(11) **EP 4 166 786 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 19.04.2023 Patentblatt 2023/16

(21) Anmeldenummer: 22201759.2

(22) Anmeldetag: 15.10.2022

(51) Internationale Patentklassifikation (IPC): F04B 43/12 (2006.01) F04B 53/16 (2006.01) F04B 11/00 (2006.01)

(52) Gemeinsame Patentklassifikation (CPC): F04B 43/1253; F04B 11/00; F04B 53/16

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

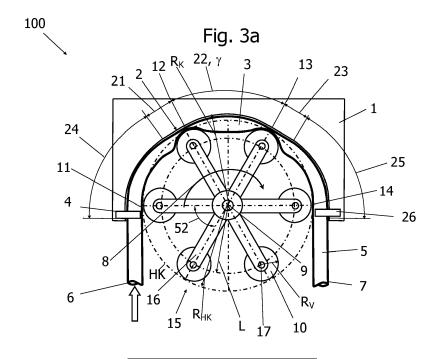
BA

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 18.10.2021 EP 21203309

(71) Anmelder: LRP AG 3600 Thun (CH)


(72) Erfinder: Widmer, Markus 3600 Thun (CH)

 (74) Vertreter: Herrmann, Johanna Industrial Property Services GmbH Rosenweg 14 4303 Kaiseraugst (CH)

(54) SCHLAUCHPUMPE

(57) Eine Schlauchpumpe (100) enthält ein Gehäuse (1) enthaltend eine Schlauchbahn (2) zur Auflage für einen Schlauch (5) und einen Drehkörper (15), wobei der Drehkörper (15) eine Mehrzahl von Verdrängungskörpern (10) zur temporären Quetschung des Schlauchs (5) in der Schlauchbahn (2) enthält. Der Schlauch (5) ist zur Aufnahme eines Fluids ausgebildet. Die Schlauchbahn (2) enthält einen zulaufseitigen Schlauchbahnabschnitt (21), einen ablaufseitigen Schlauchbahnabschnitt (23) sowie einen zwischen dem zulaufseitigen Schlauchbahnabschnitt (21) und dem ablaufseitigen Schlauchbahnabschnitt (23) angeordneten mittleren Schlauchbahnabschnitt (23) angeordneten mittleren Schlauch

bahnabschnitt (22). Der mittlere Schlauchbahnabschnitt (22) weist eine Krümmung auf. Zumindest einer der zulaufseitigen und ablaufseitigen Schlauchbahnabschnitte (21,23) weist ein erstes und zweites Schlauchbahnsegment auf. Zumindest einer der zulaufseitigen oder ablaufseitigen Schlauchbahnabschnitte enthält einen gekrümmten Schlauchbahnabschnitt (24, 25). Ein Okklusionswinkel (y) ist zwischen einem Anfangspunkt (12) einer Okklusion und einem Endpunkt (13) der Okklusion ausgebildet, wobei der Okklusionswinkel (γ) dem Winkel (52) entspricht, den zwei benachbarte Verdrängungskörper (10) zueinander einschliessen.

15

[0001] Die vorliegende Erfindung Schlauchpumpe.

1

[0002] Schlauchpumpen werden für Förderaufgaben in den Bereichen Medizin, Labor und Produktion verwendet. Einer ihrer grossen Vorteile ist, dass der Arbeitsraum durch einen flexiblen Schlauch gebildet wird und ausser der inneren Schlauchwand keine weiteren Elemente der Schlauchpumpe mit dem zu fördernden Fluid in Berührung kommen. Der Medientransport erfolgt durch Okklusion mittels eines oder mehrerer Verdrängungskörper in Form von rotierenden Rollen oder Gleitschuhen an mindestens einer Stelle des Schlauches und Verschiebung dieser Okklusion in Förderrichtung.

[0003] Die Okklusion erfolgt durch eine periodische Verringerung des Schlauchvolumens durch den oder die auf dem Schlauch abrollenden und auf den Schlauch drückenden Verdrängungskörper. Die Okklusion entsteht somit durch eine Quetschung des Schlauchs, die durch das flexible Material ermöglicht wird, aus welchem derartige Schläuche üblicherweise bestehen. An die Okklusion schliesst eine Vergrösserung des Schlauchvolumens an, wenn sich der Verdrängungskörper wieder vom Schlauch entfernt. Durch die Veränderung des Schlauchvolumens entstehen sowohl auf der Eingangsseite der Schlauchpumpe wie auch auf der Ausgangsseite der Schlauchpumpe pulsierende Förderströme.

[0004] Für viele Anwendungen sind solche pulsierenden Förderströme unerwünscht. Speziell beim Dosieren oder Mischen sind pulsierende Förderströme ungewollt, da beispielsweise die Dosiermenge oder das Mischungsverhältnis nicht genau einstellbar ist.

Stand der Technik

[0005] Um pulsierende Förderströme zu reduzieren, wurden bisher unterschiedliche Massnahmen getroffen. Einerseits wird die Anzahl der Rollen erhöht, was zwar die Pulsation etwas reduziert, aber die Schlauchlebensdauer signifikant verringert. Weitere Möglichkeiten der Reduktion pulsierender Förderströme sind in EP 2 419 636 B1, DE20109803 U1, EP 3 364 032 A1, EP 2 990 647 A1 beschrieben.

[0006] Im Dokument EP 2 419 636 B1 wird auch ein Verfahren zur pulsationsfreien volumetrischen Förderung beschrieben, das aber zu einer komplexen und teuren linearen peristaltischen Fingerpumpe führt.

[0007] Daher besteht Bedarf an einer verbesserten Schlauchpumpe, mittels welcher ein im Wesentlichen pulsationsfreier Durchsatz erhältlich ist.

Aufgabe der Erfindung

[0008] Aufgabe der Erfindung ist es, eine Schlauchpumpe bereitzustellen, deren Durchsatz im Wesentlichen konstant ist.

Beschreibung der Erfindung

[0009] Die Lösung der Aufgabe der Erfindung erfolgt durch eine Schlauchpumpe gemäss Anspruch 1. Vorteilhafte Ausführungsbeispiele der Schlauchpumpe sind Gegenstand der Ansprüche 2 bis 15.

[0010] Wenn der Begriff "beispielsweise" in der nachfolgenden Beschreibung verwendet wird, bezieht sich dieser Begriff auf Ausführungsbeispiele und/oder Ausführungsformen, was nicht notwendigerweise als eine bevorzugtere Anwendung der Lehre der Erfindung zu verstehen ist. In ähnlicher Weise sind die Begriffe "vorzugsweise", "bevorzugt" zu verstehen, indem sie sich auf ein Beispiel aus einer Menge von Ausführungsbeispielen und/oder Ausführungsformen beziehen, was nicht notwendigerweise als eine bevorzugte Anwendung der Lehre der Erfindung zu verstehen ist. Dementsprechend können sich die Begriffe "beispielsweise", "vorzugsweise" oder "bevorzugt" auf eine Mehrzahl von Ausführungsbeispielen und/oder Ausführungsformen beziehen.

[0011] Die nachfolgende detaillierte Beschreibung enthält verschiedene Ausführungsbeispiele für die erfindungsgemässe Schlauchpumpe. Die Beschreibung einer bestimmten Schlauchpumpe ist nur als beispielhaft anzusehen. In der Beschreibung und den Ansprüchen werden die Begriffe "enthalten", "umfassen", "aufweisen" als "enthalten, aber nicht beschränkt auf" interpretiert.

[0012] Ein Fluid kann ein flüssiges oder gasförmiges Medium umfassen, welches auch Feststoffpartikel enthalten kann. Das Fluid kann ein einphasigem oder mehrphasigem Zustand vorliegen, d.h. es kann flüssig, gasförmig sein oder als Emulsion, als Schaum, als Slurry ausgebildet sein.

[0013] Eine erfindungsgemässe Schlauchpumpe enthält ein Gehäuse enthaltend eine Schlauchbahn zur Auflage für einen Schlauch und einen Drehkörper enthaltend eine Mehrzahl von Verdrängungskörpern zur temporären Quetschung des Schlauchs in der Schlauchbahn, wobei der Schlauch zur Aufnahme eines Fluids ausgebildet ist. Das Fluid kann durch den Schlauch strömen, insbesondere kann das Fluid im Betriebszustand durch den Schlauch vom Zulaufende zum Ablaufende der Schlauchpumpe gefördert werden.

[0014] Die Schlauchbahn enthält einen zulaufseitigen Schlauchbahnabschnitt, einen ablaufseitigen Schlauchbahnabschnitt sowie einen zwischen dem zulaufseitigen und ablaufseitigen Schlauchbahnabschnitt angeordneten mittleren Schlauchbahnabschnitt. Der mittlere Schlauchbahnabschnitt weist eine Krümmung auf. Eine die Mittenachse der Schlauchbahn enthaltende Ebene wird nachfolgend als Schlauchbahnebene bezeichnet. Die Krümmung verläuft in der Schlauchbahnebene. Die Krümmung kann insbesondere als Kreisbogen ausgebildet sein. An zumindest einen der zulaufseitigen und ablaufseitigen Schlauchbahnabschnitte schliesst ein gekrümmter zulaufseitiger oder ein gekrümmter ablaufseitiger Schlauchbahnabschnitt an. Ein Okklusionswinkel γ ist zwischen einem Anfangspunkt einer Okklusion und

einem Endpunkt der Okklusion ausgebildet, wobei der Okklusionswinkel γ dem Winkel entspricht, den zwei benachbarte Verdrängungskörper zueinander einschliessen. Der Winkel zwischen den zwei benachbarten Verdrängungskörpern wird insbesondere zwischen den entsprechenden Mittenachsen gemessen, welche die Verdrängungskörper enthalten. Die Mittenachse verläuft zwischen dem Rotationsmittelpunkt des Verdrängungskörpers und dem Rotationsmittelpunkt des Drehkörpers. Der Rotationsmittelpunkt des Drehkörpers ist der Schnittpunkt der Drehachse des Drehkörpers mit der Drehebene, in welcher sich die Rotationskörper bewegen.

[0015] Gemäss eines Ausführungsbeispiels trifft der Verdrängungskörper an einem Anfangspunkt der Schlauchdeformation auf den Schlauch auf. Insbesondere kann sich der Abstand zwischen dem Verdrängungskörper und der Schlauchbahn vom Anfangspunkt der Schlauchdeformation bei fortschreitender Drehung des Drehkörpers verringern, sodass eine zunehmende Quetschung des Schlauchs erfolgt bis der Anfangspunkt einer Okklusion erreicht ist. Der Anfangspunkt der Okklusion ist erreicht, wenn ein durch den Schlauch ausgebildeter Hohlraum durch Quetschung des Schlauchs durch den Verdrängungskörper verschwunden ist. Zwischen dem Anfangspunkt der Schlauchdeformation und dem Anfangspunkt der Okklusion ist insbesondere ein Deformationswinkel α ausgebildet. Insbesondere kann der Deformationswinkel α dem Winkel zwischen zwei benachbarten Verdrängungskörpern entsprechen.

[0016] Gemäss eines Ausführungsbeispiels ist der Anfangspunkt der Schlauchdeformation im gekrümmten zulaufseitigen Schlauchbahnabschnitt angeordnet. Gemäss eines Ausführungsbeispiels ist der Anfangspunkt der Okklusion im zulaufseitigen Schlauchbahnabschnitt angeordnet.

[0017] Gemäss eines Ausführungsbeispiels ist der Endpunkt der Okklusion erreicht, wenn durch Entlastung des Schlauchs durch Vergrösserung des Abstands zwischen der Schlauchbahn und dem Verdrängungskörper ein Hohlraum entsteht. Insbesondere kann ein Endpunkt einer Okklusion ausgebildet werden, wenn durch Entlastung des Schlauchs durch Vergrösserung des Abstands zwischen der Schlauchbahn und dem Verdrängungskörper ein Hohlraum entsteht.

[0018] Gemäss eines Ausführungsbeispiels ist ein Endpunkt einer Schlauchdeformation ausgebildet, wenn der Verdrängungskörper vom Schlauch abhebt. Insbesondere kann der Verdrängungskörper an einem Endpunkt der Schlauchdeformation vom Schlauch abheben, mit anderen Worten verliert der Verdrängungskörper am Endpunkt der Schlauchdeformation den Kontakt zum Schlauch

[0019] Zwischen dem Endpunkt der Okklusion und dem Endpunkt der Schlauchdeformation ist insbesondere ein Deformationswinkel β ausgebildet. Insbesondere kann der Deformationswinkel β dem Winkel zwischen zwei benachbarten Verdrängungskörpern entsprechen.

[0020] Gemäss eines Ausführungsbeispiels ist zumindest einer der gekrümmten zulaufseitigen Schlauchbahnabschnitte oder der gekrümmten ablaufseitigen Schlauchbahnabschnitte durch eine Messvorschrift erhältlich, mittels welcher die Schlauchbahn über eine Mehrzahl von Höhen H_i , die bei einer konstanten Winkeländerung $\Delta\alpha$ einem konstanten Volumen entsprechen, ermittelbar ist. Wenn zumindest einer der gekrümmten zulaufseitigen Schlauchbahnabschnitte oder der gekrümmten ablaufseitigen Schlauchbahnabschnitte mittels der Messvorschrift experimentell oder rechnerisch durch eine Simulation ermittelt wird, kann mittels der Schlauchpumpe ein im Wesentlichen konstanter Volumenstrom gefördert werden.

