Problem

**[0010]** The inventors found that tobacco material used in a non-combustion-heating-type tobacco was reduced to particulate form and disposed so as to be movable in the non-combustion-heating-type tobacco and additionally allowed to control the flavor intensity by reducing the angle of repose of tobacco material below a specific value, and reached the present invention.

[0011] The summary of the present invention is as follows.

[1] A tubular non-combustion-heating-type tobacco including a first filter part, a second filter part, and a wrapping paper wrapping the filter parts such that a space section is formed between the first filter part and the second filter part, wherein

particulate tobacco material is movably disposed in the space section, and an angle of repose of the tobacco material is smaller than or equal to 43°.

[2] The non-combustion-heating-type tobacco according to [1], wherein the tobacco material is tobacco granules.

[3] The non-combustion-heating-type tobacco according to [1] or [2], wherein the particle size of the particulate tobacco material is greater than 250  $\mu$ m and less than 840  $\mu$ m.

[4] The non-combustion-heating-type tobacco according to any one of [1] to [3], wherein the ratio of a volume of the tobacco material to a total volume of the space section is higher than or equal to 25 vol% and lower than or equal to 75 vol%.

[5] The non-combustion-heating-type tobacco according to [4], wherein the ratio of a volume of the tobacco material to a total volume of the space section is higher than or equal to 40 vol% and lower than or equal to 60 vol%.

[6] The non-combustion-heating-type tobacco according to any one of [1] to [5], wherein a collapse angle of the tobacco material is smaller than or equal to 40°.

[7] The non-combustion-heating-type tobacco according to any one of [1] to [6], wherein an angle difference obtained by subtracting a collapse angle of the tobacco material from the angle of repose of the tobacco material is larger than or equal to 3°.

[8] An electrically heated tobacco product comprising

an electric heating device that comprises a heater member, a battery unit serving as an electric power supply of the heater member, and a control unit for controlling the heater member, and

the non-combustion-heating-type tobacco according to any one of [1] to [7], inserted so as to be in contact with the heater member.

Advantageous Effects of Invention

**[0012]** According to the present invention, it is possible to provide a non-combustion-heating-type tobacco capable of controlling a flavor intensity, and an electrically heated tobacco product using the non-combustion-heating-type tobacco.

**Brief Description of Drawings** 

#### [0013]

[Fig. 1] Fig. 1 is a schematic diagram of a non-combustion-heating-type tobacco according to an embodiment of the present invention.

[Fig. 2] Fig. 2 is a schematic diagram showing a state where arrangement of tobacco material in a space section changes with a change in the inclination of the non-combustion-heating-type tobacco according to the embodiment

3

10

25

30

20

40

35

45

50

of the present invention.

[Fig. 3A] Fig. 3A is a schematic diagram of a mode in which the non-combustion-heating-type tobacco according to the embodiment of the present invention and an additional segment are wrapped with an additional segment joining

[Fig. 3B] Fig. 3B is a schematic diagram of a mode in which the non-combustion-heating-type tobacco according to the embodiment of the present invention and an additional segment are wrapped with an additional segment joining

[Fig. 4] Fig. 4 is a perspective view of a non-combustion-heating-type tobacco product according to the embodiment of the present invention.

[Fig. 5] Fig. 5 is a perspective view of a state where a cap is removed from the non-combustion-heating-type tobacco product according to the embodiment of the present invention.

[Fig. 6] Fig. 6 is a sectional view taken along the line III-III in Fig. 5.

[Fig. 7] Fig. 7 is a partially sectional view of the non-combustion-heating-type tobacco according to the embodiment of the present invention, with which a mouthpiece is engaged.

#### Description of Embodiments

[0014] Hereinafter, embodiments of the present invention will be described in detail; however, these descriptions are examples (typical examples) of the embodiments of the present invention, and the present invention is not limited to these details as long as within the scope of the present invention.

[0015] In the specification, when numeric values or physical property values are put on both sides of "to", it means that those numeric values or physical property values are included.

[0016] The schematic diagrams and the conceptual view shown in Fig. 1 to Fig. 7 show various members in a scale increased or reduced as needed for illustration and do not show the actual sizes and ratios of the embodiments of the present invention.

[0017] In the specification, "tobacco vapor" means all the components to be delivered into the oral cavity of a user when a non-combustion-heating-type tobacco is used. Tobacco vapor is commonly made up of volatilized tobacco contents, aerosol-source material, a flavor component, and the like, and is a mixture of an aerosol component and the other gas components.

## <Combustion-Heating-Type Tobacco>

[0018] A non-combustion-heating-type tobacco that is an embodiment of the present invention (also simply referred to as "non-combustion-heating-type tobacco") is a tubular non-combustion-heating-type tobacco that includes a first filter part, a second filter part, and a wrapping paper wrapping the filter parts such that a space section is formed between the first filter part and the second filter part. Particulate tobacco material is movably disposed in the space section. The angle of repose of the tobacco material is smaller than or equal to 43°.

[0019] Fig. 1 shows an example of the non-combustion-heating-type tobacco according to the embodiments. Hereinafter, the non-combustion-heating-type tobacco according to the embodiments will be described with reference to the drawings. The direction of h in Fig. 1 is the long-axis direction of the non-combustion-heating-type tobacco according to the embodiments.

[0020] As shown in Fig. 1, the components of the non-combustion-heating-type tobacco 20 according to the embodiments include a first filter part 21, a second filter part 22, a wrapping paper 24 for forming a tubular shape by wrapping to form a space section 23 between these filter parts, and tobacco material T movably disposed in the space section.

The components will be described later. A first filter part and a second filter part are distinguished from each other in the specification and the drawings for the sake of convenience. Unless otherwise specified, these are not distinguished from each other, and any one of the filter parts may be a first filter part or a second filter part.

[0021] In the specification, the phrase "the particulate tobacco material is movably disposed" means that the tobacco material moves in the space section when the non-combustion-heating-type tobacco is moved up and down or right and left. Therefore, particulate tobacco material has flowability.

[0022] Since particulate tobacco material has flowability, a user is able to freely change the arrangement of tobacco material in the space section of the non-combustion-heating-type tobacco by changing the orientation of the non-combustion-heating-type tobacco during use. By changing the arrangement of tobacco material present in the space section of the non-combustion-heating-type tobacco, it is possible to change the air-flow condition during use according to the preference of the user

[0023] The non-combustion-heating-type tobacco preferably has a columnar shape that satisfies a shape of which an aspect ratio defined as follows is higher than or equal to one.

4

15

20

5

10

30

40

35

50

#### Aspect Ratio = h/w

where w is the width of the bottom of the columnar body (in the specification, the width of the bottom of one of the ends of the non-combustion-heating-type tobacco) and h is the height, it is desirable that  $h \ge w$  However, in the present embodiment, as described above, it is defined that the long-axis direction is a direction indicated by h. Therefore, even in the case where  $w \ge h$ , the direction indicated by h is referred to as long-axis direction for the sake of convenience. The shape of the bottom is not limited and may be a polygonal shape, a rounded-corner polygonal shape, a circular shape, an elliptical shape, or the like. The width w is a diameter when the bottom has a circular shape, a longitudinal diameter when the bottom has an elliptical shape, or the diameter of a circumcircle or the longitudinal diameter of a circumellipse when the bottom has a polygonal shape or a rounded-corner polygonal shape. For example, in the mode shown in Fig. 1, since the bottom has a circular shape, the diameter of the circle is able to be determined. The diameter is the width w, and the length in a direction perpendicular to the diameter is the height h. The aspect ratio (h/w) represented by the height h with respect to the width w is preferably higher than or equal to one.

**[0024]** The length h of the non-combustion-heating-type tobacco in the long-axis direction is not limited and is, for example, commonly greater than or equal to 15 mm and preferably greater than or equal to 20 mm. The length h is commonly less than or equal to 85 mm, preferably less than or equal to 60 mm, and more preferably less than or equal to 40 mm.

**[0025]** The width w of the bottom of the columnar body of the non-combustion-heating-type tobacco is not limited and is, for example, commonly greater than or equal to 5 mm and preferably greater than or equal to 5.5 mm. The width w is commonly less than or equal to 10 mm, preferably less than or equal to 9 mm, and more preferably less than or equal to 8 mm.

**[0026]** As shown in Fig. 1, the space section 12 is a space surrounded by the first filter part 10, the second filter part 11, and the wrapping paper 13.

**[0027]** The volume of the space section is not limited. The volume of the space section may be set as needed in accordance with a relationship with other members that make up an electrically heated tobacco product other than the non-combustion-heating-type tobacco and a relationship with the amount of tobacco material disposed in the space section. The volume of the space section may be, for example, greater than or equal to 500 mm<sup>3</sup> and less than or equal to 3000 mm<sup>3</sup>, or may be greater than or equal to 500 mm<sup>3</sup> and less than or equal to 800 mm<sup>3</sup>.

**[0028]** With reference to the long-axis direction of the non-combustion-heating-type tobacco, the ratio of the length of the space section to the length h of the non-combustion-heating-type tobacco is not limited. From the viewpoint of ensuring the amount of tobacco material within the range in which the advantageous effects of the present invention are exercised and from the viewpoint of achieving easy-inhalation air-flow resistance, the ratio is preferably higher than or equal to 0.1 and lower than or equal to 0.9, and more preferably higher than or equal to 0.4 and lower than or equal to 0.7.

**[0029]** The air-flow resistance from the first filter part to the second filter part when the non-combustion-heating-type tobacco is mounted such that one of the first filter part and the second filter part serves as a bottom is not limited. From the viewpoint of easy-inhalation, the air-flow resistance is commonly higher than or equal to 10 mmH $_2$ O, preferably higher than or equal to 13 mmH $_2$ O, more preferably higher than or equal to 20 mmH $_2$ O. The air-flow resistance is commonly lower than or equal to 70 mmH $_2$ O, preferably lower than or equal to 28 mmH $_2$ O.

[0030] The air-flow resistance of the non-combustion-heating-type tobacco according to the embodiment of the present invention is a pressure difference PD (mmH $_2$ O) in the non-combustion-heating-type tobacco when inhalation is performed at a flow rate of 17.5 cm $^3$ /s from the filter part or the second filter part in a state where one of the first filter part and the second filter part serves as a bottom as described above.

[0031] Examples of means to regulate the air-flow resistance include regulating the amount of tobacco material disposed in the space section, the height of the space section, and the height of the filter part.

**[0032]** The air-flow resistance in the height direction of the first filter or the second filter part is not limited. From the viewpoint of easy inhalation, the air-flow resistance is commonly lower than or equal to 6 mmH $_2$ O, and preferably lower than or equal to 5 mmH $_2$ O. Although the favorable lower limit range is not limited and is commonly higher than or equal to 1 mmH $_2$ O.

#### <Tobacco Material>

10

30

35

50

55

**[0033]** The tobacco material according to the present embodiment is particulate, movably disposed in the space section, and has an angle of repose smaller than or equal to 43°.

**[0034]** An angle of repose is a maximum angle from a horizontal plane, at which, due to mutual friction of particle swarm of powder and particles, the surface layer is able to maintain a rest state.

[0035] In the specification, the word "particulate" associated with tobacco material means that the tobacco material in

the above-described embodiments does not contain a sheet tobacco material.

10

30

35

50

[0036] When the tobacco material is particulate and is movably disposed in the space section, the arrangement of tobacco material T1 in the space section changes depending on the inclination of the non-combustion-heating-type tobacco 20 as shown in Fig. 2. The flavor intensity of the non-combustion-heating-type tobacco 20 changes depending on the amount of volatile component from the tobacco material T1 delivered by air that flows as a result of inhalation during use. Therefore, the flavor intensity changes depending on the arrangement of the tobacco material T1 during use. [0037] When the air-flow resistance to an air-flow direction in the space section is not uniform during use, a part where the air-flow resistance is small becomes a main air-flow path. When this will be described with reference to Fig. 2, when used while the long-axis direction of the tobacco material T1, that is, the air-flow direction during use, is horizontal, as shown in Fig. 2(a), not a lower part where the tobacco material T1 is densely packed but an upper air part indicated by the arrow becomes a main air-flow path, and almost no contact occurs between the tobacco material T1 and flowing air, so the flavor intensity reduces. When the non-combustion-heating-type tobacco 20 of Fig. 2(a) is used in a state of Fig. 2(b) where the non-combustion-heating-type tobacco 20 is inclined at about 45°, a part indicated by the arrow where the air-flow resistance is small becomes a main air-flow path, so the flavor intensity increases as compared to the case of Fig. 2(a). When the non-combustion-heating-type tobacco 20 of Fig. 2(a) is used in a state of Fig. 2(c) where the noncombustion-heating-type tobacco 20 is inclined at 90°C, the air-flow resistance in a vertical plane with respect to the airflow direction in the space section is uniform, so the path of air during use is not biased. Therefore, when used in the state of Fig. 2(c), the overall tobacco material in the space section contacts with flowing air, so the flavor intensity increases as compared to the cases of Fig. 2(a) and Fig. 2(b).

