

(11) **EP 4 141 258 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 01.03.2023 Patentblatt 2023/09

(21) Anmeldenummer: 22192428.5

(22) Anmeldetag: 26.08.2022

(51) Internationale Patentklassifikation (IPC):

F04B 1/20(2006.01) F04B 1/2014(2020.01) F04B 1/2064(2020.01) F04B 53/08(2006.01) F03C 1/06(2006.01) F15B 15/18(2006.01)

F15B 21/0423 (2019.01)

(52) Gemeinsame Patentklassifikation (CPC):

F03C 1/0636; F03C 1/0644; F03C 1/0663; F04B 1/20; F04B 1/2014; F04B 1/2064; F04B 53/08; F15B 7/006; F15B 15/18; F15B 21/04;

F15B 21/0423; F15B 2211/20515; F15B 2211/20538; F15B 2211/20561;

F15B 2211/27; (Forts.)

(84) Benannte Vertragsstaaten:

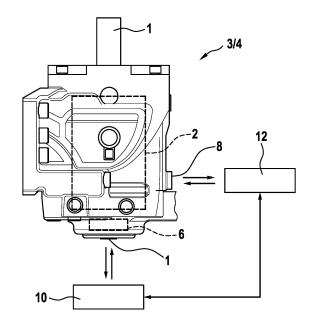
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN


(30) Priorität: 31.08.2021 DE 102021209515

(71) Anmelder: Robert Bosch GmbH 70442 Stuttgart (DE)

(72) Erfinder:

- Oppelt, Matthias 63768 Wenighoesbach (DE)
- Rumpel, Manuel 97753 Karlstadt (DE)
- (54) HYDROSTATISCHE AXIALKOLBENMASCHINE MIT EINEM KÜHLKREISLAUF UND SERVO-HYDRAULISCHER AKTUATOR MIT EINER HYDROSTATISCHEN AXIALKOLBENMASCHINE UND MIT EINEM KÜHLKREISLAUF
- (57) Hydrostatische Axialkolbenmaschine, in deren Gehäuse (4) ein Triebwerksraum (2) mit einem Triebwerk angeordnet ist, das über ein Lager (6) in dem Gehäuse (4) gelagert ist, wobei das Lager (6) benachbart zu einer Steuerscheibe des Triebwerks angeordnet ist, wobei an das Gehäuse (4) oder den Triebwerksraum (2) ein Kühlkreislauf zur Kühlung des Triebwerks ausgeschlossen ist, wobei ein Kühlmittel des Kühlkreislaufs gleich einem Arbeitsdruckmittel der Axialkolbenmaschine ist, wobei der Kühlkreislauf eine Kühlmittelpumpe (10) und eine Wärmeabgabevorrichtung (12) hat, und wobei der Kühlkreislauf durch das Lager (6) verläuft. Ein servohydraulischer Aktuator mit einer solchen Axialkolbenmaschine (3) ist ebenfalls offenbart.

Fig. 1

EP 4 141 258 A1

(52) Gemeinsame Patentklassifikation (CPC): (Forts.) F15B 2211/611; F15B 2211/62; F15B 2211/625; F15B 2211/7053

Beschreibung

[0001] Die Erfindung betrifft eine Axialkolbenmaschine mit einem Kühlkreislauf gemäß dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft weiterhin einen Servo-hydraulischen Aktuator mit einer Axialkolbenmaschine und mit einem Kühlkreislauf.

1

[0002] Aus dem Stand der Technik sind Axialkolbenmaschinen bekannt, deren Zylindertrommel konzentrisch zu einer Triebwelle angeordnet ist und zusammen mit der Triebwelle gegenüber einer ruhenden Steuerscheibe rotiert. Dabei führen axial ausgerichtete Koben in jeweiligen Zylinderbohrungen der Zylindertrommel Hubbewegungen aus. Bei einem ersten Teil ihres Umlaufs ist die Hubbewegung in eine erste Richtung gerichtet, und dabei werden die Zylinder über eine erste kreisbogenförmige Steueröffnung der Steuerscheibe mit einem ersten Anschluss der Axialkolbenmaschine verbunden. Bei einem zweiten Teil ihres Umlaufs ist die Hubbewegung in die Gegenrichtung gerichtet und dabei werden die Zylinder über eine zweite kreisbogenförmige Steueröffnung mit einem zweiten Anschluss der Axialkolbenmaschine verbunden. Um Leckage des so gebildeten Triebwerks zu minimieren, wird die rotierende Zylindertrommel gegen die ruhende Steuerscheibe gepresst.