[0021] Gemäss eines Ausführungsbeispiels ist stromaufwärts des zulaufseitigen Schlauchbahnabschnitts ein gekrümmter zulaufseitiger Schlauchbahnabschnitt angeordnet. Gemäss eines Ausführungsbeispiels ist stromabwärts des ablaufseitigen Schlauchbahnabschnitts ein gekrümmter ablaufseitiger Schlauchbahnabschnitt angeordnet.

[0022] Gemäss eines Ausführungsbeispiels weist zumindest einer der gekrümmten zulaufseitigen und der gekrümmten ablaufseitigen Schlauchbahnabschnitte einen veränderlichen Krümmungsradius auf. Insbesondere kann sich die Krümmung des gekrümmten zulaufseitigen Schlauchbahnabschnitts von der Krümmung des gekrümmten ablaufseitigen Schlauchbahnabschnitts zumindest teilweise unterscheiden. Insbesondere kann zumindest einer der zulaufseitigen Schlauchbahnabschnitte und der ablaufseitigen Schlauchbahnabschnitte eine Krümmung aufweisen. Insbesondere kann sich die Krümmung des zulaufseitigen Schlauchbahnabschnitts von der Krümmung des ablaufseitigen Schlauchbahnabschnitts von der Krümmung des ablaufseitigen Schlauchbahnabschnitts zumindest teilweise unterscheiden.

[0023] Gemäss eines Ausführungsbeispiels sind die Verdrängungskörper derart auf dem Drehkörper angeordnet, dass sie bei Drehung des Drehkörpers eine Kreisbewegung ausführen. Gemäss eines Ausführungsbeispiels sind die Verdrängungskörper drehbar im Drehkörper gelagert.

[0024] Gemäss eines Ausführungsbeispiels enthält der Drehkörper eine Mehrzahl von Drehkörperarmen, wobei die Verdrängungskörper auf den Drehkörperarmen eines Drehkörpers angeordnet sind. Insbesondere ist die Schlauchbahn in der Schlauchbahnebene angeordnet, wobei der Drehkörper um eine Drehachse drehbar ist, die vertikal in Bezug auf die Schlauchbahnebene ausgerichtet ist.

[0025] Gemäss eines Ausführungsbeispiels sind die Verdrängungskörper drehbar auf den Drehkörperarmen gelagert. Insbesondere bildet eine Lagerstelle im Drehkörperarm einen Drehpol für den betreffenden Verdrängungskörper aus. Insbesondere kann die Lagerstelle derart ausgestaltet sein, dass sie keine Federung aufweist, d.h. die Distanz L zwischen dem Drehpunkt der Drehachse des Drehkörpers und dem Drehpol des Verdrängungskörpers bleibt konstant. Diese Ausführung hat

den besonderen Vorteil, dass der Schlauch immer mit demselben Druck beaufschlagt wird. Eine elastische Lagerung kann eventuell mit Nachteilen behaftet sein, wenn Klumpen enthaltende Fluide gefördert werden und derartige Klumpen im Fluid unerwünscht sind. Wenn die Lagerstelle elastisch ist, kann der Verdrängungskörper durch den Klumpen derart weggedrückt werden, dass ich der Hohlraum im Schlauch an einem Ort öffnet, an welchem der Schlauch geschlossen sein sollte. Daher kann es zur Förderung des Fluids kommen und somit der Volumenstrom verändert werden, was eine ungenaue Dosierung zur Folge haben kann. Eine federnde Lagerung der Verdrängungskörper ist für den Gebrauch der Schlauchpumpe im Labor nicht wünschenswert, da eine solche Lösung nur sinnvoll ist, wenn Dispersionen mit grossen Partikeln transportiert werden müssen, was im Labor nicht geschieht. Für den Gebrauch im Labor ist somit eine derartige federnde Lagerung unnötig kompliziert und kann zudem das langsame Abheben der Verdrängungskörper für die Pulskompensation komplizie-

[0026] Wenn die Lagerstelle in einer unveränderlichen Distanz L zum Drehpunkt, d.h. dem Schnittpunkt der Drehachse mit der Schlauchbahnebene, angeordnet ist, kann der Schlauch ausgewechselt werden, ohne dass eine zusätzliche Justierung des Drehkörpers bzw. der einzelnen Verdrängungskörper erforderlich wäre. Mit anderen Worten sind die Verdrängungskörper derart mit dem Drehkörper verbunden, dass sie bei Drehung des Drehkörpers eine Kreisbewegung ausführen. Gemäss dieses Ausführungsbeispiels weist der Drehkörper für jeden Verdrängungskörper eine in Bezug auf den Drehkörper ortsfeste Lagerstelle auf.

[0027] Gemäss eines Ausführungsbeispiels kann eine Förderkammer ausgebildet sein, wenn zwei benachbarte Verdrängungskörper sich am Anfangspunkt und Endpunkt der Okklusion oder zwischen dem Anfangspunkt und Endpunkt befinden. Insbesondere kann das Fluid die Förderkammer nicht verlassen, solange der Schlauch durch zwei benachbarte Verdrängungskörper verschlossen ist. Insbesondere kann eine Förderkammer nur dann ausgebildet sein, wenn der Winkel zwischen dem Anfangspunkt der Okklusion und dem Endpunkt der Okklusion dem Winkel entsprechen, den zwei benachbarte Verdrängungskörper zueinander einschliessen und die beiden Winkel überlappen. Mit anderen Worten kann die Förderkammer nur dann ausgebildet werden, wenn der Abstand zwischen zwei benachbarten Verdrängungskörpern dem Abstand zwischen dem Anfangspunkt und dem Endpunkt der Okklusion entspricht, das heisst, dass sich einer der Verdrängungskörper am Anfangspunkt der Okklusion und der stromabwärts liegende, benachbarte Verdrängungskörper sich am Endpunkt der Okklusion befindet.

[0028] Insbesondere kann der Schlauch nur durch einen Verdrängungskörper verschlossen sein, wenn zwei benachbarte Verdrängungskörper nicht am Anfangspunkt und Endpunkt der Okklusion angeordnet sind. Das

heisst in jeder anderen Position der Verdrängungskörper wird keine Förderkammer ausgebildet. Somit entspricht das verdrängte Volumen des Fluids dem rückgesaugten Volumen des Fluids. Das heisst, dass der Puls, der auftritt, wenn die Förderkammer geöffnet wird, dazu führt, dass dasselbe Volumen verdrängt wird, welches rückgesaugt wird. Daher kommt es in diesem Fall nicht zu einer Veränderung des Gesamtvolumenstroms, weil sich der verdrängte und der rückgesaugte Volumenstrom aufheben. Demzufolge kann mittels der Schlauchpumpe gemäss dieses Ausführungsbeispiels ein konstanter Volumenstrom erzielt werden.

[0029] Die Förderrichtung durch die Schlauchpumpe kann zudem beliebig gewählt werden. Insbesondere ist die Förderrichtung umkehrbar, indem die Drehrichtung des Drehkörpers verändert wird. In vorteilhafterweise kann zumindest eine Schlauchhalterungsvorrichtung vorgesehen sein, um zu verhindern, dass der Schlauch eine Wanderbewegung in Pumprichtung ausführt. Die Schlauchhalterungsvorrichtung kann eine Klemmvorrichtung umfassen, um den Schlauch in seiner Position in Förderrichtung zu fixieren. Die Schlauchalterungsvorrichtung kann ein Federelement umfassen, um die Klemmvorrichtung zu lösen, wenn die Drehrichtung des Drehkörpers umgekehrt wird, das heisst die Förderrichtung geändert wird. Insbesondere kann je eine Schlauchhalterungsvorrichtung am Zulaufende und am Ablaufende des Schlauchs, das heisst am Pumpeneingang und am Pumpenausgang ausgebildet sein. Die Schlauchhalterungsvorrichtungen ermöglichen einerseits eine Fixierung des Schlauchs am Zulaufende, wenn mittels der Klemmvorrichtung der Schlauch in seiner Position im Wesentlichen fixiert wird und andererseits eine Verlängerung des Schlauchs am Ablaufende, um eine Stauchung des Schlauchs zu vermeiden, wenn die Klemmvorrichtung gelöst ist. Mittels einer derartigen Schlauchhalterungsvorrichtung können Pulsationen in jeder Förderrichtung wirksam verhindert werden. Zudem kann die Lebensdauer des Schlauchs erhöht werden.

[0030] Insbesondere kann sich die Schlauchhalterungsvorrichtung auf der Saugseite durch die Schlauchbewegung im Gehäuse der Schlauchpumpe in Richtung der Druckseite selbstständig anlegen und den Schlauch klemmen. Auf der Druckseite kann sich durch die Schlauchbewegung zur Druckseite hin die Schlauchhalterungsvorrichtung abheben und eine Schlauchbewegung hin zur Druckseite erlauben, was einen Stau des Schlauches im Bereich der ablaufseitigen Schlauchbahnabschnitte verhindert. Somit ist eine besonders einfache Umkehr der Drehrichtung der Schlauchpumpe ermöglicht, da aufgrund des autonomen Umschaltens der Klemmvorrichtungen der Schlauchhalterungsvorrichtungen keine weiteren Massnahmen notwendig sind, insbesondere keine Intervention eines Anwenders, indem er einen Aktor betätigen müsste, um die Schlauchhalterungsvorrichtung aktiv zu schalten.

Kurzbeschreibung der Zeichnungen

[0031] Nachfolgend wird die erfindungsgemässe Schlauchpumpe anhand einiger Ausführungsbeispiele dargestellt. Es zeigen

Fig. 1 eine vorbekannte Schlauchpumpe,

Fig. 2 eine Darstellung des Volumenstroms der Schlauchpumpe gemäss Fig. 1 in Abhängigkeit von der Zeit,

Fig. 3a ein Ausführungsbeispiel einer Schlauchpumpe gemäss der vorliegenden Erfindung in einer ersten Stellung,

Fig. 3b das Ausführungsbeispiel gemäss Fig. 3a in einer zweiten Stellung,

Fig. 4a einen Querschnitt einer Schlauchbahn und eines zugehörigen Verdrängungskörpers nach einem ersten Ausführungsbeispiel,

Fig. 4b einen Querschnitt einer Schlauchbahn und eines zugehörigen Verdrängungskörpers nach einem zweiten Ausführungsbeispiel,

Fig. 4c einen Querschnitt einer Schlauchbahn und eines zugehörigen Verdrängungskörpers nach einem dritten Ausführungsbeispiel,

Fig. 4d einen Querschnitt einer Schlauchbahn und eines zugehörigen Verdrängungskörpers nach einem vierten Ausführungsbeispiel,

Fig. 5a ein Detail einer Schlauchalterungsvorrichtung in Klemmstellung,

Fig. 5b ein Detail der Schlauchhalterungsvorrichtung in Freilaufstellung,

Fig. 6 eine schematische Darstellung eines Ausführungsbeispiels einer Messvorrichtung,

Fig. 7a ein exemplarisches Beispiel für Messdaten, die mittels der Messvorrichtung gemäss

Fig. 6 erhalten werden können,

Fig. 7b eine Grafik eines Messresultats, erhalten mit den Messdaten gemäss Fig. 7a,

Fig. 8 ein Schema zur Ermittlung der Schlauchbahn der Schlauchpumpe.

Detaillierte Beschreibung der Zeichnungen

[0032] Fig. 1 zeigt eine Schlauchpumpe 50 umfassend

ein Gehäuse 1 enthaltend eine Schlauchbahn 2 zur Auflage für einen Schlauch 5 und eine Mehrzahl von Verdrängungskörpern 10. Die Verdrängungskörper 10 sind auf Drehkörperarmen 16 eines Drehkörpers 15 angeordnet, der um eine Drehachse 9 drehbar ist, die vertikal in Bezug auf die Schlauchbahnmittenebene ausgerichtet ist. Die Schlauchbahnmittenebene entspricht in der vorliegenden Darstellung der Zeichnungsebene. Die Verdrängungskörper 10 können beispielsweise als Rollen oder Gleitschuhe ausgebildet sein. Die Verdrängungskörper 10 können drehbar auf den Drehkörperarmen 16 gelagert sein. Wenn die Verdrängungskörper 10 drehbar auf den Drehkörperarmen 16 gelagert sind, bildet die Lagerstelle des Verdrängungskörpers 10 im Drehkörperarm 16 den Drehpol 17 für den betreffenden Verdrängungskörper 10 aus. Die Drehrichtung des Drehkörpers 15 um die Drehachse 9 ist schematisch mit einem Pfeil 8 bezeichnet. Die Drehachse 9 verläuft in der vorliegenden Darstellung in einem rechten Winkel zur Zeichnungsebene, daher ist die Drehachse 9 in Fig. 1 als Drehpunkt dargestellt.

