(11) **EP 4 163 432 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 12.04.2023 Bulletin 2023/15

(21) Application number: 22196933.0

(22) Date of filing: 21.09.2022

(51) International Patent Classification (IPC):

D06F 39/14 (2006.01) D06F 58/02 (2006.01)

D06F 58/24 (2006.01) D06F 25/00 (2006.01)

D06F 58/20 (2006.01)

(52) Cooperative Patent Classification (CPC): D06F 39/14; D06F 58/02; D06F 58/24; D06F 25/00; D06F 58/20

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 05.10.2021 US 202117493935

(71) Applicant: Whirlpool Corporation Benton Harbor, MI 49022 (US) (72) Inventors:

Masters Jr., Roy Edward
 21024 Cassinetta di Biandronno (VA) (IT)

Parachini, Davide
 21024 Cassinetta di Biandronno (VA) (IT)

(74) Representative: Spina, Alessandro Whirlpool Management EMEA S.R.L. Via Carlo Pisacane, 1 20016 Pero (MI) (IT)

(54) IN-DOOR CONDENSER FOR LAUNDRY APPLIANCE

(57)A front-load laundry appliance (20) including an in-door condensing system (86) with an air-to-air condenser that forms an air cooling loop (98) inside an in-door cavity (35). The air cooling loop (98) is a tube that extends in a flat spiral to form multiple loops that gradually increase in radius. The in-door condensing system (86) includes an in-door circulation fan (94) and a heat exchanger fan (96). The in-door circulation fan (94) is positioned in the in-door cavity (35) and is arranged to pull moist air from inside the laundry compartment (66) into the in-door cavity (35) where it condenses. The heat exchanger fan (96) is also positioned in the in-door cavity (35) and is arranged to pull cooling air from outside the laundry appliance (20) into the air cooling loop (98). The air cooling loop (98) of the in-door condenser (88) may alternatively receive a cooling air flow from a chiller (130) located inside the laundry appliance (20).

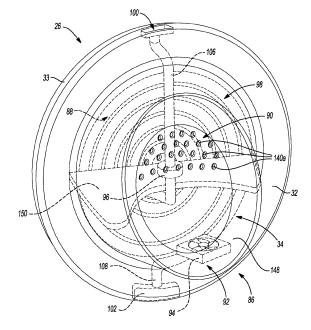


Fig-5

EP 4 163 432 A1

25

40

45

Description

FIELD

[0001] The present disclosure relates generally to laundry appliances and more particularly to an in-door condenser for a front-load washer and dryer combination appliance.

BACKGROUND

[0002] The statements in this section merely provide background information related to the present disclosure and may not constitute as prior art.

[0003] Laundry appliances (i.e., laundry machines, washing machines, and dryers) are prolific in both residential and commercial settings. Traditionally, separate washer and dryer machines have been used in tandem to clean and dry laundry. However, there is a growing market for washer and dryer combination appliances where a single machine performs both the washing and drying functions, thereby eliminating the need for two separate machines. There are a number of different names used to describe washer and dryer combination appliances, including without limitation, "washer/dryer combos" and "all-in-one washer dryers." While these units save space compared to separate washer and dryer machines, combining the washing and drying functions into a single appliance presents a number of engineering challenges.

[0004] Many washer and dryer combination appliances have a front-load appliance configuration, where the washer and dryer combination appliance includes a cabinet with a front opening that is accessed by a front-mounted appliance door. A drum is positioned in and is rotatable with respect to the cabinet. During tumbling, a motor housed within the cabinet rotates the drum. The drum typically has a front end with a drum opening that provides access to a laundry compartment inside the drum.

[0005] Washer and dryer combination appliances are gaining in popularity because they save space compared to a set of separate washer and dryer appliances and because they do not require the act of transferring laundry between separate appliances between the wash and drying cycles. This allows consumers to simply load laundry into the washer and dryer combination appliance and select the desired wash and drying cycle settings and they do not have to return again until the laundry is washed and dried. However, performing the drying cycle in the same appliance that performed the wash cycle presents a number of engineering challenges due to the presence of water inside the drum during the wash cycle and the resulting levels of humidity that remain inside the appliance during the drying cycle. Solutions that improve the performance and efficiency of the drying cycle in washer and dryer combination appliances in the face of these challenges are needed.

SUMMARY

[0006] This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.

[0007] In accordance with one aspect of the present disclosure, a laundry appliance is provided that comprises: a cabinet with a front opening, a drum rotatably supported within the cabinet, a laundry compartment disposed inside the drum, and a front appliance door that is pivotally mounted with respect to the cabinet such that the front appliance door is configured to swing between a closed position where the front appliance door closes the front opening in the cabinet and an open position where the front appliance door is swung away from the front opening to provide access to the laundry compartment. The front appliance door has an outer wall, an inner wall, and a door perimeter. The inner wall of the front appliance door includes a bowl that defines an in-door cavity with the front appliance door. The bowl of the front appliance door is positioned such that at least a portion of the bowl extends into the front opening in the cabinet when the front appliance door is in the closed position. The laundry appliance further includes an in-door condensing system mounted within the in-door cavity. More specifically, the in-door condensing system has an indoor condenser, arranged as an air-to-air heat exchanger, that includes an air cooling loop positioned inside the in-door cavity.

[0008] In accordance with one aspect of the present disclosure, the air cooling loop of the in-door condenser is a tube that extends in a flat spiral to form multiple loops arranged in a condenser loop plane. The multiple loops of the tube forming the in-door condenser have a curvature that gradually increases in radius as the air cooling loop extends out towards the door perimeter.

[0009] In accordance with another aspect of the present disclosure, the in-door condensing system includes an in-door circulation fan, positioned in the in-door cavity, that is arranged to pull moist air from inside the laundry compartment into the in-door cavity, where the moist air flows past the air cooling loop of the in-door condenser to facilitate condensation in the in-door cavity. This removes moisture from the moist air that is pulled into the in-door cavity by the in-door circulation fan to create dryer air (i.e., air with less moisture) that is expelled out of the in-door cavity and back into the laundry compartment.

[0010] In accordance with another aspect of the present disclosure, the in-door condensing system includes a heat exchanger fan, also positioned in the indoor cavity, that is arranged to pull cooling air from outside the laundry appliance into the air cooling loop of the in-door condenser through an air intake located in the outer wall of the appliance door. In other words, in accordance with this aspect of the present disclosure, there are two fans positioned inside the in-door cavity - the indoor circulation fan that circulates moist air from the laun-

dry compartment through the in-door cavity and the heat exchanger fan that circulates cooling air from outside the laundry appliance through the air cooling loop of the in-door condenser.

[0011] In accordance with another aspect of the present disclosure, the air cooling loop of the in-door condenser is positioned inside the door cavity and is arranged to receive a cooling air flow from a chiller located inside the cabinet. In accordance with this aspect of the present disclosure, the chiller is arranged in fluid communication with the in-door condenser when the front appliance door is in the closed position and is configured to cool off the air in the cooling air flow at a location that is upstream of the in-door cooling loop.

[0012] In accordance with another aspect of the present disclosure, the laundry appliance includes a cabinet with a front opening, a drum that is rotatably supported within the cabinet, a front appliance door that opens and closes the front opening of the cabinet, and an indoor condensing system for removing moisture from laundry contained in the drum during a drying cycle. The drum has a laundry compartment that is accessible through the front opening in the cabinet and the front appliance door pivotally mounted with respect to the cabinet such that the front appliance door is configured to swing between a closed position where the front appliance door closes the front opening in the cabinet and an open position where the front appliance door is swung away from the front opening. The front appliance door includes a bowl that is positioned on the front appliance door such that at least a portion of the bowl extends into the front opening in the cabinet when the front appliance door is in the closed position. The bowl defines an indoor cavity within the front appliance door and the indoor condensing system is mounted within the in-door cavity.

