Technical Field
[0001] The present invention relates to a cooling device and a cold head replacement method,
and particularly, to a technique used when a cold head is replaced under a conduction
cooling method.
Background Art
[0002] As a cooling method, a refrigerant cooling method in which an object to be cooled
is cooled by a refrigerator via a liquid or gas refrigerant, and a conduction cooling
method in which an object to be cooled is cooled by a refrigerator without using such
a refrigerant are known. In the latter conduction cooling method, a cold head of the
refrigerator is connected to the object to be cooled directly or via a heat conductor.
The cold head is connected to a compressor via a refrigerant circulation pipe. The
cold head is a portion that absorbs heat, in other words, a portion that generates
cold, and is also referred to as a refrigerator unit. When the cold head is used for
a long period of time, periodic maintenance of the cold head is required. The maintenance
includes, for example, replacement of consumable items such as a seal member and a
valve.
[0003] As a maintenance method of the cold head, the following three methods are known.
In a first maintenance method, maintenance of the cold head is performed by disassembling
the cold head while maintaining a cooled state of the cold head and the object to
be cooled. In a second maintenance method, maintenance is performed by increasing
a temperature of the cold head and the object to be cooled to a room temperature without
maintaining the cooled state of the cold head and the object to be cooled.
[0004] In a third maintenance method, maintenance of the cold head is performed after the
cold head is removed while maintaining the cooled state of the object to be cooled.
In this case, a new cold head is usually disposed after the cold head is removed.
A vacuum container accommodating the object to be cooled is provided with a refrigerator
port such that the cold head can be replaced while a vacuum state inside the vacuum
container is maintained. The refrigerator port is a hollow structure that accommodates
the cold head and functions as a partition wall. According to the third maintenance
method, the cooled state of the object to be cooled can be maintained. In addition,
the maintenance of the cold head can be performed at the room temperature, and thus
workability of the maintenance can be improved.
[0005] PTL 1 and PTL 2 each disclose a cooling device premised on the third maintenance
method described above. In the cooling device disclosed in PTL 1, a plurality of bellows
are provided in a refrigerator port that receives a refrigerator unit. The cooling
device disclosed in PTL 2 includes a coupling actuator that functions when a refrigerator
unit is coupled to a refrigerator port, and a separating actuator that functions when
the refrigerator unit is separated from the refrigerator port. In each of PTL 1 and
PTL 2, there is no recognizable configuration configured to operate a pressure inside
the refrigerator port.
Citation List
Patent Literature
Summary of Invention
Technical Problem
[0007] In a state where a cold head is installed to a refrigerator port, a port space inside
the refrigerator port becomes an airtight space. When the cold head is operated in
this state, gas remaining in the port space is condensed, and a pressure in the port
space becomes considerably lower than the atmospheric pressure, that is, becomes a
negative pressure. Accordingly, the atmospheric pressure is applied to the cold head
to press the cold head. In such a state, a considerably large force is required to
pull out the cold head from a cooler port. This causes deterioration in replacement
workability.
[0008] An object of the present disclosure is to improve workability when maintenance of
a cold head is performed. Another object of the present disclosure is to operate a
pressure in a port space when the maintenance of the cold head is performed.
Solution to Problem
[0009] A cooling device according to the present disclosure includes: a vacuum container
accommodating an object to be cooled; a refrigerator port provided in the vacuum container
and including a port space in which a cold head of a refrigerator configured to cool
the object to be cooled is accommodated in a replaceable manner; and a pressure adjustment
facility configured to supply gas to the port space to increase a pressure in the
port space before the cold head is pulled out.
[0010] A cold head replacement method according to the present disclosure includes: in a
state where a cold head of a refrigerator is disposed in a refrigerator port provided
in a vacuum container, supplying gas from an outside to a port space in the refrigerator
port and thereby increasing a pressure in the port space; and pulling out the cold
head from the refrigerator port after the pressure in the port space is increased.
Advantageous Effects of Invention
[0011] According to the present disclosure, it is possible to improve the workability when
the maintenance of the cold head is performed. Alternatively, according to the present
disclosure, it is possible to operate the pressure in the port space when the maintenance
of the cold head is performed.
Brief Description of Drawings
[0012]
[FIG. 1] FIG. 1 is a cross-sectional view showing a cooling device according to a
first embodiment.
[FIG. 2] FIG. 2 is a plan view showing a flange overlapping portion.
[FIG. 3] FIG. 3 is a cross-sectional view showing a cooling device according to a
second embodiment.
[FIG. 4] FIG. 4 is an enlarged cross-sectional view showing a part of the cooling
device shown in FIG. 3.
[FIG. 5] FIG. 5 is an enlarged cross-sectional view showing a modification.
[FIG. 6] FIG. 6 is a cross-sectional view showing a cooling device according to a
third embodiment.
[FIG. 7] FIG. 7 is an enlarged cross-sectional view showing a part of the cooling
device shown in FIG. 6.
[FIG. 8] FIG. 8 is a flowchart showing a cold head replacement method according to
an embodiment.
[FIG. 9] FIG. 9 is a diagram showing an example of a facility in which the cooling
device according to each embodiment is installed.
Description of Embodiments
[0013] Hereinafter, various embodiments will be described with reference to the drawings.