[0033] Die Drehpole 17 der Verdrängungskörper 10 liegen auf einem Kreis, dessen Mittelpunkt durch die Drehachse 9 ausgebildet ist. Die Verdrängungskörper 10 bilden rotationssymmetrische Körper aus, wenn sie um den Drehpol 17 drehbar sind. Der maximale Durchmesser des Verdrängungskörpers 10 kennzeichnet die maximale Erstreckung des Verdrängungskörpers 10 in der Schlauchbahnmittenebene. Wenn der Verdrängungskörper 10 als Zylinder ausgebildet ist, entspricht der maximale Durchmesser dem Durchmesser des Zylinders. Jeder der Verdrängungskörper 10 weist denselben maximalen Durchmesser auf. Somit spannen die Verdrängungskörper 10 einen Hüllkreis auf, dessen Radius R_{HK} dem Abstand L des Drehpols 17 von der Drehachse 9 plus dem Radius Rvdes Verdrängungskörpers 10 entspricht. Der maximale Durchmesser beträgt daher das Doppelte des maximalen Radius Rv.

[0034] Die Schlauchbahn 2 enthält verschiedene Schlauchbahnabschnitte, gemäss Fig. 1 einen zulaufseitigen Schlauchbahnabschnitt 21, einen mittleren Schlauchbahnabschnitt 22 und einen ablaufseitigen Schlauchbahnabschnitt 23. Der zulaufseitige Schlauchbahnabschnitt 21 und der ablaufseitige Schlauchbahnabschnitt 23 werden durch eine in der Schlauchbahnebene liegende Gerade ausgebildet. Der mittlere Schlauchbahnabschnitt 22 wird durch eine Kurvenbahn ausgebildet. Die Kurvenbahn ist gemäss des vorliegenden Ausführungsbeispiels als Teil einer Kreisbahn ausgebildet. Der Kreis dieser Kreisbahn hat seinen Mittelpunkt ebenfalls im Drehpunkt 9. Der Radius RK des Kreises der Kreisbahn ist grösser als der Radius RHK des Hüllkreises HK. Insbesondere beträgt die Differenz zwischen dem Radius RK und dem Radius RHK im Wesentlichen die doppelte Wandstärke des Schlauchs 5, wenn der Schlauch 5 nicht übermässig gequetscht wird, d.h. derart gepresst wird, dass sich die Wandstärke des Schlauchs im Pressbereich gegenüber der ursprüngli-

chen Wandstärke verringert.

ein Ablaufende 7, wobei das Zulaufende 6 und ein Ablaufende 7, wobei das Zulaufende 6 den Pumpeneingang ausbildet und das Ablaufende 7 den Pumpenausgang ausbildet. Der Schlauch 5 liegt auf der Schlauchbahn 2 auf. Sobald der Hüllkreis HK den Schlauch 5 schneidet, gelangt einer der Verdrängungskörper 10 in Kontakt mit dem Schlauch 5. Dieser Schnittpunkt soll nachfolgend als Anfangspunkt 11 der Schlauchdeformation bezeichnet werden. Da der Schlauch 5 als Hohlkörper ausgebildet ist, entspricht der Aussendurchmesser des Schlauchs 5 dem Durchmesser des Hohlkörpers plus der doppelten Wandstärke des Schlauchs 5, wenn der Hohlkörper keiner Deformation ausgesetzt ist. Der Verdrängungskörper 10 bewegt sich auf der durch den Hüllkreis HK gebildeten Kreisbahn.

[0036] Vom Anfangspunkt 11 der Schlauchdeformation bewegt sich der Verdrängungskörper 10 weiter und es erfolgt eine zunehmende Deformation des Schlauchs 5, bis die Schlauchwände aufeinander aufliegen und der Hohlkörper verschwunden ist. Dieser Zustand wird als Okklusion bezeichnet. Zwischen den aufeinander aufliegenden Schlauchwänden befindet sich im Zustand der Okklusion kein Fluid. Die Deformation des Schlauchs 5 nimmt zu, bis der Anfangspunkt 12 der Okklusion erreicht ist. Am Anfangspunkt 12 der Okklusion beträgt die Differenz zwischen dem Radius R_{K} und dem Radius R_{HK} im Wesentlichen die doppelte Wandstärke des Schlauchs in der Schlauchbahnmittenebene oder weniger, wenn der Schlauch zusätzlich gepresst wird, sodass die Wandstärke des Schlauchs im Pressbereich verringert ist. Solange sich der Verdrängungskörper entlang des mittleren Schlauchbahnabschnitts 22 bewegt, bleibt diese Differenz konstant.

[0037] Im zulaufseitigen Schlauchbahnabschnitt 21 verringert sich der Abstand zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2, sodass sich das Schlauchvolumen reduziert, wobei eine zunehmende Quetschung des Schlauchs 5 erfolgt. Der Verdrängungskörper 10 taucht gemäss Fig. 1 in den Schlauch 5 zunehmend ein. Da bei den meisten Schlauchpumpen 50 die Auflagefläche des Schlauches 5 in der Schlauchbahn 2 des Gehäuses 1 in diesem zulaufseitigen Schlauchbahnabschnitt 21 gerade und tangential zum nächsten, mittleren Schlauchbahnabschnitt 22 angeordnet ist, wird die Dauer des Quetschvorgangs bis zur Okklusion im Verhältnis zur Gesamtpumpdauer relativ klein. Das während der Dauer des Quetschvorgangs im Schlauch 5 verdrängte Volumen des zu pumpenden Fluids wird entgegen der Flussrichtung gefördert, da in Flussrichtung der Schlauch ab dem Anfangspunkt 12 der Okklusion verschlossen ist. Aus diesem Grund ergibt sich somit während der Dauer des Quetschvorgangs ein kleineres Fördervolumen im Schlauch im zulaufseitigen Schlauchbahnabschnitt. Somit entsteht eine Pulsation des Volumenstroms im zulaufseitigen Schlauchbahnabschnitt. In Fig. 2 ist dieser Zustand als talförmige Einbuchtung der Volumenstromkurve 41 dargestellt.

[0038] Zwischen zwei benachbarten Verdrängungskörpern 10 wird im mittleren Schlauchbahnabschnitt 22 eine Förderkammer 3 ausgebildet, welche ein Fluidvolumen enthält, welches durch die Drehbewegung der Verdrängungskörper 10 vom Zulaufende 6 zum Ablaufende 7 gefördert wird.

[0039] Im mittleren Schlauchbahnabschnitt 22 wird der Schlauch durch die Verdrängungskörper 10 okkludiert und das transportierte Volumen in der Förderkammer 3 wird durch den Winkel definiert, den zwei benachbarte Drehkörperarme 16 zueinander einschliessen. Gemäss des vorliegenden Ausführungsbeispiels sind die Drehkörperarme jeweils in einem Winkel von 60 Grad zueinander angeordnet. Um eine Dichtheit der Schlauchpumpe zu gewährleisten, ist der vom Kreissegment des mittleren Schlauchbahnabschnitts 22 eingeschlossene Winkel grösser als der Winkel zwischen zwei benachbarten Verdrängungskörpern, er beträgt in der Fig. 1 ungefähr 90 Grad.

[0040] Im ablaufseitigen Schlauchbahnabschnitt 23 vergrössert sich der Abstand zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2, sodass sich das Schlauchvolumen vergrössert. Die Quetschung des Schlauchs 5 wird rückgängig gemacht, der Schlauch 5 kann seine ursprüngliche Form wieder annehmen, sobald der Verdrängungskörper 10 nicht mehr in Kontakt mit dem Schlauch 5 ist. Der Verdrängungskörper 10 taucht aus dem Schlauchvolumen auf. Da bei den meisten Schlauchpumpen die Auflagefläche des Schlauches in der Schlauchbahn in diesem Bereich gerade und tangential zum vorhergehenden, mittleren Schlauchbahnabschnitt 22 angeordnet ist, wird die Dauer des Rückstellvorgangs bis zu dessen Abschluss im Verhältnis zur Gesamtpumpdauer relativ klein. Aus diesem Grund ergibt sich somit während der Dauer des Rückstellvorgangs ein kleineres Fördervolumen im Schlauch 5 im ablaufseitigen Schlauchbahnabschnitt. Mit anderen Worten wird die kumulierte Auftauchdauer im Verhältnis zur Gesamtpumpdauer relativ klein. Das während der Auftauchdauer aus dem Schlauch notwendige Volumen des zu pumpenden Fluids wird entgegen der Flussrichtung zurückgesaugt, da der Schlauch entgegen der Flussrichtung okkludiert ist. Aus diesem Grund ergibt sich somit während der Rückstellvorgangs, d.h. während der Auftauchdauer, ein kleineres Fördervolumen im Schlauch 5 im ablaufseitigen Schlauchbahnabschnitt 23. Hierdurch entsteht eine Pulsation des Volumenstroms im ablaufseitigen Schlauchbahnabschnitt 23.

[0041] Fig. 2 zeigt den Effekt der Pulsation auf den Volumenstrom, dargestellt durch die Volumenstromkurve 41, welcher mit einer Schlauchpumpe gemäss Fig. 1 gefördert wird und einen pulsationsfreien Volumenstrom, welcher mit einer Schlauchpumpe gemäss Fig. 3a oder Fig. 3b gefördert wird, dargestellt durch die Volumenstromkurve 42. Auf der Abszisse ist die Zeit aufgetragen, auf der Ordinate der Volumenstrom, welcher mit der entsprechenden Schlauchpumpe gefördert wird.

[0042] Fig. 3a zeigt eine Schlauchpumpe 100 gemäss

eines Ausführungsbeispiels der Erfindung. Fig. 3b zeigt die Schlauchpumpe 100 gemäss Fig. 3a zu einem späteren Zeitpunkt. Mittels der Schlauchpumpe 100 ist eine Pulsationsreduktion erzielbar, sodass überraschenderweise ein im Wesentlichen konstanter Volumenstrom zugeführt und/oder gefördert werden kann. Gleiche oder gleichwirkende Teile tragen hierbei dieselben Bezugszeichen, um den Vergleich mit der vorbekannten Schlauchpumpe 50 gemäss Fig. 1 zu erleichtern. Wenn die Schlauchabmessungen und die Dimensionen des Drehkörpers 15 und der Verdrängungskörper der Schlauchpumpe 100 der Schlauchpumpe 50 entsprechen, entspricht das geförderte Volumen der Schlauchpumpe 100 dem geförderten Volumen der Schlauchpumpe 50 bei gleicher Drehzahl. Mit anderen Worten, die Fläche unter der Volumenstromkurve 41 entspricht der Fläche unter der Volumenstromkurve 42. Das zu fördernde Fluid wird durch einen Schlauch 5 der Schlauchpumpe 100 geführt, der auf einem zulaufseitigen Schlauchbahnabschnitt 21, 24, einen mittleren Schlauchbahnabschnitt 22 und einen ablaufseitigen Schlauchbahnabschnitt 23, 25 einer im Gehäuse 1 befindlichen Schlauchbahn 2 aufliegt.

[0043] Die Schlauchpumpe 100 umfasst ein Gehäuse 1 enthaltend eine Schlauchbahn 2 zur Auflage für einen Schlauch 5 und eine Mehrzahl von Verdrängungskörpern 10. Die Verdrängungskörper 10 sind auf Drehkörperarmen 16 eines Drehkörpers 15 angeordnet, der um eine Drehachse 9 drehbar ist, die vertikal in Bezug auf die Schlauchbahnmittenebene ausgerichtet ist. Die Schlauchbahnmittenebene entspricht in der vorliegenden Darstellung der Zeichnungsebene. Die Verdrängungskörper 10 können beispielsweise als Rollen oder Gleitschuhe ausgebildet sein. Die Verdrängungskörper 10 können drehbar auf den Drehkörperarmen 16 gelagert sein. Wenn die Verdrängungskörper 10 drehbar auf den Drehkörperarmen 16 gelagert sind, bildet die Lagerstelle des Verdrängungskörpers 10 im Drehkörperarm 16 den Drehpol 17 für den betreffenden Verdrängungskörper 10 aus. Die Drehrichtung des Drehkörpers 15 um die Drehachse 9 ist schematisch mit einem Pfeil 8 bezeichnet. Die Drehachse 9 verläuft in der vorliegenden Darstellung in einem rechten Winkel zur Zeichnungsebene, daher ist die Drehachse 9 in Fig. 1 als Drehpunkt dargestellt.

[0044] Die Drehpole 17 der Verdrängungskörper 10 liegen auf einem Kreis, dessen Mittelpunkt durch die Drehachse 9 ausgebildet ist. Die Verdrängungskörper 10 bilden rotationssymmetrische Körper aus, wenn sie um den Drehpol 17 drehbar sind. Der maximale Durchmesser des Verdrängungskörpers 10 kennzeichnet die maximale Erstreckung des Verdrängungskörpers 10 in der Schlauchbahnmittenebene. Wenn der Verdrängungskörper 10 als Zylinder ausgebildet ist, entspricht der maximale Durchmesser dem Durchmesser des Zylinders. Jeder der Verdrängungskörper 10 weist denselben maximalen Durchmesser auf. Somit spannen die Verdrängungskörper einen Hüllkreis HK auf, dessen Radius R_{HK} dem Abstand L des Drehpols 17 von der Dreh-

achse 9 plus dem Radius Rvdes Verdrängungskörpers 10 entspricht. Der maximale Durchmesser beträgt daher das Doppelte des maximalen Radius Rv.

