

(11) **EP 4 160 778 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 05.04.2023 Bulletin 2023/14

(21) Application number: 22803986.3

(22) Date of filing: 18.05.2022

(51) International Patent Classification (IPC): **H01M** 10/058 (2010.01) **H01M** 50/528 (2021.01) **H01M** 50/528 (2021.01)

(52) Cooperative Patent Classification (CPC): H01M 10/058; H01M 50/528; H01M 50/559; Y02E 60/10; Y02P 70/50

(86) International application number: **PCT/CN2022/093476**

(87) International publication number: WO 2022/242666 (24.11.2022 Gazette 2022/47)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BAME

Designated Validation States:

KH MA MD TN

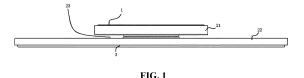
(30) Priority: 21.05.2021 CN 202121102907 U

(71) Applicant: Eve Power Co., Ltd. Jingmen, Hubei 448000 (CN)

(72) Inventors:

 HUANG, Liming Jingmen, Hubei 448000 (CN) YUE, Liangliang Jingmen, Hubei 448000 (CN)

 LIU, Jing Jingmen, Hubei 448000 (CN)


 XU, Yuebin Jingmen, Hubei 448000 (CN)

 HE, Wei Jingmen, Hubei 448000 (CN)

(74) Representative: Cabinet Beaumont 4, Place Robert Schuman B.P. 1529 38025 Grenoble Cedex 1 (FR)

(54) POLE AND ELECTRODE CURRENT COLLECTING DISC ASSEMBLY STRUCTURE, AND BATTERY

Provided are an assembled structure of a pole and a pole current collector disk. The assembled structure includes a positive pole, a positive current collector disk, a first insulating member and a second insulating member, where the second insulating member is disposed between the positive current collector disk and the first insulating member. The positive pole includes a conductive end and a connection end, the conductive end and the connection end are connected through the connection rod. The connection rod sequentially penetrates through the first insulating member and the second insulating member, the first insulating member is closer to the conductive end than the second insulating member, and an accommodating space is formed between the first insulating member and the second insulating member. The positive current collector disk includes a welding disk and a conductive protrusion, the conductive protrusion is disposed on an end surface of the welding disk facing the second insulating member, and an end surface of the connection end facing the positive current collector disk is provided with a first groove, a contact portion of the positive current collector disk and the positive pole is only an end surface of the conductive protrusion facing away the welding disk and a groove bottom surface of the first groove. Further provided herein is a battery, the battery is provided with the assembled structure of the pole and the pole current collector disk described above.

Processed by Luminess, 75001 PARIS (FR)

Description

[0001] The present application claims priority to Chinese Patent Application No. 202121102907.0, filed with the China National Intellectual Property Administration (CNIPA) on May. 21, 2021, the disclosure of which is incorporated herein by reference in its entirety.

1

TECHNICAL FIELD

[0002] The present application relates to the field of batteries, and for example, to an assembled structure of a pole and a pole current collector disk and a battery provided with the assembled structure described above.

BACKGROUND

[0003] A battery generally includes a housing and a cover board, a cell is disposed inside the housing with a groove body structure, a groove opening of the housing is connected to the cover board in a sealed manner, and an electrode of the cell is connected to an end surface, located within the housing, of the cover board by a tab, so that the cover board is used as one pole of the battery to be connected to an external apparatus.

[0004] A difference between a cylindrical full-tab lithium ion battery and a cylindrical lithium ion battery is in that: the cylindrical full-tab lithium ion battery is provided with a positive pole but not provided with the cover board, a housing of the cylindrical full-tab lithium ion battery is of the groove body structure, and the groove opening of the housing is connected to a negative pole cover board, an end of the positive pole penetrates through a groove bottom surface of the housing from an end surface, facing away the groove opening, of the housing and enters the housing; and an end, located within the housing, of the positive pole is connected to a positive plate of the cell by a positive current collector disk. Therefore, an assembled structure of the cell and a positive pole tab in the cylindrical lithium ion battery is not suitable for the cylindrical full-tab lithium ion battery.

SUMMARY

[0005] The present application provides an assembled structure of a pole and a pole current collector disk suitable for a cylindrical full-tab lithium ion battery and a battery provided with the assembled structure described above.