(1) Outline of Embodiment
[0014] A cooling device according to an embodiment includes a vacuum container, a refrigerator
port, and a pressure adjustment facility. The vacuum container is a container in which
an object to be cooled is accommodated. The refrigerator port is a port provided in
the vacuum container, and includes a port space in which a cold head of a refrigerator
configured to cool the object to be cooled is accommodated in a replaceable manner.
The pressure adjustment facility is a facility configured to supply gas to the port
space to increase a pressure in the port space before the cold head is pulled out.
[0015] According to the above configuration, before the cold head is pulled out from the
refrigerator port, the pressure adjustment facility is caused to function, the gas
is supplied to the port space, and the pressure in the port space is increased. Therefore,
a pressure difference between the outside and the port space is eliminated or reduced,
and a force applied to the cold head due to the pressure difference is eliminated
or reduced. Accordingly, the cold head is easily pulled out.
[0016] In the embodiment, the pressure adjustment facility functions not only when the gas
is supplied to the port space but also when the gas is discharged from the port space.
Further, the pressure adjustment facility may also be used for other purposes. In
the embodiment, the refrigerator port is a hollow structure in which all or a part
of the cold head is accommodated. The refrigerator port functions as a partition wall
that partitions an internal space of the vacuum container and the port space.
[0017] In the embodiment, the pressure adjustment facility includes a pipe and a valve.
The pipe includes a gas flow path communicating with the port space, and is drawn
out from the refrigerator port. The valve is provided in the pipe. The valve closes
the gas flow path during operation of the refrigerator, and allows supply of gas to
the gas flow path during replacement of the cold head.
[0018] According to the above configuration, the gas can be supplied to the port space with
a simple configuration. The pipe may be provided to penetrate the vacuum container,
or the pipe may be provided to penetrate a flange (attachment plate) of the cold head.
According to the former configuration, the existing cold head can be used directly.
[0019] In the embodiment, a first end portion of the pipe is connected to the refrigerator
port, and a second end portion of the pipe is guided to the outside of the vacuum
container. The valve is provided on an exposed portion (a portion exiting from the
vacuum container) of the pipe. When this configuration is adopted, opening and closing
of the valve can be manually performed. Of course, the opening and closing of the
valve may also be controlled by an electric signal.
[0020] In the embodiment, the refrigerator port includes a bellows that expands and contracts
in a port central axis direction.
[0021] The pipe is drawn out from a room temperature side of the bellows in the refrigerator
port. The bellows includes a bellows structure, has deformability, and exhibits a
heat inflow reducing effect. By drawing out the pipe from a room temperature side
portion of the refrigerator port, the pipe is thermally separated from a stage (heat
absorption unit, cold generation unit) of the cold head. In addition, according to
the above configuration, it is possible to obtain an advantage that no load is applied
to the pipe or a load is hardly applied to the pipe even when the bellows is deformed.
[0022] In the embodiment, the refrigerator port includes a sleeve and a pedestal. The sleeve
is a member surrounding the port space. The pedestal is a member provided on a cooling-side
end portion of the sleeve, and is directly or indirectly connected to the stage of
the cold head. The refrigerator is further provided with an elastic mechanism that
applies an elastic force to the pedestal so as to increase a connecting force between
the pedestal and the stage.
[0023] According to this configuration, the connecting force between the pedestal and the
stage can be increased by the elastic mechanism, and thus a thermal conductivity therebetween
can be improved. By providing the elastic mechanism independently of the sleeve, a
sufficient elastic action can be obtained without depending on an elastic action of
the bellows. Of course, a part of the refrigerator port may include a portion that
generates an auxiliary elastic force. In the embodiment, a mechanism that mechanically
generates an elastic force is provided as the elastic mechanism. In a situation in
which the cooling device vibrates or vibration reaches the cooling device, it can
also be expected that the vibration is absorbed and relaxed by the elastic mechanism.
In a case where a posture of the cooling device changes, the good thermal conductivity
described above can be stably obtained by the elastic mechanism.
[0024] In the embodiment, the port space includes a first port space and a second port space
arranged in the port central axis direction. The refrigerator port includes a first
sleeve, a second sleeve, a first pedestal, and a second pedestal. The first sleeve
is a member surrounding the first port space. The second sleeve is a member surrounding
the second port space. The first pedestal is a member provided on a cooling-side end
portion of the first sleeve, and is directly or indirectly connected to a first stage
of the cold head. The second pedestal is a member provided on a cooling-side end portion
of the second sleeve, and is directly or indirectly connected to a second stage of
the cold head. The cooling device further includes a first elastic mechanism and a
second elastic mechanism. The first elastic mechanism applies an elastic force to
the first pedestal so as to increase a connecting force between the first pedestal
and the first stage. The second elastic mechanism applies an elastic force to the
second pedestal so as to increase a connecting force between the second pedestal and
the second stage.