[0045] Die Schlauchbahn 2 enthält verschiedene Schlauchbahnabschnitte, gemäss Fig. 3a einen zulaufseitigen Schlauchbahnabschnitt 21, einen zulaufseitigen gekrümmten Schlauchbahnabschnitt 24, einen mittleren Schlauchbahnabschnitt 22, einen ablaufseitigen Schlauchbahnabschnitt 23 und einen gekrümmten ablaufseitigen Schlauchbahnabschnitt 25.. Der mittlere Schlauchbahnabschnitt 22 wird durch eine Kurvenbahn ausgebildet. Die Kurvenbahn ist gemäss des vorliegenden Ausführungsbeispiels als Teil einer Kreisbahn ausgebildet. Der Kreis dieser Kreisbahn hat seinen Mittelpunkt ebenfalls im Drehpunkt 9. Der Radius R_K des Kreises der Kreisbahn ist grösser als der Radius R_{HK} des Hüllkreises. Insbesondere beträgt die Differenz zwischen dem Radius R_K und dem Radius R_{HK} im Wesentlichen die doppelte Wandstärke des Schlauchs. Insbesondere kann der Schlauch 5 unter Druck überquetscht werden, in diesem Fall beträgt die Summe der Wandstärken der beiden übereinander liegenden Schlauchabschnitte weniger als die doppelte Wandstärke. Die Abweichung von der doppelten Wandstärke kann im Bereich von 0.1 mm bis 1 mm liegen.

[0046] Der gekrümmte zulaufseitige Schlauchbahnabschnitt 24 schliesst an den zulaufseitigen Schlauchbahnabschnitt 21 an und befindet sich stromaufwärts des zulaufseitigen Schlauchbahnabschnitts 21 in Bezug auf die Fliessrichtung des Fluids. Der gekrümmte ablaufseitige Schlauchbahnabschnitt 25 schliesst an den ablaufseitigen Schlauchbahnabschnitt 23 an befindet sich stromabwärts des ablaufseitigen Schlauchbahnabschnitts 23 in Bezug auf die Fliessrichtung des Fluids.

[0047] Der Schlauch 5 enthält ein Zulaufende 6 und ein Ablaufende 7, wobei das Zulaufende 6 den Pumpeneingang ausbildet und das Ablaufende 7 den Pumpenausgang ausbildet. Der Schlauch 5 liegt auf der Schlauchbahn 2 auf, wenn die Schlauchbahn 2 als ebene Fläche oder eine konvexe Oberfläche ausgebildet ist, oder in der Schlauchbahn, wenn die Schlauchbahn durch eine konkave Oberfläche ausgebildet ist. Fig. 4a, Fig. 4b, Fig. 4c und Fig. 4d zeigen mögliche Varianten für eine Schlauchbahn 2 und zugehörige Verdrängungskörper 10. Eine Schlauchhalterungsvorrichtung 4, 26 kann vorgesehen sein, um ein Verrutschen des Schlauchs 5 in der Schlauchbahn 2 oder eine Stauchung des Schlauchs 5 in der Schlauchbahn zu verhindern. Insbesondere kann die Schlauchhalterungsvorrichtung 4, 26 mit einer Klemmvorrichtung 29 für den Schlauch 5 ausgestattet sein, was in Fig. 5a und Fig. 5b gezeigt ist. Insbesondere kann die Schlauchhalterungsvorrichtung 4 am Gehäuse 1 im Bereich des Zulaufendes angebracht sein. Eine weitere Schlauchhalterungsvorrichtung 26 kann am Gehäuse 1 im Bereich des Ablaufendes 7 angebracht sein, die gleich aufgebaut sein kann wie die Schlauchalterungsvorrichtung 4, aber spiegelverkehrt angeordnet ist.

[0048] Sobald der Hüllkreis HK den Schlauch 5 schnei-

det, gelangt einer der Verdrängungskörper 10 in Kontakt mit dem Schlauch 5. Dieser Schnittpunkt soll nachfolgend als Anfangspunkt 11 der Schlauchdeformation bezeichnet werden. Da der Schlauch 5 als Hohlkörper ausgebildet ist, entspricht der Aussendurchmesser des Schlauchs dem Durchmesser des Hohlkörpers plus der doppelten Wandstärke des Schlauchs, wenn der Hohlkörper keiner Deformation ausgesetzt ist. Für Schläuche mit nicht kreisförmigem Querschnitt, wird anstelle des Begriffs des Aussendurchmessers Aussenkontur des Schlauchs verwendet. Der Verdrängungskörper 10 bewegt sich auf der durch den Hüllkreis HK gebildeten Kreisbahn.

[0049] Vom Anfangspunkt 11 der Schlauchdeformation bewegt sich der Verdrängungskörper 10 weiter und es erfolgt eine zunehmende Deformation des Schlauchs 5, bis die Schlauchwände aufeinander aufliegen und der Hohlkörper verschwunden ist. Dieser Zustand wird als Okklusion bezeichnet. Zwischen den aufeinander aufliegenden Schlauchwänden befindet sich im Zustand der Okklusion kein Fluid. Die Deformation des Schlauchs 5 nimmt zu, bis der Anfangspunkt 12 der Okklusion erreicht ist. Am Anfangspunkt 12 der Okklusion beträgt die Differenz zwischen dem Radius $R_{\rm K}$ und dem Radius $R_{\rm HK}$ im Wesentlichen die doppelte Wandstärke des Schlauchs in der Schlauchbahnmittenebene. Insbesondere kann der Schlauch 5 unter Druck überquetscht werden, in diesem Fall beträgt die Summe der Wandstärken der beiden übereinander liegenden Schlauchabschnitte weniger als die doppelte Wandstärke. Die Abweichung von der doppelten Wandstärke kann im Bereich von 0.1 mm bis 1 mm liegen.

[0050] Solange sich der Verdrängungskörper 10 entlang des mittleren Schlauchbahnabschnitts 22 bewegt, bleibt diese Differenz konstant.

[0051] Im zulaufseitigen gekrümmten Schlauchbahnabschnitt 24 und im zulaufseitigen Schlauchbahnabschnitt 21 verringert sich der Abstand zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2, sodass sich das Schlauchvolumen reduziert, wobei eine zunehmende Quetschung des Schlauchs 5 erfolgt. Der Verdrängungskörper 10 taucht gemäss Fig. 3a in den Schlauch 5 zunehmend ein. Die Auflagefläche des Schlauches 5 in der Schlauchbahn 2 des Gehäuses 1 nimmt bereits im gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 zu und nimmt im zulaufseitigen Schlauchbahnabschnitt 21 weiter zu und ist tangential zum nächsten, mittleren Schlauchbahnabschnitt 22 angeordnet, wodurch die Dauer des Quetschvorgangs bis zur Okklusion im Verhältnis zur Gesamtpumpdauer im Vergleich zum vorgängig beschriebenen Ausführungsbeispiel gemäss Fig. 1 deutlich vergrössert ist. Insbesondere kann der Krümmungsradius des zulaufseitigen Schlauchbahnabschnitts 21 zumindest teilweise grösser als der Krümmungsradius des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24 sein. Die Krümmungsradien des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24 und/oder des zulaufseitigen Schlauchbahnabschnitts 21 können veränderlich sein.

[0052] Das während der Dauer des Quetschvorgangs im Schlauch 5 verdrängte Volumen des zu pumpenden Fluids wird somit nicht entgegen der Flussrichtung gefördert, da in Flussrichtung der Schlauch erst ab dem Anfangspunkt 12 der Okklusion verschlossen ist. Aus diesem Grund ergibt sich somit während der Dauer des Quetschvorgangs kein oder zumindest kein wesentlich kleineres Fördervolumen im Schlauch 5 im gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 und im zulaufseitigen Schlauchbahnabschnitt 21. Somit entsteht keine Pulsation oder zumindest keine merkliche Pulsation des Volumenstroms im gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 und im zulaufseitigen Schlauchbahnabschnitt 21. In Fig. 2 ist daher die Volumenstromkurve 42 mit einem konstanten zeitlichen Verlauf dargestellt.

[0053] Zur möglichst vollständigen Vermeidung von Pulsationen ist es somit wichtig, dass die Dauer des Quetschvorgangs gleich der Gesamtpumpdauer wird. Insbesondere ist es vorteilhaft, wenn der Schlauch 5 sich permanent und kontinuierlich in einer Quetschphase befindet. Sobald ein Verdrängungskörper 10 die Quetschung des Schlauches 5 vollendet hat und somit Schlauch okkludiert hat, muss gemäss dieses Ausführungsbeispiels der nachfolgende Verdrängungskörper 10 mit der Quetschung beginnen, sodass die Entstehung von Pulsationen bestmöglich vermieden werden kann. Gemäss dieses besonders vorteilhaften Ausführungsbeispiels ist der Deformationswinkel α von Beginn der Quetschung des Schlauches 5 bis zur Okklusion im Wesentlichen gleich dem Winkel 52 zwischen zwei einander nachfolgenden Verdrängungskörpern 10. Das heisst, der Winkel zwischen dem Anfangspunkt 11 der Schlauchdeformation und dem Anfangspunkt 12 der Okklusion entspricht mindestens dem Winkel zwischen zwei benachbarten Verdrängungskörpern 10.

[0054] Zwischen zwei benachbarten Verdrängungskörpern 10 wird im mittleren Schlauchbahnabschnitt 22 eine Förderkammer 3 ausgebildet, welche ein Fluidvolumen enthält, das durch die Drehbewegung der Verdrängungskörper 10 vom Zulaufende 6 zum Ablaufende 7 gefördert wird. Im mittleren Schlauchbahnabschnitt 22 wird der Schlauch 5 durch die den Schlauch quetschenden Verdrängungskörper 10 okkludiert und das transportierte Volumen in der Förderkammer 3 wird durch den Winkel 52 definiert, den zwei benachbarte Drehkörperarme 16 zueinander einschliessen. Gemäss des vorliegenden Ausführungsbeispiels sind die Drehkörperarme 16 jeweils in einem Winkel von 60 Grad zueinander angeordnet. Der vom Kreissegment des mittleren Schlauchbahnabschnitts 22 eingeschlossene Winkel entspricht dem Winkel zwischen zwei benachbarten Verdrängungskörpern 10, er beträgt in Fig. 3a ungefähr 60 Grad.

[0055] Im ablaufseitigen Schlauchbahnabschnitt 23 und im ablaufseitigen gekrümmten Schlauchbahnabschnitt 25 vergrössert sich der Abstand zwischen dem

Verdrängungskörper 10 und der Schlauchbahn 2, sodass sich das Schlauchvolumen vergrössert. Die Quetschung des Schlauchs 5 wird rückgängig gemacht, der Schlauch 5 kann seine ursprüngliche Form wieder annehmen, sobald der Verdrängungskörper 10 nicht mehr in Kontakt mit dem Schlauch 5 ist. Der Verdrängungskörper 10 taucht aus dem Schlauchvolumen auf.

[0056] Die Auflagefläche des Schlauches 5 in der Schlauchbahn 2 des Gehäuses 1 nimmt bereits im ablaufseitigen Schlauchbahnabschnitt 23 wieder ab und nimmt im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25 weiter ab.

[0057] Die Dauer des Rückstellvorgangs von der Okklusion bis zum deformationsfreien Schlauch 5 ist im Verhältnis zur Gesamtpumpdauer deutlich vergrössert im Vergleich zum vorgängig beschriebenen Ausführungsbeispiel gemäss Fig. 1. Pulsationen können insbesondere vermieden werden, wenn die Dauer des Rückstellvorgangs gleich der Gesamtpumpdauer wird. Der Schlauch 5 muss permanent und kontinuierlich in einer Rückstellphase sein. Sobald einer der Verdrängungskörper 10 die Quetschung des Schlauches beendet hat und somit den Schlauch 5 frei ist, muss der nachfolgende Verdrängungskörper 10 mit dem Rückstellvorgang beginnen. Somit ist der Winkel von Beginn der Rückstellvorgangs des Schlauches 5 bis zur vollständigen Freigabe des Schlauches 5 mindestens gleich dem Winkel zwischen zwei einander nachfolgenden Verdrängungskörpern 10, d.h. zwei benachbarten Verdrängungskörpern 10. Mit der Freigabe des Schlauchs 5 ist gemeint, dass der Verdrängungskörper 10 den Schlauch 5 gerade nicht mehr berührt.

[0058] Das während der Dauer des Rückstellvorgangs im Schlauch 5 befindliche Volumen des zu pumpenden Fluids wird somit nicht entgegen der Flussrichtung gefördert, da entgegen der Flussrichtung der Schlauch 5 bis zum dem Endpunkt 13 der Okklusion verschlossen ist.

[0059] Durch die Drehung der Verdrängungskörper 10 um die Drehachse 9 wird im mittleren Schlauchbahnabschnitt 22 ein Volumenstrom vom Zulaufende 6 zum Ablaufende 7 des Schlauchs 5 gefördert, der in etwa: ω(PHK + $D_{Schlauch}/2)A_{innenSchlauch}$ entspricht. Mit ω wird die Winkelgeschwindigkeit der Drehung in der Drehachse 9 bezeichnet, mit $D_{Schlauch}/2$ der halbe Aussendurchmesser des Schlauchs 5, mit AinnenSchlauch die Innenquerschnittsfläche des Schlauchs 5. Dieser berechnete Volumenstrom entspricht dem Maximum des Volumenstroms 41 in Fig. 2, d.h. der höchste Punkt in der Grafik, den die Kurve 41 je erreicht. Diesem Volumenstrom wirkt der Rückstellvorgang der Verdrängungskörper 10 vom Schlauch 5 im ablaufseitigen Schlauchbahnabschnitt 23 und im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25 entgegen. Somit wird der oben berechnete Volumenstrom um den Betrag der Volumenänderung pro Zeiteinheit, d.h. den Volumenstrom, des Schlauches 5 im ablaufseitigen Schlauchbahnabschnitt 23 und im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25 der

durch die Rückstellung der Verdrängungskörper 10 reduziert. Somit ergibt sich für die erfindungsgemäss Schlauchpumpe eine kontinuierliche und konstante Rückströmung, die vom oben berechneten und im mittleren Schlauchbahnabschnitt 22 maximal erreichbaren Volumenstrom abgezogen werden muss. Hierdurch entsteht ein konstanter Volumenstrom, welcher der Volumenstromkurve 42 in Fig. 2 entspricht und welcher von der erfindungsgemässen Schlauchpumpe 100 gefördert wird.