[0006] The present application provides an assembled structure of a pole and a pole current collector disk. The assembled structure includes a positive pole, a positive current collector disk, a first insulating member and a second insulating member. The second insulating member is disposed between the positive current collector disk and the first insulating member. The positive pole includes a conductive end, a connection end and a connection rod, the conductive end and the connection end

are connected through the connection rod, and a width of the conductive end and a width of the connection end are both larger than a width of the connection rod. The connection rod sequentially penetrates through the first insulating member and the second insulating member, the first insulating member is closer to the conductive end than the second insulating member, and an accommodating space is formed between the first insulating member and the second insulating member. The positive current collector disk includes a welding disk and a conductive protrusion, the conductive protrusion is disposed on an end surface of the welding disk facing the second insulating member, and an end surface of the connection end facing the positive current collector disk is provided with a first groove, a contact portion of the positive current collector disk and the positive pole is only an end surface of the conductive protrusion facing away the welding disk and a groove bottom surface of the first groove.

[0007] The present application further provides a battery. The battery includes a housing and a cell disposed inside the housing, the battery is provided with the assembled structure of the pole and the pole current collector disk described above. The housing is of a groove structure, and the housing includes a housing bottom portion and a housing bottom end surface.

BRIEF DESCRIPTION OF DRAWINGS

[8000]

30

35

40

45

FIG. 1 is a front view of an assembled structure of a pole and a pole current collector disk provided in an embodiment of the present application;

FIG. 2 is an exploded view of an assembled structure of a pole and a pole current collector disk provided in an embodiment of the present application;

FIG. 3 is an exploded view of another assembled structure of a pole and a pole current collector disk provided in an embodiment of the present application;

FIG. 4 is a front view of a cylindrical full-tab lithium ion battery provided in an embodiment of the present application; and

FIG. 5 is a cross-sectional view of a section A of FIG. 4.

1, Positive pole; 11. Conductive end; 12. Connection end; 121. First groove; 13. Connection rod; 21. First insulating member; 211. Second groove; 212. First through hole; 22. Second insulating member; 221. Third groove; 222. Second through hole; 23. Accommodating space; 3. Positive current collector disk; 31. Welding disk; 32. Conductive protrusion; 4. Housing; 41. Connection hole; 42. Housing bottom portion; 43. Housing bottom end surface;

20

25

30

5. Cell.

DETAILED DESCRIPTION

[0009] The specific embodiments described herein are merely illustrative of the present application.

3

[0010] In the description of the present application, an orientation or a positional relationship indicated by the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", and the like is based on an orientation or a positional relationship shown in the drawings, and is only for the purpose of facilitating the description of the present application and simplifying the description, and is not intended to indicate or imply that the device or element in question must have a particular orientation, be constructed and operated in a particular orientation, and thus cannot be understood as a limitation of the present application. Furthermore, the terms "first" and "second" are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or as implicitly indicating a number of technical features indicated. Thus, features defined as "first" or "second" may explicitly or implicitly include one or more of the described features. In the description of the present application, "multiple" means two or more, unless otherwise defined.

[0011] In the description of the present application, unless specified and limited otherwise, the terms "mounted," "interconnected," and "connected" are to be understood broadly and, for example, may be fixedly connected, may be detachably connected, or may be integrally connected; may be mechanically connected, may be directly connected, may be indirectly connected through an intermediate medium, may be internally communicated with each other or may be interactively connected to each other. The meaning of the above terms in the present application may be understood by those of ordinary skill in the art according to circumstances.

[0012] In the present application, unless specified and limited otherwise, a first feature being "on" or "under" a second feature may include that the first feature and the second feature are in direct contact, and may also include that the first feature and the second feature are not in direct contact but are in contact through another feature between them. Moreover, the first feature being "on", "above" and "over" the second feature includes the first feature being directly above and obliquely above the second feature, or simply indicates that the first feature is at a higher level than the second feature. The first feature being "under", "below" and "beneath" the second feature includes the first feature being directly below and obliquely below the second feature, or simply indicates that the first feature is at a lower level than the second feature. [0013] An embodiment of the present application provides an assembled structure of a pole and a pole current collector disk. The assembled structure includes a positive pole, a positive current collector disk, a first insulating member and a second insulating member. One end, being connected facing the positive current collector disk, of two ends of the positive pole is referred to as a "connection end", the other end of the positive pole is referred to as a "conductive end", and the conductive end is used as a positive connection terminal. The conductive end and the connection end are connected by a connection rod. A width of the conductive end and a width of the connection end are both larger than a width of the connection rod. The connection rod sequentially penetrates through the first insulating member and the second insulating member, the first insulating member is closer to the conductive end than the second insulating member. and an accommodating space is formed between the first insulating member and the second insulating member. **[0014]** In an embodiment, the first insulating member

is provided with a first through hole, the second insulating member is provided with a second through hole, a central axis of the first through hole coincides with a central axis of the second through hole, and the connection rod penetrates through the first through hole and the second through hole, a hole diameter of the first through hole and a hole diameter of the second through hole are both not less than the width of the connection rod, the width of the conductive end is larger than the hole diameter of the first through hole, and the width of the connection end is larger than the hole diameter of the second through hole.