[0013] The in-door condensing system includes an indoor condenser that is arranged as an air-to-air heat exchanger and includes an air cooling loop that is positioned inside the in-door cavity. An in-door circulation fan is also positioned in the in-door cavity and is arranged to pull moist air from inside the laundry compartment into the in-door cavity and past the air cooling loop of the in-door condenser to facilitate condensation in the in-door cavity and remove moisture from the laundry compartment.

[0014] In accordance with another aspect, the in-door condensing system includes an air inlet that is positioned in the bowl to define an air intake flow path along which moist air flows directly from the laundry compartment into the in-door cavity and an air outlet that is positioned in the bowl to define a return air flow path along which dry air from inside the in-door cavity flows directly into the laundry compartment.

[0015] In accordance with another aspect, the laundry appliance includes a partition that extends from the bowl towards the in-door condenser to divide at least part of the in-door cavity into first and second zones. In accordance with this aspect of the present disclosure, the air

inlet and the air outlet may be positioned in different zones of the in-door cavity such that the partition directs airflow inside the in-door cavity past the in-door condenser before exiting through the air outlet. In accordance with another aspect of the present disclosure, the heat exchanger fan may be positioned in the same zone as the air outlet.

[0016] In accordance with another aspect, the laundry appliance further comprises a cooling air intake and a cooling air exhaust vent that are located in the front appliance door and are open to ambient air outside of the cabinet. In accordance with this aspect of the present disclosure, a cooling air intake duct and a cooling air exhaust duct are located in the front appliance door. The cooling air intake duct is arranged in fluid communication with and extends between the cooling air intake and the in-door condenser. The cooling air exhaust duct is arranged in fluid communication with and extends between the in-door condenser and the cooling air exhaust vent. The in-door circulation fan is arranged in fluid communication with at least one of the cooling air intake duct, the cooling air exhaust duct, and the in-door condenser for drawing ambient air in through the cooling air intake duct. [0017] In accordance with another aspect, the laundry appliance further comprises a chiller that is located inside the cabinet and arranged to supply a cooling air flow to the air cooling loop. In accordance with this aspect of the present disclosure, the chiller may be an air-to-refrigerant heat exchanger and the cooling air flow that the chiller supplies to the air cooling loop of the in-door condenser may be expelled through a cooling air exhaust vent that is located in the front appliance door. In accordance with this aspect of the present disclosure, the laundry appliance may include an outside air inlet, located in the cabinet, that is open to ambient air outside of the cabinet and an outside air duct, located in the cabinet, that is arranged in fluid communication with and extends between the outside air inlet and an inlet side of the chiller. A compressor, located in the cabinet, is connected to the chiller by refrigerant lines that circulate refrigerant between the compressor and the chiller. The laundry appliance may also include a cool air duct, located in the cabinet, that is arranged in fluid communication with an outlet side of the chiller and a heat exchanger fan, located in said cabinet, that is arranged in fluid communication with at least one of the outside air duct, the cool air duct, and the chiller for drawing ambient air in through the outside air duct. In accordance with this aspect of the present disclosure, the laundry appliance may also include a cooling air intake, located in the front appliance door, that is arranged in fluid communication with the cool air duct in the cabinet when the front appliance door is in the closed position. In accordance with this aspect of the present disclosure, the laundry appliance may further include a cooling air intake duct and a cooling air exhaust duct that are located in the front appliance door. The cooling air intake duct is arranged in fluid communication with and extends between the cooling air intake and the in-door condenser.

40

20

30

35

40

The cooling air exhaust duct is arranged in fluid communication with and extends between the in-door condenser and the cooling air exhaust vent.

[0018] In accordance with another aspect, the laundry appliance includes a drying air circulation duct, a drying air circulation fan, and a heater. The drying air circulation duct is mounted inside the cabinet and includes a duct inlet and a duct outlet that are arranged in fluid communication with the laundry compartment. The drying air circulation fan is mounted inside the drying air circulation duct and is configured to pull air in through the duct inlet and push air out through the duct outlet to generate a drying air circulation flow path through the drying air circulation duct. The heater is positioned inside the drying air circulation duct for heating air inside the drying air circulation duct upstream of the duct outlet. In accordance with this aspect of the present disclosure, the air intake flow path into the in-door cavity, the return air flow path out of the in-door cavity, and the air cooling loop of the in-door condenser are separate and independent of the drying air circulation flow path.

[0019] In accordance with another aspect, the air cooling loop of the in-door condenser is a tube that extends in a flat spiral to form multiple loops that are arranged in a condenser loop plane such that the loops have a curvature that gradually increases in radius as the air cooling loop extends outwardly. In accordance with this aspect of the present disclosure, the condenser loop plane may be arranged substantially parallel to an outer surface of the front appliance door, or in other words, the condenser loop plane may be oriented in a substantially vertical orientation.

[0020] In accordance with another aspect, the laundry appliance includes a sump that is positioned in the cabinet and a water return line, in the front appliance door, that is arranged to collect water that has condensed inside the in-door cavity and carry the condensed water to the sump of the laundry appliance.

[0021] Advantageously, the in-door condensing systems described herein improve the drying performance of the washer and dryer combination laundry appliance by reducing the humidity of the air inside the laundry compartment, which is heated and recirculated during a drying cycle. Improved drying performance is realized because warm dry air provides better drying performance than warm moist air. In addition, the in-door condensing systems described herein utilize the space within the bowl of the front appliance door, which is normally wasted space.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Other advantages of the present disclosure will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

Figure 1 is a front perspective view of an exemplary washer and dryer combination laundry appliance that has been constructed in accordance with one aspect of the present disclosure;

Figure 2 is a side cross-section view of the exemplary washer and dryer combination laundry appliance shown in Figure 1;

Figure 3 is a side perspective view of the exemplary washer and dryer combination laundry appliance shown in Figure 1, where certain components of the laundry appliance have been made transparent and/or converted to dashed lines for illustration purposes:

Figure 4 is a front elevation view of an exemplary front appliance door sub-assembly having a condenser that has been constructed in accordance with an aspect of the present disclosure;

Figure 5 is a rear perspective view of the exemplary front appliance door sub-assembly shown in Figure 4 where the condenser, partition, in-door circulation fan, and heat exchanger fan are shown in dashed lines;

Figure 6 is a side cross-section view of the exemplary front appliance door sub-assembly shown in Figure 4:

Figure 7 is a front perspective view of another exemplary washer and dryer combination laundry appliance that has been constructed in accordance with another aspect of the present disclosure;

Figure 8 is a side cross-section view of the exemplary washer and dryer combination laundry appliance shown in Figure 7;

Figure 9 is a front elevation view of another exemplary front appliance door sub-assembly having a condenser that has been constructed in accordance with another aspect of the present disclosure;

Figure 10 is a rear perspective view of the exemplary front appliance door sub-assembly shown in Figure 9 where the condenser, partition, and in-door circulation fan are shown in dashed lines; and

Figure 11 is a side cross-section view of the exemplary front appliance door sub-assembly shown in Figure 9.

5 DETAILED DESCRIPTION

[0023] Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, various aspects of a washer and dryer combination laundry appliance 20, 20' are illustrated.

[0024] Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be

apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.

[0025] The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.

[0026] When an element or layer is referred to as being "on," "engaged to," "connected to," or "coupled to" another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to," or "directly coupled to" another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

[0027] Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.

