

(11) **EP 4 167 539 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 19.04.2023 Bulletin 2023/16

(21) Application number: 21826298.8

(22) Date of filing: 15.06.2021

(51) International Patent Classification (IPC): H04L 29/08^(2006.01)

(52) Cooperative Patent Classification (CPC): H04L 65/40

(86) International application number: **PCT/CN2021/100121**

(87) International publication number: WO 2021/254331 (23.12.2021 Gazette 2021/51)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 16.06.2020 CN 202010549774

(71) Applicant: **ZTE Corporation Shenzhen, Guangdong 518057 (CN)**

(72) Inventors:

• PU, Jiange Shenzhen, Guangdong 518057 (CN)

 XU, Daigang Shenzhen, Guangdong 518057 (CN)

 HU, Rui Shenzhen, Guangdong 518057 (CN)

 ZHANG, Jin Shenzhen, Guangdong 518057 (CN)

 (74) Representative: Deambrogi, Edgardo et al Jacobacci & Partners S.p.A.
 Corso Emilia 8
 10152 Torino (IT)

(54) RESOURCE MANAGEMENT METHOD AND SYSTEM, PROXY SERVER, AND STORAGE MEDIUM

(57)The present disclosure relates to the technical field of communications. Disclosed are a resource management method and system, a proxy server and a storage medium. The method comprises: when resource update information of a micro server exists, reporting the resource update information to the load balancing server by a proxy server corresponding to the micro server; broadcasting, by the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro servers; updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, a locally pre-stored resource usage state of each micro server based on the resource update information, so as to perform a load balancing operation based on the resource usage state. The present invention achieves global load balancing based on global resource information, improves the accuracy of implementing load balancing, and improves the reliability and accuracy of resource management.

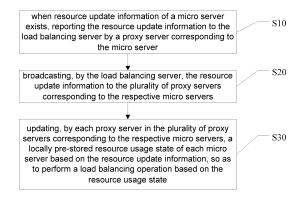


Fig. 2

20

35

40

Description

Technical Field

[0001] The present disclosure relates to the field of communications technologies, and in particular, to a resource management method and system, a proxy server, and a storage medium.

Background

[0002] Load balancing refers to balancing or distributing loads (work tasks) to a plurality of operation units for running, for example, distributing the loads to a File Transfer Protocol (FTP) server, a Web Server, an enterprise core application server and other main task servers, so as to achieve the work tasks cooperatively. In a micro server system, each micro server may initiate a request to other micro servers, and in a scenario with a plurality of requesters, a micro server of each requester respectively acquires local resource information thereabout, and independently performs load balancing based on the local resource information thereabout. In this way, load imbalance may occur, and therefore, a micro server serving as a requester implements a load balance mechanism. As a result, the global load is not balanced enough, and the accuracy of load balancing is reduced.

Summary

[0003] Embodiments of the present disclosure provide a resource management method and system, a proxy server and a storage medium, which can improve the accuracy of implementing load balancing and improve the reliability and accuracy of resource management.

[0004] According to a first aspect, an embodiment of the present disclosure provides a resource management method, wherein the resource management method is applied to a resource management system. The resource management system comprises a plurality of micro servers, a plurality of proxy servers corresponding to respective micro servers, and a load balancing server. and the resource management method comprises:

when resource update information of a micro server exists, reporting the resource update information to the load balancing server by a proxy server corresponding to the micro server;

broadcasting, by the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro servers; and

updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, a locally pre-stored resource usage state of each micro server based on the resource update in-

formation, so as to perform a load balancing operation based on the resource usage state.

[0005] According to a second aspect, an embodiment of the present disclosure further provides a resource management method, wherein the resource management method is applied to a proxy server, and the proxy server is a proxy server corresponding to a micro server of a requester, and the resource management method includes:

When monitoring that the micro server has resource update information, reporting the resource update information to the load balancing server, and updating a locally pre-stored resource usage state of each micro server based on the resource update information;

and performing a load balance operation according to the resource usage state.

[0006] According to a third aspect, an embodiment of the present disclosure further provides a resource management system, wherein the resource management system comprises a plurality of micro servers, a plurality of proxy servers corresponding to respective micro servers, and a load balancing server, the load balancing server is in communication connection with each proxy server, and the resource management system is used for executing any resource management method applied to the resource management system provided in the embodiments of the present disclosure.

[0007] According to a fourth aspect, an embodiment of the present disclosure further provides a proxy server, comprising a memory and a processor, wherein the memory stores a computer program, and when invoking the computer program in the memory, the processor executes any resource management method applied to the proxy server provided by the embodiment of the present disclosure.

[0008] According to a fifth aspect, an embodiment of the present disclosure further provides a storage medium, configured as a computer readable storage medium, wherein the storage medium is configured to store a computer program, and the computer program is loaded by a processor so as to execute any resource management method provided in the embodiment of the present disclosure.

[0009] In the embodiments of the present disclosure, when there is resource update information about a micro server, the resource update information can be reported to a load balancing server by a proxy server of the micro server, then, the resource update information can be broadcast to a proxy server corresponding to each micro server by the load balancing server, so that each proxy server can acquire global resource information about each micro server. In this case, a locally pre-stored resource usage state of each micro server can be updated

based on resource update information by a proxy server corresponding to each micro server, so that each proxy server can maintain the resource usage state of each micro server timely and accurately. A load balancing operation is executed based on a resource usage state, thereby realizing global load balancing based on global resource information. Thus, the accuracy of implementing load balancing is improved, and the reliability and accuracy of resource management are improved.

Brief Description of the Drawings

[0010]

Fig. 1 is a schematic structural diagram of a resource management system according to an embodiment of the present disclosure;

Fig. 2 is a schematic flowchart of a resource management method according to an embodiment of the present disclosure;

Fig. 3 is a schematic flowchart (1) of a resource management method according to another embodiment of the present disclosure;

Fig. 4 is a schematic flowchart (2) of a resource management method according to another embodiment of the present disclosure;

Fig. 5 is a schematic flowchart (3) of a resource management method according to another embodiment of the present disclosure;

Fig. 6 is a schematic flowchart (4) of a resource management method according to another embodiment of the present disclosure;

Fig. 7 is a schematic structural diagram of a proxy server according to an embodiment of the present disclosure.

Detailed Description of the Embodiments

[0011] The following clearly and completely describes the technical solutions in the embodiments of the present disclosure with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the embodiments to be described are merely a part rather than all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without creative efforts shall belong to the scope of protection of the present disclosure.

[0012] The flow charts shown in the figures are merely illustrative, do not necessarily include all of the content and operations/steps, nor do they necessarily have to be performed in the order described. For example, some

operations/steps may be broken down, combined, or partially combined, and thus the order of actual execution may vary as desired.

[0013] Some embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Without conflict, the following embodiments and features in the embodiments may be combined with each other.

[0014] Embodiments of the present disclosure provide a resource management method and system, a proxy server, and a storage medium.

[0015] Please refer to Fig. 1, Fig. 1 is a schematic structural diagram of a resource management system according to an embodiment of the present disclosure. As shown in Fig. 1, the resource management system may include a plurality of micro servers, a plurality of proxy servers corresponding to respective micro servers, and a load balancing server, wherein each micro server is connected to a proxy server corresponding thereto, and each proxy server is connected to a load balancing server. For example, a proxy server of each micro server may send a registration request to the load balancing server. After receiving the registration request, the load balancing server returns a registration response to each proxy server, establishing a connection relationship between a load balancing server and a proxy server of each micro server based on a registration response. Types of the micro server, the proxy server, and the load balancing server may be flexibly set according to actual requirements, and a specific type is not limited herein.