[0025] The above configuration is premised on a two-stage configuration (two-stage cold
head) including two cold generation units connected in series. A first thermal conductivity
between the first pedestal and the first stage is improved by the first elastic mechanism,
and a second thermal conductivity between the second pedestal and the second stage
is improved by the second elastic mechanism. In the embodiment, the first elastic
mechanism is provided between the vacuum container and the first pedestal, and the
second elastic mechanism is provided between the vacuum container and the second pedestal
separately from the first elastic mechanism. That is, an independent traction method
is adopted. By adopting such a configuration, it is possible to reliably improve each
of the first thermal conductivity and the second thermal conductivity. A modification
in which two elastic mechanisms are connected or linked is also conceivable.
[0026] In the embodiment, the first elastic mechanism includes a plurality of first support
elements provided around the first sleeve, and each of the first support elements
includes an elastic member. The second elastic mechanism includes a plurality of second
support elements provided around the first sleeve and the second sleeve, and each
of the second support elements includes an elastic member.
[0027] According to the above configuration, since the plurality of first support elements
are provided outside the first sleeve, and the plurality of second support elements
are provided outside the second sleeve, it is possible to avoid an increase in sizes
of the first sleeve and the second sleeve. In other words, the first sleeve and the
second sleeve can be downsized. Since volumes of a first sleeve space in the first
sleeve and a second sleeve space in the second sleeve can be reduced, gas consumption
can be reduced.
[0028] In the embodiment, the refrigerator port is provided with a heater configured to
prevent liquefaction of the gas supplied to the port space. The heater is a liquefaction
preventing unit. At the time of maintenance of the cold head, when the gas is supplied
into the port space in a state where a temperature of the stage of the cold head is
extremely low, the gas liquefies (or becomes particles), and an effect of the gas
supply decreases. Otherwise, the gas consumption increases. In some cases, liquid
(or particles) generated due to cooling reduces an action of thermally conductive
grease or the like. According to the above configuration, it is possible to avoid
or reduce such problems.
[0029] A cold head replacement method according to the embodiment includes a first process
and a second process. In the first process, in a state where the cold head of the
refrigerator is disposed in the refrigerator port provided in the vacuum container,
gas is supplied from the outside to the port space in the refrigerator port, thereby
increasing a pressure in the port space. In the second process, the cold head is pulled
out from the refrigerator port after the pressure in the port space is increased.
[0030] According to the above configuration, since the cold head can be pulled out after
the pressure in the port space is increased, it is not required to apply a large force
when pulling out the cold head. Accordingly, workability at the time of pulling out
the cold head is improved. It is desirable to increase the pressure in the port space
to the atmospheric pressure, and the pressure in the port space may also be increased
to a level lower than the atmospheric pressure.
[0031] In the embodiment, a process of discharging the gas in the port space to the outside
after a new cold head is disposed into the refrigerator port is further provided.
According to this configuration, it is possible to further reduce heat conduction
caused by convection of residual gas in the port space.
(2) Details of Embodiment
[0032] FIG. 1 shows a cooling device according to a first embodiment. The shown cooling
device is a cooling device according to a conduction cooling method. In FIG. 1, an
x direction and a z direction orthogonal to the x direction are shown. A direction
orthogonal to the x direction and the z direction is a y direction. In FIG. 1, the
y direction is not shown. The x direction, the y direction, and the z direction do
not necessarily coincide with a vertical direction in which gravity acts. Hereinafter,
for convenience of description, the terms "up", "down", "left", and "right" are used
with reference to the drawings.
[0033] The shown cooling device includes a refrigerator 10, a vacuum container 12, and a
refrigerator port 14. An object to be cooled 15 is provided in the vacuum container
12. The object to be cooled 15 is, for example, a superconducting coil for generating
a magnetic field. The object to be cooled 15 is supported by a support mechanism 18
in the vacuum container 12. The inside of the vacuum container 12 is a vacuum space
22. The vacuum container 12 is made of, for example, stainless steel. The support
mechanism 18 includes a plurality of support columns 20 each made of a heat insulating
material. Each of the support columns 20 is made of, for example, fiber-reinforced
plastics (FRP) having a high heat insulating effect. Examples of such an FRP include
GFRP containing glass fibers, CFRP containing carbon fibers, and the like.
[0034] The refrigerator 10 includes a cold head (also referred to as a refrigerator unit)
16 and a compressor (also referred to as a compression unit) 46. These components
are connected by a refrigerant circulation pipe 44. Examples of the refrigerator 10
include a GM refrigerator, a Solvay refrigerator, a pulse tube refrigerator, and the
like.
[0035] The vacuum container 12 is provided with the refrigerator port 14. The refrigerator
port 14 is a hollow structure in which the cold head 16 is accommodated. From this
viewpoint, the refrigerator port 14 is a cold head port. The cold head 16 includes
a plurality of elements that execute a heat exchange cycle. The plurality of elements
include a syringe, a piston, and the like. An internal space of the refrigerator port
14 is a port space 42. In a state where the cold head 16 is attached to the refrigerator
port 14, the port space 42 is an airtight space isolated from the outside and the
vacuum space 22.