**[0038]** To obtain the above-described advantageous effect, it is important for the tobacco material to adequately move in the space section with the inclination of the non-combustion-heating-type tobacco. The inventors diligently studied and, as a result, found that, as will be described in Examples (described later), the above-described advantageous effect was obtained when the angle of repose of tobacco material was smaller than or equal to 43°.

**[0039]** The angle of repose of the tobacco material is not limited as long as the angle of repose is smaller than or equal to 43°. From the viewpoint of easily controlling the flavor intensity, the angle of repose is preferably smaller than or equal to 41°, more preferably smaller than or equal to 40°, and further preferably smaller than or equal to 36°.

**[0040]** The angle of repose is able to be adjusted by controlling the shape of the tobacco material or the content of a liquid component, such as moisture, in the tobacco material. The angle of repose is able to be increased by increasing the roughness of the surface of the tobacco material, or increasing the friction resistance between tobacco materials, or increasing the content of liquid component.

**[0041]** The angle of repose is measured using a sample after being stored in a warehouse for 12 hours to 24 hours in an environment in which the temperature is 22°C and the relative humidity is 60% in compliant with the method described in JIS 9301-2-2 with the use of, for example, a repose angle measuring device (for example, a powder tester PT-X made by Hosokawa Micron Corporation).

**[0042]** In using a non-combustion-heating-type tobacco, a certain level of impact acts on tobacco particles. From the viewpoint of assuming an actual use, a collapse angle may be adopted instead of an angle of repose. A collapse angle indicates an angle at which a collapse occurs with a certain level of impact is applied at an angle of repose.

**[0043]** The collapse angle of the tobacco material is not limited. From the viewpoint of easily controlling the flavor intensity, the collapse angle is preferably smaller than or equal to 43°, more preferably smaller than or equal to 40°, further preferably smaller than or equal to 38°, and particularly preferably smaller than or equal to 30°.

**[0044]** The collapse angle is able to be adjusted with a method similar to the above-described method of adjusting the angle of repose, and a method of increasing an angle difference between the angle of repose and the collapse angle will be described later.

**[0045]** The collapse angle of the tobacco material is able to be measured with a method similar to that of the angle of repose except that, in the method of measuring the angle of repose, after the angle of repose is measured, vibration is applied with a metal rod three times to a stage on which the former particle layer is placed.

**[0046]** The fact that the angle difference obtained by subtracting the collapse angle of the tobacco material from the angle of repose of the tobacco material is large means that it is possible to further exercise an intended function at the time when the user performs operation, such as inclining a non-combustion-heating-type tobacco, imparting necessary vibration, or the like, to control the flavor intensity. When the angle difference is small, it means that an intended function is difficult to be exercised even when the user performs an action to control the flavor intensity. The angle difference of the tobacco material is not limited. From the viewpoint of making it possible to easily adjust the flavor intensity, the angle difference is commonly larger than or equal to 1°, preferably larger than or equal to 3°, more preferably larger than or equal to 10°, and commonly smaller than or equal to 20°.

**[0047]** The angle difference is able to be increased by reducing the content of liquid component, such as moisture, in the tobacco material of the tobacco material; however, the angle of repose itself and the collapse angle itself also reduce accordingly, so the angle difference needs to be adequately adjusted. By increasing the roughness of the surface of tobacco material, the angle difference is able to be reduced by increasing friction resistance between tobacco materials.

**[0048]** The form of tobacco material is not limited as long as the tobacco material is particulate. Examples of the form of tobacco material include (1) tobacco granules (also referred to as "tobacco material (A)"), and (2) the one made up of a composition including shredded tobacco or ground tobacco (also referred to as "tobacco material (B)"). The tobacco material (A) (tobacco granules) is preferable.

[0049] To implement an intended tobacco flavor, multiple kinds of tobacco leaves need to be blended and disposed in the space section of the non-combustion-heating-type tobacco. The tobacco material (B) tends to cause variations in blend ratio at the time of inserting tobacco material in the space section at high speed. In contrast, in the case of the tobacco material (A), since tobacco leaves are blended at a predetermined blend ratio and then granules are manufactured, there is a low possibility of variations in blend ratio at the time of inserting tobacco material into the space section of the non-combustion-heating-type tobacco at high speed. Breakage at the time of transport of tobacco material is also less likely in the case of the tobacco material (A), so variations in air-flow resistance are smaller when the tobacco material (B).

**[0050]** The tobacco material may be made up of only the tobacco material (A) or the tobacco material (B), may be made up of a mixture of them, or may be a mixture containing another particulate tobacco material. However, from the viewpoint similar to the above, the tobacco material is preferably made up of only the tobacco material (A). When the tobacco material is made up of a mixture, the mixture ratio may be designed at any ratio.

**[0051]** Tobacco granules in the specification mean granulated tobacco.

10

20

30

35

40

45

50

55

**[0052]** The ratio of the volume of tobacco material to the overall volume of the space section is not limited and can be set as needed according to the form of the non-combustion-heating-type tobacco or the tobacco material. From the viewpoint of ensuring a suitable air-flow resistance, the ratio of the volume of tobacco material to the volume of the space section on volumetric basis is commonly higher than or equal to 25 vol%, preferably higher than or equal to 30 vol%, more preferably higher than or equal to 40 vol%, and further preferably higher than or equal to 50 vol%. When the ratio is higher than or equal to 30 vol%, a flavor component contained in the tobacco material is sufficiently released to a user. The ratio is commonly lower than or equal to 75 vol%, preferably lower than or equal to 70 vol%, more preferably lower than or equal to 65 vol%, and further preferably lower than or equal to 60 vol%. When the ratio is lower than or equal to 70 vol%, the air-flow resistance does not become excessive, so good inhalation response is ensured, and flowability of tobacco material in the space is ensured.

**[0053]** The ratio of the weight of tobacco material to the overall volume 100 vol% of the space section is not limited and can be set as needed according to the form of the non-combustion-heating-type tobacco or the tobacco material. From the viewpoint of ensuring a suitable air-flow resistance, the ratio of the weight of tobacco material is commonly higher than or equal to 0.1 g/cm<sup>3</sup> and preferably higher than or equal to 0.3 g/cm<sup>3</sup>, and the ratio of the weight of tobacco material is commonly lower than or equal to 1.5 g/cm<sup>3</sup>, preferably lower than or equal to 1.0g/cm<sup>3</sup>, and more preferably lower than or equal to 0.6 g/cm<sup>3</sup>.

[0054] The particulate tobacco material used in the present embodiment is preferably classified by a screen having the following screen openings. For example, from the viewpoint that easiness of movement and high specific surface area in the space section are easily achieved, and, by extension, easy control of the air-flow resistance and the advantage of excellent flavor are easily obtained, the particulate tobacco material is preferably the one that commonly does not pass through a screen having a screen opening of 149  $\mu$ m (> 149  $\mu$ m (greater than 149  $\mu$ m)) and that passes through a screen having a screen opening of 1680  $\mu$ m (ess than 1680  $\mu$ m). More preferably, the particulate tobacco material does not pass through a screen having a screen opening of 250  $\mu$ m (> 250  $\mu$ m (greater than 250  $\mu$ m)) and passes through a screen having a screen opening of 840  $\mu$ m (less than 840  $\mu$ m)).

[0055] In the specification, the average particle size of the particulate tobacco is able to be obtained by measuring the weight of tobacco material obtained by classifying tobacco material by using screen openings of 850  $\mu$ m, 710  $\mu$ m, 600  $\mu$ m, 500  $\mu$ m, 425  $\mu$ m, 300  $\mu$ m, 212  $\mu$ m, and 106  $\mu$ m and then performing apportionment by weight. The measurement is able to be performed by using a sieve shaker (for example, AS 200 CONTROL made by Retsch).

**[0056]** The average particle size of the particulate tobacco material is able to be adjusted by classifying tobacco material used. An object to be measured for the average particle size may be granules added with flavor material or aerosol-source material or may be granules not added with flavor material or aerosol-source material as long as the object is granulated granules. From the viewpoint that a more accurate average particle size is able to be measured, granules not added with flavor material or aerosol-source material are preferably measured. This is because the size of granules is estimated almost not to change depending on addition of flavor material or aerosol-source material.

**[0057]** The average particle size of the particulate tobacco material according to the embodiment of the present invention is preferably greater than or equal to 400  $\mu$ m and less than or equal to 700  $\mu$ m.

**[0058]** The tobacco material may have a fitting part with a heater member or the like for heating the non-combustion-heating-type tobacco.

#### [Flavor Developing Agent]

**[0059]** A flavor developing agent may be added to tobacco material. The flavor developing agent includes at least one of carbonates, hydrogencarbonates, oxides, and hydroxides of alkali metal and/or alkaline earth metal. Preferably, the flavor developing agent is potassium carbonate or sodium carbonate. By adding the flavor developing agent, volatilization of tobacco contents that are mostly amines is ensured, so it is possible to develop sufficient tobacco flavor even with the non-combustion-heating-type tobacco of a type that is heated at a relatively low temperature.

[0060] By adding the flavor developing agent, the pH of tobacco material may be 6.5 to 11.0.

**[0061]** In the specification, pH is able to be measured by a pH meter (for example, IQ240 made by IQ Scientific Instruments, Inc.). For example, distilled water ten times as heavy as 2 to 10 g of tobacco material in weight ratio is added to the tobacco material, a mixture of water and the tobacco material is shaken at 200 rpm for ten minutes at 22°C and left standing for five minutes, and then the pH of the obtained extract is measured with the pH meter.

**[0062]** The pH of the tobacco material at the measurement temperature 22°C is not limited. From the viewpoint of ensuring volatilization of tobacco contents that are mostly amines, including nicotine, the pH is commonly higher than or equal to 6.5, preferably higher than or equal to 7.0, and more preferably higher than or equal to 7.5, and the pH is commonly lower than or equal to 11.0 and preferably lower than or equal to 10.0. The pH tends to be determined mainly based on the type and amount of the above-described flavor developing agent and can also change based on another material.

[0063] The pH of the tobacco material used in a common cigarette or non-combustion-heating-type tobacco depends on the type of tobacco used or the type of flavor component added but the pH is about four to six due to contribution of various organic acids contained. In the case of such a small pH, that is, in an acid environment, tobacco contents that are mostly amines are difficult to be volatilized. In terms of this point, in a common cigarette or non-combustion-heating-type tobacco, the heating temperature during use is high, so a desired amount of volatilization of tobacco contents that are mostly amines is ensured. However, when the heating temperature during use is high, not only volatilization of aerosol-source material but also decomposition of another component occurs, with the result that white tobacco vapor is easily produced.

**[0064]** On the other hand, by setting the pH of the tobacco material within the above-described range, a desired almost amount of volatilization of tobacco contents that are mostly amines is ensured while the heating temperature during use is maintained at a low temperature, that is, reduction of white tobacco vapor is achieved.

**[0065]** Hereinafter, each of the tobacco material (A) and the tobacco material (B) will be specifically described; however, unless otherwise specified, various conditions and suitable ranges described in each of the tobacco materials can also be applied to the other tobacco material.

#### <Tobacco Material (A)>

[0066] The tobacco material (A) is made up of tobacco granules.

**[0067]** The raw materials of the tobacco material (A) are not limited and may include (a) ground tobacco material, (b) moisture, (c) at least one-type flavor developing agent selected from a group consisting of potassium carbonate and sodium hydrogencarbonate, and (d) at least one-type binder selected from a group consisting of pullulan and hydroxy-propyl cellulose.

[0068] The ground tobacco material (component (a)) included in the raw material of the tobacco material (A) includes the one obtained by grinding tobacco leaves, ground tobacco sheet, the tobacco material (B) (described later), or the like. The types of tobacco include a burley type, a flue cured type, and an oriental type. The ground tobacco material is preferably ground into an average particle diameter of greater than or equal to 30  $\mu$ m and less than or equal to 300  $\mu$ m. The average particle diameter is able to be measured by using a particle counter (for example, Mastersizer made by Spectris).

[0069] The moisture (component (b)) contained in the tobacco material (A) is used to maintain the unity of tobacco granules.