[0016] The load balancing server can be used for: 1) receiving resource usage conditions (namely, resource usage states) of instances of a plurality of micro servers reported by a plurality of proxy servers in the resource management system, such as the number of connections and the number of requests, and storing resource occupancy conditions of instances of all the micro servers in the resource management system; 2) after receiving the reported resource usage update event, broadcasting same to all the proxy servers in the resource management system.

[0017] All the proxy servers can be used for: 1) registering with a load balancing server, and monitoring a notification of a change in a resource occupation condition (namely, a resource usage update) of each micro server in a resource management system; 2) after receiving a notification of a resource occupation condition change, saving a new resource occupation condition in a local memory.

[0018] The proxy server acting as the proxy server of receiver may be configured to 1) after receiving the request, before a request is forwarded to a micro server (also referred to as a local server) connected thereto, a current resource occupation condition of an instance of the micro server is reported to a load balancing server, and then forwards the request to the instance of the micro server, or reports the current resource occupation condition of the instance of the micro server to the load bal-

ancing server, simultaneously forwarding requests to the instances of the micro server; 2) after the local server finishes processing the request and returns a response, the proxy server of the receiver reporting a current resource occupation condition to the load balancing server, and then returning a response to the requester; 3) in addition to the starting and ending time of request processing, in the service processing process, the local server may also call an interface of the proxy server to update a resource occupation condition of the local server, and the proxy server locally stores the latest resource occupation condition and reports same to the load balancing server.

[0019] The proxy server acting as a proxy server of requester may be configured such that after the requester's micro server sends a request, the representative server of the requester receives the request, acquiring resource occupation conditions of all the requested instances of the micro server from a local memory, and combining a load balancing policy, selecting an instance of a server of the receiver, and then forwarding the request to the instance of the server of the receiver, global load balancing is achieved including instances of the gateway and all of the micro servers.

[0020] The resource occupancy may comprise: 1) resource consumption that can be acquired by the proxy server, for example, the current number of connections, and such information can be automatically acquired and reported by the proxy server; 2) a proxy server cannot obtain, for example, only a micro server can estimate the resource consumption of a certain type of query, and this type needs to be sent to the proxy server by the micro server, and then reported by the proxy server.

[0021] It should be noted that after a single application evolves into a resource management system (referred to as a micro service system), an invocation within a process becomes a remote invocation between processes, and management and monitoring of a large number of network connections and requests become a difficult problem in resource management system development. In order to relieve the micro server from a complex network problem (including load balancing), attention is focused on service development, and a service grid is introduced into a resource management system to undertake a management and control task of network communication of the micro server.

[0022] As shown in Fig. 1, a service grid may be logically divided into a data plane and a control plane, where the data plane is formed by a group of intelligent proxys in a network, and these proxys (namely, proxy servers) are deployed together with an instance of each micro server. The proxy servers intercept network requests sent and received by the micro servers, and therefore these proxy servers can take over network communications between the micro servers, and are responsible for tasks such as micro server forwarding, load balancing, and performance index reporting of instances of the micro server. A control plane is responsible for managing

and configuring a proxy server, and is responsible for issuing a load balancing policy of a micro server, a fusion current limiting rule, and a collected performance indicator, etc. to the proxy server. Because the proxy server is an enhancement to a micro server, which is similar to a relationship between a motorcycle and a bucket, the proxy server in the service grid may also be referred to as a sidecar.

[0023] After the resource management system is introduced into the service grid, each instance of the micro server is deployed together with one proxy server (for example, both the instance of the micro server and the proxy server are deployed in the same pod of k8s). All requests sent by the micro server (namely, network requests) are forwarded by the proxy server. Load balancing in a resource management system is implemented by a proxy server, which may specifically be as follows: the proxy server obtains information of instances of all micro servers through a server discovery component of a control plane; when a certain micro server initiates a request, a proxy server deployed locally on the micro server may select an instance of the micro server of the receiver according to a load balancing policy, and send the request to the instance.

[0024] Specifically, in order to achieve the purpose of distributing requests to instances of a plurality of micro servers as evenly as possible in a resource management system, a proxy server is provided for each instance of a micro server in the resource management system, a plurality of micro servers do not directly communicate with each other, and a plurality of micro servers communicate with each other by a proxy server, and all the proxy servers constitute a service grid data plane. The control plane of the service grid includes components for managing the data plane, such as a component of secure network communication and a component of performance index collection. A global load balancing server is newly added in the control plane, and the global load balancing service is responsible for storing and broadcasting resource usage conditions of all the micro servers, such as the number of connections, CPU, and memory occupation. All the proxy servers report the resource usage condition of the instance of the micro server on which all the proxy servers are proxy to the load balancing server, and all the proxy servers may also obtain the resource usage condition of the instance of other micro servers from the load balancing server, so as to achieve global load balancing based on the resource usage condition of the instance of each micro server. A global load balancing server is introduced into a resource management system and is responsible for storing and broadcasting resource usage states of instances of all micro servers; a proxy server can report and share resource usage states of instances of all micro servers; and a micro server serving as a receiver can also update its own resource usage state by the proxy server. In this way, all the requesters can acquire resource load conditions of all the instances of the global micro server, load balancing

40

45

can be implemented more accurately, and the purpose of evenly allocating resources of the entire system is achieved.

[0025] In a resource management system composed of a plurality of micro servers, each micro server undertakes a respective service, each micro server is an independent process, and access is performed among the plurality of micro servers by means of remote invoking. For example, in a network management system, there are micro servers such as topology, alarms, and resources, and the topology and alarms may invoke a resource server interface to guery information of a resource object. [0026] In a resource management system (which may also be referred to as a micro service system), load balancing not only occurs at a gateway, but also occurs among a plurality of micro servers. For example, there are three instances of the resource server, and when an alarm invokes a resource server interface, an instance of a certain micro server needs to be selected through a load balancing algorithm. For a single application, all externally initiated requests pass through the gateway, and therefore, a simple load balancing policy may basically achieve an objective of evenly distributing loads on a plurality of service instances by the externally initiated requests. However, in a resource management system, load balancing may occur in a plurality of places, for example, in a network management system, a topology and an alarm will both send a request to a resource server, and there may also be a plurality of instances of the topology and the alarm per se. Because requests have a plurality of sources, if load balancing is independently performed at the plurality of sources, the purpose of evenly distributing loads cannot be well achieved. Therefore, in the embodiments of the present disclosure, global resource information collection can be performed on all the instances of the micro server in the resource management system, which serves as a basis of a load balancing policy, so that the optimal selection of the instances of the micro server can be realized, and the purpose of global average allocation can be realized; and a plurality of requesters share request information, and the effect of extremely unbalanced loads of a plurality of instances of a receiver can be avoided.