[0036] A circular opening 25 is formed in the vacuum container 12. A flange 28 serving as
a peripheral edge portion or an attachment base is formed so as to surround the opening
25. The refrigerator port 14 includes a sleeve 24 and a pedestal 34. The sleeve 24
is a cylindrical hollow body, and a bellows 26 is formed at an intermediate portion
thereof. The bellows 26 has a bellows structure, is formed of a plurality of folded
chains, and expands and contracts in a central axis direction of the refrigerator
port 14. The bellows 26 has a function of preventing heat inflow caused by heat conduction
from a room temperature side toward the object to be cooled 15. In addition, the bellows
26 has deformability, and has a function of absorbing a deviation (dimension difference)
when an actual spatial relationship is deviated from a specified spatial relationship
between the refrigerator port 14 and the cold head 16.
[0037] A room-temperature-side end portion (upper end portion in FIG. 1) of the sleeve 24
is connected to the opening 25, and a cooling-side end portion (lower end portion
in FIG. 1) of the sleeve 24 is connected to the pedestal 34. The sleeve 24 as a whole
is made of, for example, stainless steel. A thickness of the bellows 26 of the sleeve
24 is, for example, 0.1 to 0.2 mm, and a thickness of a portion of the sleeve 24 other
than the bellows 26 is, for example, 0.2 to 0.4 mm. Numerical values mentioned in
the present specification are merely examples.
[0038] The pedestal 34 is a disc made of a material having good thermal conductivity, for
example, copper (specifically, oxygen-free copper). In the configuration example shown
in FIG. 1, a first surface (upper surface in FIG. 1) of the pedestal 34 is connected
to the cold head 16 via a heat conduction member 36. The heat conduction member 36
is, for example, a disc made of copper. The heat conduction member 36 is provided
for a purpose of, for example, protecting a stage 40 of the cold head 16. The pedestal
34 may also be directly joined to the stage 40 of the cold head 16 without providing
the heat conduction member 36.
[0039] Thermally conductive grease is provided between the respective members as necessary.
In the configuration example shown in FIG. 1, a second surface (lower surface in FIG.
2) of the pedestal 34 is connected to the object to be cooled 15 via a heat conduction
member 41. The heat conduction member 41 is made of a material (for example, copper)
that is freely deformable and has good thermal conductivity.
[0040] A portion 38 of the cold head 16 is inserted into the refrigerator port 14. The cold
head 16 includes a flange 30 provided on a room temperature side. The flange 30 is
an attachment plate that is an annular disc spreading in a flange shape. The flange
30 is attached to the flange 28 by a plurality of bolts (not shown).
[0041] As will be described later, a ring-shaped groove is formed in the flange 28. An O-ring
that serves as a seal member is disposed in the groove. In a state where the flange
28 and the flange 30 are overlapped and fastened, a gap between the flange 28 and
the flange 30 is completely sealed by the O-ring. Accordingly, the port space 42 becomes
an airtight space. The flange 28 and the flange 30 are made of, for example, stainless
steel. The flange 28 and the sleeve 24 may be connected by methods such as welding.
[0042] The cold head 16 includes the stage 40 that serves as a cooling end portion. Cold
generated in the cold head 16 is transferred from the stage 40 to the object to be
cooled via the heat conduction member 36, the pedestal 34, and the heat conduction
member 41. In other words, heat of the object to be cooled 15 is absorbed by the stage
40 via the heat conduction member 41, the pedestal 34, and the heat conduction member
36. In this way, the object to be cooled 15 is cooled by the conduction cooling method.
[0043] When the cold head 16 is operated after the cold head 16 is installed into the refrigerator
port 14, gas (usually, helium gas) in the port space 42 aggregates as cold is generated
in the cold head 16, and a pressure in the port space 42 becomes considerably lower
than the atmospheric pressure. During operation of the cooling device, this state
is maintained.
[0044] During maintenance of the refrigerator, for example, an entire work space including
the cold head 16 is covered with a bag-shaped cover 64. After atmospheric air in the
cover 64 is removed, helium gas or the like is introduced into the cover 64. Accordingly,
atmospheric air is prevented from entering the port space 42. If atmospheric air enters
the port space 42, problems such as generation of frost occur. The cover 64 also functions
to prevent entry of foreign matter.
[0045] During the maintenance of the refrigerator, by simply loosening the plurality of
bolts described above, an action of the O-ring is maintained without change, that
is, the pressure in the port space 42 remains at a negative pressure. In this state,
an atmospheric pressure is applied to the cold head 16, and a considerably large force
is required to pull out the cold head 16 from the refrigerator port 14. Otherwise,
the pulling-out cannot be performed. Therefore, in the embodiment, a pressure adjustment
facility 48 is provided. Hereinafter, the pressure adjustment facility 48 will be
described in detail.
[0046] In the shown configuration example, the pressure adjustment facility 48 includes
a pipe 50 and a valve 52. A first end portion 53 of the pipe 50 is connected to the
sleeve 24, and a second end portion 54 of the pipe 50 is located outside the vacuum
container 12. The pipe 50 penetrates a specific wall (upper wall in FIG. 1) of the
vacuum container 12, and a part of the pipe 50 constitutes an exposed portion belonging
to the outside. The valve 52 is provided at the exposed portion. The specific wall
is a wall in which the opening 25 is formed, and is a wall adjacent to the work space.
A position where the valve 52 is installed is determined in consideration of workability
during replacement of the cold head 16 and operability of the valve 52.