[0070] The raw material mixture of the tobacco material (A) commonly contains moisture higher than or equal to 3 wt% and lower than or equal to 13 wt%. The tobacco material (A) commonly can contain moisture such that the value of drying loss is higher than or equal to 5 wt% and lower than or equal to 17 wt%. A drying loss means a change in weight before and after drying when part of a sample is collected for measurement and the sample is completely dried by evaporating all the moisture in the collected sample (for example, when dried at a certain temperature (105°C) for 15 minutes) and specifically means the percentage (wt%) of a total value of the amount of moisture contained in the sample and the amount of volatile component that volatilizes under the drying condition to a sample weight. In other words, the drying loss (wt%) is expressed by the following expression (1).

8

35

40

50

55

Drying Loss (wt%) =

{(Weight of Sample before Completely Dried) - (Weight of Sample after Completely Dried)} × 100/(Weight of Sample

before Completely Dried) (1)

5

10

30

35

40

45

50

55

[0071] The above-described type may be used as the flavor developing agent (component (c)) contained in the tobacco material (A). This flavor developing agent adjusts the pH of the tobacco material (A) to the alkali side to thereby facilitate releasing flavor component contained in the tobacco material (A) from tobacco granules and provide flavor that can be satisfied by a user.

**[0072]** The raw material mixture of the tobacco material (A) can commonly contain the flavor developing agent higher than or equal to 5 wt% and lower than or equal to 20 wt%.

**[0073]** The binder (component (d)) contained in the tobacco material (A) is used to hold the unity of tobacco granules by binding the tobacco granule component. The binder is made of pullulan, gellan gum, carageenan, agar, guar gum, roast bean gum, hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), starch, modified starch, a mixture of them, or a mixture of those.

**[0074]** The raw material mixture of the tobacco material (A) can commonly contain the binder higher than or equal to 0.5 wt% and lower than or equal to 15 wt%.

[0075] The tobacco material (A) can be made up of the components (a), (b), (c), and (d) and may further contain an additional component.

**[0076]** The additional component may be aerosol-source material (component (e)); however, aerosol-source material may be contained or may be not contained. The type of the aerosol-source material is not limited. Extracted substances from various natural products and/or components of them may be selected according to an application. Examples of the aerosol-source material include glycerine, propylene glycol, triacetin, 1,3-butanediol, and mixtures of them.

**[0077]** The content in the case where aerosol-source material is contained may be, for example, lower than or equal to 10 wt% with respect to 100 wt% of tobacco material, may be lower than or equal to 8 wt% in another mode, may be lower than or equal to 5 wt% in further another mode, may be lower than or equal to 3 wt% in further another mode, may be lower than or equal to 1 wt% in further another mode, or may be no content (0 wt%).

[0078] The additional component is (t) a volatile flavor (also referred to as "flavor component" or "flavor material", solid or liquid). The volatile flavor may be a selected flavor as a flavor capable of developing a flavor feeling at a low temperature about  $100^{\circ}$ C. A flavor feeling, a flavor feeling means that, when the non-combustion-heating-type tobacco is used, it is possible to feel the flavor originated from the flavor. The flavor component may be one type selected from among 1-menthol, natural plant flavor (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, aniseed oil, coriander oil, lemon oil, chamomile oil, labdanum, cuscus oil, rose oil, and lovage oil), esters (for example, menthyl acetate, isoamyl acetate, iinalyl acetate, isoamyl propionate, benzyl butyrate, methyl salicylate, and the like), ketones (for example, menthone, ionone, ethyl maltol, and the like), alcohols (for example, phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, and the like), aldehydes (for example, benzaldehyde, and the like), and lactones (for example,  $\omega$ -pentadecalactone, and the like). Particularly preferable volatile flavors to be contained in the tobacco material include 1-menthol, anethole, menthyl acetate, eucalyptol,  $\omega$ -pentadecalactone, and cis-6-nonen-1-ol. Alternatively, the volatile flavors to be contained in the tobacco material may be a mixture of two or more types selected from the above group. [0079] The volatile flavors to be contained in the tobacco material (A) may be used in a solid state or may be dissolved or dispersed in an appropriate solvent, for example, propylene glycol, ethyl alcohol, benzyl alcohol, or glycerine, and

or dispersed in an appropriate solvent, for example, propylene glycol, ethyl alcohol, benzyl alcohol, or glycerine, and used. Preferably, the volatile flavor may be a flavor of which a dispersed state tends to be formed in a solvent as a result of addition of emulsifier, for example, hydrophobic flavor, oil-soluble flavor, or the like. These flavor components may be used solely or may be used in a mixed state.

[0080] The raw material mixture of the tobacco material (A) can commonly contain the flavor material higher than or equal to 0.5 wt% and lower than or equal to 30 wt%. The flavor material may be added to the components (a), (b), (c), (d), and (e) by being directly kneaded with the components or may be added to the components by being supported on a known host inclusion compound, such as cyclodextrin, to prepare an inclusion compound and kneading the inclusion compound with the above components. Alternatively, after the tobacco material (A) is produced without a flavor material added, the flavor material dissolved in a solvent may be added by spraying. Alternatively, after the tobacco material (A) is produced without a flavor material added, the flavor material dissolved in a solvent may be added by spraying.

**[0081]** The content of the flavor in the tobacco material (A), obtained from the above-described raw material mixture, is not limited. From the viewpoint of imparting good flavor, the content of the flavor is commonly higher than or equal to 100 ppm, preferably higher than or equal to 1000 ppm, more preferably higher than or equal to 5000 ppm, and the content of the flavor is commonly lower than or equal to 100000 ppm, preferably lower than or equal to 40000 ppm, and more preferably lower than or equal to 25000.

**[0082]** When the tobacco material (A) is made up of the above components (a), (b), (c), (d), (e), and (t), the raw material mixture of the tobacco material (A) can commonly contain the component (a) higher than or equal to about 20 wt% (lower than or equal to about 80 wt%).

**[0083]** The tobacco material (A) is obtained by, for example, mixing the components (a), (b), (c), and (d), and, when desired, the components (e) and (t), granulating the obtained kneaded product (into a long columnar shape) with a wet extrusion granulator, and then sizing the granules into a short columnar shape or a spherical shape.

[0084] An extrusion pressure in extrusion granulation is able to be set to a selected value according to the viscosity or the like of the kneaded product. For example, a mode in which the kneaded product is extruded under a pressure of 2 kN or higher at an ambient temperature may be used. By extruding the kneaded product under such a relatively high pressure, the temperature of the kneaded product at the outlet of the extrusion granulator instantaneously rapidly increases from the ambient temperature to, for example, higher than or equal to 90°C and lower than or equal to 100°C, and the moisture and the volatile component, higher than or equal to 2 wt% and lower than or equal to 4 wt%, vaporize. Therefore, when extrusion granulation is performed in such a mode, water to be blended to produce a kneaded product needs to be increased by the amount of vaporization as compared to a desired moisture in tobacco granules to be obtained.

**[0085]** Tobacco granules obtained by extrusion granulation may be further dried as needed to adjust moisture. For example, when the drying loss of the tobacco granules obtained by extrusion granulation is measured and the measured drying loss is higher than a desired drying loss (for example, higher than or equal to 5 wt% and lower than or equal to 17 wt%), the tobacco granules may be further dried to obtain the desired drying loss. A drying condition (temperature and time) for obtaining the desired drying loss is able to be set based on a drying condition (temperature and time) needed to reduce the drying loss by a predetermined value.

**[0086]** The tobacco material (A) may be made up of only the above-described tobacco granules and may further include an additional tobacco material. The additional tobacco material is commonly shreds or fine powder of tobacco leaves. The additional tobacco material may be mixed with tobacco granules and used.

#### <Tobacco Material (B)>

10

25

30

35

40

50

55

[0087] The material of shredded tobacco contained in the tobacco material (B) is not limited and may be a known one, such as lamina and a midrib, may be used. For example, the dried tobacco leaves may be the one shredded into a width greater than or equal to 0.5 mm and less than or equal to 2.0 mm. The length of the shredded tobacco leaves falls within the range of greater than or equal to about 0.5 mm and less than or equal to about 10 mm. Alternatively, the dried tobacco leaves may be ground into ground tobacco with an average particle diameter greater than or equal to 20 μm and less than or equal to 200 µm, the one obtained by forming a sheet from the uniformed ground tobacco (hereinafter, also simply referred to as uniform sheet) may be shredded into a width greater than or equal to 0.5 mm and less than or equal to 2.0 mm. The average particle diameter of the ground tobacco is able to be measured by using a particle counter (for example, Mastersizer made by Spectris). The length of the shredded uniform sheet falls within the range greater than or equal to about 0.5 mm and less than or equal to about 10 mm. As for tobacco leaves used to manufacture the shredded tobacco or the uniform sheet, various types of tobacco may be used. Examples of the types of tobacco include a flue cured type, a burley type, an orient type, a local type, other nicotiana-tabacum-series species, nicotianarustica-series species, and mixtures of them. The mixtures may be used by appropriately blending the above-described species to attain an intended taste. The details of the species of the tobaccos are disclosed in "Tobacco Dictionary, Tobacco Research Center, 2009.3.31". The method of manufacturing a uniform sheet, that is, a method of grinding tobacco leaves and working the ground tobacco leaves into a uniform sheet, includes a plurality of existing methods. The first one is a method of manufacturing a paper-made sheet by using a paper-making process. The second one is a method of casting a uniformed product onto a metal plate or a metal plate belt with a thin thickness after an appropriate solvent, such as water, is mixed with the ground tobacco leaves to be uniformed and drying the uniformed product to form a cast sheet. The third one is a method of manufacturing a calendared sheet by extruding a product obtained by mixing an appropriate solvent, such as water, with the ground tobacco leaves and uniformed, into a sheet. The type of the uniform sheet is disclosed in detail in "Tobacco Dictionary, Tobacco Research Center, 2009.3.31".

**[0088]** The moisture content of the tobacco material (B) may be higher than or equal to 10 wt% and lower than or equal to 15 wt% with respect to the total amount of tobacco material and preferably higher than or equal to 11 wt% and lower than or equal to 13 wt%. With such a moisture content, a change in moisture is small during manufacturing and after manufacturing, so process management during manufacturing and quality degradation after manufacturing are small.

**[0089]** The tobacco material (B) may contain the materials (a) to (f) in the above-described tobacco material (A). The types and contents of these materials and other usage modes may be designed similarly to those of the above-described tobacco material (A).

#### <Wrapping Paper>

10

30

35

50

55

[0090] The configuration of wrapping paper is not limited and may be a general wrapping paper or rolling paper.

**[0091]** Examples of the wrapping paper include the one containing pulp as a main component. Not only sheet is made from wood pulp, such as soft wood pulp and hard wood pulp, but also pulp may be made by mixing non-wood pulp generally used in rolling paper for a tobacco article, such as flax pulp, cannabis pulp, sisal pulp, and esparto.

**[0092]** Chemical pulp, ground pulp, chemiground pulp, thermomechanical pulp, or the like obtained by kraft cooking, acid, neutral, alkali sulfite cooking, soda salt cooking, or the like may be used as the type of pulp.

[0093] The length and thickness of fiber of pulp are not limited. Commonly, the length of fiber of pulp is greater than or equal to 0.1 mm and less than or equal to 5 mm, and the thickness of fiber of pulp is greater than or equal to 10  $\mu$ m and less than or equal to 60  $\mu$ m.

**[0094]** During a sheet making process performed by a Fourdrinier paper machine, a cylinder paper machine, a short cylinder combination paper machine, or the like by using the above-described pulp, formation is uniformed to produce wrapping paper Where necessary, a wet strength agent may be added to impart wrapping paper with water resistance or a sizing agent may be added to adjust the printing condition of wrapping paper. Furthermore, a paper internal agent, such as aluminum sulfate, various anionic, cationic, nonionic, or amphoteric yield enhancement agents, a freeness enhancement agent, and a paper strengthening agent, and a paper making additive, such as dye, a pH adjustor, an antifoamer, a pitch control agent, and a slime control agent, may be added.

**[0095]** The air permeability of wrapping paper is not limited. From the viewpoint of making it easy to suppress exudation of a component in tobacco material from wrapping paper, the air permeability of wrapping paper is commonly higher than or equal to zero CORESTA Unit and lower than or equal to 50 CORESTA Unit and preferably higher than or equal to zero CORESTA Unit and lower than or equal to 30 CORESTA Unit.

**[0096]** The air permeability in the specification means the flow rate of air flowed (permeated) per 1 min·1cm² when air is passed from one side (2 cm²) of paper under a set pressure of 1 kPa.