[0027] For example, assuming that a polling load balancing policy is adopted, there are two instances of an alarm and a resource, and after a period of time, the following conditions occur: alarm instance 1 has five requests being processed, resource instance 1 has two resource instances 1 and resource instance 2 has three resource instances 2; in alarm instance 2, there are six requests being processed, there are five resource instances 1, and there are one resource instances 2; if the alarm instance needs to send a new request, in the existing local load balancing, it is considered that the new request should be sent to the resource instance 1 according to the data recorded by the alarm instance itself. However, in the embodiment of the present disclosure, sending to the resource instance 2 can be determined

according to the resource information of the instance of the global micro server. It can be seen from this example that, when a plurality of requesters do not share request information, extreme imbalance of load of a receiver may be caused. The embodiments of the present disclosure solve this problem, i.e. based on global resource information of instances of all micro servers serving as a basis of a load balancing policy, optimal selection of the instances of the micro servers can be realized. The embodiments of the present disclosure can achieve the effect of load balancing even in a special case in which there are many requester instances and few receiver instances, or in a case in which the consumption of resources of a request for a receiver is very large.

[0028] For example, a micro server provides an interface, and may query data of a certain type, for example, information of all network elements belonging to a certain region. Based on the resource management method of the embodiments of the present disclosure, the requester can correctly estimate the resource consumption of the receiver: the number of network elements in a plurality of regions differs greatly, and also queries a region, so that the resource consumption differs greatly. Load balancing may introduce a weight. A requester can accurately estimate resource consumption. After receiving a request, a receiver can check firstly the total number of resources in a region, and then estimate the amount of resources required to be consumed for collecting all resource data. For another example, the resource consumption of the receiver is not a fixed value: when the information is queried, the resource consumption may be large at the beginning. However, in the subsequent processing, the consumed resources are greatly reduced, and in this case, although the request is not processed completely, a large amount of resources have been released. In this case, the proxy server of the requester may obtain the resource usage condition of the micro server of the receiver from the load balancer, and can better evenly distribute requests

[0029] In a scene in which there are a plurality of requesters, if each requester performs load balancing independently, a result that global load is greatly unbalanced may occur because information obtained by each requester is only partial. By introducing a load balancing server, all the proxy servers can report and share resource occupation conditions of instances of all the micro servers, and share global information; and a requester can obtain real resource occupation conditions of the instances of all the micro servers, so that all the requesters can perform load balancing more accurately, thereby achieving the purpose of evenly distributing resources of the entire system, and achieving global load balancing. [0030] In the embodiments of the present disclosure, when resource update information exists in a micro server, the resource update information can be reported to a load balancing server by a proxy server of the micro server. Then the resource update information can be broadcast to a proxy server corresponding to each micro server

by the load balancing server, so that each proxy server can acquire global resource information about each micro server. In this case, a locally pre-stored resource usage state of each micro server can be updated based on resource update information by means of a proxy server corresponding to each micro server. In this way, each proxy server can maintain the resource usage status of each micro server timely and accurately. For example, initiating a request by means of a micro server of the requester, and acquiring resource occupation information about the request; reporting resource occupation information to a load balancing server by a proxy server of a requester; broadcasting, by a load balancing server, resource occupation information to a proxy server corresponding to each micro server; updating a locally prestored resource usage state of each micro server based on resource occupation information by means of a proxy server corresponding to each micro server. For another example, after the micro server of the receiver completes the processing of the request initiated by the requester, the micro server acquires the requested resource release information through the proxy server of the receiver, and reports the resource release information to the load balancing server; broadcasting, by a load balancing server, resource release information to a plurality of proxy servers corresponding to respective micro servers; updating a locally pre-stored resource usage state of each micro server based on resource release information by means of a proxy server corresponding to each micro server. In this case, the proxy server may execute a load balancing operation based on a resource usage state. For example, determining, by means of a proxy server of the requester, a micro server of a receiver corresponding to a request based on a locally pre-stored resource usage state of each micro server and a pre-set load balancing policy; sending, by the proxy server of the requester, the request to the proxy server of the receiver, and forwarding, by the proxy server of the receiver, the request to the micro server of the receiver. Thus, global load balancing is implemented on the basis of the global resource information, the accuracy of implementing load balancing is improved, and the reliability and accuracy of resource management are improved.

[0031] In the foregoing embodiments, descriptions of the embodiments are focused on each other. For a part that is not described in detail in a certain embodiment, reference may be made to the following detailed description of a resource management method, and details are not repeatedly described herein.

[0032] It should be noted that the structure of the resource management system in Fig. 1 does not limit the application scenes of the resource management method, and the resource management method is described in detail in the following.

[0033] Please refer to Fig. 2, Fig. 2 is a schematic flow-chart of a resource management method according to an embodiment of the present disclosure. The resource management method may be applied to a resource man-

agement system. The resource management method may include but is not limited to steps S10 to S30, and may be specifically as follows:

S10, when resource update information of a micro server exists, reporting the resource update information to the load balancing server by a proxy server corresponding to the micro server.

[0034] The resource update information may comprise resource occupation information and resource release information, etc., and the resource occupation information may comprise information such as occupying a memory resource and occupying a CPU resource. The resource release information may comprise information such as releasing a memory resource and releasing a CPU resource, for example, resource occupation information may be reported to a load balancing server by a proxy server of a micro server. Alternatively, the resource release information may be reported to the load balancing server through a proxy server of the micro server.

[0035] S20, broadcasting, by the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro

[0036] After receiving the resource update information, the load balancing server may broadcast the resource update information to a proxy server corresponding to each micro server.

[0037] S30, updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, a locally pre-stored resource usage state of each micro server based on the resource update information, so as to perform a load balancing operation based on the resource usage state.

[0038] Each proxy server maintains a resource usage state of each micro server in a resource management system. After receiving resource update information broadcast by a load balancing server, each proxy server can update a resource usage state of each micro server in a locally pre-stored resource management system based on the resource update information. Subsequently, each proxy server may perform a load balancing operation based on the resource usage state.

[0039] It should be noted that, when the resource update information of the micro server exists, the proxy server corresponding to the micro server may update the resource usage status of each micro server in the locally pre-stored resource management system, and reporting the resource update information to a load balancing server by a proxy server of the micro server. In this case, the load balancing server may broadcast the resource update information to other proxy servers in the resource management system, so that the other proxy servers update the resource usage state of each micro server in the locally pre-stored resource management system based on the resource update information. The other proxy servers are all the other proxy servers except the one reporting the resource update information in the resource management system. Alternatively, when the re-

20

25

40

45

source update information of the micro server exists, the resource update information may be reported to the load balancing server through a proxy server of the micro server. In this case, the load balancing server may broadcast the resource update information to all the proxy servers (including the proxy servers reporting the resource update information) in the resource management system. In this way, all proxy servers update the resource usage status of each micro server in the locally pre-stored resource management system based on the resource update information.

[0040] In an embodiment, the resource management method can further comprise: configuring a corresponding proxy server for each micro server in the resource management system, and configuring a load balancing server; sending a registration request to a load balancing server through a proxy server of each micro server; establishing a connection relationship between a load balancing server and a proxy server of each micro server according to a registration request.

[0041] In order to improve the reliability of data interaction and the accuracy of load balancing, in a resource management system, a corresponding proxy server is configured for each micro server, a load balancing server is configured, and then a registration request is sent to the load balancing server by a proxy server of each micro server. Each proxy server may receive a registration response returned by the load balancing server, and establish a connection relationship between the load balancing server and a proxy server of each micro server based on the registration response. In this way, data interaction may be performed between the load balancing server and the proxy server.