[0003] Nachteilig an derartigen Axialkolbenmaschine ist die Wärmeentwicklung, die durch Reibung der Bauteile, insbesondere der rotierenden Zylindertrommel mit der ruhenden Steuerscheibe aber auch durch Reibung des Arbeitsdruckmittels entsteht. Diese Wärme wird teilweise mit dem Arbeitsdruckmittel abgeführt und je nach Einbausituation auch von der Gehäuseaußenseite der Axialkolbenmaschine an die Umgebungsluft abgegeben. Nachteilig an derartigen Axialkolbenmaschinen ist, dass die abtransportierte Wärmemenge begrenzt ist. Die Begrenzung ergibt sich einerseits durch die begrenzten Möglichkeiten des Arbeitsdruckmittels sich wieder abzukühlen bevor es zurück in die Axialkolbenmaschine strömt, und andererseits durch die Größe der Gehäuseaußenseite und die Temperatur der Umgebungsluft, die die Gehäuseaußenseite umgibt.

[0004] In der Druckschrift DE 1 951 234 A1, ist eine Axialkolbenmaschine gezeigt, die einen extra Kühlkreislauf hat. Da dieser Kühlkreislauf zur Kühlung des Triebwerks durch den Innenraum des Gehäuses (Triebwerksraum) verläuft, wo er auch Leckage des Triebwerks aufnimmt, muss der Kühlkreislauf mit dem Arbeitsdruckmittel der Axialkolbenmaschine betrieben werden. Das hat die Vorteile, dass kein spezielles Kühlmittel bereitgestellt und gegen die Umgebung abgedichtet werden muss, und dass die erwärmte Leckage auch zum Abtransport von Wärme dienen kann.

[0005] Unter dem Adjektiv "extra" ist in dieser Schrift zu verstehen, dass der Kühlkreislauf losgelöst und - abgesehen von Leckage - zumindest zeitweise unabhängig von dem Kreislauf des Arbeitsdruckmittels (Hydrauliköls) ist.

[0006] Das als Kühlmittel dienende Arbeitsdruckmittel strömt bei der DE 1 951 234 A1 seitlich direkt und in radialer Richtung zur Triebwelle in das Gehäuse hinein und an einer anderen Seite direkt und radial wieder aus dem Gehäuse heraus. Der Kühlkreislauf wird von einer Speisepumpe betrieben, die an die Triebwelle der Axialkolbenmaschine gekoppelt ist. Zur Abgabe der aufgenommenen Wärme vom Kühlmittel an die Umgebung dient ein Reservoir.

[0007] Nachteilig an derartigen Axialkolbenmaschinen mit Kühlkreislauf ist der suboptimale Wirkungsgrad der Kühlung.

[0008] Dem gegenüber liegt der Erfindung die Aufgabe zu Grunde, eine Axialkolbenmaschine mit extra Kühlkreislauf und einen entsprechenden Servo-hydraulischen Aktuator zu schaffen, bei dem die Wärmeabfuhr weiter verbessert ist.

[0009] Diese Aufgabe wird gelöst durch eine Axialkolbenmaschine mit den Merkmalen des Patentanspruchs 1 und durch einen Servo-hydraulischen Aktuator mit den Merkmalen des Patentanspruchs 6.

[0010] Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.