[0060] Aus diesem Grund verringert sich das Fördervolumen während der Dauer des Rückstellvorgangs im ablaufseitigen Schlauchbahnabschnitt 23 und im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25 nicht oder zumindest nicht wesentlich. Mit anderen Worten wird die kumulierte Auftauchdauer im Verhältnis zur Gesamtpumpdauer relativ gross. Das während der Auftauchdauer notwendige Volumen des zu pumpenden Fluids aus dem Schlauch 5 wird überraschenderweise nicht in der Flussrichtung zurückgesaugt, da der Schlauch 5 entgegen der Flussrichtung okkludiert ist. Aus diesem Grund ergibt sich somit während der Rückstellvorgangs, d.h. während der Auftauchdauer, kein kleineres Fördervolumen im Schlauch 5 im ablaufseitigen Schlauchbahnabschnitt 23. sodass das Fördervolumen konstant oder im Wesentlichen konstant bleibt. Es entsteht aufgrund der oben dargestellten Zusammenhänge keine Pulsation des Volumenstroms im ablaufseitigen Schlauchbahnabschnitt 23 oder im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25. Daher verlässt das Fluid am Ablaufende 7 die Schlauchpumpe 100 im Wesentlichen pulsationsfrei.

[0061] Gemäss eines nicht dargestellten Ausführungsbeispiels kann entweder nur der zulaufseitige Schlauchbahnabschnitt 21 oder der ablaufseitige Schlauchbahnabschnitt 23 gemäss Fig. 1 gemäss Fig. 3a oder Fig. 3b derart modifiziert werden, dass entweder nur ein gekrümmter zulaufseitiger Schlauchbahnabschnitt 24 vorgesehen ist, wenn reduzierte Pulsation am Pumpen-Eingang gefordert wird, oder nur ein gekrümmter ablaufseitiger Schlauchbahnabschnitt 25 vorgesehen wird, wenn reduzierte Pulsation am Pumpen-Ausgang gefordert wird.

[0062] Gemäss Fig. 3a oder Fig. 3b entspricht der Okklusionswinkel γ im mittleren Schlauchbahnabschnitt 22 dem Winkel 52 zwischen zwei benachbarten Verdrängungskörpern 10. Damit wird die Eindring-/Auftauch-Dauer eines jeden Verdrängungskörpers 10 so angepasst, dass am Ende des Eindring-/Auftauch-Prozesses dieses Verdrängungskörpers der Eindring-/Auftauch-Prozess des nächsten Verdrängungskörpers startet. Somit entsteht im zulaufseitigen Schlauchbahnabschnitt 21, im gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 und/oder im ablaufseitigen Schlauchbahnabschnitt 23, im gekrümmten ablaufseitigen Schlauchbahnabschnitt 25 ein kontinuierlicher Eindring-/Auftauch-Prozess. Insbesondere kann durch die Auswahl des Krümmungsradius oder des Verlaufs der Krümmung die Auf-

lagefläche des Schlauches 5 in der Schlauchbahn 2 derart angepasst werden, dass über den gesamten Eindring-/Auftauch-Prozess in den entsprechenden Schlauchbahnabschnitten eine konstante Volumenverdrängung oder Volumenrücksaugung entsteht. Insbesondere kann ein Puls mit konstantem Volumenstrom generiert werden, der endet, wenn der nächste Puls startet. Wird ein konstanter Volumenstrom mit einem Puls mit einem konstanten Volumenstrom überlagert, der neu startet, sobald der vorherige endet, resultiert dies in einem konstantem Volumenstrom am Pumpen-Eingang und/oder am Pumpenausgang.

[0063] Fig. 4a zeigt einen Querschnitt einer Schlauchbahn 2 und eines zugehörigen Verdrängungskörpers 10 nach einem ersten Ausführungsbeispiel. Gemäss dieses Ausführungsbeispiels ist der Verdrängungskörper 10 als Zylinder ausgebildet. Die Schlauchbahn 2 hat einen ebenen Verlauf. Ein gequetschter Schlauch 5 befindet sich zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 im Gehäuse 1.

[0064] Fig. 4b zeigt einen Querschnitt einer Schlauchbahn 2 und eines zugehörigen Verdrängungskörpers 10 nach einem zweiten Ausführungsbeispiel. Gemäss dieses Ausführungsbeispiels ist der Verdrängungskörper 10 als rotationssymmetrischer Körper mit konvex verlaufenden Seitenflächen ausgebildet. Die Schlauchbahn 2 ist als eine konkave Oberfläche ausgebildet. Ein gequetschter Schlauch 5 befindet sich zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 im Gehäuse 1. [0065] Fig. 4c zeigt einen Querschnitt einer Schlauchbahn 2 und eines zugehörigen Verdrängungskörpers 10 nach einem dritten Ausführungsbeispiel. Gemäss dieses Ausführungsbeispiels ist der Verdrängungskörper 10 als rotationssymmetrischer Körper mit konkav verlaufenden Seitenflächen ausgebildet. Die Schlauchbahn 2 ist als eine konvexe Oberfläche ausgebildet. Ein gequetschter Schlauch 5 befindet sich zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 im Gehäuse 1.

[0066] Fig. 4d zeigt einen Querschnitt einer Schlauchbahn 2 und eines zugehörigen Verdrängungskörpers 10 nach einem vierten Ausführungsbeispiel. Gemäss dieses Ausführungsbeispiels ist der Verdrängungskörper 10 als rotationssymmetrischer Körper mit konkav verlaufenden Seitenflächen ausgebildet. Die Schlauchbahn 2 ist als eine konkave Oberfläche ausgebildet. Ein gequetschter Schlauch 5 befindet sich zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 im Gehäuse 1. Dies Variante kann einen besonders schonenden Pumpvorgang gewährleisten, beispielsweise kommt diese Variante zum Einsatz, wenn Fluide gepumpt werden müssen, die biologisches Material, beispielsweise Zellen enthalten.

[0067] Fig. 5a und Fig. 5b zeigen die Schlauchhalterungsvorrichtung 4 im Detail. Die Schlauchalterungsvorrichtung 26 hat die gleiche Bauweise, sie ist spiegelverkehrt in Bezug auf die Schlauchhalterungsvorrichtung 4 angeordnet. Gemäss Fig. 5a und Fig. 5b wird der Schlauch 5, von welchem nur ein kleiner Teil dargestellt

ist, durch eine Öffnung des Gehäuses 1 geführt. Von der Öffnung im Gehäuse 1 wird der Schlauch auf der Schlauchbahn 2 im Innenraum des Gehäuses 1 geführt. Wenn die Förderrichtung des Fluids in Fig. 5a in Richtung des dargestellten Pfeils erfolgt, d.h. der Drehkörper sich wie in Fig. 3a oder Fig. 3b im Uhrzeigersinn bewegt, wird durch den Kontakt des Schlauchs 5 mit der Klemmvorrichtung 29 durch die Reibung des Schlauchs im Kontaktbereich des Gehäuses 1 und der Klemmvorrichtung 29 eine Verschiebung des Schlauchs verhindert. Durch die Verdrängungskörper werden Zugkräfte auf den Schlauch 5 übertragen, sodass der Schlauch 5 in die Schlauchbahn 4 hineingezogen würde, wenn die Schlauchhalterungsvorrichtung 4 keine Klemmvorrichtung 29 enthalten würde.

[0068] Die Schlauchhalterungsvorrichtung 4 ist mittels eines Befestigungselements 28 im Gehäuse 1 gehalten. Die Schlauchhalterungsvorrichtung 4 kann um das Befestigungselement 28 drehbar angeordnet sein. Das Befestigungselement 28 kann beispielsweise als Bolzen ausgebildet sein. Gemäss des vorliegenden Ausführungsbeispiels erstrecken sich ein erstes Armelement 31 und ein zweites Armelement 32 vom Befestigungselement 28 in im Wesentlichen entgegengesetzte Raumrichtungen. Das erste Armelement 31 enthält ein Federelement 27. Das zweite Armelement 32 enthält die Klemmvorrichtung 29. Das Federelement 27 stützt sich an einer Wand des Gehäuses 1 ab. Mittels des Federelements 27 kann somit die über die Klemmvorrichtung 29 auf den Schlauch 5 wirkende Klemmkraft erhöht und/oder eingestellt werden. Das Federelement 27 kann beispielsweise als eine Federklammer ausgebildet sein, die im ersten Armelement 31 gehalten ist. Das zweite Armelement 32 enthält einen den Schlauch 5 zumindest teilweise umgreifenden Kanal, in welchem der Schlauch 5 auf dem zweiten Armelement 32 aufliegt. Da zweite Armelement 32 umfasst einen Anschlag 30, welcher am Gehäuse anliegt, um die Schlauchhalterungsvorrichtung 4 in der in Fig. 5a dargestellten Stellung zu fixieren.

[0069] In Fig. 5b ist die Schlauchhalterungsvorrichtung 4 in einer Stellung gezeigt, die sie einnehmen kann, wenn die Förderrichtung in Bezug auf Fig. 5a umgekehrt wird, wie mittels des Pfeils in Fig. 5b dargestellt. In dieser Stellung, die nachfolgend auch als Freilaufstellung bezeichnet wird, wird eine Stauchung des Schlauchs am Ablaufende verhindert. Beispielsweise kann mittels der Schlauchhalterungsvorrichtung 4 der Schlauch 5 bei Schlauchverlängerung in Druckrichtung, gemäss des in Fig. 5b dargestellten Pfeils, durch den Pumpvorgang freigegeben werden, so dass der Schlauch 5 sich nicht stauen kann, wenn der Verdrängungskörper 10 den Schlauch 5 vom Endpunkt der Okklusion entlastet und sich am Endpunkt der Schlauchdeformation wieder vom Schlauch 5 entfernt.

[0070] Speziell bei einem langsamen Hinführen der Verdrängungskörper 10 an den Schlauch 5 und bei einem anschliessenden Abheben des Schlauches 5 können die

[0071] Schlauchhalterungsvorrichtung 4 und die Schlauchhalterungsvorrichtung 26 überraschende Vorteile haben. Beispielsweise kann mittels der Schlauchhalterungsvorrichtung 26 der Schlauch 5 bei Schlauchverlängerung in Druckrichtung, gemäss des in Fig. 5a dargestellten Pfeils durch den Pumpvorgang freigegeben werden, so dass der Schlauch 5 sich nicht stauen kann, wenn der Verdrängungskörper 10 den Schlauch 5 vom Endpunkt der Okklusion 13 entlastet und sich am Endpunkt der Schlauchdeformation 14 wieder vom Schlauch 5 entfernt. Durch die Verwendung der Schlauchhalterungsvorrichtungen 4, 26 können somit nicht nur ungewollte Pulsationen, sondern auch eine Zerstörung des Schlauchs 5 vermieden werden. Insbesondere kann jede der Schlauchhalterungsvorrichtungen 4, 26 ein Federelement 27 enthalten, sodass die Haltekraft bzw. die Kraft für die Entlastung des Schlauchs in Abhängigkeit vom zu pumpenden Fluid, von der Beschaffenheit des Schlauchs 5 sowie den Dimensionen der Schlauchbahn 2 oder der Verdrängungskörper 10 justiert werden kann.

[0072] Wenn die Klemmvorrichtung 29 der Schlauchhalterungsvorrichtung 4, 26 sich in Klemmstellung befindet, wird verhindert, dass der Schlauch 5 in Strömungsrichtung des Fluids wandern kann, wenn die Verdrängungskörper 10 in dieser Konfiguration das Fluid in der entsprechenden Strömungsrichtung transportieren. Die in Fig. 5a nicht dargestellte Schlauchhalterungsvorrichtung 26 befindet sich in der Stellung des Freilaufs und ermöglicht dem Schlauch 5, falls er trotz der in Klemmstellung befindlichen Klemmvorrichtung der Schlauchhalterungsvorrichtung 4 in Richtung des Ablaufendes 7 wandert, aus dem Gehäuse 1 auszutreten, sodass kein Stauen oder Stauchen des Schlauches 5 erfolgt, wenn die Verdrängungskörper 10 vom Schlauch 5 abheben. Dieser Zustand ist in Fig. 5b für die Schlauchhalterungsvorrichtung 4 für die in Bezug auf Fig. 5a umgekehrte Pumprichtung dargestellt.