[0042] Referring to Fig. 3, in an embodiment, when there is a resource update of a micro server, resource update information is reported to a load balancing server by a proxy server of the micro server, the resource update information is broadcast to a proxy server corresponding to each micro server by a load balancing server, updating a locally pre-stored resource usage state of each micro server by a proxy server corresponding to each micro server based on the resource update information. The method may include, but is not limited to, step S11 and step S14, and may specifically be as follows:

Step S11, initiating a request by a micro server of a requester, and acquiring requested resource occupation information;

Step S12, reporting the resource occupation information to a load balancing server by a proxy server of a requester;

Step S13, broadcasting the resource occupation information to a proxy server corresponding to each micro server by the load balancing server;

Step S14, updating a locally pre-stored resource us-

age state of each micro server based on the resource occupation information by the proxy servers corresponding to a plurality of micro servers.

[0043] In order to improve the timeliness and convenience of updating the resource usage state, the resource usage state can be updated when the request is initiated. Specifically, in a resource management system, any one of the micro servers may serve as a micro server of a requester or a micro server of a receiver. The micro server of the requester may initiate a request and acquire requested resource occupation information, for example, information such as the amount of occupied resources A and the amount of occupied resources B of the request. Then, the proxy server of the requester can report the resource occupation information to the load balancing server, and after receiving the resource occupation information, the load balancing server can update the resource usage state of each micro server in the locally pre stored resource management system according to the resource occupation information, and broadcast the resource occupation information to the plurality of proxy servers corresponding to the respective micro servers. In this case, the plurality of proxy servers corresponding to the respective micro servers can update the resource usage state of each micro server in the locally pre-stored resource management system based on the received resource occupation information, for example, the locally pre-stored resource occupancy condition of example 1 of the micro server A can be updated based on the resource occupation information of example 1 of the micro server A.

[0044] Referring to Fig. 4, in an embodiment, the performing the load balance operation based on the resource usage state may include but is not limited to steps S21 and S22, and the details may be as follows:

Step S21, determining, by a proxy server of a requester, a micro server of a receiver corresponding to a request based on a resource usage state of each micro server pre-stored locally and a pre-set load balancing policy;

Step S22, send the request to the proxy server of the receiver by the proxy server of the requester, and forward the request to the micro server of the receiver by the proxy server of the receiver.

[0045] The load balancing strategy can be flexibly set according to actual needs, for example, the load balancing strategy can comprise weight polling, random, the priority of the smallest number of connections, and the priority of the response speed, etc., and the purpose of the load balancing is to distribute load balancing to instances of a plurality of micro servers as far as possible. For example, the smallest number of connections has a priority, and is based on an assumption that micro server resources consumed by each connection are basically

the same. Therefore, the number of connections can be used to estimate resources occupied by the micro server. Because the micro server having the smallest number of connections has the largest number of available resources remaining, a request can be preferentially distributed to the micro server having the smallest number of connections, thereby realizing the purpose of even distribution

[0046] In order to improve the accuracy and flexibility of request distribution, a request can be distributed based on a load balancing policy, for example, a proxy server of a requester can determine, based on a locally prestored resource usage state of each micro server in a resource management system and a pre set load balancing policy, a micro server of a receiver corresponding to the request. Then, the proxy server of the requester may send the request to the proxy server of the receiver, and at this time, the proxy server of the receiver may forward the request to the micro server of the receiver.

[0047] In one embodiment, the load balance strategy takes the priority of the smallest connection number, and the resource usage state of each micro server pre-stored locally is based on the proxy server of the requester, and a pre set load balancing policy, and determining a micro server of a receiver corresponding to a request comprises: based on a locally pre-stored resource usage state of an instance of each micro server and a load balancing policy of which the smallest connection number has priority, determining, by means of a proxy server of a requester, a micro server of a receiver corresponding to the request, setting the instance of the micro server corresponding to the smallest connection number in the plurality of micro servers as the instance of the micro server of the receiver corresponding to the request. Forwarding the request to the micro server of the receiver by the proxy server of the receiver includes forwarding the request to an instance of the micro server of the receiver by the proxy server of the receiver.

[0048] In order to improve the accuracy and convenience of the load balancing, the request can be distributed based on a load balancing policy with the highest priority on the smallest number of connections. Specifically, after the micro server of the requester initiates the request, the proxy server of the requester may be based on a locally pre-stored resource usage state of each micro server instance and a load balancing policy of which the smallest connection number has the first priority, screening out, from a plurality of micro servers, an instance of a micro server corresponding to the smallest connection number, and setting the instance of the micro server corresponding to the smallest connection number as an instance of a micro server requesting a corresponding receiver. Then, the proxy server of the requester may send the request to the instance of the micro server of the receiver, at this time, the request is received by the proxy server of the receiver, and the proxy server of the receiver may forward the request to the instance of the micro server of the receiver.

[0049] For example, the micro server of the requester sets the load balance strategy as the smallest connection number first, and the micro server of the requester sends a request 1 to the proxy server of the receiver by the proxy server of the requester. After receiving the request 1, the proxy server of the receiver reports the number of connections +1 of this instance to the load balance server. Then, the request 1 is sent to the local service instance (namely, the instance of the micro server of the receiver). After receiving the information of the number of connections +1 reported, the load balancing server updates the number of connections of the instance of the micro server at the receiving side, and then broadcasts the number to all the proxy servers in the resource management system. All the proxy servers (except the proxy server reporting information) update the connection number of the micro server of the receiver in this example. Then, the proxy server initiating a new request can find resource occupation information about all the instances of all the micro servers in the local memory, find an instance with the least number of connections from the resource occupation information about all the instances of all the micro servers, and send the request to the instance with the least number of connections. After receiving the response of the request 1, the proxy server of the receiver subtracting 1 from the number of connections of the present instance, closing the connections, and reports the connection to the load balance server.

[0050] After receiving the information of reporting connection number -1, the load balancing server updates the connection number of the instance of the proxy server of the receiver, and then broadcasts the information to all the proxy servers, and all the proxy servers (except the proxy server reporting the information) update the connection number of the instance.

[0051] In an embodiment, the load balancing policy is that response speed takes precedence, and a proxy server of the requester is based on a resource usage state of each micro server pre-stored locally, and a pre set load balancing policy, wherein determining a micro server of a receiver corresponding to a request comprises: based on a locally pre-stored resource usage state of an instance of each micro server and a load balancing policy with a preferential response speed, determining, by means of a proxy server of a requester, a micro server of a receiver corresponding to the request, setting the instance of the micro server corresponding to the fastest response speed in the plurality of micro servers as the instance of the micro server of the receiver corresponding to the request. Forwarding the request to the micro-server of the receiver by the proxy server of the receiver includes forwarding the request to an instance of the micro server of the receiver by the proxy server of the receiver. [0052] In order to improve the accuracy and flexibility of load balancing, requests can be distributed based on a load balancing policy with a preferential response speed. Specifically, after a micro server of a requester initiates a request, a proxy server of the requester may