[0097] A wrapping paper may be a single layer made up of only a paper layer made of the above-described material or may be laminated with an impermeable layer, such as a resin layer made of resin and a metal foil made of metal. A laminated layer may be made up of two layers including a paper layer and an impermeable layer. Preferably, a laminated layer is made up of three layers laminated by sandwiching a single impermeable layer with two paper layers or made up of three or more layers in which an adhesion layer is provided between these layers. The upper limit of the number of layers that make up a wrapping paper is not limited. From the viewpoint of easiness of working at the time of wrapping, the number of layers is preferably less than or equal to seven.

**[0098]** By providing an impermeable layer, it is easy to suppress exudation of a component in tobacco material from a wrapping paper. When a paper layer is provided as each of a front side layer and a back side layer, adhesion when a wrapping paper is wrapped becomes strong, and peeling is suppressed.

**[0099]** When the impermeable layer is a resin layer, the type of the resin layer is not limited. Examples of the type of the resin layer include polyethylene, polypropylene, PET, and polylactate.

**[0100]** A method of providing a resin layer is not limited. Sheet resin may be bonded to paper with a binder, sheet resin may be bonded to paper by using hot melt, or melted resin may be directly applied to paper. Examples of the binder to bond paper with resin include PVA, PVAc, EVA, CMC, HPMC, and HPC.

**[0101]** When sheet wrapping paper is finally used for wrapping, paper and paper or paper and resin are commonly bonded by using a binder. Examples of the binder to bond paper and paper include vinyl acetate and EVA.

**[0102]** The basis weight of the wrapping paper in the non-combustion-heating-type tobacco is, for example, commonly greater than or equal to 110 gsm and preferably greater than or equal to 120 gsm. On the other hand, the basis weight is commonly less than or equal to 180 gsm and preferably less than or equal to 160 gsm.

[0103] From the viewpoint of suppressing peeling of the bonded parts of the wrapping paper of the above-described non-combustion-heating-type tobacco manufactured with the wrapping machine, the thickness of the wrapping paper is preferably less than or equal to 300  $\mu$ m and more preferably less than or equal to 250  $\mu$ m. On the other hand, from the viewpoint of the capability of the mouthpiece of the non-combustion-heating-type tobacco product to hold the non-combustion-heating-type tobacco and the viewpoint that stains on the wrapping paper due to a flavor contained in tobacco material are not visually recognized, the thickness of the wrapping paper is preferably greater than or equal to 100  $\mu$ m and more preferably greater than or equal to 120  $\mu$ m.

**[0104]** When the wrapping paper has such a structure that the front side paper layer, the intermediate layer of the air-impermeable layer, and the back side paper layer are laminated in this order, for example, the following conditions can be set to bring the characteristics of the overall wrapping paper into the numeric ranges of the above-described characteristics.

**[0105]** The intermediate layer may be made up of two or more layers as long as the intermediate layer includes an air-impermeable layer made up of a resin layer, a metal layer, or the like.

[0106] The paper that is the front side paper layer of the wrapping paper has a basis weight preferably greater than

or equal to 30 gsm and less than or equal to 100 gsm and more preferably greater than or equal to 40 gsm and less than or equal to 80 gsm.

**[0107]** The paper that is the front side paper layer of the wrapping paper has a thickness preferably greater than or equal to 30  $\mu$ m and less than or equal to 100  $\mu$ m and more preferably greater than or equal to 30  $\mu$ m and less than or equal to 80  $\mu$ m.

**[0108]** The paper that serves as the front side layer of the wrapping paper is not limited as long as the paper satisfies the above-described numeric range. Examples of the paper may include OPN#85 (basis weight: 85 gsm, air permeability: 40 C.U., thickness: 97  $\mu$ m) and OPN#57 (basis weight: 57 gsm, air permeability: 40 C.U., thickness: 65  $\mu$ m) produced by Nippon Paper Papylia Co., Ltd.

**[0109]** The paper that is the back side paper layer of the wrapping paper has a basis weight preferably greater than or equal to 20 gsm and less than or equal to 100 gsm and more preferably greater than or equal to 30 gsm and less than or equal to 60 gsm.

**[0110]** The paper that is the back side paper layer of the wrapping paper has a thickness preferably greater than or equal to 30  $\mu$ m and less than or equal to 100  $\mu$ m and more preferably greater than or equal to 40  $\mu$ m and less than or equal to 70  $\mu$ m.

**[0111]** The intermediate layer that includes the air-impermeable layer has a basis weight preferably greater than or equal to 15 gsm and less than or equal to 100 gsm and more preferably greater than or equal to 20 gsm and less than or equal to 60 gsm.

[0112] The intermediate layer that includes the air-impermeable layer has a thickness preferably greater than or equal to 10  $\mu$ m and less than or equal to 100  $\mu$ m and more preferably greater than or equal to 20  $\mu$ m and less than or equal to 50  $\mu$ m.

[0113] A paper that serves as the back side layer of the wrapping paper is not limited as long as the paper satisfies the above-described numeric range. Examples of the paper include S52-7000 (basis weight: 52 gsm, air permeability: 7000 C.U., thickness: 110  $\mu$ m) produced by Nippon Paper Papylia Co., Ltd, P-10000C (basis weight: 24 gsm, air permeability: 10000 C.U., thickness: 60  $\mu$ m), P-20000C (basis weight: 26.5 gsm, air permeability: 20000 C.U., thickness: 75  $\mu$ m), and P-30000C (basis weight: 21 gsm, air permeability: 30000 C.U., thickness: 77  $\mu$ m), produced by the same corporation.

**[0114]** Examples of the shape of the wrapping paper of the non-combustion-heating-type tobacco include a square shape and a rectangular shape.

**[0115]** When a wrapping paper is used as a paper for wrapping the filter parts and the tobacco material, the size of the wrapping paper can be changed selectively according to an application. When the tobacco material is wrapped with a wrapping paper into a columnar shape, for example, one end of the wrapping paper in the w direction of Fig. 1 and its opposite-side end are overlapped with about 2 mm to be bonded into a columnar paper core shape. The size of the rectangular wrapping paper is able to be determined by the size of the completed non-combustion-heating-type tobacco.

**[0116]** Other than the above-described pulp, the wrapping paper according to the present embodiment may contain a filler. The content of the filler may be higher than or equal to 10 wt% and lower than 60 wt% and preferably higher than or equal to 15 wt% and lower than or equal to 45 wt% with respect to the total weight of the wrapping paper according to the embodiments of the present invention.

**[0117]** Examples of the filler include calcium carbonate, titanium dioxide, and kaolin. From the viewpoint of enhancing flavor and whiteness, and the like, calcium carbonate is preferably used.

[0118] A wrapping paper may be coated as needed.

**[0119]** A coating agent may be added to at least one side of the two front and back sides of the wrapping paper. The coating agent is not limited and is preferably a coating agent capable of forming a film on the surface of paper and reducing the permeability of liquid. Examples of the coating agent include polysaccharides, such as alginic acid and its salt (for example, sodium salt), and pectin, cellulose derivatives, such as ethyl cellulose, methyl cellulose, carboxymethyl cellulose, and nitrocellulose, and starches and their derivatives (for example, ether derivatives, such as carboxymethyl starch, hydroxyalkyl starch, and cationic starch, and ester derivatives, such as starch acetate, starch phosphate, and starch octenyl succinate).

<Filter Part>

30

35

50

55

**[0120]** The non-combustion-heating-type tobacco of the present embodiment has the first filter part and the second filter part; however, these are not distinguished from each other, a user is able to selectively choose which filter part is set for the inhalation port side or the heater side according to the form of the electrically heated tobacco product used during use. The following description of the filter part is applied to any of the first filter part and the second filter part unless otherwise specified. The configuration of the first filter part and the configuration of the second filter part may be different within a usable range or the same.

[0121] The filter part is a part that includes a filter (described later) and is not limited as long as the filter part has the

function of a general filter. For example, the filter part may be made up of a single segment made of only a filter or may be made up of a plurality of segments made by a combination of a filter and another member.

[0122] The filter part may use a filter part including an additive releasing container (described later).

10

20

30

35

40

50

55

**[0123]** The size of the first filter part and the second filter part is not limited and may be set as needed in accordance with the form of the non-combustion-heating-type tobacco to be used during use or the form of the electrically heated tobacco product used during use. For example, the following mode may be used. In the filter part, the length of the non-combustion-heating-type tobacco in the long-axis direction is defined as "height".

**[0124]** From the viewpoint of ensuring good air-flow resistance, the height per one filter part is commonly greater than or equal to 3 mm, preferably greater than or equal to 4 mm, and is commonly less than or equal to 15 mm and preferably less than or equal to 10 mm.

**[0125]** When the non-combustion-heating-type tobacco is a columnar body, the filter part is also a columnar body; however, the diameter (width) is theoretically less than the width w of the bottom of the columnar body of the non-combustion-heating-type tobacco, and a value obtained by adding the width of the filter part of the columnar body to a value that is twice as large as the thickness of the above-described wrapping paper is the width w of the bottom of the columnar body of the non-combustion-heating-type tobacco.

**[0126]** The material of the filter may be obtained by working cellulose acetate tow into a cylindrical shape. Generally, in comparison with a combustible tobacco, the non-combustion-heating-type tobacco according to the embodiments of the present invention preferably has a smaller removal amount of tobacco vapor at the filter part. From such a viewpoint, in the case of the non-combustion-heating-type tobacco with a perimeter of 24.5 mm, the single yarn fineness of cellulose acetate tow is greater than or equal to 5 g/9000 m and less than or equal to 20 g/9000 m, preferably greater than or equal to 12 g/9000 m and the overall fineness is greater than or equal to 12000 g/9000 m and less than or equal to 35000 g/9000 m and preferably greater than or equal to 12000 g/9000 m and less than or equal to 28000 g/9000 m. The packing density of fiber is preferably greater than or equal to 0.09 g/cc and less than or equal to 0.12 g/cc. The sectional shape of fiber of cellulose acetate tow may be a Y cross section or may be an R cross section. In the case of a filter filled with cellulose acetate tow, 5 wt% or higher and 10 wt% or lower of triacetin may be added to the weight of cellulose acetate tow to improve filter hardness.

[0127] A method of wrapping cellulose acetate tow with a filter wrapping paper may be used as a method of working cellulose acetate tow into a cylindrical shape. The physical property of the filter wrapping paper is not limited. Examples of the filter wrapping paper may include a high air permeability paper with an air permeability of 1000 C.U. or higher and a low air permeability paper with an air permeability of lower than 100 C.U. A wrapping paper used for a common cigarette filter may be used as the filter wrapping paper. For example, a wrapping paper with a basis weight of 30 to 100 g/m² and a thickness of30 to 100  $\mu$ m may be used. Such a high air permeability paper is not limited. Examples of the air permeability paper may include LPWS-OLL (air permeability 1300 C.U., basis weight 26.5 gsm, thickness 48  $\mu$ m), P-10000C (air permeability 10000 C.U., basis weight 24.0 gsm, thickness 60  $\mu$ m), or plain paper (air permeability 0 C.U., basis weight 24 gsm, thickness 32  $\mu$ m), produced by Nippon Paper Papylia Co., Ltd.

**[0128]** Other than the filter made of a tow, such as the above-described acetate tow, a filter filled with paper or nonwoven fabric sheet containing pulp as a main component may be used.

**[0129]** In manufacturing filter material, regulating air-flow resistance and adding additives (known adsorbent, flavor, flavor holder, and the like) are able to be designed as needed.

**[0130]** As described above, each of the first filter part and the second filter part may be made up of a single segment or may be made up of a plurality of segments. Even when the first filter part and/or the second filter part is made up of a plurality of segments, the wrapping paper wraps them to make up a non-combustion-heating-type tobacco.

**[0131]** When the first filter part and/or the second filter part is made up of a single segment, examples of the mode include a mode in which the filter part is made up of only a filter filled with cellulose acetate tow and a mode in which the filter part is made up of only a filter filled with paper or nonwoven fabric sheet containing pulp as a main component. Examples of the mode further include a mode in which an additive releasing container (described later) is included in each of these filters.

**[0132]** Examples of a mode in the case where the first filter part and/or the second filter part is made up of a plurality of segments include a mode in which the plurality of segments is made up of a plurality of the same or different filters. In this case, the filter may be the above-described one filled with acetate tow, may be the one filled with paper or nonwoven fabric sheet containing pulp as a main component, or may be the one including an additive releasing container (described later).