[0028] For purposes of description herein the terms "up," "down," "above," "below," "upper," "lower," "top," "bottom," "front," "rear," and derivatives thereof shall relate to the assembly as oriented in Figures 1-11. However, it is to be understood that the apparatus and as-

semblies described herein may assume various alternative orientations. Finally, the term "substantially" as used herein describes angles and/or orientations that can vary plus or minus five degrees from the referenced direction, axis, plane, or orientation.

[0029] With reference to Figures 1-3, a laundry appliance 20 having a front-load configuration is illustrated. The laundry appliance 20 includes a cabinet 22 that is rectangular in shape and that includes a front opening 24. A front appliance door 26 is pivotally connected to the laundry appliance 20. The front appliance door 26 swings between an open position and a closed position. In the closed position, the front appliance door 26 shuts or closes the front opening 24 in the cabinet 22. Although other configurations are possible, in the illustrated example, the front appliance door 26 is pivotally mounted to the front of the cabinet 22 by a hinge 28 and held in the closed position during wash and drying cycles by a latch 29.

[0030] The front appliance door 26 includes an outer wall 30 that presents an outer door surface 31, which faces out away from the front opening 24 in the cabinet 22 when the front appliance door 26 is in the closed position and an inner wall 32 that faces the front opening 24 in the cabinet 22 when the front appliance door 26 is in the closed position. The front appliance door 26 also includes a door perimeter 33 and a bowl 34. The door perimeter 33 is configured to abut the cabinet 22 when the front appliance door 26 is in the closed position. The bowl 34 is provided on the inner wall 32 of the front appliance door 26 and is spaced radially inward of the door perimeter 33. At least a portion of the bowl 34 is received in the front opening 24 in the cabinet 22 when the front appliance door 26 is in the closed position. Among other functions, the bowl 34 prevents laundry inside the laundry appliance 20 from accumulating in the front opening 24 during tumbling and particularly during the wash cycle of the laundry appliance 20. Although other materials can be used, in the illustrated example, the front appliance door 26 is made of metal, while the bowl 34 is made of a molded plastic material. Portions of the bowl 34 are spaced from the front appliance door 26 such that an indoor cavity 35 is defined between the outer wall 30 and the inner wall 32 of the front appliance door 26.

[0031] The laundry appliance 20 includes a drum housing 36 with a cylindrical shape that is mounted inside the cabinet 22 on dynamic mounts 38, which keep the drum housing 36 from rotating, but permit limited degrees of freedom that allow the drum housing 36 to move/oscillate relative to the cabinet 22 during tumbling. The drum housing 36 includes a front ring 40, a rear drum housing wall 42, and a drum housing sidewall 44 that extends longitudinally from the front ring 40 to the rear drum housing wall 42 to define a drum housing cavity 46 inside the drum housing 36. The front ring 40 of the drum housing 36 includes a drum housing opening 48 positioned in at least partial alignment with the front opening 24 in the cabinet 22.

40

45

[0032] A drum 50 is positioned in the drum housing cavity 46 and is supported therein such that the drum 50 is rotatable with respect to the drum housing 36 about a longitudinal axis 52. The drum 50 also has a cylindrical shape and extends longitudinally between a front drum end 54 and a rear drum end 56. The drum 50 includes a drum opening **58** at the front drum end **54**, a rear drum wall 60 at the rear drum end 56, and a drum sidewall 62 that extends longitudinally between the front and rear drum ends 54, 56. The drum sidewall 62 includes an outer surface 64 that faces the drum housing sidewall 44. The front drum end 54, the drum sidewall 62, and the rear drum wall 60 cooperate to define a laundry compartment 66 inside the drum 50. The front opening 24 in the cabinet 22, the drum housing opening 48 in the front ring 40 of the drum housing 36, and the drum opening 58 at the front drum end **54** are at least partially aligned with one another and therefore provide access to the laundry compartment 66 inside the drum 50 when the front appliance door 26 is in the open position. Thus, it should be appreciated that in use, laundry (e.g., clothes, towels, and/or bedding, etc.) is placed inside the laundry compartment 66 where it is first cleaned during the wash cycle and then dried during the drying cycle of the laundry appliance

[0033] A drive shaft 68, fixedly coupled to the rear drum end 56, is supported by a bearing pack 70 such that the drive shaft 68 and the drum 50 rotate together as a single unit within the cabinet 22. An electric motor 72, positioned in the cabinet 22, operates to drive rotation of the drive shaft 68, which in turn drives rotation of the drum 50 within the drum housing 36 and the cabinet 22 during operation of the laundry appliance 20, such as during washing and tumbling.

[0034] As best seen in Figure 3, the laundry appliance 20 includes a drying air circulation duct 74, which is mounted inside the cabinet 22. The drying air circulation duct 74 includes a duct inlet 76 and a duct outlet 78 that are arranged in fluid communication with the laundry compartment 66. A drying air circulation fan 80 is mounted inside the drying air circulation duct 74. During a drying cycle of the laundry appliance 20, the drying air circulation fan 80 pulls air in the laundry compartment 66 in through the duct inlet 76 and pushes air out through the duct outlet 78 to define a drying air circulation flow path 82 through the drying air circulation duct 74. A heater 84 is also positioned inside the drying air circulation duct 74. Although other configurations are possible, the heater 84 may be an electric resistance heater, for example. During one or more portions of the drying cycle, the heater 84 operates to heat the air inside the drying air circulation duct 74 upstream of the duct outlet 78. When the heater 84 is activated, the temperature of the air expelled into the laundry compartment 66 from the duct outlet 78 is warmer (i.e., is at a higher temperature) than the air that is pulled into the drying air circulation duct 74 through the duct inlet 76. The circulation and heating of air performed by the drying air circulation duct 74 during a drying cycle of

the laundry appliance **20** dries the laundry in the laundry compartment **66** as it tumbles within the rotating drum **50**. However, as the laundry dries, the air inside the laundry compartment **66** that is re-circulated through the drying air circulation duct **74** becomes very humid (i.e., moist).

10

[0035] To improve drying performance, the laundry appliance 20 further includes an in-door condensing system 86 that is mounted within the in-door cavity 35. The indoor condensing system 86 operates to remove some of the humidity (i.e., moisture) from the air in the laundry compartment 66 through condensation to improve the drying performance of the laundry appliance 20. The space in the front appliance door 26 that is taken up by the bowl 34 is normally wasted. Advantageously, the indoor condensing system 86 described herein makes use of this otherwise wasted space.

[0036] With additional reference to Figures 4-6, the indoor condensing system 86 includes an in-door condenser 88, an air inlet 90, an air outlet 92, and an in-door circulation fan 94, and a heat exchanger fan 96. The indoor condenser 88 is positioned in the in-door cavity 35. The in-door condenser 88 is arranged as an air-to-air heat exchanger and includes an air cooling loop 98 that is positioned inside the in-door cavity 35. In the examples illustrated, the air cooling loop 98 of the in-door condenser 88 is formed of a metal tube that extends in a flat spiral to form multiple loops that are arranged in a condenser loop plane 146. The loops of the in-door condenser 88 have a curvature that gradually increases in radius as said air cooling loop 98 extends out towards the door perimeter 33. The in-door condenser 88 is mounted inside the in-door cavity 35 of the front appliance door 26 in an orientation where the condenser loop plane 146 is arranged in a substantially vertical orientation and is substantially parallel to the outer door surface 31. However, it should be appreciated that alternative configurations and geometries for the in-door condenser 88 are possible and are considered to be within the scope of the present disclosure.