[0047] An internal flow path of the pipe 50 communicates with the port space 42. When the
valve 52 is closed, the internal flow path is in a closed state, and when the valve
52 is opened, the internal flow path is in an opened state, that is, in a flowing
state. The first end portion 53 is connected to a portion, which is located on the
room temperature side relative to the bellows 26, of the sleeve 24. Accordingly, heat
inflow via the pipe 50 is prevented. Even if the bellows 26 is deformed, no particular
stress is generated in the pipe 50.
[0048] The pipe 50 is formed of, for example, a stainless steel tube. An inner diameter
thereof is, for example, 4 to 6 mm, and an outer diameter thereof is, for example,
5 to 7 mm. As the valve 52, a valve that can be opened and closed manually is provided.
An electromagnetic valve or the like may be used instead of such a valve. The opening
and closing of the valve 52 may also be controlled by an electric signal.
[0049] Before the cold head 16 is pulled out, a tank 58 is connected to the second end portion
54. In this case, the tank 58 may be connected to the second end portion 54 via a
relay pipe 56. The tank 58 is a small tank in which helium gas is accommodated. When
the valve 52 is opened in a state where the tank 58 is connected to the second end
portion 54, the helium gas in the tank 58 is sent to the port space 42 through an
internal space of the pipe 50. Accordingly, the pressure in the port space 42 becomes
the atmospheric pressure or approaches the atmospheric pressure. In this state, the
cold head 16 can be easily pulled out.
[0050] Also, when a new cold head (which may be the cold head 16 after maintenance) is installed
into the refrigerator port 14, a suction pump 60 is connected to the second end portion
54 as necessary. In this case, the suction pump 60 may also be connected to the second
end portion 54 via the relay pipe 56. By operating the suction pump 60 while opening
the valve 52 in a state where the port space 42 is an airtight space, it is possible
to discharge residual gas (usually, helium gas) in the port space 42 to the outside
(see reference numeral 62).
[0051] After operating of the cold head 16 is started, the residual gas in the port space
42 aggregates and the pressure in the port space 42 decreases. Prior to that, by reducing
the residual gas as much as possible, it is possible to further reduce convection
generated in the port space 42. After the residual gas is discharged, the valve 52
is closed. Although the tank 58 and the suction pump 60 are disposed in the cover
64 at the time of maintenance in the configuration example shown in FIG. 1, the tank
58 and the suction pump 60 may also be disposed outside the cover 64.
[0052] A pipe may be provided to penetrate the flange 30 of the cold head 16. In this case,
a valve is provided on an atmospheric air side on the pipe. A through hole may be
formed in the flange 30, and a valve may be provided on an outlet side of the through
hole. In this case, the through hole corresponds to the pipe. Of course, according
to the configuration shown in FIG. 1, it is possible to obtain an advantage that the
existing cold head 16 can be used directly. Various types of installation modes of
the pipe and the valve may be adopted.
[0053] The state where the tank 58 and the suction pump 60 are connected to the second end
portion 54 via the relay pipe 56 may be maintained. In this case, a switching valve
that switches a flow path may be provided in the relay pipe 56. A slight amount of
atmospheric air is included in the second end portion 54. In order to prevent the
small amount of atmospheric air from entering the port space 42, the residual atmospheric
air may be expelled at the time of connection of the tank 58. A common tank 58 or
a common suction pump 60 may be connected to a plurality of pipes drawn out from a
plurality of refrigerator ports.
[0054] In the above configuration, the gas supplied to the port space 42 may be other inert
gas such as nitrogen gas. A gas supply pipe and a gas discharge pipe may be connected
to the refrigerator port 14. In this case, a valve is provided in each of the pipes.
A concept of the valve includes a switch such as a check valve.
[0055] In a state where the cover 64 is filled with the helium gas and in a state where
the second end portion 54 faces the inside of the cover 64, the valve 52 may be in
the opened state. In this case, the port space 42 and the outside (the inside of the
cover 64) communicate with each other via the pipe 50, and a natural pressure balance
occurs. When such a configuration is adopted, the tank 58 is not necessary.
[0056] The port space 42 may be filled with a material having flexibility or deformability,
for example, urethane as a foam material. According to this configuration, it is possible
to reduce an effective volume in which gas can exist in the port space 42, and thus
it is possible to further reduce heat inflow caused by gas convection.
[0057] FIG. 2 shows a coupled body (overlapping body) of the flange 28 and the flange 30.
Reference numeral 38 denotes an insertion portion of the cold head. The port space
42 is formed outside the insertion portion and inside the sleeve 24. A ring-shaped
groove is formed in the flange 28, and an O-ring 70 that exerts a sealing action is
disposed therein. The two flanges 28 and 30 are fastened by a bolt row 68. The bolt
row 68 includes, for example, 8 bolts 71 arranged in an annular shape. The bolt row
68 is provided outside the O-ring 70. In a case where the pressure in the port space
42 is a negative pressure, even if the plurality of bolts 71 are loosened, the sealing
action of the O-ring 70 is maintained without change. Therefore, the pressure adjustment
facility is provided as described above.
[0058] FIG. 3 shows a cooling device according to a second embodiment. In FIG. 3, illustration
of the cover is omitted. In FIG. 3, the same elements as those already described are
denoted by the same reference numerals, and the description thereof will be omitted.