**[0133]** Examples of another mode in which the first and second filter parts each are made up of a plurality of segments include a mode in which each of the first and second filter parts is made up of a filter and another member. The "another member" is not limited. Examples of the "another member" include a paper core formed by working thick paper into a cylindrical shape. For example, if the length of a tobacco filling section (space section) is elongated when the length of the non-combustion-heating-type tobacco in the long-axis direction is intended to be elongated, tobacco material needs to be disposed more than necessary; whereas, if the length of the filter is elongated, the air-flow resistance of the filter

part increases, which influences easiness of inhalation. In this case, when a paper core is used, the length of the non-combustion-heating-type tobacco in the long-axis direction is able to be adjusted without receiving the above influence. [0134] Any one of the first filter part and the second filter part may include a breakable additive releasing container (for example, a capsule) including a breakable outer shell, such as gelatin. In this case, the filter part that includes the additive releasing container is an inhalation port side. When the capsule is broken by the user of the non-combustion-heating-type tobacco before use, during use, or after use, the capsule releases liquid or substance (commonly, flavor material) contained in the capsule. Subsequently, the liquid or the substance is transferred by the smoke of tobacco while the non-combustion-heating-type tobacco is being used, and is transferred to an ambient environment after use. [0135] The form of the additive releasing container is not limited. Examples of the form of the additive releasing container may include a capsule, such as an easily breakable capsule, and the shape of the capsule is preferably spherical. An additive contained in the additive releasing container may include the above-described selected additive and particularly preferably includes flavor material and activated carbon. One or more kinds of materials that help filtering smoke may be added as an additive. The form of the additive is not limited and is commonly liquid or solid. Using a capsule containing an additive is known in the technical field. An easily breakable capsule and its manufacturing method are known in the technical field.

**[0136]** Examples of the flavor material include menthol, spearmint, peppermint, fenugreek, and clove. These flavor materials may be used solely or may be used in combination.

#### <Additional Segment>

10

15

20

30

35

40

45

50

**[0137]** As shown in Fig. 3A and Fig. 3B, the above-described non-combustion-heating-type tobacco 1 may be wrapped with an additional segment joining paper 26 together with an additional segment 25 provided adj acent to the first filter part 21 and/or the second filter part 22. By providing the additional segment 25, a further additional function is able to be imparted to the non-combustion-heating-type tobacco.

**[0138]** The mode of the additional segment is not limited and may be, for example, a filter or a paper core. By providing a filter as an additional segment, it is possible to increase air-flow resistance. By providing a paper core at the inhalation port-side filter part as an additional segment, from the viewpoint that the distance between an electrically heated tobacco product in which the non-combustion-heating-type tobacco is inserted and the mouth of the user preferably ensures a length to some extent, it is possible to improve easiness to handle during use, such as easiness to hold in the mouth.

**[0139]** When a filter is provided at the inhalation port-side filter part as an additional segment, an additive releasing container may be provided inside the filter.

**[0140]** The mode described in the above-described filter part may be applied similarly to the mode of each of the filter, paper core, and additive releasing container, and its advantageous effects are those described in the above-described filter part.

**[0141]** The additional segment joining paper is not limited as long as the additional segment joining paper is able to join the non-combustion-heating-type tobacco with the additional segment. Examples of the additional segment joining paper include a chip paper.

[0142] The mode of the chip paper is not limited and may be a known chip paper.

**[0143]** The mode of the chip paper at the time of wrapping is not limited. For example, as shown in Fig. 3A, the chip paper may wrap to cover part of the non-combustion-heating-type tobacco and the entire surface of the additional segment or, as shown in Fig. 3B, the chip paper may wrap to cover part of the non-combustion-heating-type tobacco and part of the additional segment.

#### <Mouthpiece>

**[0144]** A mouthpiece may be engaged with the non-combustion-heating-type tobacco. Even when no mouthpiece is used, it is possible to use the non-combustion-heating-type tobacco. In this case, the non-combustion-heating-type tobacco and the mouth of a user directly contact with each other, so the tobacco, particularly, the inhalation port end filter, tends to get wet. Thus, there are a problem that the air-flow resistance increases and a problem that a feeling deteriorates. To improve these problems, it is desirable to use a mouthpiece.

**[0145]** In terms of easiness of handling during use, such as easiness of holding in a mouth, the distance between an electrically heated tobacco product in which the non-combustion-heating-type tobacco is inserted and the mouth of the user preferably ensures a length to some extent, so it is preferable to use a mouthpiece in terms of this point.

**[0146]** The mouthpiece may be directly engaged with the non-combustion-heating-type tobacco or may be indirectly engaged via the above-described additional segment.

**[0147]** The material of the mouthpiece is not limited, and may be any one of a polymer material, such as resin and rubber, a metal material, and an inorganic material. From the viewpoint of easiness of manufacturing and lightweight, the material of the mouthpiece is preferably resin.

[0148] The shape of the mouthpiece is not limited as long as a flow path s2 through which tobacco vapor to be inhaled by a user flows is ensured. The shape of the mouthpiece may be a cylindrical shape or a polygonal tubular shape. From the viewpoint of improving inhalation easiness, the inhalation port side is preferably narrow. As shown in Fig. 5, the mouthpiece is not uniformly narrowed, and is preferably narrowed such that the shape of a cross section orthogonal to the long-axis direction of the inhalation port end becomes a flat shape so as to be adapted to the shape of the lip of the user. With this configuration, when the user holds the mouthpiece in the mouth, the opening of the lip in the up and down direction reduces, so it is possible to reduce flow of air into the oral cavity through the gap between each end of the lip in the right and left direction and the mouthpiece.

**[0149]** The shape of the cross section of a hole that directly goes to the long-axis direction of an engaging part with the non-combustion-heating-type tobacco is not limited. If the shape of the cross section of the hole is a circle, the non-combustion-heating-type tobacco to be engaged tends to rotate and is easily removed, so the shape of the cross section of the hole is preferably such a shape that has a protruding part to apply pressure (catch) such that a part to be engaged with the non-combustion-heating-type tobacco deflects. To uniform the force that the mouthpiece applies to the non-combustion-heating-type tobacco, the shape of the hole of the engaging part and the arrangement of the protruding part are preferably symmetric.

**[0150]** Providing a protruded part (finger hook 311) present at a part where the mouthpiece of Fig. 7 is narrowed is preferable because removal of the mouthpiece is easy.

**[0151]** The length of the mouthpiece in the long-axis direction is not limited. From the viewpoint of ensuring easiness of inhalation, the length of the mouthpiece in the long-axis direction may be greater than or equal to 20 mm and less than or equal to 50 mm or may be greater than or equal to 25 mm and less than or equal to 30 mm.

**[0152]** In the non-combustion-heating-type tobacco, the length in the long-axis direction, of the part to be engaged with the mouthpiece, is not limited, and is commonly higher than or equal to 10% and lower than or equal to 30% with respect to the length h of the non-combustion-heating-type tobacco and is preferably about 20%.

**[0153]** Since the non-combustion-heating-type tobacco is not able to be repeatedly used, the mouthpiece is preferably able to be engaged at the time of the start of use of the non-combustion-heating-type tobacco and removed at the time of the end of use, that is, the mouthpiece is detachable from the non-combustion-heating-type tobacco.

#### <Electrically Heated Tobacco Product>

10

35

50

<sup>30</sup> **[0154]** The non-combustion-heating-type tobacco according to the embodiments of the present invention is able to be used as a cartridge to be accommodated in the electrically heated tobacco product as will be described below.

**[0155]** An electrically heated tobacco product that is another embodiment of the present invention (also simply referred to as "electrically heated tobacco product") includes an electric heating device including a heater member, a battery unit serving as an electric power supply of the heater member, and a control unit for controlling the heater member, and the above-described non-combustion-heating-type tobacco inserted so as to be in contact with the heater member.

**[0156]** The electrically heated tobacco product is not limited as long as the electrically heated tobacco product satisfies the above-described configuration, and its suitable example will be described below.

**[0157]** The mode of the embodiment of the electrically heated tobacco product may be a mode in which the outer periphery of the non-combustion-heating-type tobacco is heated as shown in Fig. 4. Hereinafter, the electrically heated tobacco product according to the embodiment of the present invention will be described.

**[0158]** Hereinafter, the non-combustion-heating-type tobacco according to the embodiment of the present invention is referred to as "cartridge". Generally, it may be called "consumables".

**[0159]** An embodiment of the electrically heated tobacco product according to the present invention includes a housing and a mouthpiece. The housing extends in an axial direction and has an opening at a first end in the axial direction. The housing has an accommodation space inside, and the accommodation space communicates with the opening. The noncombustion-heating-type tobacco (cartridge) in which a flavor component is contained is accommodated in the accommodation space of the housing. The mouthpiece includes an engaging part and a holder. The engaging part is engaged with the opening.

**[0160]** The holder is configured to hold the non-combustion-heating-type tobacco.

**[0161]** According to the present embodiment, in replacing the non-combustion-heating-type tobacco, when the mouthpiece is removed from the housing, engagement of the engaging part of the mouthpiece with the opening of the housing is released, and the non-combustion-heating-type tobacco held by the holder of the mouthpiece is removed from the housing together with the mouthpiece. Thus, it is not necessary to remove the cartridge separately from the mouthpiece, so replacement of the cartridge is easily performed.

**[0162]** In the electrically heated tobacco product according to the present embodiment, the mouthpiece is configured to extend toward both sides of the opening in the axial direction in a state of being engaged with the opening. According to this mode, when the mouthpiece is removed from the housing, the part protruding outward from the opening of the housing in the mouthpiece can be held, so work for removing the mouthpiece is easy.

**[0163]** Fig. 4 is a perspective view of the electrically heated tobacco product ("flavor inhaler" or also simply referred to as "inhaler") according to the present embodiment.

**[0164]** As shown in Fig. 4, the inhaler 1 that is an example of the electrically heated tobacco product according to the present embodiment is used to taste the flavor of tobacco leaves by inhaling vapor generated by heating tobacco leaves.

**[0165]** Fig. 5 is a perspective view of a state where a cap 40 is removed from the inhaler 1. As shown in Fig. 4, the cap 40 is disposed so as to cover the mouthpiece 30. The cap 40 has an outer peripheral cap part 41 and an end cap part 42.

**[0166]** As shown in Fig. 5, the inhaler 1 includes a main unit 10, a cartridge 20, a mouthpiece 30, and the cap 40 (see Fig. 4). The cartridge 20 is made up of a wrapping paper and two filter materials and has elasticity or flexibility

[0167] The outer shape of the inhaler 1 is formed in a substantially square prism shape with a central axis set to an axis O. The main unit 10, the cartridge 20, the mouthpiece 30, and the cap 40 are disposed so as to be aligned in the axis O. In the following description, in an axis O direction (a direction along the axis O, axial direction), a direction heading from the main unit 10 toward the mouthpiece 30 is referred to as inhalation port side, and a direction heading from the mouthpiece 30 toward the main unit 10 is referred to as anti-inhalation port side. A direction that intersects with the axis O in plan view in the axis O direction is referred to as radial direction. In the radial direction, a direction to approach the axis O is referred to as inner side, and a direction to move away from the axis O is referred to as outer side. A direction to orbit around the axis O is referred to as circumferential direction. In the specification, the "direction" means two orientations, and, when one orientation of the "direction" is indicated, the one orientation is referred to as "side".

[0168] Fig. 6 is a sectional view taken along the line III-III in Fig. 5.

30

35

50

**[0169]** As shown in Fig. 6, the electric heating device 10 (also referred to as "main unit") includes a housing 11, a power supply unit 15, and a heater 16. The housing 11 has a housing body 110, a mouthpiece support member 120, and a cartridge accommodation member 130.

**[0170]** The housing body 110 has an outer housing 111 and a bottom cap 116. The outer housing 111 is formed in a substantially square tube shape with the central axis set to the axis O. The outer housing 111 makes up the outer surface of the inhaler 1. The shape of the outer housing 111 may be set as needed as long as the outer housing 111 extends in the axis O direction.

**[0171]** An inhalation port-side opening 111a extending through in the axis O direction is formed at the inhalation port-side end of the outer housing 111. An anti-inhalation port-side opening 111b extending through in the axis O direction is formed at the anti-inhalation port-side end of the outer housing 111. A switch opening 111c extending through in the radial direction is formed at part of the outer housing 111 in the circumferential direction. A switch 112 is provided at the switch opening 111c.

**[0172]** Here, in the present embodiment, of the radial direction, a direction connecting the axis O with the switch opening 111c is referred to as front and back direction. In this case, the switch opening 111c side with respect to the axis O is defined as front side, and a side opposite to the switch opening 111c with respect to the axis O is referred to as back side

**[0173]** The bottom cap 116 is provided at the anti-inhalation port-side opening 111b of the outer housing 111. The bottom cap 116 is formed in a substantially rectangular shape in plan view when viewed in the axis O direction. The bottom cap 116 closes the anti-inhalation port-side opening 111b of the outer housing 111. The shape of the bottom cap 116 is able to be set as needed as long as the bottom cap 116 closes the anti-inhalation port-side opening 111b of the outer housing 111.