[0037] The bowl 34 in the inner wall 32 of the front appliance door 26 has a dome-shaped depression 148 and a partition 150, attached to the bowl 34, that extends from the bowl 34 towards the in-door condenser 88 to divide at least part of the in-door cavity 35 into a first zone 152 and a second zone 154. The air inlet 90 and the air outlet 92 are positioned in different zones 152, 154 of the in-door cavity 35 such that the partition 150 directs airflow inside the in-door cavity 35 past the in-door condenser 88 before exiting through the air outlet 92. Although other configurations are possible, in the illustrated example, the air inlet 90 is positioned in fluid communication with the first zone 152 of the in-door cavity 35 and the air outlet 92 is positioned in fluid communication with the second zone 154 of the in-door cavity 35. In other words, the air inlet 90 extends through the bowl 34 at a location that is positioned above the air outlet 92. However, it should be appreciated that this arrangement may be reversed,

35

40

45

where the air inlet **90** is positioned below the air outlet **92** or where the air inlet **90** and the air outlet **92** are positioned on opposite sides of the bowl **34** with the partition extending vertically instead of horizontally like in the illustrated examples.

[0038] In the illustrated example, the in-door circulation fan **94** is positioned in the second zone **154** of the in-door cavity 35 adjacent to the air outlet 92 and is mounted to the bowl 34. However, it should be appreciated that other configurations are possible. For example, the in-door circulation fan 94 is positioned in the first zone 152 of the in-door cavity 35 adjacent to the air inlet 90 or at a location in the in-door cavity 35 that is spaced from the air inlet 90 and air outlet 92. Regardless of the location, the indoor circulation fan 94 operates to draw moist air from the laundry compartment 66 into the in-door cavity 35 along an air intake flow path 132 (shown in Figure 6) and expel dry air from the in-door cavity 35 back into the laundry compartment 66 along a return air flow path 134 (also shown in Figure 6). The in-door circulation fan 94 circulates the moist air from inside the laundry compartment 66 through the in-door cavity 35 and past the air cooling loop 98 of the in-door condenser 88 to facilitate condensation in the in-door cavity 35.

[0039] While other configurations are possible, in the illustrated examples, the air inlet 90 and the air outlet 92 are provided in the form of a plurality of holes 140a, 140b that extend through the bowl 34 where the group of holes 140a forming the air inlet 90 are positioned below the group of holes 140b forming the air outlet 92. Referring back to Figure 3, it should be appreciated that the air intake flow path 132 into the in-door cavity 35 and the return air flow path 134 out of the in-door cavity 35 are separate and independent of the drying air circulation flow path 82.

[0040] The heat exchanger fan 96 of the in-door condensing system 86 is positioned in the in-door cavity 35 and is arranged to pull cooling air from outside the laundry appliance 20 (i.e., the ambient air outside the cabinet 22) into the air cooling loop 98 of the in-door condenser 88 through a cooling air intake 100 located in the outer wall 30 of the front appliance door 26 near the door perimeter 33 at the twelve o'clock position. As shown by the arrows in Figure 6, after the cooling air travels through the air cooling loop 98 of the in-door condenser 88 it is expelled out of the front appliance door 26 into the ambient environment surrounding the laundry appliance 20 through a cooling air exhaust vent 102 located in the outer wall 30 of front appliance door 26 near the door perimeter 33 at the six o'clock position. Thus, both the cooling air intake 100 and the cooling air exhaust vent 102 are located in the outer wall 30 of the front appliance door 26 and are open to ambient air outside of the cabinet 22. However, it should be appreciated that the exact location and placement of the cooling air intake **100** and cooling air exhaust vent 102 may vary from the locations shown and de-

[0041] The in-door condensing system 86 further in-

cludes a cooling air intake duct 106 and a cooling air exhaust duct 108. The cooling air intake duct 106 is located in the front appliance door 26 and extends between the cooling air intake 100 and the in-door condenser 88. The cooling air exhaust duct 108 is also located in the front appliance door 26 and extends between the in-door condenser 88 and the cooling air exhaust vent 102. In the illustrated example, the in-door circulation fan 94 is arranged in fluid communication with the cooling air intake duct 106 for drawing ambient air in through the cooling air intake 100 and is mounted to the partition 150. However, it should be appreciated that the in-door circulation fan 94 could be placed in other locations, including in locations where the in-door circulation fan 94 is arranged in fluid communication with the cooling air exhaust duct 108 or the in-door condenser 88.

[0042] As shown in Figures 2 and 6, the front appliance door 26 includes a water drain line 104 that is arranged in fluid communication with the in-door cavity 35 such that the water drain line 104 is configured to collect the water that has condensed out of the moist air that has been pulled into the in-door cavity 35 by the in-door circulation fan 94. This water that has condensed (i.e., the water condensate) falls into the bottom of the in-door cavity 35 under the influence of gravity and is carried back to the cabinet 22 via the water drain line 104, which is connected in fluid communication with a water return line 126 in the cabinet 22 by a water outlet joint 116 that is created between the front appliance door 26 and the cabinet 22 when the front appliance door 26 is in the closed position. The water return line 126 receives water condensate from the water drain line 104 and carries it to a sump 120 of the laundry appliance 20, which is located at the bottom of the cabinet 22, beneath the drum 50.

[0043] Figures 7-11 illustrate another exemplary laundry appliance 20' that includes another in-door condensing system 86' in which the in-door condenser 88' is constructed to receive a cooling air flow from the cabinet 22'. Many of the elements of the laundry appliance 20' shown in Figures 7-11 are the same or similar to the elements of the laundry appliance 20 shown in Figures 1-6 and therefore share the same reference numbers, but have been annotated with a prime symbol (') after the reference numerals. Figures 7-11 illustrate an alternative configuration, where the laundry appliance 20' includes a chiller 130' (i.e., an air-to-air, air-to-water, or air-to-refrigerant heat exchanger) located inside the cabinet 22' that supplies a cooling air flow to the air cooling loop 98' of the in-door condenser 88', which again is arranged as an airto-air heat exchanger.

[0044] With reference to Figures 7 and 8, the chiller 130' is located inside the cabinet 22' and is arranged upstream of the air cooling loop 98' of the in-door condenser 88'. An outside air inlet 136' is located at the rear of the cabinet 22'. The heat exchanger fan 96' is also located at the rear of the cabinet 22' and is positioned adjacent to the outside air inlet 136', which is open to the

15

20

25

35

40

45

50

55

ambient air outside of the cabinet 22'. In operation, the heat exchanger fan 96' draws the cool ambient air in from outside of the cabinet through the outside air inlet 136' and into an outside air duct 138' that is located inside the cabinet 22' and that extends between the outside air inlet 136' and an inlet side 142' of the chiller 130'. A cool air duct 156' is located in the cabinet 22' that extends between an outlet side 144' of the chiller and a cooling air joint 158' that is positioned at the front of the cabinet 22' adjacent to the front opening 24'.

[0045] Although other configurations are possible, in the illustrated example, the chiller 130' is an air-to-refrigerant heat exchanger. Accordingly, a compressor 160', located in the cabinet 22', is connected to the chiller 130' by refrigerant lines 162a', 162b' that circulate a refrigerant (such as R134a, for example) between the compressor 160' and the chiller 130' to extract heat from the cooling air flow as it passes from the inlet side 142' of the chiller 130' to the outlet side 144' of the chiller 130'. It should also be appreciated that although the heat exchanger fan 96' in the illustrated example is arranged in fluid communication with the outside air duct 138' at the rear of the cabinet 22', the heat exchanger fan 96' may be placed in other locations, including in fluid communication with the cool air duct 156' or the chiller 130'.