[0073] Gemäss Fig. 5a, 5b enthalten die Schlauchhalterungsvorrichtungen 4, 26 je ein Federelement, sodass sie leicht auf den Schlauch 5 drücken. Die Schlauchhalterungsvorrichtung 4 kann durch das initiale Verschieben des Schlauches 5 in Pumprichtung und durch die Reibung zwischen Schlauchaussenwand und Klemmvorrichtung 29 vollständig zum Gehäuse 1 hingezogen werden. Die Verwendung eines Federelements 27 für die Klemmvorrichtung 29 erlaubt auch eine Drehrichtungsänderung des Drehkörpers 15, wobei sich die Schlauchhalterungsvorrichtungen 4, 26 automatisch anpassen, sodass somit kein manueller Eingriff erforderlich ist. Bei einer Richtungsänderung des zu pumpenden Fluids stellt sich die Schlauchpumpe 100 somit automatisch um. Insbesondere legt sich die Klemmvorrichtung der Schlauchalterungsvorrichtung 4 an das Gehäuse 1 an und bremst den Schlauch 4. Die Klemmvorrichtung der Schlauchhalterungsvorrichtung 26 hebt durch die Verschiebung des Schlauches 5 aus dem Gehäuse 1 heraus ab, wenn die Pumprichtung des zu pumpenden Fluids

der in Fig. 5a dargestellten Pfeilrichtung entspricht.

[0074] Fig. 6 zeigt eine Messvorrichtung 51 zur Bestimmung der Schlauchbahn für einen Schlauch 5 einer Schlauchpumpe 50, 100 nach einem der vorhergehenden Ausführungsbeispiele. Die Messvorrichtung umfasst eine Basis 57, die als Auflage für den Schlauch 5 dient. Oberhalb der Basis ist eine Rolle 58 angeordnet, die eine Halterung 59 aufweist, welche in Bezug auf ein ortsfestes Führungselement 52 verschiebbar angeordnet ist. Das Führungselement 52 kann mit der Basis 57 verbunden sein, was zeichnerisch nicht dargestellt ist. An der Halterung 59 ist ein Messaufnehmer 60 angeordnet, mittels welchem der Verschiebungsweg der Rolle 58 in der Halterung 59 ermittelt werden kann. Der Messaufnehmer 60 kann beispielsweise als Mikrometerschraube ausgebildet sein.

[0075] Der Schlauch 5 wird mit einer Flüssigkeit gefüllt, beispielsweise Wasser, Alkohol. Gemäss des vorliegenden Ausführungsbeispiels schliesst an den Schlauch 5 ein Messschlauch 55 an, der mit dem Schlauch 5 eine gemeinsame Fluidkammer ausbildet. Der Schlauch 5 ist mit dem Messchlauch 55 über ein Übergangselement 61 verbunden. Mit anderen Worten endet ein erstes Ende des Schlauchs 5 im Übergangselement 61. Das zweite Ende des Schlauchs 5 kann mittels eines Verschlusselements 56 verschlossen werden.

[0076] Eine Messung mit der Messvorrichtung wird wie folgt durchgeführt:

Der Schlauch 5 und der mit dem Schlauch verbundene Messschlauch 55 werden am zweiten Ende 5 mittels des Verschlusselements 56 verschlossen. Der Schlauch 5 wird auf der Basis 57 abgelegt und die Rolle 58 wird durch Verschiebung der Halterung 59 im Führungselement 52 derart verschoben, dass die Rolle 58 den Schlauch 5 berührt. Gemäss der in Fig. 6 dargestellten Messvorrichtung 51 wird die Rolle 58 hierzu abgesenkt, die Verschiebung der Halterung 59 im Führungselement 52 erfolgt in vertikaler Richtung. Wenn die Rolle 58 den Schlauch 5 berührt, wird das Niveau der Flüssigkeit im Messschlauch 55 gemessen. Zudem wird die Position der Rolle 58 mittels des Mesaufnehmers 60 ermittelt, wenn die Rolle 58 den Schlauch 5 berührt.

[0077] Die Rolle 58 wird dann so lange verschoben, bis eine bestimmte Änderung des Niveaus ΔN der Flüssigkeit im Messschlauch 55 erreicht ist, siehe auch Fig. 7b. Die entsprechende Position der Rolle 58 wird wieder mit dem Messaufnehmer ermittelt. Diese Messung wird mit einem konstanten Wert für ΔN so lange wiederholt, bis der Schlauch okkludiert ist, mit anderen Worten bis der Schlauch derart gequetscht ist, dass er verschlossen ist. Für jede Änderung des Niveaus wird die entsprechende Position der Rolle 58 vom Messaufnehmer ermittelt. Fig. 7a zeigt eine Tabelle für ΔN = 20 mm. Das Niveau der Flüssigkeit N steigt gemäss dieses Ausführungsbeispiels von 30 mm bis 250 mm. Der Abstand der Rolle von der Basis 57 nimmt ab, in der in Fig. 7a dargestellten Tabelle als Höhe H bezeichnet.

[0078] Fig. 7b zeigt die Veränderung der Höhe H in

Abhängigkeit von der Änderung des Niveaus der Flüssigkeit im Messschlauch 55, wobei das Niveau der Flüssigkeit N auf der Ordinate aufgetragen ist und die Höhe H der Rolle 58 auf der Abszisse. Aus Fig. 7b ist ersichtlich, dass die Abnahme der Höhe H nicht linear erfolgt.

[0079] Ein Verfahren zur Bestimmung einer Schlauchbahn 2 für einen Schlauch 5 für eine Schlauchpumpe 50, 100 umfasst die folgenden Schritte: der Schlauch 5 wird mit einem Fluid befüllt, wobei der Schlauch 5 an einem zweiten, unteren Ende verschlossen wird, wobei der Schlauch an einem ersten, oberen Ende mit einem Messschlauch 55 zur Messung eines Niveaus des Fluids versehen wird, oder ein mathematisches Modell erstellt wird, wobei eine Rolle 58 relativ zum Schlauch 5 entlang einer Wegstrecke verschoben wird, sodass der Schlauch 5 von der Rolle 58 zunehmend gequetscht wird, wodurch das im Schlauch 5 befindliche Fluid verdrängt wird. Ein Messaufnehmer zur Messung der Wegstrecke ist vorgesehen, wobei die Wegstrecke ermittelt wird, wenn Veränderung des Niveaus im Messschlauch 55 um einen konstanten Wert schrittweise zunimmt.

[0080] Wenn die Veränderung des Niveaus konstant ist, kann die zugehörige Schlauchbahn aus den gemessenen Wegstrecken für einen konstanten Förderstrom der Schlauchpumpe ermittelt werden. Somit korreliert die zurückgelegte Wegstrecke mit der Schlauchbahn der Schlauchpumpe wie folgt.

[0081] Die Rolle, welche dem Verdrängungskörper 10 der Schlauchpumpe entspricht, trifft an einem Anfangspunkt 11 einer Schlauchdeformation auf den Schlauch 5 auf. Der Abstand zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 vom Anfangspunkt 11 der Schlauchdeformation verringert sich bei fortschreitender Drehung des Drehkörpers 15 gemäss Fig. 3a und Fig. 3b, sodass eine zunehmende Quetschung des Schlauchs 5 erfolgt, bis der Anfangspunkt 12 der Okklusion erreicht ist, wenn ein durch den Schlauch 5 ausgebildeter Hohlraum durch Quetschung des Schlauchs durch den Verdrängungskörper 10 verschwindet. Der Verdrängungskörper 10 bewegt sich entlang des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24. Wenn der Verdrängungskörper den Anfangspunkt 12 der Okklusion erreicht hat, erreicht ein weiterer Verdrängungskörper 10 den Anfangspunkt 11 der Schlauchdeformation.

[0082] Der Förderstrom ist konstant, wenn sichergestellt ist, dass bei konstanter Drehzahl der Drehkörper der Schlauchpumpe an jeder Stelle der Schlauchbahn dasselbe Fluidvolumen gefördert wird. Ein konstantes Fluidvolumen wird erhalten, wenn die Länge des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24 der Wegstrecke entspricht, die dem Winkel zwischen zwei benachbarten Verdrängungskörpern des Drehkörpers entspricht und die Krümmung der Schlauchbahn im gekrümmten zulaufseitigen Schlauchbahnabschnitt derart ausgebildet ist, dass das geförderte Fluidvolumen konstant bleibt. Der Deformationswinkel α zwischen zwei benachbarten Verdrängungskörpern 10 ergibt sich aus

der Beziehung 360°/Anzahl der Verdrängungskörper. Wenn beispielsweise 6 Verdrängungskörper 10 auf dem Drehkörper 15 angeordnet sind, ergibt sich ein Winkel α = 60°. Zur Erfüllung der Bedingung des konstanten geförderten Fluidvolumens soll bei einer Drehung um 1° gemäss des Ausführungsbeispiels mit 6 Verdrängungskörpern im Wesentlichen 1/60 des zwischen zwei benachbarten Verdrängungskörpern befindlichen Fluidvolumens gefördert werden. Für jeden Teilwinkel gilt somit, dass der entsprechende Teilwinkelanteil des geförderten Fluidvolumens gefördert wird, wobei der Teilwinkelanteil des geförderten Fluidvolumens konstant ist. Mit anderen Worten wird bei jeder Drehung des Drehkörpers um jeden Teilwinkel dasselbe Teilvolumen gefördert. Zur Ermittlung des Teilwinkels wird der Deformationswinkel α zwischen zwei benachbarten Verdrängungskörpern durch die Anzahl der Messwerte minus 1 geteilt. Im vorliegenden Beispiel werden 12 Messwerte ermittelt, die in Fig. 7a dargestellt sind. Wenn der Deformationswinkel α = 60° beträgt, beträgt der Teilwinkel 60° / 11 = 5.45°.

[0083] In Fig. 8 ist der Verlauf eines gekrümmten zulaufseitigen Schlauchbahnabschnitts 24 für ein exemplarisches Ausführungsbeispiel mit 12 Messwerten gezeigt. Die Messwerte können beispielsweise den Messwerten gemäss Fig. 7a oder Fig. 7b entsprechen, wobei Fig. 7a oder Fig. 7b nur eine exemplarische Messwertserie zeigen, die stellvertretend für eine Vielzahl von möglichen Messwertserien dargestellt ist. Selbstverständlich können die Messwerte einer anderen Messwertserie für einen Schlauch mit anderem Schlauchdurchmesser oder Schlauchkontur oder Schlauchdicke, einer Schlauchpumpe mit anderen Drehkörpern, anderem Hüllkreisradius R_{HK}, oder einem anderen Winkel 52 zwischen benachbarten Drehkörpern, von diesem Beispiel abweichen.

[0084] Fig. 8 dient der Illustration des Verfahrensschritts zur Bestimmung des Krümmungsverlaufs des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24. Zu jedem der Teilwinkel des Deformationswinkels α wird die gemessene Höhe Hi in radialer Richtung ausgehend vom Hüllkreisradius R_{HK} aufgetragen. Der Endpunkt der Strecke, welche dem Messwert für die Höhe Hi entspricht, ist ein Punkt P der Schlauchbahn. Die Verbindungsline der Endpunkte der Strecken für alle i Messwerte für die Höhen Hi ergibt den Verlauf der Schlauchbahn, also in diesem Beispiel den gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 sowie den zulaufseitigen Schlauchbahnabschnitt 21.

[0085] Wenn sich der Verdrängungskörper 10 der Schlauchpumpe 100 in der in Fig. 8 dargestellten Horizontallage befindet, entspricht diese Position auf dem Hüllkreis HK dem Anfangspunkt 11 der Schlauchdeformation. Der im Gegenuhrzeigersinn benachbarte Verdrängungskörper 10 der Schlauchpumpe 100 befindet sich zu diesem Zeitpunkt am Anfangspunkt 12 der Okklusion. Der Messwert für die Höhe H am Anfangspunkt der Schlauchdeformation soll mit H₀ bezeichnet werden. Gemäss dieses Ausführungsbeispiels wird für jeden Teil-

35

winkel α_i eine Höhe H_i aufgetragen, welche einem Punkt P_i der Schlauchbahn entspricht.

[0086] Gemäss des vorliegenden Ausführungsbeispiels werden auf diese Weise die Punkte P_0 bis P_{11} ermittelt. Im Punkt P_0 wird die Höhe H_0 aufgetragen. Die Höhe H_0 entspricht dem Aussendurchmesser oder der Aussenkontur des undeformierten Schlauchs. Der Begriff Aussenkontur wird verwendet, falls der Querschnitt des undeformierten Schlauchs nicht kreisförmig ausgebildet ist.

[0087] Für den Teilwinkel gilt $\alpha_{(j+1)} = \alpha_j + \Delta \alpha$. Jeder Teilwinkel hat einen konstanten Wert, da $\Delta\alpha$ aus der Gleichung $\Delta \alpha = \alpha/(n-1)$ erhalten wird. Mit n wird die Anzahl der Messwerte bezeichnet. Zu jedem Teilwinkel ai wird somit der zugehörige Messwert für die Höhe Hi in radialer Richtung ausgehend vom Hüllkreis mit dem Hüllkreisradius R_{HK} aufgetragen. Der erhaltene Endpunkt der Strecke R_{HK} + H_i ergibt den Punkt P_i auf der Schlauchbahn. [0088] Die Schlauchbahn des gekrümmten zulaufseitigen Schlauchbahnabschnitts 24 und gegebenenfalls des zulaufseitigen Schlauchbahnabschnitts 21 ergibt sich somit als Verbindungslinie der Punkte Pi, wobei i ganzzahlige Werte von 0 bis n-1 annehmen kann. Gemäss des vorliegenden Ausführungsbeispiels beträgt n=12, da zwölf Messwerte für die Höhe Hi ermittelt worden sind, hier H₀ bis H₁₁. Gemäss der in Fig. 7a dargestellten Messwertreihe beträgt H₀=10.8 mm, H₁=9.0mm, H_2 =8.0 mm usw.