**[0174]** An inner tubular member 117 is provided inside the housing body 110. The inner tubular member 117 extends in the axis O direction and is formed in a substantially square tube shape. The inner tubular member 117 is made up of a pair of half members divided along the axis O direction. The overall length (the length along the axis O direction) of the inner tubular member 117 is shorter than the overall length of the outer housing 111. The shape of the inner tubular member 117 is able to be set as needed.

[0175] A partition wall 118 is provided inside the inner tubular member 117 so as to separate a space in which the battery 151 is accommodated from a space in which the heater 16 is accommodated.

**[0176]** The partition wall 118 has an inhalation port-side partition wall part 118a and a side partition wall part 118b. With this configuration, flow of air heated by the heater 16 into the space that accommodates the battery 151 is reduced. Thus, an increase in the temperature of the battery 151 is suppressed.

**[0177]** The inhalation port-side partition wall part 118a is disposed on the inhalation port side with respect to the battery 151. The side partition wall part 118b is disposed so as to cover the outer side of the battery 151 in the circumferential direction. The mouthpiece support member 120 is provided at the inhalation port-side opening 111a of the outer housing 111.

[0178] A vent hole 111d extending through in the front and back direction is formed at the front side of the outer housing 111. An inflow-side opening 138a is formed at the front side of a bottom 137b of an anti-inhalation port-side end in a bottom member 136 so as to communicate with the vent hole 111d. An outflow-side opening 138b is formed at the bottom (side orthogonal to the axis O direction) of an accommodation recess 137a of the bottom 137. An airflow path 138 is formed such that the inflow-side opening 138a and the outflow-side opening 138b communicate with each other.

[0179] A cartridge support member 140 is disposed in the cartridge accommodation member 130.

10

30

35

40

45

50

**[0180]** In a state where the cartridge 20 is disposed in the cartridge accommodation space of the cartridge support member 140, at least part of the first filter part 21 protrudes from the cartridge support member 140 toward the inhalation port side and is disposed on the anti-inhalation port side with respect to the mouthpiece opening 125 (the first filter part 21 does not protrude from the mouthpiece opening 125 toward the inhalation port side).

**[0181]** As shown in Fig. 6, the power supply unit 15 is configured such that the battery 151, the control unit 152, the heater member 16, and the like are mounted in the inner tubular member 117.

**[0182]** The battery 151 is disposed on the anti-inhalation port side with respect to the inhalation port-side partition wall part 118a inside the inner tubular member 117. The battery 151 is formed in a cylindrical shape with the central axis set to an axis parallel to the axis O. The battery 151 is a rechargeable secondary battery. The battery 151 may be, for example, a lithium ion battery. The shape of the battery 151 is able to be set as needed.

**[0183]** The control unit 152 is disposed on the front side with respect to the side partition wall part 118b inside the inner tubular member 117. The control unit 152 is disposed between the side partition wall part 118b and the front side of the outer housing 111. The battery 151 and the heater member 16 are electrically connected by a wire (not shown) via the control unit 152.

**[0184]** The control unit 152 includes a switch element 152a at a location associated with the switch 112 disposed on the front side of the outer housing 111. In response to operation of the switch 112, the control unit 152 controls the battery 151 and the heater member 16.

**[0185]** The control unit 152 is configured to control current flowing from the battery 151 to the heater member 16. With this configuration, it is possible to control the heating temperature of the space section 23 of the cartridge 20.

**[0186]** Fig. 7 is a sectional view of the part including the mouthpiece 30 and the cartridge 20, taken along the width direction.

[0187] As shown in Fig. 7, in the engaging circumferential wall 33, an anti-inhalation port-side part 331 is thinner than an inhalation port-side part 332. With this configuration, a step 333 is formed at the boundary between the anti-inhalation port-side part 331 and the inhalation port-side part 332. The step 333 is formed in a substantially annular shape in plan view when viewed in the O direction. As shown in Fig. 5, the inhalation port-side end 20a of the cartridge 20 is in contact with the step 333 of the engaging circumferential wall 33 of the mouthpiece 30. At the connecting part of the inhalation port 31 with the proximal part 32, the opening width widens from the inhalation port side toward the anti-inhalation port side. A space may be formed between the inhalation port-side end 20a of the cartridge 20 and the anti-inhalation port-side end 20a of the cartridge 20 reduces, and the air-flow resistance is reduced.

**[0188]** As shown in Fig. 7, the inhalation port-side end 20a of the cartridge 20 is in contact with the step 333 of the engaging circumferential wall 33 of the mouthpiece 30. At the connecting part of the inhalation port 31 with the proximal part 32, the opening width widens from the inhalation port side toward the anti-inhalation port side. A space may be formed between the inhalation port-side end 20a of the cartridge 20 and the anti-inhalation port-side face of the inhalation port 31 of the mouthpiece 30. With this configuration, the closed area of the inhalation port-side end 20a of the cartridge 20 reduces, and the air-flow resistance is reduced.

**[0189]** The cartridge 20 includes the first filter part 21, the second filter part 22, the space section 23, and the wrapping paper 24.

**[0190]** The finger hook 311 is provided on the outer periphery of the inhalation port 31. The finger hook 311 protrudes outward in the radial direction from the outer periphery of the inhalation port 31. The finger hook 311 is provided all around the outer periphery of the inhalation port 31 in the circumferential direction.

**[0191]** The flow path s2 extending through in the axis O direction is formed in the mouthpiece 30. Vapor generated from the cartridge 20 is able to flow through the flow path s2.

[0192] The heater member 16 of an electric heating device 10 may be, for example, a sheet heater, a flat heater, or a tubular heater. A sheet heater is a flexible sheet-shaped heater. Examples of the sheet heater include a heater that includes a film (of which the thickness is greater than or equal to about 20  $\mu$ m and less than or equal to about 225  $\mu$ m) made of heat-resistant polymer, such as polyimide. A flat heater is a rigid flat heater (of which the thickness is greater than or equal to about 200  $\mu$ m and less than or equal to about 500  $\mu$ m). Examples of the flat heater include a heater in which a resistance circuit is provided on a flat substrate and this part is regarded as a heat generating part. A tubular heater is a hollow or solid tubular heater. Examples of the tubular heater include a heater (of which the thickness is greater than or equal to about 200  $\mu$ m and less than or equal to about 500  $\mu$ m) that has a resistance circuit on the outer periphery of a tube made of, for example, metal and this part is regarded as a heat generating part.

**[0193]** Where the length of the long-axis direction of the non-combustion-heating-type tobacco is L mm, the length of the heater member in the long-axis direction is able to fall within the range of  $L \pm 5.0$  mm.

**[0194]** A heating strength, that is, the heating time and heating temperature, on the non-combustion-heating-type tobacco 20 with the heater member 16 is able to be set in advance for each electrically heated tobacco product 1. For example, the heating strength may be set such that, after the non-combustion-heating-type tobacco 20 is inserted in the

electric heating device 10, pre-heating is performed for a set time, the non-combustion-heating-type tobacco 20 is heated until the temperature of at least part of the tobacco material in the non-combustion-heating-type tobacco 20 becomes  $X(^{\circ}C)$ , and then the temperature is maintained at a set temperature lower than or equal to  $X(^{\circ}C)$ .

[0195] The X(°C) is preferably higher than or equal to 80°C and lower than or equal to 200°C from the viewpoint of delivery of the volatile component of tobacco. Specifically, the X(°C) may be set to 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, or 200°C.

[0196] In the electrically heated tobacco product 1, as a result of heating of the heater member 16, vapor containing a flavor component and the like generated from tobacco material disposed in the space section passes through the inhalation port-side filter part and reaches the inside of the oral cavity of a user.

[0197] The relationship between the mouthpiece and the electric heating device during use is not limited. The mouthpiece may be in contact with the outer side of the electric heating device, or may be fitted to a mouthpiece fitting part provided in the electric heating device. From the viewpoint of preventing drop of the mouthpiece during use, the fitting mode is preferable.

[0198] As described above, a mode in which engagement of the non-combustion-heating-type tobacco with the mouthpiece is enhanced by providing the mouthpiece with a protruding part is preferable because the non-combustion-heatingtype tobacco and the mouthpiece are removed from the electric heating device at a time in removing the non-combustionheating-type tobacco from the electric heating device. Specifically, static friction force applied between the mouthpiece and the non-combustion-heating-type tobacco is preferably greater than static friction force applied between the inner wall of the electric heating device and the non-combustion-heating-type tobacco.

[0199] The electrically heated tobacco product may include another component other than the above-described components. Examples of the other component include a temperature sensor and a gas concentration sensor (chemical sensor).

<Componential Analysis of Tobacco Vapor>

[0200] In the present invention, the components of tobacco vapor that is generated by using a non-combustion-heatingtype tobacco is analyzed in accordance with the following method. The above-described cartridge was inserted in a flavor inhalation system (electrically heated tobacco product), a tobacco rod inhalation port end was inserted in an automatic smoker made by Borgwaldt.

[0201] Then, after a lapse of 30 seconds from the time point (heating start time point) at which the heater switch was turned on, smoking was started. Measurement was performed under the conditions of Health Canada smoking method (smoking with a smoking amount of 55 cc/2 sec, a smoking time of 2 sec, a smoking interval of30 sec, and the number of times of smoking of 13). Of 13 puffs, a total of main-stream smoke component in the first to third puffs and a total of main-stream smoke component in the fourth to thirteenth puffs each were trapped by a preinstalled glass fiber filter (trapping Cambridge filter (produced by Borgwaldt, 400 Filter 44 mm)). For analyzing nicotine and menthol, this filter was subjected to shaking extraction for 20 minutes in 10 mL of isopropanol (internal standard octadecane). For analyzing water, this filter was subjected to shaking extraction for 20 minutes in 10 mL of ethanol. The amounts of nicotine, menthol, and water were measured by a gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)).

#### 40 **EXAMPLES**

[0202] The present invention will be further specifically described by way of Examples. The present invention is not limited to the description of the following Examples as long as within the scope of the present invention.

45 <Experiment I; Visibility Evaluation of Tobacco Vapor>

<Pre><Pre>reparation of Non-Combustion-Heating-Type Tobacco>

[Raw Materials of Tobacco Material]

#### [0203]

- Ground tobacco material 1; flue cured type, average particle diameter 70 μm (measured by the particle counter (Mastersizer made by Spectris))
- Ground tobacco material 2; burley type, average particle diameter 70 μm (measured by the particle counter (Mastersizer made by Spectris))
- Flavor developing agent; potassium carbonate

18

25

30

35

10

15

50

- Binder; hydroxypropyl cellulose (HPC)
- Primary flavor material; 1-menthol
- Secondary flavor material; ethanol
- Aerosol-source material; glycerine

[Wrapping Paper]

5

10

15

20

30

35

40

45

50

55

[0204] Of the outermost two layers of a wrapping paper, paper OPN#85 (produced by Nippon Paper Papylia Co., Ltd, air permeability: 40 C.U., basis weight: 85 gsm, thickness: 97  $\mu$ m) was prepared as the layer (the front side layer of the wrapping paper) that was the outer peripheral side of the non-combustion-heating-type tobacco, and paper P-10000C (produced by Nippon Paper Papylia Co., Ltd, air permeability: 10000 C.U., basis weight: 24.0 gsm, thickness: 60  $\mu$ m) was prepared as the layer (the back side layer of the wrapping paper) on the side opposite to the front side layer. A laminate layer (produced by Nippon Paper Papylia Co., Ltd, thickness: 20  $\mu$ m) that was a film made of polyethylene resin was prepared as the intermediate layer (air-impermeable layer) of the wrapping paper. These were cut into a rectangular shape of which the length of one side that becomes the long-axis direction of the non-combustion-heating-type tobacco was 20 mm and the length of another side orthogonal to the one side was 29.5 mm.

[0205] A wrapping paper 1 (basis weight: 124.7 gsm, thickness: 157  $\mu$ m) was obtained by stacking the cut three layers and pressurizing the stacked layers while applying heat (laminating). to the stacked layers. As a result that the paper layer is compressed during lamination and part of the paper layer is embedded in the thermoplastic resin layer (here, laminate layer), the obtained wrapping paper is thinner than the total thickness of the thicknesses of the layers before lamination.