[0015] In an embodiment, an end surface of the first insulating member facing away the second insulating member is provided with a second groove, a groove bottom surface of the second groove is provided with an orifice of the first through hole, and the conductive end is in contact with the second groove, and a width of the second groove is not less than the width of the conductive end; and an end surface of the second insulating member facing away the first insulating member is provided with a third groove, a groove bottom surface of the third groove is provided with an orifice of the second through hole, the connection end is in contact with the third groove, and a width of the third groove is not less than the width of the connection end.

[0016] In an embodiment, a sidewall of the conductive end is attached to an inner sidewall of the second groove, and an end surface, located within the second groove, of the conductive end is attached to a groove bottom surface of the second groove; a sidewall of the connection end is attached to an inner sidewall of the third groove, and an end surface, located within the third groove, of the connection end is attached to a groove bottom surface of the third groove.

[0017] In an embodiment, a height of the conductive end is not less than a depth of the second groove, so that the conductive end is conveniently electrically connected to other conductive materials.

[0018] In an embodiment, the positive current collector disk includes a welding disk and a conductive protrusion.

The second insulating member is disposed between the positive current collector disk and the first insulating member, and the conductive protrusion is disposed on an end surface facing the second insulating member of the welding disk. An end surface of the connection end facing the positive current collector disk is provided with a first groove, and a width of the conductive protrusion is less than a width of the first groove. The conductive protrusion is connected to a groove bottom surface of the first groove. An end surface of the welding disk facing away the second insulating member is connected to a positive plate of a cell, and in a full-tab lithium ion battery, the end surface of the welding disk facing away the second insulating member may be disposed to be in end surface welding with the positive plate of the cell. The positive pole is electrically connected to the positive plate of the cell through the positive current collector disk.

[0019] In an embodiment, a projection of the welding disk on the end surface of the second insulating member facing away the first insulating member does not exceed a range of the end surface.

[0020] In an embodiment, the conductive protrusion of the positive current collector disk is provided with a fuse. When an inner portion of the cell connected to the welding disk is short-circuited, a large current is instantly generated on the conductive protrusion, a position where the fuse is disposed on the conductive protrusion is partially melted, and at this time, the positive pole is disconnected with the welding disk, whereby the safety protection is provided. Therefore, a contact portion of the positive current collector disk and the positive pole is only an end surface of the conductive protrusion facing away the welding disk and the groove bottom surface of the first groove, the conductive end and the welding disk are subjected to an insulation treatment, and an outer sidewall of the conductive protrusion is not in contact with an inner sidewall of the first groove. A structure with the fuse being disposed on the conductive protrusion may adopt the fuse design applied to a battery current collector disclosed in the related art.

[0021] In an embodiment, a depth of the first groove matches a height of the conductive protrusion.

[0022] In an embodiment, the width of the first groove is less than the width of the connection rod, and the groove bottom surface of the first groove is disposed inside the connection rod.

[0023] In an embodiment, when a height of the connection end is less than a depth of the third groove, the welding disk is in contact with the end surface of the second insulating member facing away the first insulating member, and a gap exists between the connection end and the welding disk.

[0024] In an embodiment, when a height of the connection end is not less than a depth of the third groove, in order to prevent a contact between the welding disk and the connection end, and at this time, an insulating layer is coated on a contact portion between the welding disk and the connection end, or an insulating layer is

coated on a contact portion between the connection end and the welding disk.

[0025] In an embodiment, an edge of an end surface that the second insulating member being in contact with the welding disk is provided with a protruding stop block, and the stop block is circumferentially disposed around the welding disk. The stop block may play a role in fixing the welding disk and may also play a role in isolating and insulating a sidewall of the welding disk.

[0026] An embodiment of the present application further provides a battery, the battery includes a housing and a cell, the cell is disposed inside the housing, and the battery is provided with the assembled structure of the pole and the pole current collector disk described above. The housing is of a groove body structure, an end surface, facing away a groove opening of the housing, of the housing is referred to as a "housing bottom end surface", and a portion, between the housing bottom end surface and the groove bottom surface of the housing, of the housing is referred to as a "housing bottom portion". [0027] In an embodiment, the cell is of a full-tab structure, the cell with the full-tab structure is sequentially subjected to an ultrasonic flattening and a mechanical flattening, then the welding disk of the positive current collector disk is welded to a positive pole end surface of the flattened cell through a laser welding, and at this time, the positive current collector disk is electrically connected to the positive plate of the cell. A connection hole is formed on the housing bottom portion and penetrates through the housing bottom portion, the positive pole penetrates through the connection hole into the housing, the second insulating member and the positive current collector disk are disposed inside the housing, and the first insulating member is disposed outside the housing bottom end surface.