25

40

45

50

be based on a locally pre-stored resource usage state of an instance of each micro server in a resource management system and a load balancing policy with a preferential response speed, screening out an instance of a micro server corresponding to the fastest response speed from a plurality of micro servers, and screening out an instance of a micro server corresponding to the fastest response speed from a plurality of micro servers, an instance of a micro server arranged to request a corresponding receiver. Then, the proxy server of the requester may send the request to the instance of the micro server of the receiver, at this time, the request is received by the proxy server of the receiver, and the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0053] For example, some micro servers require a period of preheating to process a large number of requests. When a fixed weight is used, if a large number of requests are sent to a newly started service instance, a node overload condition may occur, and therefore, distribution of the requests may be dynamically adjusted. The micro server of the requester sets the load balance strategy as priority according to the response speed. When the micro server A is started, the micro server A can only process 10 requests per second, and can process 200 requests per second after being sufficiently pre-heated. Therefore, the default weight of the instance of the micro server A is configured to be 10, and after being sufficiently preheated, the permission is 1K. When the instance of the micro server A is started, the proxy server initiating the request allocates a request to the instance according to the weight 10, and after preheating for a period of time, the micro server A can process a 200/s request, and at this time, the weight 200 of the instance of the micro server A can be updated and reported to the load balancing server. After receiving the reported information, the load balancing server updates the weight of the instance, and then broadcasts the updated weight to all the proxy servers. All the proxy servers (except the one reporting information) update the weight of this example of the micro server A, the larger the weight is, the faster the response speed is, and the smaller the weight is, the slower the response speed is. The proxy server initiating a new request finds the weights of all the instances of the micro server in the local memory, and allocates requests to all the micro server instances according to the weights. For example, if there is one newly started instance and two instances that are sufficiently pre-heated, the proportion of the number of requests that are allocated may be 1:20:20 in the same time.

[0054] In one embodiment, the load balance strategy is weight polling, and the resource usage state of each micro server pre-stored locally is based on the proxy server of the requester, and a pre-set load balancing policy, wherein determining a micro server of a receiver corresponding to a request comprises: polling, by means of a proxy server of a requester, a load balancing policy based on a locally pre-stored resource usage state of an in-

stance of each micro server and a weight, setting an instance of a micro server corresponding to a smallest weight among a plurality of micro servers as an instance of a micro server requesting a corresponding receiver; the weight is a weight of a resource consumed for processing the request. Forwarding the request to the micro server of the receiver by the proxy server of the receiver includes forwarding the request to an instance of the micro server of the receiver by the proxy server of the receiver.

[0055] In order to improve the accuracy and reliability of load balancing, requests may be distributed based on a load balancing policy of weighted polling. Specifically, after the micro server of the requester initiates the request, the proxy server of the requester may be based on a locally pre-stored resource usage state of each micro server instance and a weighted polling load balancing policy, screening, from a plurality of micro servers, an instance of a micro server corresponding to the smallest weight; and screening, from the plurality of micro servers, an instance of a micro server corresponding to the smallest weight, the weight is a weight of a resource consumed for processing a request. Then, the proxy server of the requester may send the request to the instance of the micro server of the receiver, at this time, the request is received by the proxy server of the receiver, and the proxy server of the receiver may forward the request to the instance of the micro server of the receiver.

[0056] For example, the micro server of the requester sets the load balance strategy as polling according to the weight, and the micro server of the requester sets the weight value of the processing resource occupation consumption of each type of request, for example, the smallest weight value is 1, 2, 4, etc., in turn. After receiving the request, the proxy server of the receiver calculates the weight value, adds the total weight of this instance, reports the added total weight to the load balancing server, and then sends the request to the local service example. After receiving the information of reporting the total weight, the load balance server updates the weight of the instance of the micro server of the receiver, and then broadcasts it to all the proxy servers in the resource management system. All the proxy servers (except the proxy server that reports the information) update the weight of the micro server of the receiver in this example. Then, the proxy server initiating a new request can find resource occupation information about all the instances of all the micro servers in the local memory, find an instance with the lowest weight from the resource occupation information about all the instances of all the micro servers, and send the request to this instance. After receiving the response to the request, the proxy server of the receiver subtracts the weight corresponding to the request and reports it to the load balance server. After receiving the reported information, the load balancing server updates the weight of the instance, and then broadcasts the updated weight to all the proxy servers, and all the proxy servers (except the one reporting the

30

40

45

information) update the weight of the instance.

[0057] Referring to Fig. 5, in an embodiment, when there is a resource update of a micro server, resource update information is reported to a load balancing server by a proxy server of the micro server, the resource update information is broadcast to a proxy server corresponding to each micro server by a load balancing server, updating a locally pre-stored resource usage state of each micro server by a proxy server corresponding to each micro server based on the resource update information. The method may include, but is not limited to, Step 31 to Step S33, and may specifically be as follows:

Step S31, after the micro server of the receiver completes the processing of the request initiated by the requester, acquiring the requested resource release information by the proxy server of the receiver, and reporting the resource release information to the load balancing server;

Step S32, broadcasting the resource release information to a proxy server corresponding to each micro server by the load balancing server;

Step S33, updating the locally pre-stored resource usage state of each micro server based on the resource release information by the proxy servers corresponding to the micro servers.

[0058] In order to improve the timeliness and accuracy of the resource usage state update, the resource usage state can be updated after the processing of the request is completed. Specifically, in a resource management system, any one micro server may serve as a micro server of a requester or a micro server of a receiver. The micro server of the receiver may receive the request initiated by the requester and process the request. After the micro server of the receiver completes processing on the request initiated by the requester, the proxy server of the receiver may acquire the resource release information of the request that has been processed. For example, information such as the amount of the resources A requested to be released and the amount of the resources B requested to be released is reported to the load balancing server. After receiving the resource release information, the load balancing server can update a resource usage state of each micro server in a locally pre-stored resource management system according to the resource release information, and broadcast the resource release information to a proxy server corresponding to each micro server. In this case, the plurality of proxy servers corresponding to the respective micro servers may update the resource usage status of each micro server pre-stored locally based on the resource release information.

[0059] In the embodiments of the present disclosure, when there is resource update information of a micro server, the resource update information can be reported

to a load balancing server by a proxy server of the micro server, then, the resource update information can be broadcast to a proxy server corresponding to each micro server by the load balancing server, so that each proxy server can acquire global resource information about each micro server. In this case, a locally pre-stored resource usage state of each micro server can be updated based on resource update information by a proxy server corresponding to each micro server, so that each proxy server can maintain the resource usage state of each micro server timely and accurately. A load balancing operation is executed based on a resource usage state, thereby realizing global load balancing based on global resource information. Thus, the accuracy of implementing load balancing is improved, and the reliability and accuracy of resource management are improved.

[0060] Please refer to Fig. 6, Fig. 6 is a schematic flowchart of a resource management method according to an embodiment of the present disclosure. The resource management method may be applied to a proxy server, and the resource management method may include but is not limited to steps S101 to S102, and may specifically be as follows:

S101, when monitoring that resource update information exists in a micro server, reporting the resource update information to a load balancing server, and updating a locally pre stored resource usage state of each micro server based on the resource update information.

S102, a load balancing operation is performed according to the resource usage state.

[0061] In one embodiment, when monitoring that the micro server has resource update information, reporting the resource update information to a load balancing server, and updating a locally pre stored resource usage state of each micro server based on the resource update information may comprise: acquiring resource occupation information requested by a micro server of a requester; reporting resource occupation information to a load balancing server; and updating a locally pre-stored resource usage state of each micro server based on the resource occupation information.