[0046] With additional reference to Figures 9-11, a cooling air intake 100' is located in the inner wall 32' of the front appliance door, which is connected in fluid communication with the cool air duct 156' by the cooling air joint 158' that is created between the front appliance door 26' and the cabinet 22' when the front appliance door 26' is in the closed position. As shown by the arrows in Figure 11, the air cooling loop 98' of the in-door condenser 88' receives the cooling air flow from the cool air duct 156' after it has been cooled by the chiller 130'. The indoor condensing system 86' includes a cooling air intake duct 106' located in the front appliance door 26' that extends between the cooling air intake 100' and the in-door condenser 88'. The front appliance door 26' also includes a cooling air exhaust vent 102' located in the outer wall 30' of the front appliance door 26', which is open to the ambient air outside of the cabinet 22'. The in-door condensing system 86' further includes a cooling air exhaust duct 108' that is positioned in the front appliance door 26' and that extends between the in-door condenser 88' and the cooling air exhaust vent 102'. Because the heat exchanger fan 96' is positioned inside the cabinet 22' in accordance with this embodiment, only one fan - the indoor circulation fan 94' - is positioned inside the in-door cavity 35'. In accordance with the embodiment illustrated in Figures 7-11, the cooling air intake 100' is located in the inner wall 32' of the front appliance door 26' near the door perimeter 33' at the six o'clock position and the cooling air exhaust vent 102' is located in the outer wall 30' of front appliance door 26' near the door perimeter 33' at the twelve o'clock position. However, it should be appreciated that the exact location and placement of the cooling air intake 100' and cooling air exhaust vent 102'

may vary from the locations shown and described herein. **[0047]** Many modifications and variations of the apparatus and assemblies described in the present disclosure are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility.

Claims

1. A laundry appliance (20), comprising:

a cabinet (22) with a front opening (24); a drum (50) rotatably supported within said cabinet (22), said drum (50) including a laundry compartment (66) that is accessible through said front opening (24) in said cabinet (22); a front appliance door (26) pivotally mounted with respect to said cabinet (22) such that said front appliance door (26) is configured to swing between a closed position where said front appliance door (26) closes said front opening (24) in said cabinet (22) and an open position where said front appliance door (26) is swung away from said front opening (24);

said front appliance door (26) includes a bowl (34) that is positioned on said front appliance door (26) such that at least a portion of said bowl (34) extends into said front opening (24) in said cabinet (22) when said front appliance door (26) is in said closed position;

said bowl (34) defining an in-door cavity (35) within said front appliance door (26);

an in-door condensing system (86) mounted within said in-door cavity (35); and

said in-door condensing system (86) including an in-door condenser (88), arranged as an airto-air heat exchanger, that includes an air cooling loop (98) that is positioned inside said indoor cavity (35); and

an in-door circulation fan (94), positioned in said in-door cavity (35), that is arranged to pull moist air from inside said laundry compartment (66) into said in-door cavity (35) and past said air cooling loop (98) of said in-door condenser (88) to facilitate condensation in said in-door cavity (35) and remove moisture from said laundry compartment (66).

2. The laundry appliance (20) as set forth in claim 1, wherein said in-door condensing system (86) includes an air inlet (90) positioned in said bowl (34) to define an air intake flow path (132) along which moist air flows directly from said laundry compartment (66) into said in-door cavity (35) and an air out-

15

20

25

30

35

40

45

50

55

let (92) positioned in said bowl (34) to define a return air flow path (134) along which dry air from inside said in-door cavity (35) flows directly into said laundry compartment (66).

- **3.** The laundry appliance (20) as set forth in claim 2, further comprising:
 - a partition (150) that extends from said bowl (34) towards said in-door condenser (88) to divide at least part of said in-door cavity (35) into first and second zones (152, 154).
- 4. The laundry appliance (20) as set forth in claim 3, wherein said air inlet (90) and said air outlet (92) are positioned in different zones (152, 154) of said indoor cavity (35) such that said partition (150) directs airflow inside said in-door cavity (35) past said indoor condenser (88) before exiting through said air outlet (92).
- **5.** The laundry appliance (20) as set forth in claim 4, wherein heat exchanger fan (96) positioned in the same zone as said air outlet (92).
- **6.** The laundry appliance (20) as set forth in claim 2, further comprising:

a cooling air intake (100) located in said front appliance door (26) that is open to ambient air outside of said cabinet (22);

a cooling air intake duct (106) located in said front appliance door (26) that is arranged in fluid communication with and that extends between said cooling air intake (100) and said in-door condenser (88);

a cooling air exhaust vent (102) located in said front appliance door (26) that is open to ambient air outside of said cabinet (22); and

a cooling air exhaust duct (108) located in said front appliance door (26) that is arranged in fluid communication with and that extends between said in-door condenser (88) and said cooling air exhaust vent (102),

wherein said in-door circulation fan (94) is arranged in fluid communication with at least one of said cooling air intake duct (106), said cooling air exhaust duct (108), and said in-door condenser (88) for drawing said ambient air in through said cooling air intake duct (106).

- **7.** The laundry appliance (20) as set forth in claim 1, further comprising:
 - a chiller (130) located inside said cabinet (22) and arranged to supply a cooling air flow to said air cooling loop (98).
- **8.** The laundry appliance (20) as set forth in claim 7, wherein said chiller (130) is an air-to-refrigerant heat

exchanger and wherein said cooling air flow that said chiller (130) supplies to said air cooling loop (98) of said in-door condenser (88) is expelled through a cooling air exhaust vent (102) located in said front appliance door (26).

9. The laundry appliance (20) as set forth in claim 8, further comprising:

an outside air inlet (136) located in said cabinet (22) that is open to ambient air outside of said cabinet (22);

an outside air duct (138) located in said cabinet (22) that is arranged in fluid communication with and that extends between said outside air inlet (136) and an inlet side (142) of said chiller (130); a compressor (160) located in said cabinet (22) that is connected to said chiller (130) by refrigerant lines (162a, 162b) that circulate refrigerant between said compressor (160) and said chiller (130);

a cool air duct (156) located in said cabinet (22) that is arranged in fluid communication with an outlet side (144) of said chiller (130);

a heat exchanger fan (96) located in said cabinet (22) that is arranged in fluid communication with at least one of said outside air duct (138), said cool air duct (156), and said chiller (130) for drawing said ambient air in through said outside air duct (138);

a cooling air intake (100) located in said front appliance door (26) that is arranged in fluid communication with said cool air duct (156) in said cabinet (22) when said front appliance door (26) is in said closed position;

a cooling air intake duct (106) located in said front appliance door (26) that is arranged in fluid communication with and that extends between said cooling air intake (100) and said in-door condenser (88); and

a cooling air exhaust duct (108) that is arranged in fluid communication with and that extends between said in-door condenser (88) and said cooling air exhaust vent (102).