This also applies to elements shown in FIG. 4 and the subsequent drawings.
[0059] In a cooling device 10A shown in FIG. 3, an elastic mechanism 72 is provided outside
the refrigerator port 14 so as to surround the refrigerator port 14. The refrigerator
port 14 and the elastic mechanism 72 are separated from each other and function independently
of each other. The elastic mechanism 72 applies an elastic force (pressing force)
directed toward an atmospheric air side (upward in FIG. 4) to the pedestal so as to
improve physical bonding between the cold head 16 and the pedestal 34, in particular,
improve thermal conductivity.
[0060] In the shown example, the heat conduction member 36 is disposed between the pedestal
34 and the stage 40 of the cold head 16. In this case, by applying the pressing force
to the pedestal 34, a degree of close contact between the pedestal 34 and the heat
conduction member 36 is improved, and at the same time, a degree of close contact
between the heat conduction member 36 and the stage 40 is improved.
[0061] FIG. 4 shows a part of the cooling device 10A shown in FIG. 3 in an enlarged manner.
The elastic mechanism 72 includes, for example, three elastic elements 74 arranged
at equal angular intervals around the refrigerator port 14. Each elastic element 74
independently applies an elastic force to the pedestal 34. Four or more elastic elements
74 may be provided.
[0062] Specifically, each elastic element 74 includes an elastic piece 76, a support column
78, and a connecting plate 80. The elastic piece 76 includes a first portion 76a extending
in the z direction and a second portion 76b extending in the x direction from an end
portion of the first portion 76a. In the shown example, the elastic piece 76 is a
leaf spring and functions like a cantilever.
[0063] Specifically, the elastic piece 76 generates an elastic force that pulls up an end
portion of the second portion 76b toward a room temperature side (upward in FIG. 4).
By using an elastic piece having a desired spring constant as the elastic piece 76,
the elastic force generated by the elastic piece 76 can be adjusted. A first end portion
of the support column 78 is fixed to the second portion 76b by a fixing member 82.
A second end portion of the support column 78 is fixed to the connecting plate 80.
The connecting plate 80 is connected to the pedestal 34.
[0064] The elastic force generated by the elastic piece 76 is applied to the pedestal 34
via the support column 78 and the connecting plate 80. The elastic piece 76 is made
of, for example, stainless steel, and the connecting plate 80 is also made of, for
example, stainless steel. The support column 78 is made of a material having a high
heat-insulating property, and is made of, for example, FRP.
[0065] Three elastic forces from the three elastic elements 74 are applied to the pedestal
34 at angular intervals of 120 degrees around a central axis of the refrigerator port.
A larger number of elastic elements 74 may be provided. By providing the elastic mechanism
72 outside the refrigerator port 14, it is possible to reduce a size, specifically,
a diameter of the refrigerator port 14. Accordingly, a volume of the port space 42
is reduced, so that a total amount of residual gas can be reduced. As a result, it
is possible to reduce heat conduction caused by retention of the residual gas.
[0066] As described above, when the residual gas is discharged from the port space 42 by
using the pressure adjustment facility 48, it is possible to further reduce the heat
conduction caused by the convection of the residual gas. The size of the refrigerator
port 14 is reduced, and thus physical strength thereof can be improved.
[0067] A total elastic force applied on the pedestal 34 may be adjusted by changing the
number of installed elastic elements 74. As a unit that generates an elastic force
or a pressing force in each elastic element 74, a helical spring, a disc spring, or
the like may be adopted in addition to the leaf spring. The elastic force may also
be generated by a member or a mechanism other than the spring. For example, a wire
pulling force or a magnetic force may be used.
[0068] In the configuration example shown in FIG. 4, a heater 84 is provided at a cooling-side
end portion of the refrigerator port 14 or in the vicinity of the cooling-side end
portion. Specifically, the heater 84 includes a plurality of heater elements that
are in close contact with an outer circumferential surface of the sleeve 24.
[0069] By operating the heater 84 in a process of supplying helium gas to the port space
42 and at other necessary timings, liquefaction (and gas-to-particle conversion) of
the helium gas can be prevented. That is, when the helium gas is supplied to the port
space 42 in a cooling state of the cold head, a part of the helium gas may be liquefied
(and converted into particles). In this case, consumption of the helium gas increases.
Moreover, there may be a concern about problems such as a decrease in an action of
thermally conductive grease due to the liquefaction or the like.
[0070] By operating the heater 84, the liquefaction or the like of the helium gas can be
prevented, and occurrence of the above-described problems can be prevented in advance.
The heater 84 may also be provided inside the sleeve. Naturally, the heater 84 does
not operate during operation of the refrigerator.
[0071] FIG. 5 shows a modification. In a cooling device 10B, an elastic mechanism 72A is
provided outside the refrigerator port. The elastic mechanism 72A includes, for example,
three elastic elements 74A. Each elastic element 74A includes a support column 88
and an elastic piece 86. The elastic piece 86 includes a first portion 86a and a second
portion 86b. A first end portion of the support column 88 is connected to the vacuum
container 12. A second end portion of the support column 88 is connected to the first
portion 86a. The second portion 86b is connected to the pedestal 34. The elastic piece
86 is a leaf spring and applies an elastic force to the pedestal 34 toward a room
temperature side.