[0028] In an embodiment, the housing bottom portion is partially disposed in the accommodating space, the first insulating member is in contact with the housing bottom end surface, the second insulating member is in contact with the groove bottom surface of the housing, the first insulating member and the second insulating member clamp the housing bottom portion, and the width of the first insulating member and the width of the second insulating member are both larger than a hole diameter of the connection hole, the width of the connection rod is less than the hole diameter of the connection hole, and an outer sidewall of the connection rod is not in contact with an inner sidewall of the connection hole.

[0029] In an embodiment, the width of the second insulating member is greater than the width of the first insulator. The housing of the battery is negatively charged, so that the housing bottom end surface is negatively charged, the positive pole is positively charged, the width of the first insulating member is less than a width of the housing bottom end surface, a portion, not covered by the first insulating member, of the housing bottom end surface may be used as a negative connection terminal, and at this time, the positive connection terminal and the

negative connection terminal of the battery are disposed on a same end surface of the battery.

[0030] As shown in FIGS. 1 to 3, an assembled structure of a positive pole 1 and a positive current collector disk 3 provided in an embodiment of the present application includes the positive pole 1, the positive current collector disk 3, a first insulating member 21 and a second insulating member 22.

[0031] The positive pole 1 includes a conductive end 11 and a connection end 12, the conductive end 11 and the connection end 12 are both of a cylindrical structure, and the conductive end 11 and the connection end 12 are connected through a cylindrical connection rod 13. A diameter of conductive end 11 is greater than a diameter of the connection end 12, and the diameter of the conductive end 11 and the diameter of the connection end 12 are both greater than a diameter of the connection rod 13. A central axis of the conductive end 11, a central axis of the connection end 12 and a central axis of the connection rod 13 coincide.

[0032] The connection rod 13 sequentially penetrates through the first insulating member 21 and the second insulating member 22. The first insulating member 21 and the second insulating member 22 are of the cylindrical structure, a diameter of second insulating member 22 is greater than a diameter of first insulating member 21, a central axis of the positive pole 1, a central axis of the first insulating member 21 and a central axis of the second insulating member 22 coincide, and an outer sidewall of the connection rod 13 is in contact with the first insulating member 21 and the second insulating member 22. The first insulating member 21 is closer to the conductive end 11 than the second insulating member 22, and an accommodating space 23 is disposed between the first insulating member 21 and the second insulating member 22.

[0033] An end surface of the first insulating member 21 facing away the second insulating member 22 is provided with a second groove 211, an end surface of the second insulating member 22 facing away the first insulating member 21 is provided with a third groove 221, a sidewall of the conductive end 11 is attached to an inner sidewall of the second groove 211, and an end surface, located inside the second groove 211, of the conductive end 11 is attached to a groove bottom surface of the second groove 211; a sidewall of the connection end 12 is attached to an inner sidewall of the third groove 221, and an end surface, located inside the third groove 221, of the connection end 12 is attached to a groove bottom surface of the third groove 221. The connection rod 13 sequentially penetrates through a groove bottom surface of the second groove 211 and a groove bottom surface of the third groove 221. A height of the conductive end 11 is greater than a depth of the second groove 211, and a height of the connection end 12 is less than a depth of the third groove 221.

[0034] The positive current collector disk 3 includes a welding disk 31 and a conductive protrusion 32, and the

conductive protrusion 32 is disposed in the middle of an end surface, facing the second insulating member 22, of the welding disk 31. The welding disk 31 is of the cylindrical structure, and a diameter of the welding disk 31 is less than the diameter of the second insulating member 22. The middle of an end surface, facing the positive current collector disk 3, of the connection end 12 is provided with a first groove 121, a width of the first groove 121 is less than the diameter of the connection rod 13, a groove bottom surface of the first groove 121 is disposed inside the connection rod 13, and a width of the conductive protrusion 32 is less than the width of the first groove 121. The conductive protrusion 32 is connected to the middle of the groove bottom surface of the first groove 121, a fuse is disposed on the conductive protrusion 32 of the positive current collector disk 3, an outer sidewall of the conductive protrusion 32 is not in contact with an inner sidewall of the first groove 121, the welding disk 31 is in contact with the end surface, facing away the first insulating member 21, of the second insulating member 22, and a gap exists between the connection end 12 and the welding disk 31.