[0011] Die beanspruchte hydrostatische Axialkolbenmaschine ist vorzugsweise eine Axialkolbenpumpe und hat ein Triebwerk, das über ein Lager (vorzugsweise Wälzlager) in einem Gehäuse gelagert ist. Das Lager kann auch als vorderes Lager bezeichnet werden. Das Lager ist benachbart zu einer Steuerscheibe (Verteilerscheibe) angeordnet. Damit ist das Lager entfernt von dem Endabschnitt der Triebwelle, der aus dem Gehäuse herausragt, und der eine Kopplungsvorrichtung (z.B. für einen Elektromotor) aufweist. Dort kann ein weiteres Lager (vorzugsweise weiteres Wälzlager) angeordnet sein. An einen Triebwerksraum im Innern des Gehäuses ist ein Kühlkreislauf zur Kühlung des Triebwerks ausgeschlossen. Ein Kühlmittel des Kühlkreislaufs ist gleich einem Arbeitsdruckmittel bzw. es entspricht einem Arbeitsdruckmittel der Axialkolbenmaschine. Der Kühlkreislauf hat eine Kühlmittelpumpe und eine Wärmeabgabevorrichtung. Erfindungsgemäß verläuft der Kühlkreislauf durch das erstgenannte vordere Lager. Dieses Lager ist besonders heiß, so dass dort eine besonders effektive Wärmeabfuhr möglich ist.

[0012] Das genannte Lager ist besonders gut zugänglich, weil dort keine weitere Komponente oder Maschine (z.B. Elektromotor) angeordnet und angekoppelt werden muss. Daher ist es vorrichtungstechnisch einfach, wenn an dem Gehäuse eine Abdeckung (z.B. Kappe) dichtend befestigt ist, die das Lager und/oder eine Stirnseite der Triebwelle abdeckt, und die einen Anschluss für den Kühlkreislauf bildet.

[0013] Es wird besonders bevorzugt, wenn der Triebwerksraum mit einem Niederdruckanschluss oder Tankanschluss der Axialkolbenmaschine verbunden ist.

[0014] Der Kühlkreislauf kann weiterhin zulaufseitig oder ablaufseitig durch einen Gehäuseanschluss geführt

40

10

15

sein, der direkt mit dem Triebwerksraum verbunden ist. Besonders bevorzugt wird die ablaufseitige Variante, womit der Kühlkreislauf von dem Lager durch den Triebwerksraum zum Gehäuseanschluss gerichtet ist. Dann ist das Kühlmittel bei Erreichen des Lagers noch besonders kühl, so dass ein besonders effektiver Wärmeübertritt und eine besonders effektive Wärmeabfuhr möglich sind.

[0015] Die Wärmeabgabevorrichtung kann ein per se aus dem Stand der Technik bekanntes Reservoir sein. Vorzugsweise ist die Wärmeabgabevorrichtung ein effektiver Plattenwärmetauscher oder vorrichtungstechnisch einfach ein langer Leitungsabschnitt des Kühlkreislaufes.

[0016] Der erfindungsgemäße Servo-hydraulische Aktuator hat eine vorbeschriebene Axialkolbenmaschine, die meistens als Pumpe arbeitet und somit einen Arbeitszylinder in einem geschlossenen Kreis versorgt. Durch den geschlossenen Kreis hat das Arbeitsdruckmittel wenig Möglichkeit die in der Axialkolbenmaschine aufgenommen Wärme wieder abzugeben. Daher ist der erfindungsgemäße extra Kühlkreislauf besonders vorteilhaft. Vorteile ergeben sich auch beim Lasthalten bei geringer Drehzahl und bei Nullhub.

[0017] Wenn der Aktuator einen hydraulischen Steuerblock zur Steuerung von fluidischen Verbindungen zwischen der Axialkolbenmaschine und dem Arbeitszylinder hat, dann kann der Kühlkreislauf auch durch den Steuerblock verlaufen. Damit ist auch diese Komponente gekühlt.

[0018] Die Axialkolbenmaschine hat meistens ein weiteres Lager (vorzugsweise weiteres Wälzlager) für die Triebwelle, das dem erfindungsgemäß durchströmten erstgenannten Lager mit Bezug zur Zylindertrommel gegenüber liegt. Wenn der Aktuator benachbart zu diesem weiteren Lager einen Elektromotor hat, der an die Axialkolbenmaschine gekoppelt ist und diese antreibt, dann kann der Kühlkreislauf durch das weitere Lager und durch den Elektromotor verlaufen. Damit sind auch diese Komponenten gekühlt.