[Filter]

#### 25 [0206]

• A cylindrical filter blank was prepared from cellulose acetate tow with a single yarn fineness of 12 g/9000 m and a total yarn fineness of 28000 g/9000 m as a raw material by using a filter production machine (FRA3 SE) made by Sanjo Machine Works, Ltd. Subsequently, a filter blank with a filter wrapping paper with a perimeter of 24.5 mm and a height of 80 mm was prepared by wrapping the filter blank with the filter wrapping paper (name: LPWS-OLL, air permeability: 1300 C.U., basis weight: 26.5 gsm, thickness: 48 μm, produced by Nippon Paper Papylia Co., Ltd.). Subsequently, the filter blank with the filter wrapping paper was cut into a height of 4 mm to prepare a cylindrical filter with an air-flow resistance in the height direction of 3.7 mmH<sub>2</sub>O.

## [EXAMPLE 1]

**[0207]** The ground tobacco material 1 and tobacco material 2, the flavor developing agent, and the binder were prepared as raw materials and mixed, kneaded with addition of water, and the obtained kneaded product was granulated by a wet extrusion granulator (made by Dalton Corporation; mesh size  $\phi$ 0.9mm, temperature of a kneaded product at the extrusion outlet 50 to 60°C).

[0208] The contents of the components in the raw materials were 50.00 wt% of tobacco material 1, 12.50 wt% of tobacco material 2, 25.00 wt% of water, 7.50 wt% of flavor developing agent, and 5.00 wt% of binder. The kneaded product was dried with a drier until 12.50 wt% of water, and then classified by a grinding classifier (made by Freund-Turbo Corporation; mesh size upstream  $\phi$ 710 mm, downstream  $\phi$ 250 mm). In accordance with the conditions described in the above-described method of measuring the particle size of the particulate tobacco material, the average particle size of the obtained granules was 530  $\mu$ m.

**[0209]** After that, the primary flavor material was added with a pipet such that the content of the flavor material in the tobacco granules was 9.09 wt%, and rotationally agitated for 24 hours or longer in a vial container under an environment of 22°C to be uniformly dispersed. The pH of the obtained tobacco granules was 9.5 (measurement temperature 22°C), and the aspect ratio was 1.0 to 1.5.

**[0210]** The contents of the components in the obtained tobacco granules were 53.03 wt% of tobacco material 1, 13.26 wt% of tobacco material 2, 11.36 wt% of water, 7.95 wt% of flavor developing agent, 5.30 wt% of binder, and 9.09 wt% of primary flavor material.

**[0211]** As a result of measuring the contents of nicotine and menthol in the raw materials by using the gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)), the content of nicotine was 22.7 mg/g, and the content of menthol was 65.1 mg/g.

**[0212]** The tobacco granules (155 mg) was disposed between two filters, and these were wrapped with the wrapping paper 1 to obtain the cylindrical non-combustion-heating-type tobacco. Vinyl acetate was used as a binder at the time

of bonding the first paper layer and the third paper layer of the wrapping paper into a cylindrical shape. In the non-combustion-heating-type tobacco, the diameter of the bottom was 7.8 mm, the height in the long-axis direction was 20 mm, and the volume ratio (packing fraction) of tobacco material to the overall volume of the space section was 45 vol%. The air-flow resistance of the non-combustion-heating-type tobacco in the long-axis direction was 18 nnnH $_2$ O (flow rate; 17.5 CC/sec).

#### [EXAMPLE 2]

10

20

35

40

50

55

- **[0213]** Except that, as a raw material, the primary flavor material of Example 1 was replaced with a mixture of a primary flavor material and a secondary flavor material prepared such that the final content in tobacco granules was 2.5 wt% and the amount of tobacco granules disposed between the filters was 145 mg, a non-combustion-heating-type tobacco was obtained as in the case of Example 1. The secondary flavor material was intended to adjust the angle of repose and the collapse angle. The pH of the obtained tobacco granules was 9.5 (measurement temperature 22°C), and the aspect ratio was 1.0 to 1.5.
- **[0214]** As a result of measuring the contents of nicotine and menthol in the raw materials by using the gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)), the content of nicotine was 22.5 mg/g, and the content of menthol was 64.4 mg/g. The volume ratio (packing fraction) of tobacco material in the space section was 46.2 vol%.

#### [EXAMPLE 3]

**[0215]** Except that, as a raw material, the primary flavor material of Example 1 was replaced with a mixture of a primary flavor material and a secondary flavor material prepared such that the final content in tobacco material was 5 wt% and the amount of tobacco granules disposed between the filters was 124 mg, a non-combustion-heating-type tobacco was obtained as in the case of Example 1. The pH of the obtained tobacco granules was 9.5 (measurement temperature 22°C), and the aspect ratio was 1.0 to 1.5.

**[0216]** As a result of measuring the contents of nicotine and menthol in the raw materials by using the gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)), the content of nicotine was 21.6 mg/g, and the content of menthol was 62.3 mg/g. The volume ratio (packing fraction) of tobacco material in the space section was 46.2 vol%.

#### 30 [COMPARATIVE EXAMPLE 1]

**[0217]** Except that, as a raw material, the primary flavor material of Example 1 was replaced with a mixture of a primary flavor material and a secondary flavor material prepared such that the final content in tobacco material was 10 wt% and the amount of tobacco granules disposed between the filters was 118 mg, a non-combustion-heating-type tobacco was obtained as in the case of Example 1. The pH of the obtained tobacco granules was 9.5 (measurement temperature 22°C), and the aspect ratio was 1.0 to 1.5.

**[0218]** As a result of measuring the contents of nicotine and menthol in the raw materials by using the gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)), the content of nicotine was 21.2 mg/g, and the content of menthol was 60.3 mg/g. The volume ratio (packing fraction) of tobacco material in the space section was 46.4 vol%.

#### [COMPARATIVE EXAMPLE 2]

**[0219]** Except that, as a raw material, the primary flavor material of Example 1 was replaced with a mixture of a primary flavor material and a secondary flavor material prepared such that the final content in tobacco material was 20 wt% and the amount of tobacco granules disposed between the filters was 118 mg, a non-combustion-heating-type tobacco was obtained as in the case of Example 1. The pH of the obtained tobacco granules was 9.5 (measurement temperature 22°C), and the aspect ratio was 1.0 to 1.5.

**[0220]** As a result of measuring the contents of nicotine and menthol in the raw materials by using the gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)), the content of nicotine was 18.8 mg/g, and the content of menthol was 55.1 mg/g. The volume ratio (packing fraction) of tobacco material in the space section was 46.3 vol%.

<Angle of Repose and Collapse Angle>

**[0221]** The angle of repose of tobacco material was measured in compliant with the method described in JIS 9301-2-2 by using the powder tester PT-X that is a repose angle measuring device made by Hosokawa Micron Corporation.

**[0222]** The collapse angle was measured with a method similar to that of the angle of repose except that, in the method of measuring the angle of repose, after the angle of repose was measured, vibration was applied with a metal rod three times to a stage on which the particle layer was placed.

**[0223]** The angle of repose and the collapse angle, measured by using the tobacco material in each of Examples and Comparative Examples, and the angle difference obtained by subtracting the collapse angle from the angle of repose are shown in Table 1.

5 < Componential Analysis of Tobacco Vapor>

10

15

25

30

35

40

45

50

55

[0224] The above-described cartridge was inserted in a flavor inhalation system (electrically heated tobacco product), a tobacco rod inhalation port end was inserted in an automatic smoker made by Borgwaldt. Then, after a lapse of 30 seconds from the time point (heating start time point) at which the heater switch was turned on, smoking was started. Measurement was performed under the conditions of Health Canada smoking method (smoking with a smoking amount of 55 cc/2 sec, a smoking time of 2 sec, a smoking interval of30 sec, and the number of times of smoking of 13). Of 13 puffs, a total of main-stream smoke component in the first to third puffs and a total of main-stream circle component in the fourth to thirteenth puffs each were trapped by a preinstalled glass fiber filter (trapping Cambridge filter (produced by Borgwaldt, 400 Filter 44 mm)). For analyzing nicotine and menthol, this filter was subjected to shaking extraction for 20 minutes in 10 mL of isopropanol (internal standard octadecane). For analyzing water, this filter was subjected to shaking extraction for 20 minutes in 10 mL of ethanol. The amounts of nicotine, menthol, and water were measured by a gas chromatograph (GC-FID/TCD (6890 N, made by Agilent)).

**[0225]** In the following Table 1, a use holding angle "0°" indicates a state where the long-axis direction of a non-combustion-heating-type tobacco is horizontal, a use holding angle "45°" indicates a state where the long-axis direction is inclined from 0° to 45° (the upper-side end is the inhalation port side), and a use holding angle "90°" indicates a state where the long-axis direction is inclined from 0° to 90° (the upper-side end is the inhalation port side).

**[0226]** In Table 1, "To  $0^{\circ}$  (To  $45^{\circ}$ )" indicates the ratio of the content of nicotine or menthol at each angle to the content of nicotine or menthol at a use holding angle of  $0^{\circ}$  ( $45^{\circ}$ ).

**[0227]** In Table 1, "Total" indicates a total value of the content of each flavor component in the first to third puffs and the content of each flavor component in the fourth to thirteenth puffs.

|    |          |                     | Total            | (wt%) | 0.82      | 1.29  | 2.15      | 0.74  | 1.17  | 1.96      | 0.77  | 0.95                     | 1.77  | 98.0                     | 0.85  | 1.59  | 0.78  | 0.71  | 1.15  |
|----|----------|---------------------|------------------|-------|-----------|-------|-----------|-------|-------|-----------|-------|--------------------------|-------|--------------------------|-------|-------|-------|-------|-------|
| 5  |          | Menthol             | To<br>45°        | (%)   | 63        | ı     | 167       | 63    | 1     | 168       | 81    | 1                        | 187   | 101                      | ı     | 187   | 111   | 1     | 162   |
|    |          |                     | °0 oT            | (%)   | -         | 158   | 263       | -     | 158   | 266       | -     | 124                      | 231   | -                        | 66    | 186   | -     | 06    | 146   |
| 10 |          |                     | 4 to 13<br>puffs | (wt%) | 99'0      | 1.07  | 1.55      | 69'0  | 26'0  | 1.67      | 19.0  | 22.0                     | 1.52  | 69'0                     | 02'0  | 1.34  | 0.61  | 0.57  | 96.0  |
|    |          |                     | To<br>45°        | (%)   | 02        | -     | 268       | 92    | -     | 147       | 88    | -                        | 142   | 110                      | -     | 169   | 125   | -     | 143   |
| 15 |          |                     | To 0°            | (%)   | -         | 142   | 381       | ı     | 131   | 193       | -     | 113                      | 161   | -                        | 91    | 154   | ı     | 80    | 115   |
|    |          |                     | 1 to 3<br>puffs  | (wt%) | 0.16      | 0.22  | 0.59      | 0.15  | 0.20  | 0.29      | 0.16  | 0.18                     | 0.26  | 0.16                     | 0.15  | 0.25  | 0.17  | 0.14  | 0.20  |
| 20 |          |                     | Total            | (wt%) | 60.0      | 0.14  | 0.26      | 90.0  | 0.11  | 0.25      | 90.0  | 0.08                     | 0.28  | 0.07                     | 90.0  | 0.20  | 0.06  | 0.05  | 0.12  |
|    |          |                     | To<br>45°        | (%)   | 09        | 1     | 185       | 22    | 1     | 237       | 62    | -                        | 360   | 101                      | 1     | 302   | 115   | -     | 239   |
| 25 |          |                     | To 0°            | (%)   | 1         | 167   | 308       | 1     | 183   | 433       | -     | 127                      | 459   | 1                        | 66    | 299   | -     | 87    | 208   |
|    | le1]     | Nicotine            | 4 to 13<br>puffs | (wt%) | 0.08      | 0.13  | 0.21      | 0.05  | 0.10  | 0.24      | 0.05  | 0.07                     | 0.27  | 90.0                     | 90.0  | 0.18  | 0.05  | 0.04  | 0.11  |
| 30 | [Table1] |                     | To<br>45°        | (%)   | 72        | 1     | 367       | 80    | 1     | 112       | 101   | -                        | 161   | 111                      | 1     | 114   | 113   | -     | 177   |
|    |          |                     | To 0°            | (%)   | -         | 138   | 205       | -     | 125   | 141       | -     | 66                       | 160   | -                        | 06    | 103   | 1     | 88    | 156   |
| 35 |          |                     | 1 to 3<br>puffs  | (wt%) | 0.010     | 0.014 | 0.051     | 0.009 | 0.011 | 0.012     | 0.009 | 0.009                    | 0.014 | 0.010                    | 0.009 | 0.010 | 0.008 | 0.007 | 0.013 |
| 40 |          | CICH GOIL           | ing Angle        | (。)   | 0         | 45    | 06        | 0     | 45    | 06        | 0     | 45                       | 06    | 0                        | 45    | 06    | 0     | 45    | 06    |
| 45 |          | Apple 1 Jeffer Hold | ence             | (。)   | 11.0      |       |           | 11.6  |       |           | 4.0   |                          | 1.3   |                          | 1.9   |       |       |       |       |
|    |          | ollance             | Angle            | (°)   | 24.1      |       | 29.9      |       |       | 37.4      |       | 43.3                     |       | 50.0                     |       |       |       |       |       |
| 50 |          | Angle of<br>Repose  |                  | (。)   | 35.1      |       |           | 41.5  |       |           | 41.4  |                          | 44.6  |                          | 51.9  |       |       |       |       |
| 55 | 55       |                     |                  |       | Example 1 |       | Example 2 |       |       | Example 3 |       | Comparative<br>Example 1 |       | Comparative<br>Example 2 |       |       |       |       |       |

**[0228]** It is apparent from Table 1 that, in Examples 1 to 3 of which the angle of repose was smaller than or equal to 43°, for each of nicotine and menthol, with an increase in use holding angle, a total value of each in the first to thirteenth puffs increased, that is, the flavor intensity increased. On the other hand, in Comparative Examples 1 and 2 of which the angle of repose was larger than 43°, for all of them, a total value at a use holding angle of 45° was smaller than a total value at 0° (substantially, almost did not change), and the tendency as in the case of Examples 1 to 3 did not appear. As for this result, it is presumable that, in the non-combustion-heating-type tobaccos of Comparative Examples 1 and 2, movement of tobacco material almost did not occur until a certain level of inclination of the non-combustion-heating-type tobacco and, therefore, the delivery amount of each of nicotine and menthol did not change, that is, the flavor intensity did not change.