10. The laundry appliance (20) as set forth in any one of claims 1-9, further comprising:

a drying air circulation duct (74) mounted inside said cabinet (22) and including a duct inlet (76) and a duct outlet (78) that are arranged in fluid communication with said laundry compartment (66);

a drying air circulation fan (80) mounted inside said drying air circulation duct (74) that is configured to pull air in through said duct inlet (76) and push air out through said duct outlet (78) to generate a drying air circulation flow path (82)

25

35

40

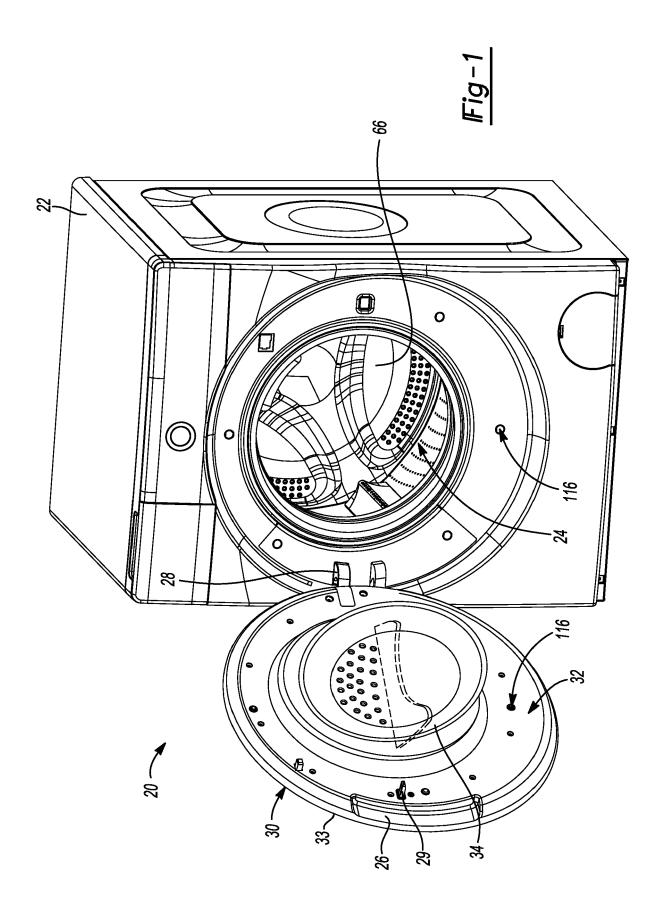
45

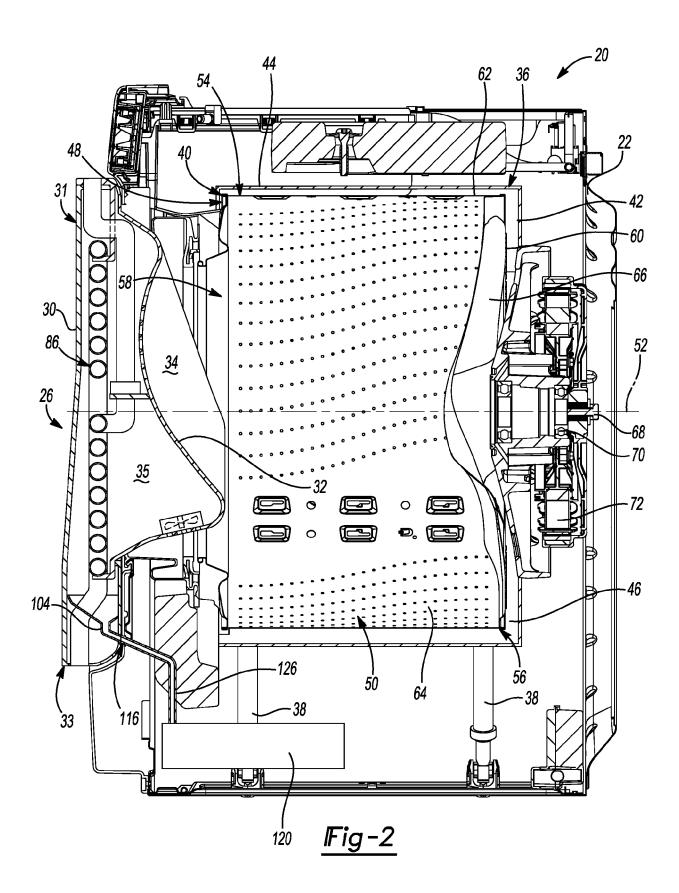
through said drying air circulation duct (74); and a heater (84) positioned inside said drying air circulation duct (74) for heating air inside said drying air circulation duct (74) upstream of said duct outlet (78).

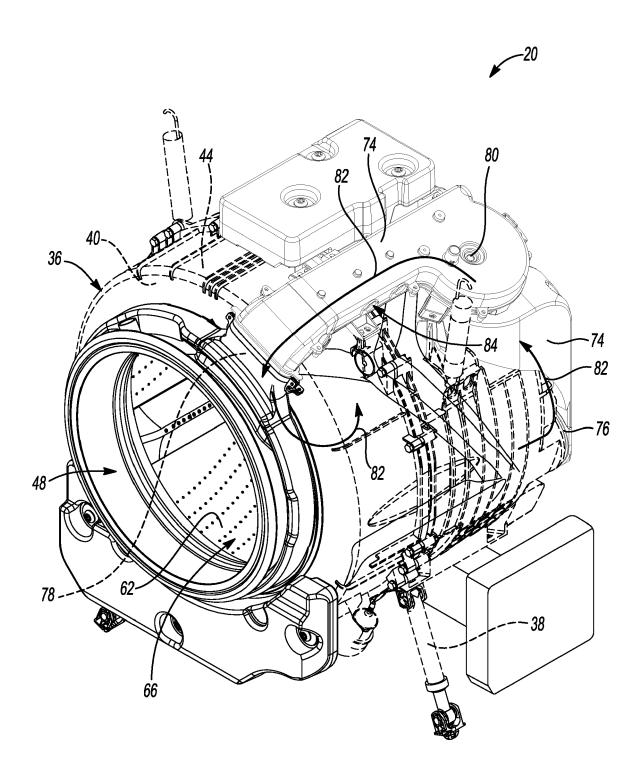
11. The laundry appliance (20) as set forth in claim 10, wherein said air intake flow path (132) into said indoor cavity (35), said return air flow path out (134) of said in-door cavity (35), and said air cooling loop (98) of said in-door condenser (88) are separate and independent of said drying air circulation flow path (82).

12. The laundry appliance (20) as set forth in any one of claims 1-9, wherein said air cooling loop (98) of said in-door condenser (88) is a tube that extends in a flat spiral to form multiple loops arranged in a condenser loop plane (146) such that said loops have a curvature that gradually increases in radius as said air cooling loop (98) extends outwardly.

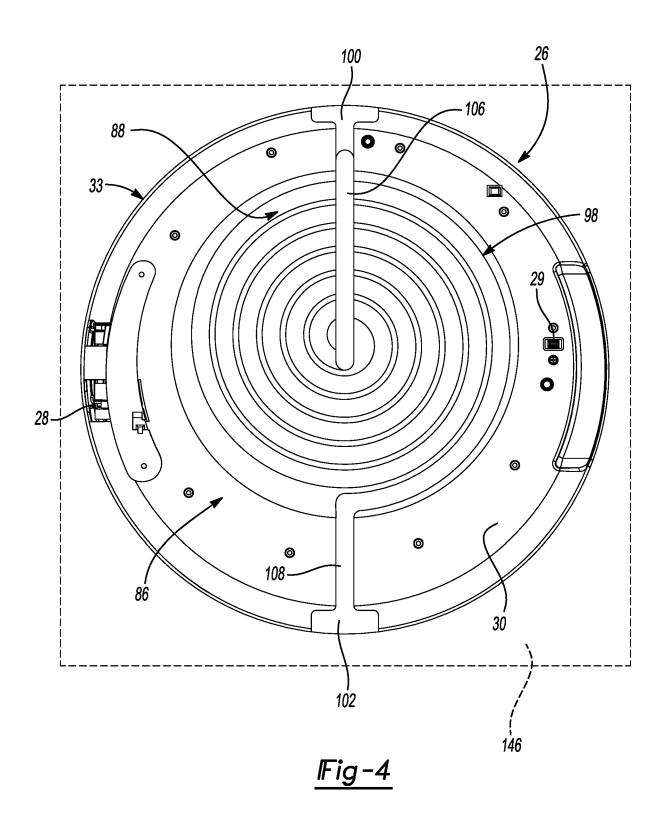
13. The laundry appliance (20) as set forth in claim 12, wherein said condenser loop plane (146) is arranged in a substantially vertical orientation.