[0035] An embodiment of the present application provides the assembled structure of the pole and the pole current collector disk. The assembled structure is suitable for a full-tab lithium ion battery, such as a cylindrical full-tab lithium ion battery, a square full-tab lithium ion battery. According to the assembled structure of the pole and the pole current collector disk provided in the embodiment of the present application, the assembled structure is firm, the space in the housing of the battery may be utilized more efficiently, and the safety protection function is achieved.

[0036] As shown in FIGS. 4 to 5, an embodiment of the present application further provides a cylindrical fulltab lithium ion battery, the battery includes a housing 4 and a cell 5 disposed inside the housing 4, and the battery is provided with the assembled structure of the positive pole 1 and the positive current collector disk 3 provided in this embodiment. The cell 5 is of a full-tab structure, a positive pole end of the cell 5 with the full-tab structure and an end surface, facing away the conductive protrusion 32, of the welding disk 31 are subjected to a laser end surface welding, the positive current collector disk 3 is electrically connected to a positive plate of the cell 5, therefore, the positive pole 1 is electrically connected to the positive plate of the cell 5, and thus the conductive end 11 is used as a positive connection terminal. The housing 4 is of a cylindrical groove body structure and is electrically connected to a negative plate of the cell 5.

[0037] A connection hole 41 is disposed on a housing bottom portion and penetrates through the housing bottom portion, the positive pole 1 penetrates through the connection hole 41 into the housing 4, the second insulating member 22 and the positive current collector disk 3 are disposed inside the housing 4, and the first insulating member 21 is disposed outside the housing bottom end surface.

15

20

30

35

40

45

50

[0038] The housing bottom portion is partially disposed in the accommodating space 23, the first insulating member 21 is in contact with the housing bottom end surface, the second insulating member 22 is in contact with a groove bottom surface of the housing 4, the first insulating member 21 and the second insulating member 22 clamp the housing bottom portion, and the diameter of the first insulating member 21 and the diameter of the second insulating member 22 are both larger than a hole diameter of the connection hole 41, the diameter of the connection rod 13 is less than the hole diameter of the connection hole41, and an outer sidewall of the connection rod 13 is not in contact with an inner sidewall of the connection hole 41. A central axis of the housing 4, a central axis of the connection hole 41 and the central axis of the positive pole 1 coincide. A portion, not covered by the first insulating member 21, of the housing bottom end surface may be used as a negative connection terminal, and the positive connection terminal and the negative connection terminal of the cylindrical full-tab lithium ion battery are disposed on a same end surface of the battery. Various technical features of the above-described embodiments may be combined arbitrarily, and in order to make the description concise, all possible combinations of the various technical features in the above-described embodiments are not described.

Claims

 An assembled structure of a pole and a pole current collector disk, comprising a positive pole, a positive current collector disk, a first insulating member and a second insulating member, wherein the second insulating member is disposed between the positive current collector disk and the first insulating member;

the positive pole comprises a conductive end, a connection end and a connection rod, the conductive end and the connection end are connected through the connection rod, and a width of the conductive end and a width of the connection end are both larger than a width of the connection rod;

the connection rod sequentially penetrates through the first insulating member and the second insulating member, the first insulating member is closer to the conductive end than the second insulating member, and an accommodating space is formed between the first insulating member and the second insulating member; and the positive current collector disk comprises a welding disk and a conductive protrusion, the conductive protrusion is disposed on an end surface of the welding disk facing the second insulating member, and an end surface of the connection end facing the positive current collector disk is provided with a first groove, a contact

portion of the positive current collector disk and the positive pole is an end surface of the conductive protrusion facing away the welding disk and a groove bottom surface of the first groove.

- 2. The assembled structure of claim 1, wherein the first insulating member is provided with a first through hole, the second insulating member is provided with a second through hole, a central axis of the first through hole coincides with a central axis of the second through hole, the connection rod penetrates through the first through hole and the second through hole, a hole diameter of the first through hole are both not less than the width of the connection rod, the width of the conductive end is larger than the hole diameter of the first through hole, and the width of the connection end is larger than the hole diameter of the second through hole.
- 3. The assembled structure of claim 2, wherein,

an end surface of the first insulating member facing away the second insulating member is provided with a second groove, a groove bottom surface of the second groove is provided with an orifice of the first through hole, and the conductive end is in contact with the second groove;

an end surface of the second insulating member facing away the first insulating member is provided with a third groove, a groove bottom surface of the third groove is provided with an orifice of the second through hole, and the connection end is in contact with the third groove.