[0072] According to such a modification, it is still possible to apply the elastic force
to the pedestal 34 so as to improve a degree of close contact with the cold head or
the like. In the modification, the support column 88 is also made of a material having
a good heat-insulating property.
[0073] FIG. 6 shows a cooling device 10C according to a third embodiment. A refrigerator
port 96 includes a first port portion 98 and a second port portion 100. The first
port portion 98 and the second port portion 100 are continuous in the z direction.
Meanwhile, a cold head 16B includes a portion 90 accommodated in the refrigerator
port 96. The portion 90 includes a first cooling section and a second cooling section
that are continuous in the z direction. An end portion of the first cooling section
is a first stage 92, and an end portion of the second cooling section is a second
stage 94. A temperature of the first stage 92 is, for example, 40 to 60 K, and a temperature
of the second stage is, for example, 4 K.
[0074] A first elastic mechanism 102 is provided to surround the first port portion 98,
and a second elastic mechanism 104 is provided to surround the first port portion
98 and the second port portion 100 as a whole (that is, the refrigerator port 96).
[0075] A radiation shield 106 surrounding the object to be cooled 15 is provided in the
vacuum container 12. The radiation shield 106 is a member that prevents radiation
emitted from the vacuum container 12 from reaching the object to be cooled 15. The
radiation shield 106 is separated from the vacuum container 12 and the object to be
cooled 15, and is made of a material having good thermal conductivity, for example,
aluminum. The radiation shield 106 is in thermal contact with the first stage 92.
[0076] FIG. 7 shows a part of the cooling device 10C shown in FIG. 6 in an enlarged manner.
As described above, the refrigerator port 96 includes the first port portion 98 and
the second port portion 100. The first port portion 98 includes a first sleeve 108
and a first pedestal 118. The first sleeve 108 has a cylindrical shape, and an intermediate
portion thereof constitutes a first bellows 110. The first sleeve 108 is provided
between a periphery of an opening formed in the vacuum container and a first surface
(upper surface in FIG. 7) of the first pedestal 118. The first pedestal 118 has an
annular shape.
[0077] The second port portion 100 includes a second sleeve 112 and a second pedestal 122.
The second sleeve 112 has a cylindrical shape, and an intermediate portion thereof
constitutes a bellows 114. The second sleeve 112 is provided between a second surface
(lower surface in FIG. 7) of the first pedestal 118 and a first surface (upper surface
in FIG. 7) of the second pedestal 122.
[0078] An annular heat conduction member 120 is provided between the first pedestal 118
and the first stage 92. The cold head 16B passes through an opening portion of the
heat conduction member 120. A disc-shaped heat conduction member 139 is provided between
the first surface (upper surface in FIG. 7) of the second pedestal 122 and the second
stage 94. A second surface (lower surface in FIG. 7) of the second pedestal 122 is
in contact with the heat conduction member 41.
[0079] An internal space of the refrigerator port 96 is a port space, and the port space
specifically includes a first port space 116A and a second port space 116B. The first
port space 116A and the second port space 116B communicate with each other. That is,
the entire port space is a single airtight space.
[0080] The first elastic mechanism 102 includes, for example, three elastic elements provided
so as to surround the first port portion 98. The three elastic elements are arranged
at equal angular intervals. Each elastic element includes a leaf spring 124, a support
column 126, and a connecting plate 128. An elastic force generated by the plate spring
124 reaches the first pedestal 118 via the support column 126 and the connecting plate
128. Accordingly, the first pedestal 118 and the heat conduction member 120 are in
close contact with each other, and the heat conduction member 120 and the first stage
92 are in close contact with each other.
[0081] The second elastic mechanism 104 is a mechanism independent of the first elastic
mechanism 102. Specifically, the second elastic mechanism 104 includes, for example,
three elastic elements surrounding the refrigerator port 96. These elastic elements
are arranged in an annular shape at equal angular intervals. Each elastic element
includes a leaf spring 130, a support column 132, and a connecting plate 134. In the
shown example, the support column 132 has a length comparable to an entire length
of the refrigerator port 96. An elastic force generated by the leaf spring 130 reaches
the second pedestal 122 via the support column 132 and the connecting plate 134. Accordingly,
the second pedestal 122 and the heat conduction member 139 are in close contact with
each other, and the heat conduction member 139 and the second stage 94 are in close
contact with each other.
[0082] The three elastic elements constituting the first elastic mechanism 102 are provided
at positions of, for example, 0 degree, 120 degrees, and 240 degrees around a central
axis of the refrigerator port 96, and the three elastic elements constituting the
second elastic mechanism 204 are provided at positions of, for example, 60 degrees,
180 degrees, and 300 degrees. Accordingly, physical interference between the first
elastic mechanism 102 and the second elastic mechanism 104 is avoided.
[0083] A thermal anchor 135 is provided in the middle of each support column 132. The thermal
anchor 135 is formed of an annular or cylindrical heat conduction member. A flexible
thermal link 136 is provided between each thermal anchor 135 and the first stage 92.