[0062] In one embodiment, executing the load balancing operation according to the resource usage state may comprise: according to the resource usage state and a load balancing policy with a priority on the smallest number of connections, setting an instance of a micro server corresponding to a smallest number of connections among a plurality of micro servers as an instance of a micro server of a receiver corresponding to a request; sending the request to a proxy server of the receiver, such that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0063] In one embodiment, executing a load balancing operation according to a resource usage state may com-

prise: according to the resource usage state and a load balancing policy with a preferential response speed, setting an instance of a micro server corresponding to a fastest response speed among a plurality of micro servers as an instance of a micro server requesting a corresponding receiver; sending the request to a proxy server of the receiver, such that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0064] In one embodiment, executing a load balancing operation according to a resource usage state may comprise: according to the resource usage state and a load balancing policy of weight polling, setting an instance of a micro server corresponding to a smallest weight among a plurality of micro servers as an instance of a micro server requesting a corresponding receiver; the weight is a weight of a resource consumed by processing a request; sending the request to a proxy server of the receiver, such that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0065] In one embodiment, executing a load balancing operation according to a resource usage state may comprise: receiving resource release information broadcast by a load balancing server, wherein the resource release information is reported to the load balancing server by a proxy server of a receiver after a micro server of the receiver completes the processing of a request initiated by a requester; and updating a locally pre-stored resource usage state of each micro server instance according to the resource release information.

[0066] In one embodiment, the resource management method can further comprise: sending a registration request to a load balancing server, and establishing a connection relationship with the load balancing server according to the registration request; or sending a logout request to the load balancing server, and logging out the connection relationship with the load balancing server according to the logout request.

[0067] In the foregoing embodiments, descriptions of the embodiments are focused on each other. For a part that is not described in detail in a certain embodiment, reference may be made to the foregoing detailed description of the resource management method, and details are not repeatedly described herein.

[0068] In the embodiments of the present disclosure, when monitoring that resource update information exists in a micro server, a proxy server may report the resource update information to a load balancing server, so that the load balancing server broadcasts the resource update information to the proxy servers corresponding to a plurality of micro servers in time, so that each proxy server can acquire global resource information about each micro server, and the plurality of proxy servers corresponding to the respective micro servers updates a locally pre stored resource usage state of each micro server based on the resource update information, so that each proxy server can maintain the resource usage state of each

micro server timely and accurately, and updating a locally pre-stored resource usage state of each micro server based on the resource update information. The resource usage status of each micro server may be accurately maintained. The proxy server can execute a load balancing operation according to a resource usage state, thereby realizing global load balancing based on global resource information, improving the accuracy of executing load balancing, and improving the reliability and accuracy of resource management.

[0069] Please refer to Fig. 7, Fig. 7 is a schematic block diagram of a proxy server according to an embodiment of the present disclosure.

[0070] As shown in Fig. 7, the proxy server 300 may include a processor 302, a memory 303, and a communications interface 304 that are connected by using a system bus 301, where the memory 303 may include a non transitory computer readable storage medium and an internal memory.

[0071] A non transitory computer readable storage medium may store a computer program. The computer program includes a program instruction. When the program instruction is executed, the processor is enabled to execute any resource management method.

[0072] The processor 302 is configured to provide computing and control capabilities, and support running of the whole proxy server.

[0073] The memory 303 provides an environment for running a computer program in a non volatile computer readable storage medium. When the computer program is executed by the processor 302, the processor 302 can execute any resource management method.

[0074] The communication interface 304 is arranged to communicate. Persons skilled in the art may understand that the structure shown in Fig. 7 is only a partial block structure related to the solution of the present disclosure, and does not limit the proxy server 300 to which the solution of the present disclosure is applied. The specific proxy server 300 may include more or fewer components than those shown in the figures, or may combine some components, or may have different component arrangements.

[0075] It should be understood that, the bus 301 is, for example, an I2C (Inter integrated Circuit) bus, and the memory 303 may be a Flash chip, a Read Only Memory (ROM) disk, an optical disk, a U disk, a mobile hard disk, or the like. The processor 302 may be a Central Processing Unit (CPU), the processor 302 may also be another general processor, a Digital Signal Processor (DSP), or an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or another programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or the like. The general processor may be a microprocessor, or the processor may also be any conventional processor.

[0076] In an embodiment, the processor 302 is configured to run a computer program stored in the memory 303, so as to execute the following steps:

When monitoring that the micro server has resource update information, reporting the resource update information to a load balancing server, and updating a locally pre-stored resource usage state of each micro server based on the resource update information; and performing a load balancing operation according to the resource usage state.

[0077] In an embodiment, when reporting resource update information to a load balancing server, and updating a locally pre-stored resource usage state of each micro server based on the resource update information, a processor 302 further executes: acquiring resource occupation information requested by a micro server of a requester; reporting resource occupation information to a load balancing server; and updating a locally pre stored resource usage state of each micro server based on the resource occupation information.

[0078] In an embodiment, when a load balancing operation is executed according to a resource usage state, the processor 302 further executes: setting an instance of the micro server, which corresponds to a smallest connection number among the plurality of micro servers, as the instance of the micro server of the receiver corresponding to a request, based on the resource usage state and a load balancing policy which is that smallest connection number takes precedence; sending the request to a proxy server of the receiver, such that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0079] In an embodiment, when executing a load balancing operation according to a resource usage state, the processor 302 further executes: setting an instance of a micro server, which corresponds to a fastest response speed among a plurality of micro servers, as an instance of a micro server of a receiver corresponding to a request, based on the resource usage state and a load balancing policy which is that response speed takes precedence; sending the request to the proxy server of the receiver, so that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0080] In an embodiment, when a load balancing operation is executed according to a resource usage state, the processor 302 further executes: setting an instance of a micro server, which corresponds to the smallest weight among a plurality of micro servers, as an instance of a micro server of a receiver corresponding to the request based on the resource usage state and a load balancing policy of weighted polling; the weight is a weight of a resource consumed by processing a request; sending the request to the proxy server of the receiver, so that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

[0081] In an embodiment, when executing a load balancing operation according to a resource usage state, the processor 302 further executes the following steps: receiving resource release information broadcast by a load balancing server, the resource release information

being reported to the load balancing server by means of a proxy server of a receiver after a micro server of the receiver completes the processing of a request initiated by a requester; and updating a locally pre stored resource usage state of each micro server instance according to the resource release information.

[0082] In one embodiment, the processor 302 further executes: sending a registration request to a load balancing server, and establishing a connection relationship with the load balancing server according to the registration request; or sending a logout request to the load balancing server, and logging out the connection relationship with the load balancing server according to the logout request.

[0083] In the foregoing embodiments, descriptions of the embodiments are focused on each other. For a part that is not described in detail in a certain embodiment, reference may be made to the foregoing detailed description of the resource management method, and details are not repeatedly described herein.

[0084] Embodiments of the present disclosure further provide a computer readable storage medium. The computer readable storage medium stores a computer program. The computer program comprises a program instruction. A processor executes the program instruction, so as to implement any resource management method provided in the embodiments of the present disclosure. For specific implementation of the foregoing operations, reference may be made to the foregoing embodiments, and details are not repeatedly described herein.

[0085] The computer readable storage medium may be an internal storage unit of the mobile terminal in the foregoing embodiment, for example, a hard disk or a memory of the mobile terminal. The computer readable storage medium may also be an external storage device of the mobile terminal, for example, a plug in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) card, and a Flash Card that are equipped on the mobile terminal.

[0086] Since the computer program stored in the computer readable storage medium can execute any resource management method provided in the embodiments of the present disclosure, beneficial effects which can be achieved by any resource management method provided in the embodiments of the present disclosure can be achieved, and reference can be made to the foregoing embodiments for details, which will not be described herein again.