- 4. The assembled structure according to claim 3, wherein a sidewall of the conductive end is attached to an inner sidewall of the second groove, and an end surface, located within the second groove, of the conductive end is attached to a groove bottom surface of the second groove; a sidewall of the connection end is attached to an inner sidewall of the third groove, and an end surface, located within the third groove, of the connection end is attached to a groove bottom surface of the third groove.
- **5.** The assembled structure of claim 4, wherein a height of the conductive end is not less than a depth of the second groove.
- The assembled structure of claim 5, wherein the conductive protrusion is provided with a fuse.
- 7. The assembled structure of claim 6, wherein a height of the connection end is less than a depth of the third groove, the welding disk is in contact with the end surface of the second insulating member facing

20

25

35

40

45

50

55

away the first insulating member, and a gap exists between the connection end and the welding disk.

8. A battery, comprising a housing and a cell disposed inside the housing, wherein the housing is of a groove body structure, the housing comprises a housing bottom portion and a housing bottom end surface, wherein the battery is provided with an assembled structure of a pole and a pole current collector disk;

the assembled structure of the pole and the pole current collector disk comprises a positive pole, a positive current collector disk, a first insulating member and a second insulating member, and the second insulating member is disposed between the positive current collector disk and the first insulating member;

the positive pole comprises a conductive end, a connection end and a connection rod, the conductive end and the connection end are connected through the connection rod, and a width of the conductive end and a width of the connection end are both larger than a width of the connection rod:

the connection rod sequentially penetrates through the first insulating member and the second insulating member, the first insulating member is closer to the conductive end than the second insulating member, and an accommodating space is formed between the first insulating member and the second insulating member; and the positive current collector disk comprises a welding disk and a conductive protrusion, the conductive protrusion is disposed on an end surface of the welding disk facing the second insulating member, and an end surface of the connection end facing the positive current collector disk is provided with a first groove, a contact portion of the positive current collector disk and the positive pole is only an end surface of the conductive protrusion facing away the welding disk and a groove bottom surface of the first groove.

9. The battery of claim 8, wherein the first insulating member is provided with a first through hole, the second insulating member is provided with a second through hole, a central axis of the first through hole coincides with a central axis of the second through hole, the connection rod penetrates through the first through hole and the second through hole, a hole diameter of the first through hole and a hole diameter of the second through hole are both not less than the width of the connection rod, the width of the conductive end is larger than the hole diameter of the first through hole, and the width of the connection end is larger than the hole diameter of the second

through hole.

10. The battery of claim 9, wherein,

an end surface of the first insulating member facing away the second insulating member is provided with a second groove, a groove bottom surface of the second groove is provided with an orifice of the first through hole, and the conductive end is in contact with the second groove; and

an end surface of the second insulating member facing away the first insulating member is provided with a third groove, a groove bottom surface of the third groove is provided with an orifice of the second through hole, and the connection end is in contact with the third groove.

- 11. The battery of claim 10, wherein a sidewall of the conductive end is attached to an inner sidewall of the second groove, and an end surface, located within the second groove, of the conductive end is attached to a groove bottom surface of the second groove; a sidewall of the connection end is attached to an inner sidewall of the third groove, and an end surface, located within the third groove, of the connection end is attached to a groove bottom surface of the third groove.
- 12. The battery of claim 11, wherein a height of the conductive end is not less than a depth of the second groove.
 - **13.** The battery of claim 12, wherein the conductive protrusion is provided with a fuse.
 - 14. The battery of claim 13, wherein a height of the connection end is less than a depth of the third groove, the welding disk is in contact with the end surface of the second insulating member facing away the first insulating member, and a gap exists between the connection end and the welding disk.
 - 15. The battery of claim 8, wherein the housing bottom portion is provided with a connection hole, the connection hole penetrates through the housing bottom portion, and the positive pole in the assembled structure penetrates through the connection hole into the housing, the second insulating member in the assembled structure and the positive current collector disk in the assembled structure are disposed inside the housing, the first insulating member in the assembled structure is disposed outside the housing bottom end surface, the first insulating member is in contact with the housing bottom end surface, the second insulating member is in contact with a groove bottom surface of the housing, the width of the connection rod of the positive pole is less than a hole

30

diameter of the connection hole, and an outer sidewall of the connection rod is not in contact with an inner sidewall of the connection hole.

16. The battery of claim 15, wherein the cell is of a full-tab structure, and an end surface of, facing away the conductive protrusion of the positive current collector disk, of the welding disk of the positive current collector disk is connected to a positive pole end surface of the cell.