[0019] Die Axialkolbenmaschine kann an dem Aktuator befestigt sein und mit diesem eine bauliche Einheit bilden. Durch die räumliche Nähe der Axialkolbenmaschine zu dem Rest des Aktuators hat die Gehäuseaußenseite der Axialkolbenmaschine wenig Umgebungsluft, um die Wärme abzugeben. Daher ist der erfindungsgemäße extra Kühlkreislauf in diesem Fall besonders vorteilhaft.

[0020] Unter baulicher Einheit kann verstanden werden, dass die genannten Komponenten fest miteinander verbunden sind.

[0021] Bei einer ersten Variante des Aktuators sind die Kühlmittelpumpe und die Wärmeabgabevorrichtung an dem Servo-hydraulischen Aktuator befestigt und bilden mit diesem eine bauliche Einheit. Damit bildet der Aktuator einschließlich dem erfindungsgemäßen Kühlkreislauf eine handhabbare Einheit, die mit geringem Aufwand an ihrem Einsatzort montiert und installiert werden kann.

[0022] Bei einer zweiten Variante des Aktuators ist die Wärmeabgabevorrichtung über Kühlmittelleitungen, vorzugsweise Kühlmittelschläuche, mit dem Gehäuse der Axialkolbenmaschine (und damit ggf. auch mit dem Aktuator) verbunden. Damit wird ein Abstand der Wärmeabgabevorrichtung zur Axialkolbenmaschine ermöglicht, so dass die abgegebene Wärme nicht wieder dorthin zurück gelangt. Die Wärmeabgabevorrichtung kann auch mit der Kühlmittelpumpe ein separates Kühlaggregat bilden.

[0023] Mehrere Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt.

[0024] Es zeigen

Figur 1 die erfindungsgemäße Axialkolbenmaschine gemäß zweier Ausführungsbeispiele in einer Ansicht.

Figur 2 ein Ausführungsbeispiel des erfindungsgemäßen Servo-hydraulischen Aktuators in einer perspektivischen Darstellung, und

Figur 3 einen Ausschnitt des Servo-hydraulischen Aktuators aus Figur 2 in einer schematischen Darstellung.

[0025] Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Axialkolbenmaschine 3. Eine (nicht gezeigte) Zylindertrommel ist konzentrisch zu einer Triebwelle 1 angeordnet und rotiert zusammen mit der Triebwelle 1 gegenüber einer ruhenden Steuerscheibe. Die Triebwelle 1 ragt in Figur 1 oben aus dem Gehäuse 4 heraus, so dass dort eine weitere Maschine, z.B. ein Elektromotor zum Antrieb der als Pumpe wirkenden Axialkolbenmaschine 3 gekoppelt werden kann.

[0026] Die Triebwelle 1 ist (in Figur 1 unten) mittels eines als Wälzlager ausgebildeten Lagers 6 und (in Figur 1 oben) mittels eines nicht gezeigten weiteren Lagers im Gehäuse 4 gelagert.

[0027] Axial ausgerichtete Kolben führen in jeweiligen Zylinderbohrungen der Zylindertrommel Hubbewegungen aus. Bei einem ersten Teil ihres Umlaufs ist die Hubbewegung in eine erste Richtung gerichtet, und dabei werden die Zylinder über eine erste kreisbogenförmige Steueröffnung der Steuerscheibe mit einem ersten Anschluss der Axialkolbenmaschine 3 verbunden. Bei einem zweiten Teil ihres Umlaufs ist die Hubbewegung in die Gegenrichtung gerichtet und dabei werden die Zylinder über eine zweite kreisbogenförmige Steueröffnung mit einem zweiten Anschluss der Axialkolbenmaschine 3 verbunden. Um Leckage des so gebildeten Triebwerks zu minimieren, wird die rotierende Zylindertrommel gegen die ruhende Steuerscheibe gepresst.