A temperature of each thermal anchor 135 is operated and fixed to substantially the
same temperature as that of the first stage 92. With this configuration, heat inflow
via each support column 132 is reduced. Each support column 132 may be formed of two
rod-shaped members connected to each other via the thermal anchor, instead of a single
rod-shaped member. A flexible thermal link 137 is provided between the first pedestal
118 and the radiation shield 106. Accordingly, the radiation shield 106 is cooled.
[0084] Since the first elastic mechanism 102 and the second elastic mechanism 104 are provided
as mechanisms independent of each other, an appropriate elastic force is reliably
applied to each of the first pedestal 118 and the second pedestal 122. Although it
is also conceivable to provide the second elastic mechanism 104 between the first
pedestal and the second pedestal 122, when such a configuration is adopted, an action
of the second elastic mechanism 104 changes due to a change in a position or a posture
of the first pedestal 118. According to the shown configuration, such a problem can
be avoided.
[0085] The pipe 50 is drawn out from a room temperature side of the first bellows 110 in
the first sleeve 108. The pipe 50 penetrates the vacuum container and is guided to
the outside. The valve 52 is provided at the exposed portion of the pipe 50. The pipe
50 and the valve 52 constitute the pressure adjustment facility 48. The pipe 50 is
provided at a position where the pipe 50 is not in contact with the plurality of elastic
elements described above. As described above, the pipe may also be provided in a flange
of the cold head 16B.
[0086] A heater 138 is provided outside the second sleeve 112. The heater 138 prevents liquefaction
(and gas-to-particle conversion) of the helium gas.
[0087] FIG. 8 shows a cold head replacement method according to the embodiment. S10 is a
preparation process. In S10, a cover is provided so as to wrap an existing cold head.
Air therein is replaced with helium gas. In S12, a tank containing helium gas is connected
to a pipe. In S14, a valve is opened. Accordingly, the helium gas is supplied from
the tank to a port space via the pipe. Accordingly, a pressure in the port space becomes
the atmospheric pressure or approaches the atmospheric pressure. In S16, the valve
is closed. Flowing of the helium gas may be continued without closing the valve.
[0088] In S18, the existing cold head is pulled out from a refrigerator port after loosening
a plurality of bolts. Since a negative pressure in the port space is reduced or eliminated,
no large pull-out force is required for such work. After the existing cold head is
pulled out, a new cold head (or a maintained cold head) is inserted into the refrigerator
port. Thereafter, the new cold head is fixed to a vacuum container by a plurality
of bolts.
[0089] In S20, a suction pump is connected to the pipe. In S22, the valve is opened, and
operating of the suction pump is started before and after the valve is opened. Accordingly,
the helium gas in the port space is discharged to the outside. In S24, the operating
of the suction pump is stopped, and the valve is closed.
[0090] Thereafter, operating of the cold head is started after necessary work such as removal
of the cover. As a temperature of the cold head decreases, residual gas in the port
space aggregates, and the pressure in the port space decreases. By exhausting the
residual gas, an amount of the residual gas is very small, and heat inflow due to
retention can be considerably prevented.
[0091] In order to prevent liquefaction of the helium gas, for example, energization of
a heater is started at a timing T1. Thereafter, for example, the energization of the
heater is stopped at a timing T2. The heater may also be operated in another period.
[0092] The cooling device described above is used, for example, to cool a superconducting
coil. For example, a superconducting coil for generating a magnetic field installed
in a particle beam therapy device is cooled by the cooling device described above.
This example will be described below with reference to FIG. 9.
[0093] FIG. 9 schematically shows a gantry 140 that is a giant structure provided in the
particle beam therapy device. Reference numeral 144 denotes a rotation center axis
of the gantry 140. The gantry 140 rotates about the rotation center axis 144. This
rotational motion changes a particle beam irradiation angle with respect to a subject.
The gantry 140 includes a body 140A having a cylindrical shape. Reference numeral
142 denotes a trajectory of a particle beam. A plurality of units U1 to U8 are provided
on the trajectory 142 in order to more accurately form the appropriate trajectory
142. The units U1 to U8 are fixed to the body 140A. The units U1 to U8 include a beam
focusing unit and a beam scanning unit. The plurality of units U1 to U8 are examples.
[0094] Each of the units U1 to U8 includes one or a plurality of superconducting coils.
Each superconducting coil is cooled by the above-described cooling device. A pressure
adjustment facility is provided for each cooling device. Of course, gas may be distributed
from a common tank to a plurality of pressure adjustment facilities. In addition,
a common suction pump may be connected to a plurality of pressure adjustment facilities,
and a suction destination may be sequentially switched. When the configuration according
to the embodiment is adopted, it is possible to improve safety and workability in
maintenance of each cooling device in the particle beam therapy device. The above-described
cooling device may be mounted in an NMR system or an MRI system.
[0095] Each of the pressure adjustment facility (a gas supply unit and a residual gas discharge
unit), the elastic mechanism (a pressing force applying unit separated from the refrigerator
port), and the heater (liquefaction preventing unit) described above may be adopted
independently.
Reference Signs List
[0096]
10 cooling device
12 vacuum container
14 refrigerator port
15 object to be cooled
16 cold head
24 sleeve
26 bellows
42 port space
48 pressure adjustment facility
50 pipe
52 valve
58 tank
60 suction pump