- 17. The battery of claim 9, wherein the housing bottom portion is provided with a connection hole, the connection hole penetrates through the housing bottom portion, and the positive pole in the assembled structure penetrates through the connection hole into the housing, the second insulating member in the assembled structure and the positive current collector disk in the assembled structure are disposed inside the housing, the first insulating member in the assembled structure is disposed outside the housing bottom end surface, the first insulating member is in contact with the housing bottom end surface, the second insulating member is in contact with a groove bottom surface of the housing, the width of the connection rod of the positive pole is less than a hole diameter of the connection hole, and an outer sidewall of the connection rod is not in contact with an inner sidewall of the connection hole.
- 18. The battery of claim 17, wherein the cell is of a full-tab structure, and an end surface of, facing away the conductive protrusion of the positive current collector disk, of the welding disk of the positive current collector disk is connected to a positive pole end surface of the cell.
- 19. The battery of claim 10, wherein the housing bottom portion is provided with a connection hole, the connection hole penetrates through the housing bottom portion, and the positive pole in the assembled structure penetrates through the connection hole into the housing, the second insulating member in the assembled structure and the positive current collector disk in the assembled structure are disposed inside the housing, the first insulating member in the assembled structure is disposed outside the housing bottom end surface, the first insulating member is in contact with the housing bottom end surface, the second insulating member is in contact with a groove bottom surface of the housing, the width of the connection rod of the positive pole is less than a hole diameter of the connection hole, and an outer sidewall of the connection rod is not in contact with an inner sidewall of the connection hole.
- **20.** The battery of claim 19, wherein the cell is of a full-tab structure, and an end surface of, facing away the

conductive protrusion of the positive current collector disk, of the welding disk of the positive current collector disk is connected to a positive pole end surface of the cell.