[0089] Die Messwerte H_i entsprechen einer konstanten Änderung des Niveaus N, d.h. es gilt, dass N(i+1)-Ni = Δ N = konstant. Durch diese Messvorschrift ist sichergestellt, dass die Höhenänderung, die sich aus allen benachbarten Messwertpaaren ergibt, der Förderung eines konstanten Volumens entspricht. Die ermittelte Schlauchbahn für den gekrümmten zulaufseitigen Schlauchbahnabschnitt 24 ist somit zur Förderung eines gleichbleibenden, d.h. konstanten, Volumens geeignet. Daher kann mittels des gekrümmten zulaufseitigen Schlauchbahnabschnitts, welcher aus der vorgängig beschriebenen Messvorschrift erhalten wird, eine besonders pulsationsfreie Förderung sichergestellt werden.

[0090] Insbesondere ist der Messschlauch 55 als ein Rohrelement ausgebildet, wobei das Rohrelemente einen kleineren Durchmesser aufweist als der Durchmesser des Schlauchs 5. Wenn der Messschlauch einen kleineren Durchmesser 55 aufweist, können auch kleine Volumenänderungen gemessen werden, sodass die entsprechende Höhe Hi wesentlich genauer ermittelt werden kann. Die Verwendung eines Messschlauchs 55, welcher einen kleineren Durchmesser als der Schlauch 5 aufweist ermöglicht eine präzisere Messung der Höhen H_i.

[0091] Insbesondere kann das Rohrelement als ein transparenter Schlauch ausgebildet sein. Der Messwert für das Niveau N des Fluids kann somit einfacher abgelesen werden, entweder manuell oder durch Einsatz eines optischen Messaufnehmers.

[0092] Die Erfindung umfasst auch ein Verfahren zum

Betrieb einer Schlauchpumpe, wobei die Schlauchpumpe 50, 100 ein Gehäuse 1 umfasst, welches die Schlauchbahn 2 enthält, auf welcher der Schlauch 5 aufliegt, und einen Drehkörper 15 enthaltend mindestens zwei Verdrängungskörper 10 zur temporären Quetschung des Schlauchs 5 in der Schlauchbahn 2, wobei der Schlauch 5 ein zu förderndes Fluid enthält, wobei die Verdrängungskörper 10 derart mit dem Drehkörper 15 verbunden sind, dass die Verdrängungskörper bei Drehung des Drehkörpers 15 eine Kreisbewegung ausführen, sodass das Fluid durch den Schlauch 5 transportiert wird. Der Verdrängungskörper trifft an einem Anfangspunkt 11 der Schlauchdeformation auf den Schlauch 5 auf, wobei sich der Abstand zwischen dem Verdrängungskörper 10 und der Schlauchbahn 2 vom Anfangspunkt 11 der Schlauchdeformation bei fortschreitender Drehung des Drehkörpers 15 verringert, sodass eine zunehmende Quetschung des Schlauchs 5 erfolgt, bis ein Anfangspunkt 12 einer Okklusion erreicht ist, sodass ein durch den Schlauch 5 ausgebildeter Hohlraum durch Quetschung des Schlauchs durch den Verdrängungskörper 10 verschwindet. Ein Endpunkt 13 einer Okklusion wird erreicht, wenn durch Entlastung des Schlauchs 5 durch Vergrösserung des Abstands zwischen der Schlauchbahn 2 und dem Verdrängungskörper 10 ein Hohlraum entsteht, wobei ein Endpunkt 14 der Schlauchdeformation erreicht ist, wenn der Verdrängungskörper 10 vom Schlauch 5 abhebt. Zumindest eine der Schlauchbahnen vom Anfangspunkt 11 der Schlauchdeformation bis zum Anfangspunkt 12 der Okklusion oder vom Endpunkt 13 der Okklusion zum Endpunkt der Schlauchdeformation 14 ist als ein gekrümmter zulaufseitiger Schlauchbahnabschnitt 24 oder ein gekrümmter ablaufseitiger Schlauchbahnabschnitt 25 ausgebildet. Insbesondere ist ein Okklusionswinkel γ zwischen dem Anfangspunkt 12 einer Okklusion und dem Endpunkt 13 der Okklusion ausgebildet, wobei der Okklusionswinkel γ)dem Winkel entspricht, den zwei benachbarte Verdrängungskörper 10 zueinander einschliessen.

[0093] Insbesondere wird zumindest einer der gekrümmten zulaufseitigen Schlauchbahnabschnitte 24 oder der gekrümmten ablaufseitigen Schlauchbahnabschnitts 25 durch eine Messvorschrift erhalten, mittels welcher die Schlauchbahn über eine Mehrzahl von Höhen Hi, die bei einer konstanten Winkeländerung $\Delta\alpha$ einem konstanten Volumen entsprechen, ermittelt wird. [0094] Insbesondere wir zwischen dem Anfangspunkt

[0094] Insbesondere wir zwischen dem Anfangspunkt 11 der Schlauchdeformation und dem Anfangspunkt 12 der Okklusion ein Deformationswinkel α ausgebildet. Insbesondere wird zwischen dem Endpunkt 13 der Okklusion und dem Endpunkt der Schlauchdeformation 14 ein Deformationswinkel β ausgebildet. Zumindest einer der Deformationswinkel α , β kann dem Winkel 52 entsprechen, den zwei benachbarte Verdrängungskörper 10 zueinander einschliessen.

[0095] Gemäss einer Verfahrensvariante sind die Verdrängungskörper 10 drehbar im Drehkörper 15 gelagert. Gemäss einer Verfahrensvariante enthält der Drehkör-

10

15

20

25

30

35

40

45

50

per 15 eine Mehrzahl von Drehkörperarmen 16, wobei die Verdrängungskörper 10 auf den Drehkörperarmen 16 des Drehkörpers 15 angeordnet sind.

[0096] Es ist offensichtlich, dass viele weitere Varianten zusätzlich zu den beschriebenen Ausführungsbeispielen möglich sind, ohne vom erfinderischen Konzept abzuweichen. Der Gegenstand der Erfindung wird somit durch die vorangehende Beschreibung nicht eingeschränkt und ist durch den Schutzbereich bestimmt, der durch die Ansprüche festgelegt ist. Für die Interpretation der Ansprüche oder der Beschreibung ist die breitest mögliche Lesart der Ansprüche massgeblich. Insbesondere sollen die Begriffe "enthalten" oder "beinhalten" derart interpretiert werden, dass sie sich auf Elemente, Komponenten oder Schritte in einer nicht-ausschliesslichen Bedeutung beziehen, wodurch angedeutet werden soll, dass die Elemente, Komponenten oder Schritte vorhanden sein können oder genutzt werden können, dass sie mit anderen Elementen, Komponenten oder Schritten kombiniert werden können, die nicht explizit erwähnt sind. Wenn die Ansprüche sich auf ein Element oder eine Komponente aus einer Gruppe beziehen, die aus A, B, C bis N Elementen oder Komponenten bestehen kann, soll diese Formulierung derart interpretiert werden, dass nur ein einziges Element dieser Gruppe erforderlich ist, und nicht eine Kombination von A und N, B und N oder irgendeiner anderen Kombination von zwei oder mehr Elementen oder Komponenten dieser Gruppe.

Patentansprüche

1. Schlauchpumpe (100) enthaltend ein Gehäuse (1) enthaltend eine Schlauchbahn (2) zur Auflage für einen Schlauch (5) und einen Drehkörper (15) enthaltend eine Mehrzahl von Verdrängungskörpern (10) zur temporären Quetschung des Schlauchs (5) in der Schlauchbahn (2), wobei der Schlauch (5) zur Aufnahme eines Fluids ausgebildet ist, wobei die Schlauchbahn (2) einen zulaufseitigen Schlauchbahnabschnitt (21), einen ablaufseitigen Schlauchbahnabschnitt (23) sowie einen zwischen dem zulaufseitigen Schlauchbahnabschnitt (21) und dem ablaufseitigen Schlauchbahnabschnitt (23) angeordneten mittleren Schlauchbahnabschnitt (22) enthält, wobei der mittlere Schlauchbahnabschnitt (22) eine Krümmung aufweist, wobei an zumindest einen der zulaufseitigen und ablaufseitigen Schlauchbahnabschnitte (21, 23) ein gekrümmter zulaufseitiger Schlauchbahnabschnitt (24) oder ein gekrümmter ablaufseitiger Schlauchbahnabschnitt (25) anschliesst, dadurch gekennzeichnet, dass ein Okklusionswinkel (y) zwischen einem Anfangspunkt (12) einer Okklusion und einem Endpunkt (13) der Okklusion ausgebildet ist, wobei der Okklusionswinkel (γ) dem Winkel (52) entspricht, den zwei benachbarte Verdrängungskörper (10) zueinander einschliessen.

- 2. Schlauchpumpe nach Anspruch 1, wobei der Verdrängungskörper an einem Anfangspunkt (11) einer Schlauchdeformation auf den Schlauch (5) auftrifft, wobei sich der Abstand zwischen dem Verdrängungskörper (10) und der Schlauchbahn (2) vom Anfangspunkt (11) der Schlauchdeformation bei fortschreitender Drehung des Drehkörpers (15) verringert, sodass eine zunehmende Quetschung des Schlauchs (5) erfolgt, bis der Anfangspunkt (12) der Okklusion erreicht ist.
- 3. Schlauchpumpe nach Anspruch 2, wobei zwischen dem Anfangspunkt (11) der Schlauchdeformation und dem Anfangspunkt (12) der Okklusion ein Deformationswinkel α ausgebildet ist, wobei der Deformationswinkel α dem Winkel (52) zwischen zwei benachbarten Verdrängungskörpern (10) entspricht.
- 4. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei der Endpunkt (13) der Okklusion erreicht ist, wenn durch Entlastung des Schlauchs (5) durch Vergrösserung des Abstands zwischen der Schlauchbahn (2) und dem Verdrängungskörper (10) ein Hohlraum entsteht.
- 5. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei ein Endpunkt (14) einer Schlauchdeformation ausgebildet ist, wenn der Verdrängungskörper (10) vom Schlauch (5) abhebt.
- 6. Schlauchpumpe nach Ansprüchen 4 und 5, wobei zwischen dem Endpunkt (13) der Okklusion und dem Endpunkt der Schlauchdeformation (14) ein Deformationswinkel β ausgebildet ist, wobei der Deformationswinkel β dem Winkel (52) zwischen zwei benachbarten Verdrängungskörpern (10) entspricht.
- 7. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei zumindest einer der gekrümmten zulaufseitigen Schlauchbahnabschnitte (24) oder der gekrümmten ablaufseitigen Schlauchbahnabschnitte (25) durch eine Messvorschrift erhältlich ist, mittels welcher die Schlauchbahn über eine Mehrzahl von Höhen Hi, die bei einer konstanten Winkeländerung $\Delta\alpha$ einem konstanten Volumen entsprechen, ermittelbar ist.
- 8. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei zumindest einer der gekrümmten zulaufseitigen Schlauchbahnabschnitte (24) und der gekrümmten ablaufseitigen Schlauchbahnabschnitte (25) einen veränderlichen Krümmungsradius aufweist.
- 9. Schlauchpumpe nach Anspruch 8, wobei sich die Krümmung des gekrümmten zulaufseitigen Schlauchbahnabschnitts (24) von der Krümmung des gekrümmten ablaufseitigen Schlauchbahnab-

schnitts (25) zumindest teilweise unterscheidet.

- 10. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei zumindest einer der zulaufseitigen Schlauchbahnabschnitte (21) und der ablaufseitigen Schlauchbahnabschnitte (23) eine Krümmung aufweist, wobei sich die Krümmung des zulaufseitigen Schlauchbahnabschnitts (21) von der Krümmung des ablaufseitigen Schlauchbahnabschnitts (23) zumindest teilweise unterscheiden kann.
- 11. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei die Verdrängungskörper (10) derart mit dem Drehkörper (15) verbunden sind, dass sie bei Drehung des Drehkörpers (15) eine Kreisbewegung ausführen.
- **12.** Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei die Verdrängungskörper (10) drehbar im Drehkörper (15) gelagert sind.
- **13.** Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei der Drehkörper (15) für jeden Verdrängungskörper (10) eine in Bezug auf den Drehkörper (15) ortsfeste Lagerstelle aufweist.
- 14. Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei der Drehkörper (15) eine Mehrzahl von Drehkörperarmen (16) enthält, wobei die Verdrängungskörper (10) auf den Drehkörperarmen (16) des Drehkörpers (15) angeordnet sind.
- **15.** Schlauchpumpe nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (1) zumindest eine 35 Schlauchhalterungsvorrichtung (4, 26) enthält.