- [0229] When Examples 1 to 3 are compared with one another, it is found that the effect of increase in the total value of menthol resulting from an increase in use holding angle increases, that is, adjustment of the flavor intensity becomes easier, in order of Example 3, Example 2, and Example 1, that is, in ascending order of the angle of repose and the collapse angle and descending order of the angle difference. This is presumably because, as the angle of repose and the collapse angle reduced, movement of tobacco granules became easier.
- [0230] It is found from the above experiment that, by using the non-combustion-heating-type tobacco according to the present embodiment, it is possible to manufacture a non-combustion-heating-type tobacco capable of controlling the flavor intensity. Reference Signs List

#### [0231]

- 20 1 non-combustion-heating-type tobacco (inhaler)
  - 10 electric heating device (main unit)
  - 11 housing
  - 15 power supply unit
  - 16 heater member
- 25 20 cartridge
  - 21 first filter part
  - 22 second filter part
  - 23 space section
  - 24 wrapping paper
- 30 25 additional segment
  - 26 additional segment joining paper
  - T tobacco material
  - 30 mouthpiece (pull-out jig)
  - 31 inhalation port
- 35 32 proximal part
  - 33 engaging circumferential wall
  - 40 cap
  - 110 housing body
  - 111 outer housing
- 40 111a inhalation port-side opening
  - 117 inner tubular member
  - 120 mouthpiece support member
  - mouthpiece opening (opening)
  - 130 cartridge accommodation member
- 45 140 cartridge support member
  - 151 battery
  - 152 control unit
  - 311 finger hook
  - T1 tobacco material
- 50 s2 flow path

#### **Claims**

1. A tubular non-combustion-heating-type tobacco comprising a first filter part, a second filter part, and a wrapping paper wrapping the filter parts such that a space section is formed between the first filter part and the second filter part, wherein

particulate tobacco material is movably disposed in the space section, and an angle of repose of the tobacco material is smaller than or equal to 43°.

- 2. The non-combustion-heating-type tobacco according to claim 1, wherein the tobacco material is tobacco granules.
- 3. The non-combustion-heating-type tobacco according to claim 1 or 2, wherein the particle size of the particulate tobacco material is greater than 250 μm and less than 840 μm.
- 4. The non-combustion-heating-type tobacco according to any one of claims 1 to 3, wherein the ratio of a volume of the tobacco material to a total volume of the space section is higher than or equal to 25 vol% and lower than or equal to 75 vol%.
  - **5.** The non-combustion-heating-type tobacco according to claim 4, wherein the ratio of a volume of the tobacco material to a total volume of the space section is higher than or equal to 40 vol% and lower than or equal to 60 vol%.
  - **6.** The non-combustion-heating-type tobacco according to any one of claims 1 to 5, wherein an collapse angle of the tobacco material is smaller than or equal to 40°.
  - **7.** The non-combustion-heating-type tobacco according to any one of claims 1 to 6, wherein an angle difference obtained by subtracting a collapse angle of the tobacco material from the angle of repose of the tobacco material is larger than or equal to 3°.
    - 8. An electrically heated tobacco product comprising

5

15

20

30

35

40

45

50

55

an electric heating device that comprises a heater member, a battery unit serving as an electric power supply of the heater member, and a control unit for controlling the heater member, and the non-combustion-heating-type tobacco according to any one of claims 1 to 7, inserted so as to be in contact with the heater member.

FIG. 1

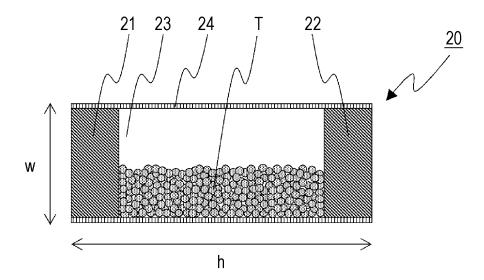



FIG. 2

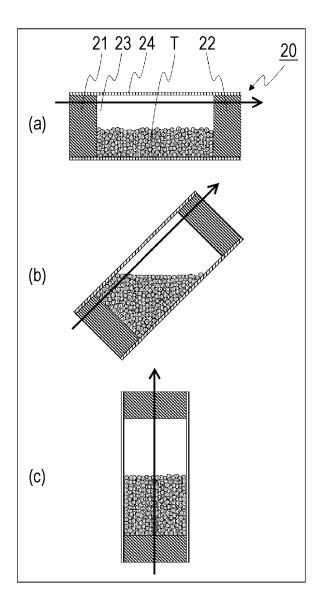



FIG. 3A

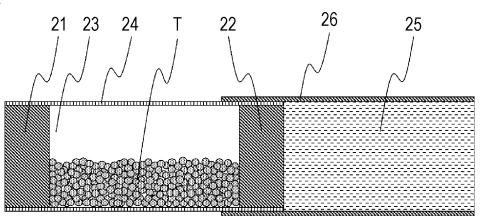
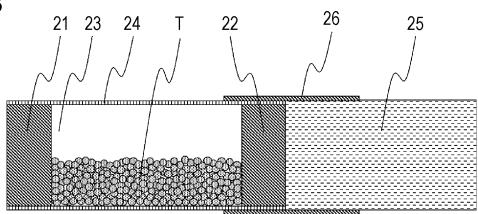
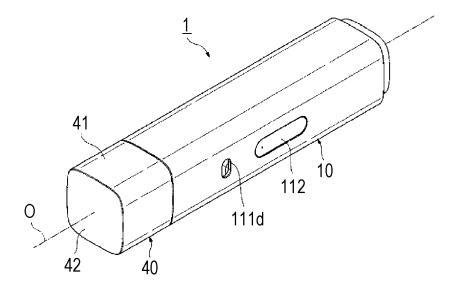
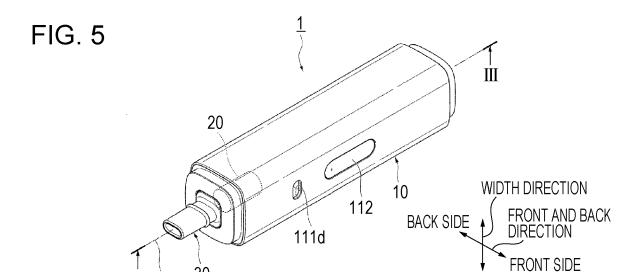
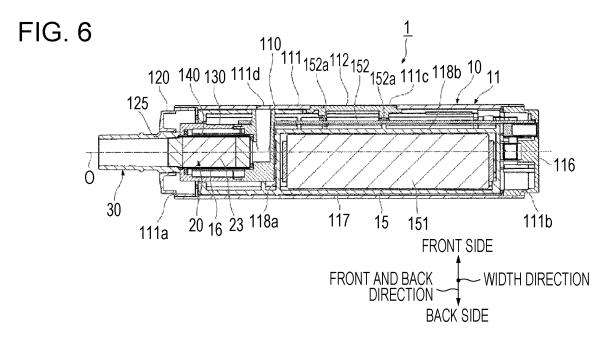
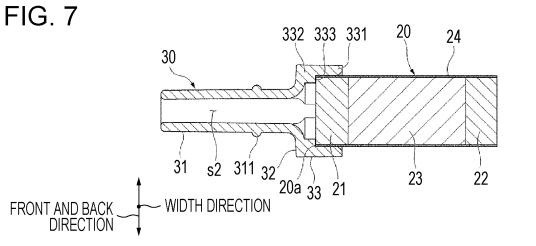



FIG. 3B



FIG. 4






30

m o





International application No.

INTERNATIONAL SEARCH REPORT

#### PCT/JP2021/016275 5 A. CLASSIFICATION OF SUBJECT MATTER A24F 47/00(2020.01)i; A24F 40/20(2020.01)i; A24F 40/42(2020.01)i FI: A24F40/42; A24F40/20; A24F47/00 According to International Patent Classification (IPC) or to both national classification and IPC 10 Minimum documentation searched (classification system followed by classification symbols) A24F47/00; A24F40/20; A24F40/42 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Published examined utility model applications of Japan 1922-1996 1971-2021 Published unexamined utility model applications of Japan 15 Registered utility model specifications of Japan 1996-2021 Published registered utility model applications of Japan 1994-2021 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) DOCUMENTS CONSIDERED TO BE RELEVANT 20 Category\* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. KR 10-2020-0026927 A (NANTONG JIN YUAN NEW MATERIALS CO., LTD.) 11 March 2020 (2020-03-11) Α paragraphs [0042], [0046], [0055], [0072] 25 Α WO 2015/121414 A1 (REFINED TECHNOLOGIES (IPC) 1 - 8LIMITED) 20 August 2015 (2015-08-20) page 7, lines 9 - 1330 35 $\bowtie$ Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand document defining the general state of the art which is not considered to be of particular relevance "A" the principle or theory underlying the invention "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be 45 considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 08 June 2021 (08.06.2021) 15 June 2021 (15.06.2021) 50 Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Form PCT/ISA/210 (second sheet) (January 2015)

55

Telephone No.

|    | INTERNATIO                                    | International application No. |                                                                                        |                                  |  |  |  |
|----|-----------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| E  | Information                                   | PCT/JP2021/016275             |                                                                                        |                                  |  |  |  |
| 5  | Patent Documents<br>referred in the<br>Report | Publication<br>Date           | Patent Famil                                                                           | y Publication<br>Date            |  |  |  |
| 10 | KR 10-2020-0026927 A                          | 11 Mar. 2020                  | EP 3689162 A<br>paragraphs [<br>[0039], [004<br>[0065]<br>CN 107536100<br>WO 2019/0616 | [0035],<br>[9],<br>0 A<br>506 A1 |  |  |  |
| 15 | WO 2015/121414 A1                             | 20 Aug. 2015                  | JP 2020-5348<br>(Family: non                                                           |                                  |  |  |  |
| 20 |                                               |                               |                                                                                        |                                  |  |  |  |
| 25 |                                               |                               |                                                                                        |                                  |  |  |  |
| 30 |                                               |                               |                                                                                        |                                  |  |  |  |
| 35 |                                               |                               |                                                                                        |                                  |  |  |  |
| 40 |                                               |                               |                                                                                        |                                  |  |  |  |
| 45 |                                               |                               |                                                                                        |                                  |  |  |  |
| 50 |                                               |                               |                                                                                        |                                  |  |  |  |
| 55 | Form PCT/ISA/210 (patent family annex         | x) (January 2015)             |                                                                                        |                                  |  |  |  |

#### REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

#### Patent documents cited in the description

- JP 05292410 B [0007]
- JP 05771338 B [0007]
- JP 2013507906 W **[0007]**
- WO 2017198838 A [0007]

- WO 2017036951 A [0007]
- JP 05877618 B [0007]
- JP 2016506729 W [0007]

## Non-patent literature cited in the description

 Tobacco Dictionary. Tobacco Research Center, 31 March 2009 [0087]