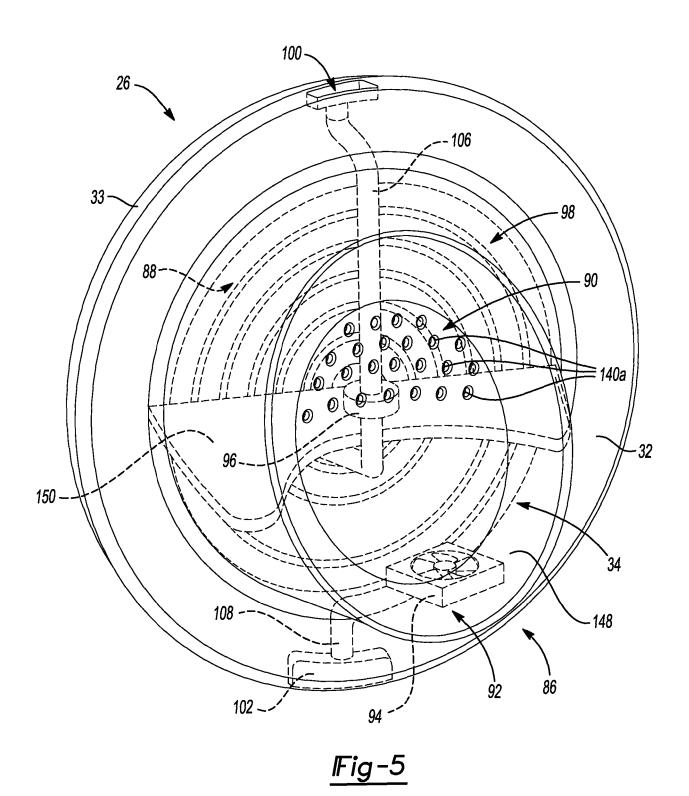

14. The laundry appliance (20) as set forth in claim 12, wherein said front appliance door (26) has an outer door surface (31) and wherein said condenser loop plane (146) is arranged substantially parallel to said outer door surface (31).

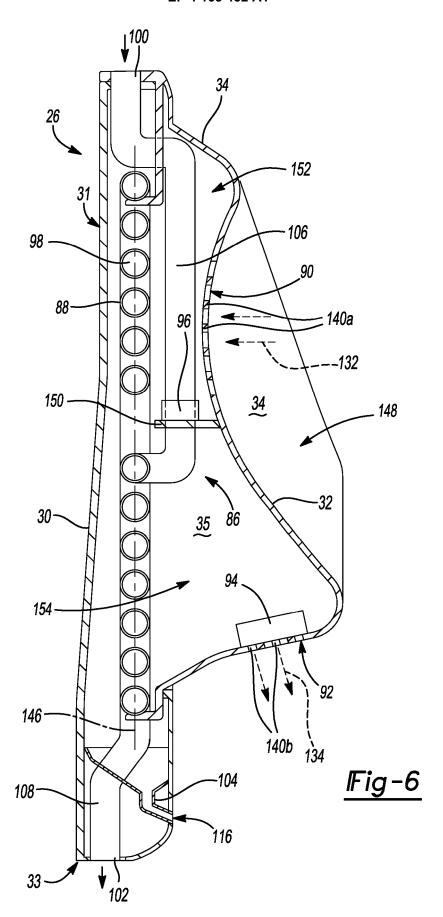

15. The laundry appliance (20) as set forth in any one of claims 1-9, further comprising:

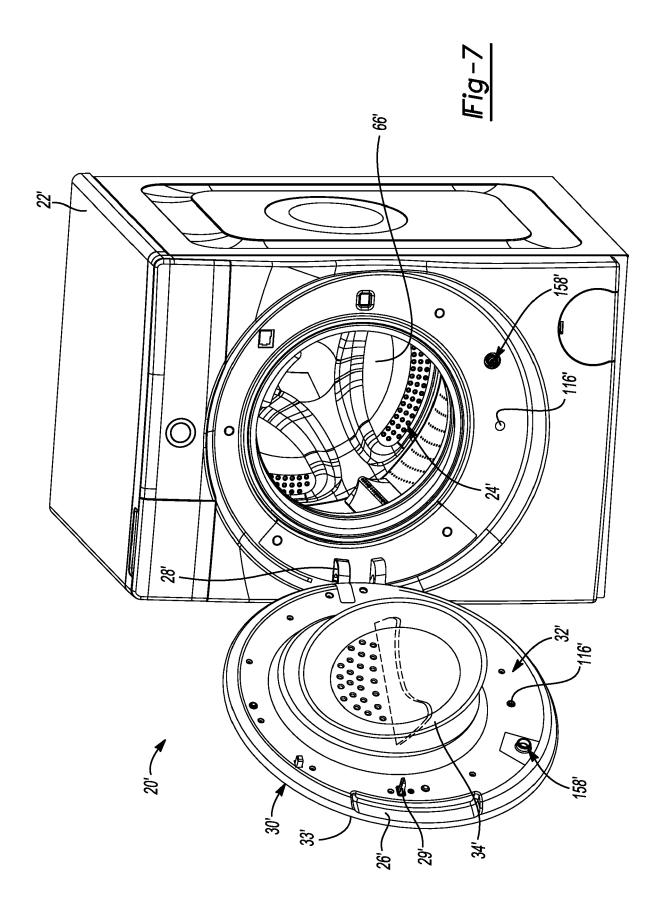

a sump (120) positioned in said cabinet (22); and a water return line (126) in said front appliance door (26) that is arranged to collect water that has condensed inside said in-door cavity (35) and carry said water to said sump (120).