40

45

50

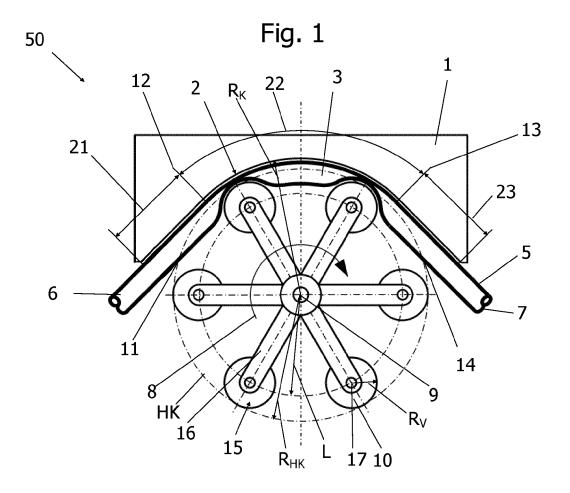
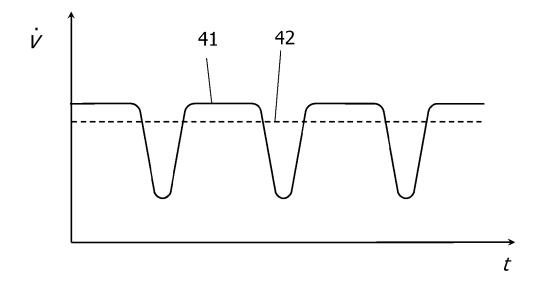
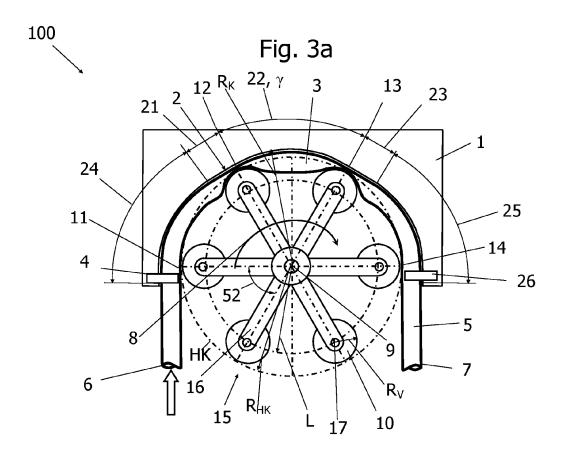
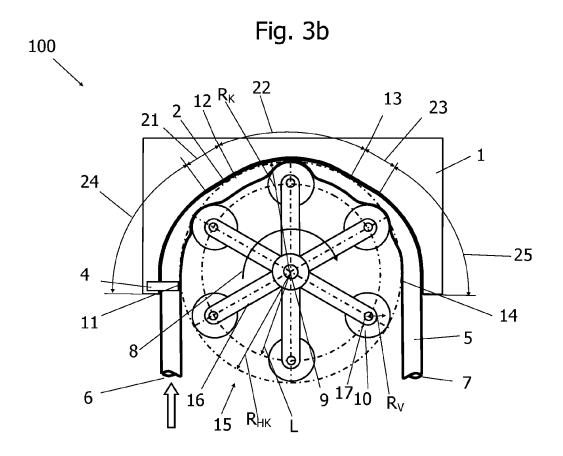
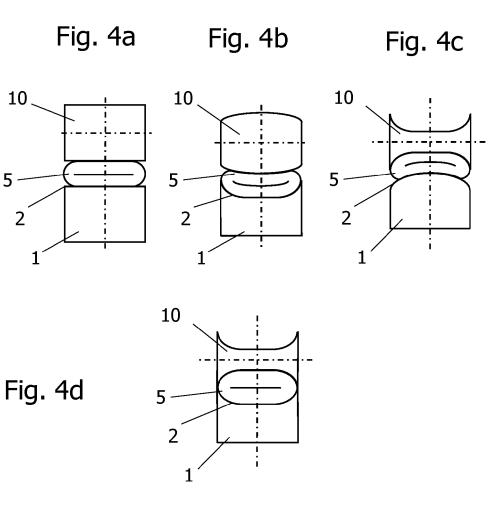






Fig. 2

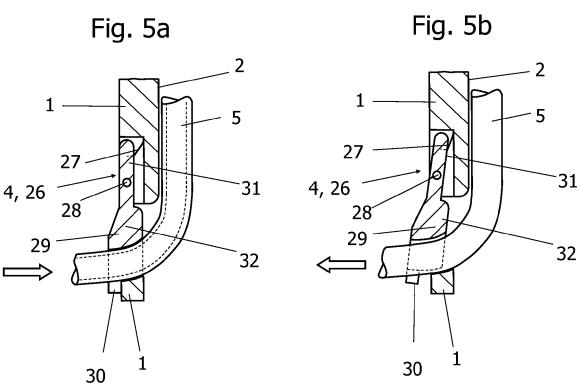


Fig. 7a Fig. 6 Н N Δα 62 10.8 30 <u>ակավավափակակակակակակակակակա</u> 9.0 50 5.45 8.0 70 10.9 51 7.2 90 16.35 55 6.7 110 21.8 130 27.25 6.3 150 32.7 6.0 5.7 170 38.15 - 60 190 43.6 5.4 63 milion milion 4.8 210 49.05 52 4.0 230 54.5 59 58 250 3.0 60 5 61 0 - 56 - 57

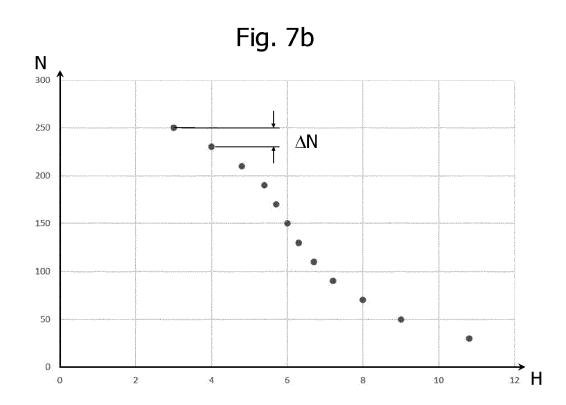
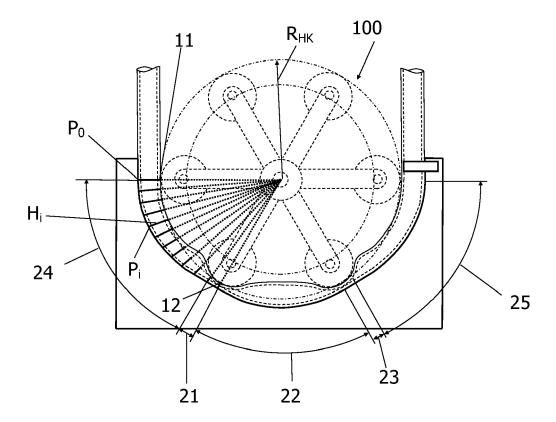



Fig. 8

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 22 20 1759

5						
			EINSCHLÄGIGE DOKU			
		Kategorie	Kennzeichnung des Dokuments mit der maßgeblichen Teile			
10)	x	WO 2004/109109 A1 (INNOLA FIRMANN MARKUS [CH]) 16. Dezember 2004 (2004-1 * Seite 2, Zeilen 6-9; Ak			
15	5	x	US 6 062 829 A (OGNIER JE 16. Mai 2000 (2000-05-16) * Spalte 4, Zeilen 18-21; * * Spalte 2, Zeilen 41-44			
20)	x	GB 1 556 293 A (BAXTER TF 21. November 1979 (1979-1 * Seite 5, Zeilen 38-41;			
25	5	x	EP 0 638 322 A1 (STOECKEF [DE]) 15. Februar 1995 (1 * Abbildungen 1-3 *			
30)	A, D	EP 2 990 647 A1 (STOCKERT 2. März 2016 (2016-03-02) * Absätze [0001], [0018] *			
35	5	A, D	EP 3 364 032 A1 (BIOSENSE LTD [IL]) 22. August 2018 * Absätze [0034], [0035] *			
40)	A, D	EP 2 419 636 B1 (FACHHOCE 25. September 2013 (2013-* das ganze Dokument *			
45	5					
		Der v	orliegende Recherchenbericht wurde für alle			
		2	Recherchenort			
50)	04C03	München			
		32 (P0	KATEGORIE DER GENANNTEN DOKUMENTE			
55	5	Y : voi and A : ted O O : nic	: von besonderer Bedeutung allein betrachtet : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie : technologischer Hintergrund : nichtschriftliche Offenbarung : Zwischenliteratur			

	EINSCHLÄGIGE DO	KUMENTE		
ategorie	Kennzeichnung des Dokuments r der maßgeblichen Tei		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
x	WO 2004/109109 A1 (INNO FIRMANN MARKUS [CH]) 16. Dezember 2004 (2004 * Seite 2, Zeilen 6-9;	1–12–16)	1,2,4,5, 7,8, 11-15	INV. F04B43/12 F04B53/16 F04B11/00
ĸ	US 6 062 829 A (OGNIER 16. Mai 2000 (2000-05-1 * Spalte 4, Zeilen 18-2 * * Spalte 2, Zeilen 41-4	L6) 21; Abbildungen 1-3	1-15	
x	GB 1 556 293 A (BAXTER 21. November 1979 (1979 * Seite 5, Zeilen 38-4	9-11-21)	1,2,4,5, 7,11-15	
x	EP 0 638 322 A1 (STOECI [DE]) 15. Februar 1995 * Abbildungen 1-3 *		1,2,4,5, 7-15	
A,D	EP 2 990 647 A1 (STOCKI 2. März 2016 (2016-03-0 * Absätze [0001], [000 *	02)	1-15	RECHERCHIERTE SACHGEBIETE (IPC)
A,D	EP 3 364 032 A1 (BIOSEI LTD [IL]) 22. August 20 * Absätze [0034], [003 *	018 (2018-08-22)	1-15	
A, D	EP 2 419 636 B1 (FACHHO 25. September 2013 (20) * das ganze Dokument *		1–15	
Der vo	rliegende Recherchenbericht wurde für	<u>'</u>		
	Recherchenort München	Abschlußdatum der Recherche 8. Februar 2023	Olo	Prüfer na Laglera, C
X : von Y : von ande	ATEGORIE DER GENANNTEN DOKUMEN' besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit ei eren Veröffentlichung derselben Kategorie nologischer Hintergrund	TE T : der Erfindung zug E : älteres Patentdok nach dem Anmeld D : in der Anmeldung L : aus anderen Grür	grunde liegende - tument, das jedor dedatum veröffer g angeführtes Do nden angeführtes	Theorien oder Grundsätze ch erst am oder itlicht worden ist kument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 22 20 1759

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

08-02-2023

	Recherchenbericht hrtes Patentdokume	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO	2004109109	A1	16-12-2004	AT	502213	т	15-04-201
				EP	1664535	A1	07-06-200
				US	2006177329		10-08-200
				WO	2004109109		16-12-200
	 6062829	 A	 16-05-2000	DE	69616336		04-07-200
0.5	0002023	•	10-05-2000	EP	0840854		13-05-199
				ES	2165992		01-04-200
				FR	2737261		31-01-199
					6062829		
				US			16-05-200
					9705386 	A1	13-02-199°
GB	1556293	A	21-11-1979	AU	511738	в2	04-09-198
				BE	850770	A	16-05-197
				DE	2703163	A1	28-07-197
				DK	31677	A	27-07-197
				ES	455369	A1	01-06-197
				ES	467055	A1	16-10-197
				FR	2338709	A1	19-08-197
				GB	1556293	A	21-11-197
				GB	1556294	A	21-11-197
				IL	51320	A	16-09-198
				ΙT	1077875	В	04-05-198
				JP	S6242626	B2	09-09-198
				JP	S52107192	A	08-09-197
				MX	145724	A	26-03-198
				NL	7700761	A	28-07-197
				NO	144410	В	18-05-198
				SE	430755	В	12-12-198
EP	0638322	 A1	 15-02-1995	DE	4327152	A1	 16-02-199
				EP	0638322	A1	15-02-199
				US	5470211	A	28-11-199
 도D	 29906 4 7	 A1	 02-03-2016		102014112324	 A1	 03-03-201
			12 13 2010	EP	2990647		02-03-201
				US	2016061199		03-03-201
	 3364032	 A1	 22-08-2018	AU	2018201077		 30-08-201
EP	JJ0403Z	ΥT	22-00-2018	CA	2994455		
							16-08-201
				CN	108443123		24-08-201 22-08-201
				EP	3364032		
				IL	257421		30-04-201
				JP	2018132063		23-08-201
				US US	2018230988 2021148355		16-08-201 20-05-202

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

Seite 1 von 2

55

5

10

15

20

25

30

35

40

45

EP 4 166 786 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 22 20 1759

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr. 5

08-02-2023

10	Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Datum der Mitglied(er) der Veröffentlichung Patentfamilie	
15		B1 25-09-2013	DE 102009017918 A1 EP 2419636 A2 WO 2010118740 A2	16-12-2010 22-02-2012 21-10-2010
20				
25				
30				
35				
40				
45				
PO FORM P0461				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

55

Seite 2 von 2

EP 4 166 786 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- EP 2419636 B1 [0005] [0006]
- DE 20109803 U1 **[0005]**

- EP 3364032 A1 [0005]
- EP 2990647 A1 [0005]