[0028] Die Zylindertrommel ist in einem Triebwerksraum 2 aufgenommen, der im Innern des Gehäuses 4 der Axialkolbenmaschine gebildet ist.

[0029] In Figur 1 sind zwei verschiedene Ausführungsbeispiele eines erfindungsgemäßen extra Kühlkreislaufes gezeigt. Beide Ausführungsbeispiele haben eine Kühlmittelpumpe 10 und eine als Plattenwärmetauscher

12 ausgebildete Wärmeabgabevorrichtung. Weiterhin verlaufen die Kühlkreisläufe beider Ausführungsbeispiele über das Lager 6, das den Wellenstummel der Triebwelle 1 lagert, der nicht mit einer weiteren Maschine gekoppelt wird. Weiterhin verlaufen beide Ausführungsbeispiele über einen Gehäuseanschluss 8, der direkt mit dem Triebwerksraum 2 verbunden ist.

[0030] Beim ersten Ausführungsbeispiel ist der Gehäuseanschluss 8 ablaufseitig. Damit verläuft der Kühlkreislauf vom Gehäuseanschluss 8 über die Kühlmittelpumpe 10 und den Plattenwärmetauscher 12 zu einem zulaufseitigen Gehäuseanschluss, der zusammen mit einem (nicht gezeigten) Deckel des Lagers 6 gebildet ist. In diesem besonders warmen Bereich der Axialkolbenmaschine 3 nimmt das Kühlmittel Wärme auf und strömt weiter durch den Triebwerksraum 2, in dem es eventuelle Leckage aufnimmt. Schließlich strömt das Kühlmittel zum ablaufseitigen Gehäuseanschluss 8.

[0031] Beim zweiten Ausführungsbeispiel verläuft der Kühlkreislauf umgekehrt zum ersten Ausführungsbeispiel, so dass der Gehäuseanschluss 8 zulaufseitig ist. Damit verläuft der Kühlkreislauf vom Gehäuseanschluss 8 über den Triebwerksraum 2 und über das Lager 6 durch den dortigen Gehäuseanschluss über den Plattenwärmetauscher 12 und die Kühlmittelpumpe 10 wieder zum zulaufseitigen Gehäuseanschluss 8.

[0032] Figur 2 zeigt ein Ausführungsbeispiel des kompakten und als bauliche Einheit ausgeführten erfindungsgemäßen Servo-hydraulischen Aktuators. Er hat eine Axialkolbenmaschine 3, die einen in Figur 3 gezeigten Kühlkreislauf aufweist.

[0033] In Figur 2 ist gezeigt, dass der Servo-hydraulischen Aktuator einen Elektromotor 14 zum Antrieb der als Pumpe arbeitenden Axialkolbenmaschine 3 aufweist. Die Axialkolbenmaschine 3 versorgt in einem geschlossenen hydraulischen Kreis über einen Steuerblock 16 einen als Differenzialzylinder ausgebildeten Arbeitszylinder 20. Weiterhin hat der Aktuator eine Hydrospeicher 22 und ein elektronisches Steuergerät 24.

[0034] Der Aktuator ist auch zusammen mit dem in Figur 3 gezeigten Kühlkreislauf für die Axialkolbenmaschine 3 und für den Steuerblock 16 in einer kompakten baulichen Einheit ausgeführt, so dass der Aktuator als ein Bauteil an seinem Einsatzort verbaut werden kann.

[0035] Figur 3 zeigt die Axialkolbenmaschine 3 aus Figur 2 mit ihrem Kühlkreislauf in einer schematischen Darstellung.

[0036] Bei diesem Ausführungsbeispiel verläuft der Kühlkreislauf von der Kühlmittelpumpe 10 zum zulaufseitigen Anschluss, der zusammen mit einem (nicht gezeigten) Deckel des Lagers 6 gebildet ist. In diesem besonders warmen Lager 6 der Axialkolbenmaschine 3 nimmt das Kühlmittel Wärme auf und strömt weiter durch den Triebwerksraum 2, in dem es eventuelle Leckage aufnimmt und weiter zum Steuerblock 16, der somit ebenfalls gekühlt wird. Vom Steuerblock 16 strömt das Kühlmittel über den Plattenwärmetauscher 12 wieder zur Kühlmittelpumpe 10.