[0087] It should be understood that the terminology used in this disclosure is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used in this description and the appended claims, the singular forms "a," "an, " and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.

[0088] It is also to be understood that the term "and/or" as used in this description and the appended claims refers to, and includes, any and all possible combinations

25

35

40

45

50

of one or more of the items listed in association. It should be noted that, in this description, the terms "include", "comprise", or any other variation thereof are intended to cover a non-exclusive inclusion, so that a process, a method, an article, or a system that includes a series of elements not only includes those elements, but also includes other elements that are not explicitly listed, or further includes inherent elements of the process, the method, the article, or the system. An element limited by "including a..." does not exclude that there are other same elements in the process, method, article, or system that includes the element, unless there are more limitations. [0089] The serial numbers of the embodiments of the present disclosure are only for description, and do not represent the preference of the embodiments. The foregoing descriptions are merely specific implementations of the present disclosure, but are not intended to limit the scope of protection of the present disclosure. Any equivalent modification or replacement readily figured out by a person skilled in the art within the technical scope disclosed in the present disclosure shall belong to the scope of protection of the present disclosure. Therefore, the scope of protection of the present disclosure shall be subject to the scope of protection of the claims.

Claims

1. A resource management method, wherein the resource management method is applied to a resource management system, the resource management system comprises a plurality of micro servers, a plurality of proxy servers corresponding to respective micro servers, and a load balancing server, and the resource management method comprises:

when resource update information of a micro server exists, reporting the resource update information to the load balancing server by a proxy server corresponding to the micro server; broadcasting, by the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro servers; and updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, a locally pre-stored resource usage state of each micro server based on the resource update information, so as to perform a load balancing operation based on the resource usage state.

2. The resource management method according to claim 1, wherein when the resource update information of the micro server exists, reporting the resource update information to the load balancing server by using the proxy server corresponding to the micro server, and broadcasting, by using the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro servers; updating, by using each proxy server in the plurality of proxy servers corresponding to the respective micro servers, the locally pre-stored resource usage state of each micro server based on the resource update information compris-

initiating a request by a micro server of a requester, and acquiring resource occupation information of the request;

reporting the resource occupation information to the load balancing server by a proxy server of the requester:

broadcasting, by the load balancing server, the resource occupation information to the plurality of proxy servers corresponding to the respective micro servers; and

updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, the locally pre-stored resource usage state of each micro server based on the resource occupation information.

3. The resource management method according to claim 2, wherein perform the load balancing operation based on the resource usage state comprises:

determining, by the proxy server of the requester, a micro server of a receiver corresponding to the request based on the locally pre-stored resource usage state of each micro server and a pre-set load balancing policy; and sending, by the proxy server of the requester, the request to the proxy server of the receiver and forwarding, by using the proxy server of the receiver, the request to the micro server of the receiver.

4. The resource management method according to claim 3, wherein the load balancing policy is that a smallest connection number takes precedence, and determining, by the proxy server of the requester, the micro server of the receiver corresponding to the request based on the locally pre-stored resource usage state of each micro server and the pre-set load balancing policy comprises:

setting, by the proxy server of the requester, an instance of a micro server, which corresponds to the smallest connection number among the plurality of micro servers, as an instance of the micro server of the receiver corresponding to the request, based on a locally pre-stored resource usage state of an instance of each micro server and the load balancing policy which is that the smallest connection number takes prec-

20

35

40

45

50

edence:

forwarding, by the proxy server of the receiver, the request to the micro server of the receiver comprises:

forwarding, by the proxy server of the receiver, the request to the instance of the micro server of the receiver.

5. The resource management method according to claim 3, wherein the load balancing policy is that response speed takes precedence, and determining, by the proxy server of the requester, the micro server of the receiver corresponding to the request based on the locally pre-stored resource usage state of each micro server and the pre-set load balancing policy comprises:

setting, by the proxy server of the requester, an instance of a micro server, which corresponds to the fastest response speed among the plurality of micro servers, as an instance of the micro server of the receiver corresponding to the request, based on a locally pre-stored resource usage state of an instance of each micro server and the load balancing strategy which is that response speed takes precedence;

forwarding, by using the proxy server of the receiver, the request to the micro server of the receiver comprises:

forwarding, by the proxy server of the receiver, the request to the instance of the micro server of the receiver.

6. The resource management method according to claim 3, wherein the load balancing policy is weighted polling, and determining, by the proxy server of the requester, the micro server of the receiver corresponding to the request based on the locally prestored resource usage state of each micro server and the pre-set load balancing policy comprises:

setting, by the proxy server of the requester, an instance of a micro server, which corresponds to the smallest weight among the plurality of micro servers, as an instance of the micro server of the receiver corresponding to the request based on a locally pre-stored resource usage state of an instance of each micro server and the load balancing policy of weight polling, wherein the weight is a weight of a resource consumed by processing the request;

forwarding, by the proxy server of the receiver, the request to the micro server of the receiver comprises:

forwarding, by the proxy server of the receiver, the request to the instance of the micro server of the receiver. 7. The resource management method according to claim 1, wherein when the resource update information of the micro server exists, reporting the resource update information to the load balancing server by the proxy server corresponding to the micro server, and broadcasting, by the load balancing server, the resource update information to the plurality of proxy servers corresponding to the respective micro servers; updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, the locally pre-stored resource usage state of each micro server based on the resource update information comprises:

after a micro server of a receiver completes processing a request initiated by a requester, acquiring, by an proxy server of the receiver, resource release information of the request, and reporting, by the proxy server of the receiver, the resource release information to the load balancing server;

broadcasting, by the load balancing server, the resource release information to the plurality of proxy servers corresponding to the respective micro servers; and

updating, by each proxy server in the plurality of proxy servers corresponding to the respective micro servers, the locally pre-stored resource usage state of each micro server based on the resource release information.

8. The resource management method according to any one of claims 1 to 7, wherein the resource management method further comprises:

configuring the plurality of proxy servers corresponding to the respective micro servers in the resource management system, and configuring the load balancing server;

sending, by the plurality of proxy servers corresponding to the respective micro servers, a registration request to the load balancing server; establishing a connection relationship between the load balancing server and the plurality of proxy servers corresponding to the respective micro servers according to the registration request.

9. A resource management method, wherein the resource management method is applied to a proxy server, the proxy server is a proxy server corresponding to a micro server of a requester, and the resource management method comprises:

when monitoring that resource update information exists in the micro server, reporting the resource update information to the load balancing server, and updating a locally pre-stored re-

20

40

45

50

source usage state of each micro server based on the resource update information; and performing a load balance operation according to the resource usage state.

10. The resource management method according to claim 9, wherein when monitoring that the micro server exists resource update information, reporting the resource update information to the load balancing server, and updating the locally pre-stored resource usage state of each micro server based on the resource update information, comprises:

acquiring resource occupation information of a request initiated by the micro server of the requester;

reporting the resource occupation information to the load balancing server; and updating the locally pre-stored resource usage state of each micro server based on the resource occupation information.