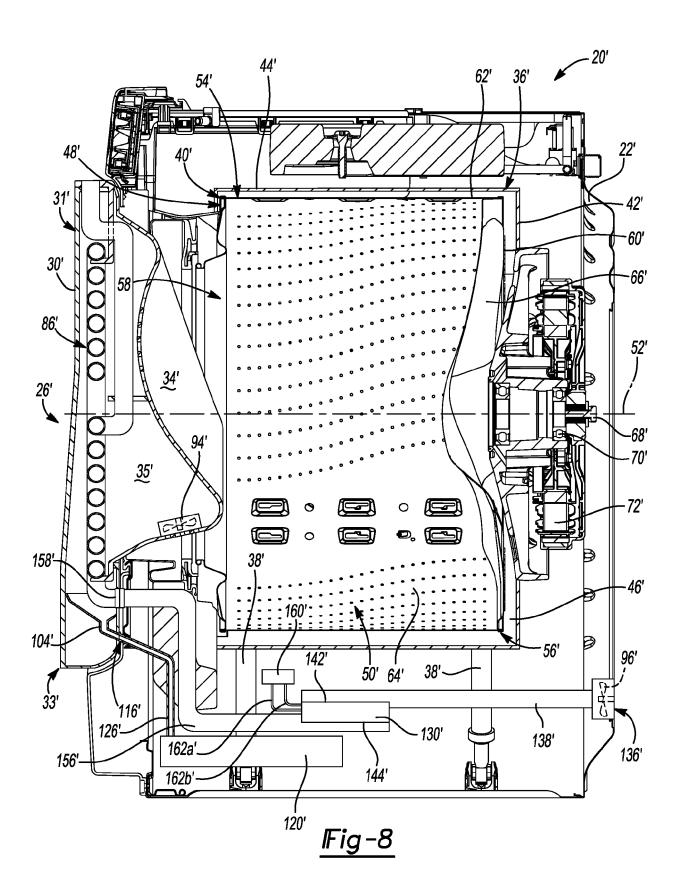
55

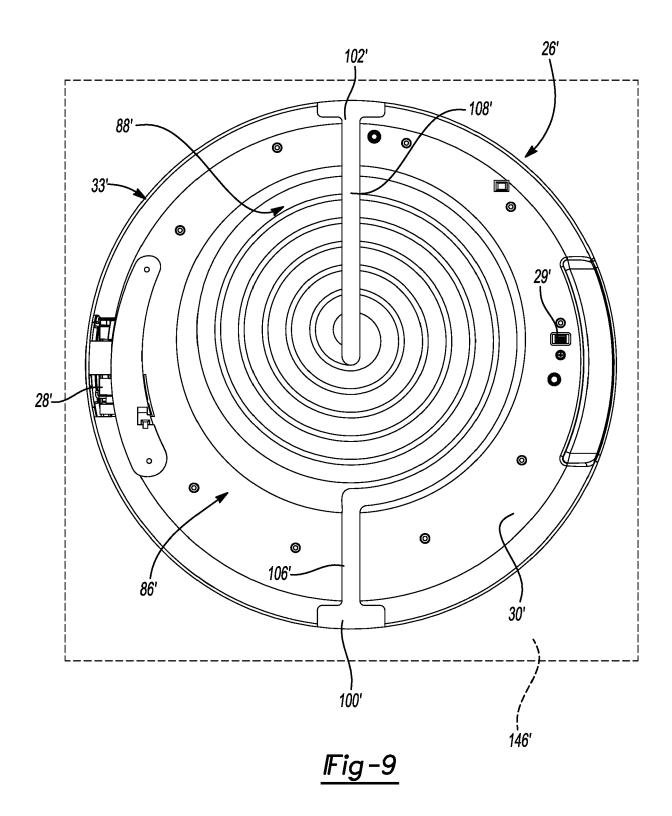

50








<u>|Fig-3</u>



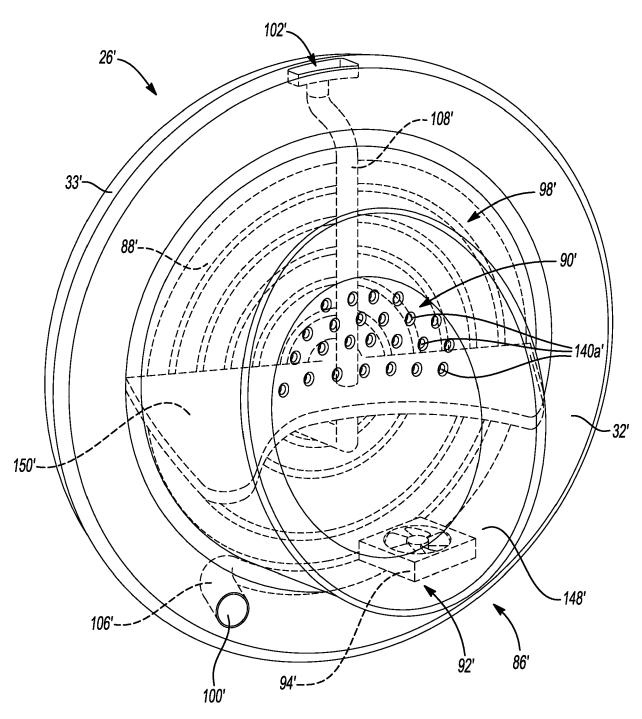
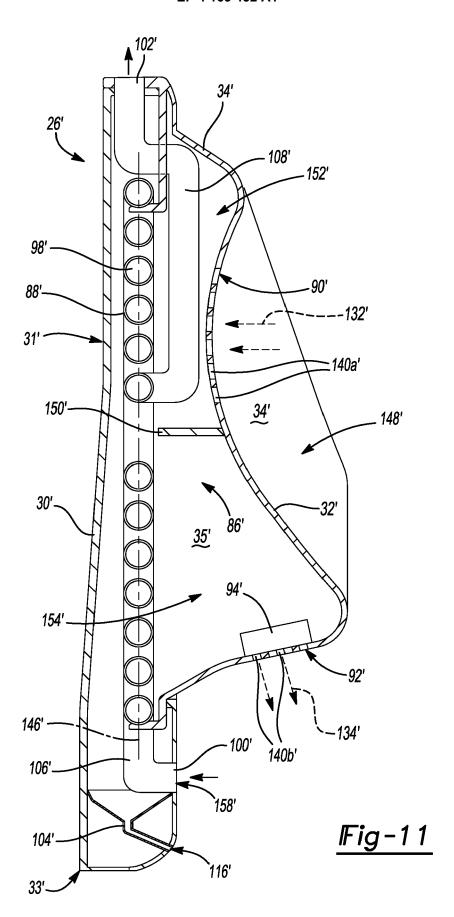



Fig-10

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate,

of relevant passages

Category

EUROPEAN SEARCH REPORT

Application Number

EP 22 19 6933

CLASSIFICATION OF THE APPLICATION (IPC)

Relevant

to claim

10	

5

15

20

25

30

35

40

45

50

55

X A X A	US 2021/214880 A1 (15 July 2021 (2021- * paragraphs [0021] [0042], [0044], [0050]; figures * US 2020/308753 A1 (ET AL) 1 October 20 (20058]	-07-15) , [0036], [0045], [00 (CIVANELLI C) 020 (2020-10 , [0066];	[0041], 46], CLAUDIO [IT] 0-01) figures *	1-6,10, 11,15 7-9, 12-14 1,2 3-15	INV. D06F39/14 D06F58/02 D06F58/24 ADD. D06F25/00 D06F58/20
A	EP 0 481 187 B1 (ZZ 17 November 1994 (1 * the whole document	L994-11-17)	DE])	1–15	
A	GB 2 097 519 A (LIC 3 November 1982 (19 * the whole document	982-11-03)		1–15	
					TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has	been drawn up for	all claims		D06F
1	Place of search	Date of c	ompletion of the search		Examiner
004C0	Munich	14 F	ebruary 2023	Pop	ara, Velimir
0 : 00: 00: 00: 00: 00: 00: 00: 00: 00:	CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone rticularly relevant if combined with ano cument of the same category thnological background n-written disclosure ermediate document		T : theory or principle E : earlier patent doc after the filing date D : document cited in L : document cited fo & : member of the sa document	ument, but publice the application or other reasons	shed on, or

EP 4 163 432 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 22 19 6933

5

55

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on

Patent family

member(s)

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-02-2023

Publication

date

10		Patent document cited in search report			Publication date
		US	2021214880	A1	15-07-20
15		us	2020308753	A1	01-10-20
20		EP	0481187	в1	17-11-19
		GB	2097519		03-11-19
25					
30					
35					
40					
45					
50					
	0459				

5-07-2021 CN 214613188 U 05-11-2021 3848499 A1 14-07-2021 EР US 2021214880 A1 15-07-2021 1-10-2020 3715525 A1 30-09-2020 ΕP US 2020308753 A1 01-10-2020 23-04-1992 7-11-1994 DΕ 4032903 A1 22-04-1992 EΡ 0481187 A1 3-11-1982 3115704 A1 04-11-1982 DF: GB 2097519 A 03-11-1982 8201412 A 16-11-1982 NLFor more details about this annex : see Official Journal of the European Patent Office, No. 12/82