[0037] Offenbart sind eine hydrostatische Axialkolbenmaschine 3 und ein Servo-hydraulischer Aktuator mit einer Axialkolbenmaschine 3. Zumindest ein Triebwerk und eines der Lager 6 der Axialkolbenmaschine sind mittels eines extra Kühlkreislaufes gekühlt. Da der Kühlkreislauf auch eventuelle Leckage des Triebwerks abführt, entspricht das Kühlmittel dem Arbeitsdruckmittel, das das Triebwerk der Axialkolbenmaschine 3 durchströmt. Der Eingang in das Gehäuse 4 oder der Ausgang aus dem Gehäuse 4 für das Kühlmittel ist als Einheit mit einer Halterung und/oder Abdeckung des Lagers 6 gebildet.

[0038] Bei dem Servo-hydraulischen Aktuator mit einer derartigen Axialkolbenmaschine 3 können mit dem Kühlkreislauf auch dessen Komponenten wie z.B. ein Steuerblock 16 oder ein Elektromotor 14 gekühlt werden.

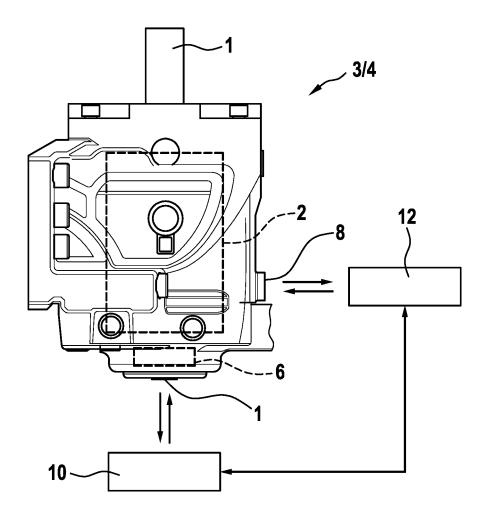
Bezugszeichenliste:

0 [0039]

- 1 Triebwelle / Antriebswelle
- 2 Triebwerksraum
- 3 Axialkolbenmaschine
- ²⁵ 4 Gehäuse
 - 6 Lager
 - 8 Gehäuseanschluss
 - 10 Kühlmittelpumpe
 - 12 Wärmeabgabevorrichtung / Plattenwärmetauscher
 - 14 Elektromotor
 - 16 Steuerblock
 - 20 Arbeitszylinder
 - 22 Hydrospeicher
- 5 24 elektronisches Steuergerät

Patentansprüche

- 40 1. Hydrostatische Axialkolbenmaschine, in deren Gehäuse (4) ein Triebwerksraum (2) mit einem Triebwerk angeordnet ist, das über ein Lager (6) in dem Gehäuse (4) gelagert ist, wobei das Lager (6) benachbart zu einer Steuerscheibe des Triebwerks an-45 geordnet ist, wobei an das Gehäuse (4) oder den Triebwerksraum (2) ein Kühlkreislauf zur Kühlung des Triebwerks ausgeschlossen ist, wobei ein Kühlmittel des Kühlkreislaufs gleich einem Arbeitsdruckmittel der Axialkolbenmaschine ist, wobei der Kühlkreislauf eine Kühlmittelpumpe (10) und eine Wärmeabgabevorrichtung (12) hat, dadurch gekennzeichnet, dass der Kühlkreislauf durch das Lager (6) verläuft.
- 55 2. Hydrostatische Axialkolbenmaschine nach Anspruch 1, wobei an dem Gehäuse (4) eine Abdeckung dichtend befestigt ist, die eine Stirnseite der Triebwelle (1) und/oder das Lager (6) abdeckt, und


die einen Anschluss für den Kühlkreislauf bildet.