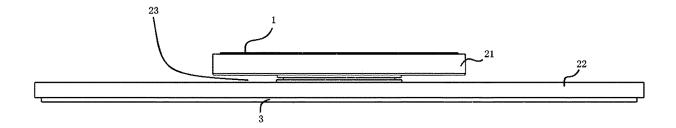


FIG. 1

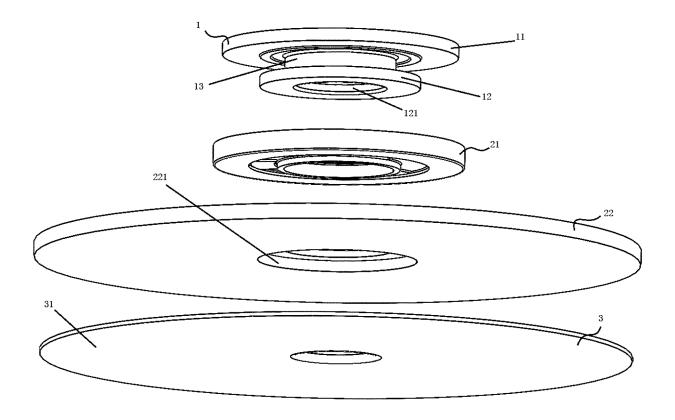


FIG. 2

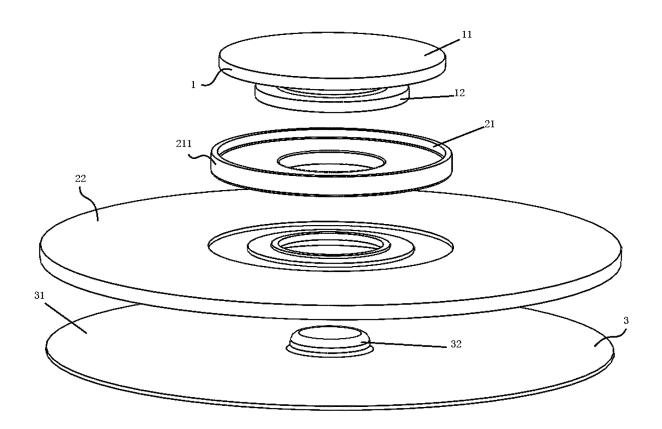


FIG. 3

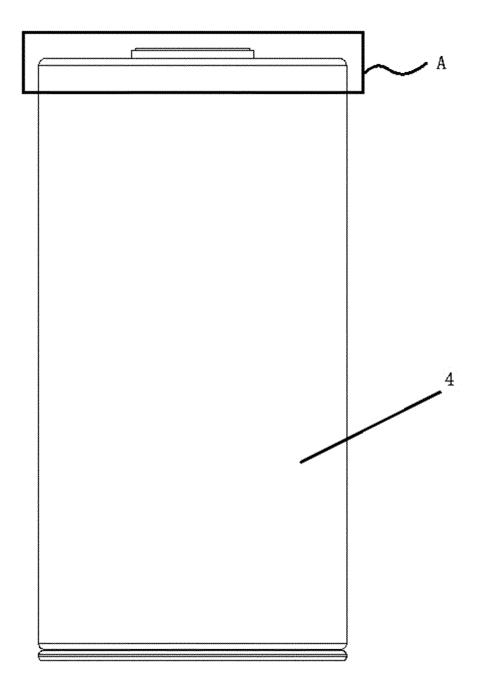


FIG. 4

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2022/093476 5 CLASSIFICATION OF SUBJECT MATTER A. $H01M\ 10/058(2010.01)i;\ H01M\ 50/559(2021.01)i;\ H01M\ 50/528(2021.01)i$ According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS; CNTXT; CNKI; VEN; USTXT; WOTXT; EPTXT: 电池, 电芯, 圆柱, 柱形, 极柱, 正极, 负极, 阴极, 阳极, 电极, 集流, 集电, 盘, 板, 凹, 槽, 绝缘, 密封, battery, cell?, cathode, positive, anode, negative, electrode?, collector?, recess, groove, concave C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages 20 Category* Relevant to claim No. PX CN 215578674 U (EVE ENERGY CO., LTD.) 18 January 2022 (2022-01-18) 1-20 description, paragraphs [0004]-[0043], and figures 1-5 PX CN 215578675 U (EVE ENERGY CO., LTD.) 18 January 2022 (2022-01-18) 1-20 description, paragraphs [0003]-[0044], and figures 1-5 25 CN 113346168 A (EVE ENERGY CO., LTD.) 03 September 2021 (2021-09-03) PX 1 - 20description, paragraphs [0004]-[0046], and figures 1-11 PX CN 113346201 A (EVE ENERGY CO., LTD.) 03 September 2021 (2021-09-03) 1-20 description, paragraphs [0009]-[0066], and figures 1-9 CN 208862041 U (SHENZHEN XINHENGYE BATTERY TECHNOLOGY CO., LTD. et al.) 1-20 Α 30 14 May 2019 (2019-05-14) description, paragraphs [0003]-[0049], and figures 1-8 CN 103151475 A (CAMA JIAHUA (LUOYANG) NEW ENERGY CO., LTD.) 12 June 2013 A 1 - 20(2013-06-12) entire document CN 112821015 A (GMCC ELECTRONIC TECHNOLOGY WUXI CO., LTD.) 18 May 2021 35 Α 1-20(2021-05-18)entire document Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance 40 earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art means 45 document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 20 June 2022 05 July 2022 50 Name and mailing address of the ISA/CN Authorized officer China National Intellectual Property Administration (ISA/ No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing

Form PCT/ISA/210 (second sheet) (January 2015)

100088, China Facsimile No. (86-10)62019451

55

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2022/093476 5 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. CN 204230367 U (ZHEJIANG ZZ ELECTRIC CO., LTD.) 25 March 2015 (2015-03-25) 1-20 A entire document 10 CN 209071393 U (DONGGUAN BAISILI NEW ENERGY TECHNOLOGY CO., LTD.) 05 1-20 July 2019 (2019-07-05) entire document US 2011300419 A1 (BYUN, S. W.) 08 December 2011 (2011-12-08) 1-20 A entire document 15 20 25 30 35 40 45 50

55

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2022/093476 5 Patent document Publication date Publication date Patent family member(s) cited in search report (day/month/year) (day/month/year) CN 215578674 U 18 January 2022 None 215578675 18 January 2022 CN U None 113346168 215578778 CN A 03 September 2021 CN U 18 January 2022 10 113346201 216251031 U 08 April 2022 CN A 03 September 2021 CN208862041 CN U 14 May 2019 None CN 103151475 Α 12 June 2013 CN103151475 В 20 May 2015 CN 112821015 18 May 2021 CN 214280154 U 24 September 2021 A CN 204230367 U 25 March 2015 None 15 209071393 05 July 2019 CN U None US 2011300419 08 December 2011 US 2013295445 07 November 2013 A1A120110133255 12 December 2011 KR A EP 2393145 **A**1 07 December 2011 KR 101126839 23 March 2012 B1 20 EP 2393145 В1 01 May 2013 US 8507126 B2 13 August 2013 US 8802276 B2 12 August 2014 25 30 35 40 45 50

55

Form PCT/ISA/210 (patent family annex) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 202121102907 [0001]