11. The resource management method according to claim 9, wherein performing the load balancing operation according to the resource usage state comprises:

setting an instance of the micro server, which corresponds to a smallest connection number among the plurality of micro servers, as the instance of the micro server of the receiver corresponding to a request, based on the resource usage state and a load balancing policy which is that smallest connection number takes precedence:

sending the request to a proxy server of the receiver, so that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

12. The resource management method according to claim 9, wherein performing the load balancing operation according to the resource usage state comprises:

setting an instance of a micro server, which corresponds to a fastest response speed among a plurality of micro servers, as an instance of a micro server of a receiver corresponding to a request, based on the resource usage state and a load balancing policy which is that response speed takes precedence;

sending the request to the proxy server of the receiver, so that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

13. The resource management method according to

claim 9, wherein performing the load balancing operation according to the resource usage state comprises:

setting an instance of a micro server, which corresponds to the smallest weight among a plurality of micro servers, as an instance of a micro server of a receiver corresponding to the request based on the resource usage state and a load balancing policy of weighted polling; the weight is a weight of a resource consumed by processing a request;

sending the request to the proxy server of the receiver, so that the proxy server of the receiver forwards the request to the instance of the micro server of the receiver.

14. The resource management method according to claim 9, wherein performing the load balancing operation according to the resource usage state comprises:

> receiving resource release information broadcast by the load balancing server, wherein the resource release information is reported to the load balancing server by the proxy server of a receiver after a micro server of the receiver completes processing a request initiated by the requester; and

> updating a locally pre-stored resource usage state of an instance of each micro server instance based on the resource release information.

15. The resource management method according to any one of claims 9 to 14, wherein the resource management method further comprises:

sending a registration request to the load balancing server, and establishing a connection relationship with the load balancing server based on the registration request; or,

sending a logout request to the load balancing server, and logging out the connection relationship with the load balancing server based on the logout request.

- 16. A resource management system, wherein the resource management system comprises a plurality of micro servers, a plurality of proxy servers corresponding to respective micro servers, and a load balancing server, the load balancing server is in communication connection with each proxy server, and the resource management system is used for executing the resource management method according to any one of claims 1 to 8.
- 17. A proxy server, comprising a memory and a proces-

sor, wherein the memory stores a computer program, and the processor executes the resource management method according to any one of claims 9 to 15 when executing the computer program in the memory.

18. A storage medium, configured as computer readable storage, wherein the storage medium is configured to store a computer program, and the computer program is loaded by a processor to execute the resource management method according to any one of claims 1 to 8, or the computer program is loaded by a processor to execute the resource management method according to any one of claims 9 to 15.

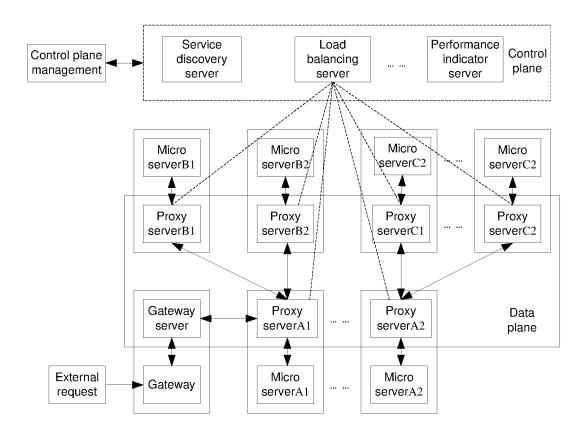


Fig. 1

EP 4 167 539 A1

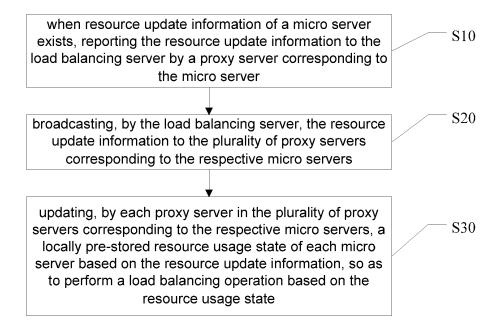


Fig. 2

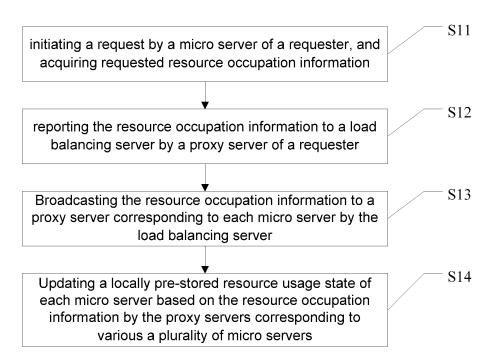


Fig. 3

Fig. 5

micro servers

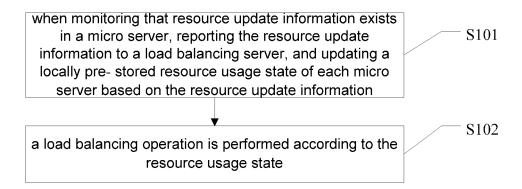


Fig. 6

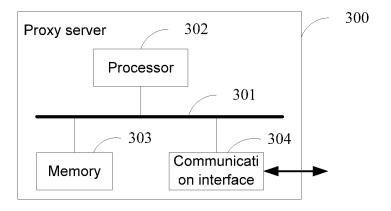


Fig. 7

EP 4 167 539 A1

International application No.

INTERNATIONAL SEARCH REPORT

PCT/CN2021/100121 5 CLASSIFICATION OF SUBJECT MATTER H04L 29/08(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) H04L: G06F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPODOC, WPI, CNPAT, CNKI: 更新, 资源, 服务器, 负载, 工作, 任务, 均衡, 分摊, 平衡, 广播, 上报, 报告, 代理, update, resource, server, load, work, task, mission, balance, broadcast, report, agency C. DOCUMENTS CONSIDERED TO BE RELEVANT 20 Relevant to claim No. Category* Citation of document, with indication, where appropriate, of the relevant passages X CN 102377598 A (CHINA MOBILE COMMUNICATIONS GROUP CO., LTD.) 14 March 1-18 2012 (2012-03-14) description, paragraphs [0051]-[0201], and figures 1-8 CN 111142971 A (GEOVIS CO., LTD.) 12 May 2020 (2020-05-12) 1-18 Α entire document 25 A CN 101621413 A (ZTE CORPORATION) 06 January 2010 (2010-01-06) 1-18 entire document A US 2019213326 A1 (ARECABAY INC.) 11 July 2019 (2019-07-11) 1-18 entire document 30 CN 110413346 A (INDUSTRIAL AND COMMERCIAL BANK OF CHINA LIMITED) 05 1-18 Α November 2019 (2019-11-05) entire document 35 See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance 40 earlier application or patent but published on or after the international filing date document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed 45 document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 August 2021 27 August 2021 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/ CN) No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing 100088 Facsimile No. (86-10)62019451 Telephone No 55

Form PCT/ISA/210 (second sheet) (January 2015)

EP 4 167 539 A1

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No.

PCT/CN2021/10012	2
------------------	---

	ent document in search report		Publication date (day/month/year)	Pate	nt family member	r(s)	Publication date (day/month/year)
CN	102377598	A	14 March 2012		None		
CN	111142971	A	12 May 2020		None		
CN	101621413	A	06 January 2010		None		
US	2019213326	A 1	11 July 2019	EP	3738292	A 1	18 November 2020
				WO	2019139803	A 1	18 July 2019
				Π L	275042	D0	30 July 2020
				US	2020012785	A1	09 January 2020
CN	110413346	A	05 November 2019		None		

Form PCT/ISA/210 (patent family annex) (January 2015)