- 3. Axialkolbenmaschine nach einem der vorhergehenden Ansprüche, wobei der Kühlkreislauf durch einen Gehäuseanschluss (8) verläuft, der direkt mit dem Triebwerksraum (2) verbunden ist.
- 4. Axialkolbenmaschine nach Anspruch 3, wobei der Kühlkreislauf von dem Lager (6) durch den Triebwerksraum (2) zum Gehäuseanschluss (8) gerichtet
- 5. Axialkolbenmaschine nach einem der vorhergehenden Ansprüche, wobei die Wärmeabgabevorrichtung (12) ein Plattenwärmetauscher (12) oder ein langer Leitungsabschnitt des Kühlkreislaufes ist.
- 6. Servo-hydraulischer Aktuator mit einer Axialkolbenmaschine (3) gemäß einem der vorhergehenden Ansprüche, die mit einem Arbeitszylinder (20) in einem geschlossenen Kreis verbunden ist.
- 7. Servo-hydraulischer Aktuator nach Anspruch 6 mit einem hydraulischen Steuerblock (16) zur Steuerung von mindestens einer fluidischen Verbindung zwischen der Axialkolbenmaschine (3) und dem Arbeitszylinder (20) dadurch gekennzeichnet, dass der Kühlkreislauf durch den Steuerblock (16) verläuft.
- 8. Servo-hydraulischer Aktuator nach Anspruch 6 mit einem Elektromotor (14), der an die Axialkolbenmaschine (3) gekoppelt ist, wobei die Axialkolbenmaschine (3) ein dem Lager (6) gegenüberliegendes weiteres Lager aufweist, das benachbart zu dem Elektromotor (14) angeordnet ist, dadurch gekennzeichnet, dass der Kühlkreislauf durch das weitere Lager und durch den Elektromotor (14) verläuft.
- 9. Servo-hydraulischer Aktuator nach einem der Ansprüche 6 bis 8, wobei die Axialkolbenmaschine (3) an dem Aktuator befestigt ist und mit diesem eine bauliche Einheit bildet.
- 10. Servo-hydraulischer Aktuator nach einem der Ansprüche 6 bis 9, wobei die Kühlmittelpumpe (10) und die Wärmeabgabevorrichtung (12) an dem Aktuator befestigt sind und mit diesem eine bauliche Einheit bilden.
- 11. Servo-hydraulischer Aktuator nach einem der Ansprüche 6 bis 9, wobei die Wärmeabgabevorrichtung (12) über Kühlmittelschläuche mit dem Gehäuse (4) der Axialkolbenmaschine (3) verbunden ist.

50

55

Fig. 1

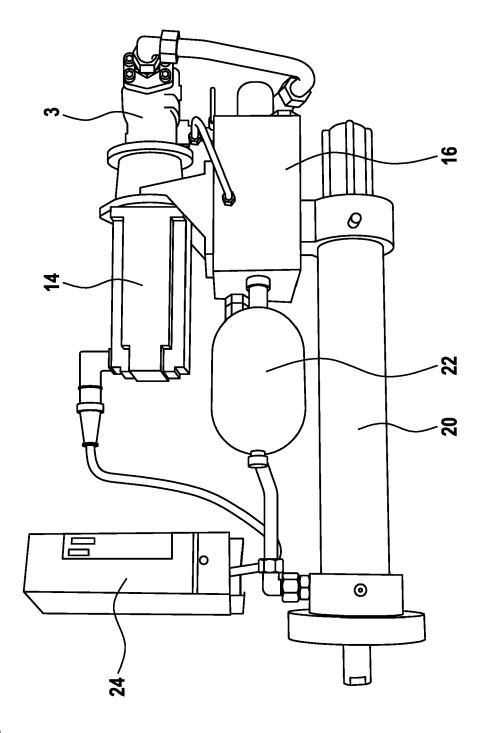
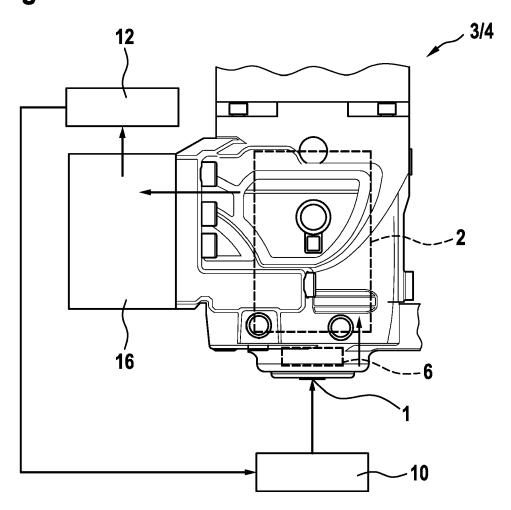



Fig. 2

Fig. 3

EUROPÄISCHER RECHERCHENBERICHT

EINSCHLÄGIGE DOKUMENTE

Nummer der Anmeldung

EP 22 19 2428

1	0		

	EINOONE/(GIGE BOILO	,,,,_,,,_		
Kategorie	Kennzeichnung des Dokuments mit A der maßgeblichen Teile	Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
x	DE 44 23 023 A1 (BRUENING GMBH [DE]) 4. Januar 1996		1-5	INV. F04B1/20
Y	* Spalte 5, Zeilen 20-25, 1 *	51-64; Abbildung	6-11	F04B1/2014 F04B1/2064
	* Spalte 6, Zeilen 15-20	*		F04B53/08 F03C1/06
x	EP 3 168 470 A1 (KYB CORP 17. Mai 2017 (2017-05-17) * Absätze [0001], [0039] [0049], [0065]; Abbildun	, [0040],	1	F15B15/18 F15B21/0423
Y	US 2019/277269 A1 (MARKER ET AL) 12. September 2019 * Absätze [0019], [0043] Anspruch 8; Abbildung 7 *	(2019-09-12) , [0055];	6-11	
Y	DE 10 2011 054623 A1 (LIN HANDLING GMBH [DE]) 11. April 2013 (2013-04-1 * Absatz [0070]; Abbildun	1)	6-11	
				RECHERCHIERTE SACHGEBIETE (IPC)
A,D	DE 19 51 234 A1 (LINDE AG 22. April 1971 (1971-04-2	•	1-11	F04B
	* das ganze Dokument *			F03C F15B
A.	DE 10 2018 200930 A1 (BOS		1-11	1138
	[DE]) 25. Juli 2019 (2019 * Absatz [0042]; Abbildun	•		
Der vo	rliegende Recherchenbericht wurde für alle	Patentansprüche erstellt Abschlußdatum der Recherche	_	Prüfer
	Recherchenort München	14. Dezember 202	2 010	ona Laglera, C
X : von Y : von	ATEGORIE DER GENANNTEN DOKUMENTE besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit einer eren Veröffentlichung derselben Kategorie		grunde liegende kument, das jedo dedatum veröffe g angeführtes Do	Theorien oder Grundsätze nich erst am oder ntlicht worden ist okument

EP 4 141 258 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 22 19 2428

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

14-12-2022

	4423023	A1	04-01-1996				
 EP 3				DE	4423023	A1	04-01-1
 EP 3				EP	0767864	A1	16-04-1
 EP 3				JP	3570517	в2	29-09-2
 EP 3				JP	H10502148	A	24-02-1
 EP 3				US	5971717	A	26-10-1
EP 3				WO	9600838		11-01-1
	3168470	A1	17-05-2017	AU	2015288847		02-02-2
				CN	106471249	A	01-03-2
				EP	3168470	A1	17-05-2
				JP	2016017430	A	01-02-2
				US	2017159639	A1	08-06-2
				WO	2016006465		14-01-2
US 2	2019277269	A1	12-09-2019	DE	102018203264		12-09-2
				US	2019277269		12-09-2
	102011054623		11-04-2013	KE]			
			22-04-1971	DE	1951234		22-04-1
				ES	384380	A1	01-05-1
				FR	2071729	A 5	17-09-1
				GB	1320242	A	13-06-1
				JP	S5024722	B1	18-08-1
				SE	378284	В	25-08-1
				US	3680312		01-08-1
DE 1	102018200930	A1	25-07-2019		110067744	A	30-07-2
					102018200930		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 4 141 258 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 1951234 A1 [0004] [0006]