

(11) **EP 4 170 051 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 26.04.2023 Bulletin 2023/17

(21) Application number: 21826605.4

(22) Date of filing: 02.06.2021

(51) International Patent Classification (IPC):

C22C 21/02^(2006.01)
C22F 1/043^(2006.01)
C22F 1/043^(2006.01)
F28F 21/08^(2006.01)

(52) Cooperative Patent Classification (CPC): C22C 1/02; C22C 21/02; C22F 1/043; F28F 21/08

(86) International application number: **PCT/CN2021/097984**

(87) International publication number: WO 2021/254154 (23.12.2021 Gazette 2021/51)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 18.06.2020 CN 202010557444

(71) Applicants:

 BYD Company Limited Shenzhen, Guangdong 518118 (CN)

 Huawei Technologies Co., Ltd. Longgang District, Shenzhen, Guangdong 518129 (CN)

(72) Inventors:

 GONG, Qing Shenzhen, Guangdong 518118 (CN) GUO, Qiang Shenzhen, Guangdong 518118 (CN)

 WANG, Mengde Shenzhen, Guangdong 518118 (CN)

 WANG, Hua Shenzhen, Guangdong 518118 (CN)

 ZHAI, Yushan Shenzhen, Guangdong 518118 (CN)

 LIU, Xiaorui Shenzhen, Guangdong 518118 (CN)
 HU, Banghong

Shenzhen, Guangdong 518118 (CN)

• AN, Wei

Shenzhen, Guangdong 518118 (CN)

• FU, Jingsong Shenzhen, Guangdong 518118 (CN)

(74) Representative: DehnsGermany Partnerschaft von Patentanwälten
Theresienstraße 6-8
80333 München (DE)

(54) ALUMINUM ALLOY, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

(57) An aluminum alloy and a preparation method and application thereof are provided. The aluminum alloy includes, in percentages by weight: 9%-11% of Si, 0.001%-0.2% of Mg, 0.3%-0.7% of Fe, 0.003%-0.04% of Sr, 0.003%-0.03% of B, 0.001%-0.2% of Zn,

0.001%-0.1% of Cu, 0.001%-0.09% of Mn, less than 0.05% of Cr, 0.002%-0.05% of Ga, 0.001%-0.01% of Mo, and the balance of aluminum and other elements, wherein a total amount of the other elements is lower than 0.1%.

EP 4 170 051 A1

Description

FIELD

⁵ [0001] The present disclosure relates to the field of aluminum alloy technologies, and specifically to an aluminum alloy and a preparation method and application thereof.

BACKGROUND

- [0002] Die casting is a precision casting process that uses high pressure to force a metal molten fluid into a complexly shaped metal die. Die castings formed by die casting have a very small dimensional tolerance and high surface precision. In most cases, the die castings can be assembled and applied without the need for turning. Die casting of aluminum alloys has high requirements for mechanical properties of aluminum alloy materials, such as yield strength, tensile strength, elongation rate, flowability of the melt, etc.
- [0003] For die casting of existing die-cast aluminum alloy materials, the thermal conductivity of the material often needs to be sacrificed under the conditions of comprehensively considering the properties of the material in various aspects, such as yield strength, tensile strength, elongation rate and other mechanical properties. As a result, the heat dissipation performance of existing die-cast aluminum alloys when used as a heat dissipating material decreases.

20 SUMMARY

50

[0004] To solve the problem that existing aluminum alloys cannot simultaneously meet the requirements on mechanical properties and heat dissipation, the present disclosure provides an aluminum alloy and a preparation method and application thereof.

- [0005] To solve the above technical problems, the following technical schemes are employed in the present disclosure. [0006] In one aspect, the present disclosure provides an aluminum alloy, including, in percentages by weight: 9%-11% of Si, 0.001%-0.2% of Mg, 0.3%-0.7% of Fe, 0.003%-0.04% of Sr, 0.003%-0.03% of B, 0.001%-0.2% of Zn, 0.001%-0.1% of Cu, 0.001%-0.09% of Mn, less than 0.05% of Cr, 0.002%-0.05% of Ga, 0.001%-0.01% of Mo, and the balance of aluminum and other elements, where a total amount of the other elements is lower than 0.1%.
- **[0007]** Optionally, a content of Cr is $0.002\% \le \text{Cr} < 0.05\%$.
 - [0008] Optionally, a weight ratio of Sr and B is (1-1.6):1.
 - [0009] Optionally, a weight ratio of Sr, B and Ga is (1-2):1:(1.5-2).
 - [0010] Optionally, a weight ratio of Si, Fe, Mn and Mg is (19-16):1:(0.1-0.13):(0.1-0.14).
 - **[0011]** Optionally, a weight ratio of Fe and Mo is 1:(0.002-0.008).
- ³⁵ **[0012]** Optionally, the other elements include one or more of Pb, Bi, or Sb.
 - **[0013]** Optionally, a yield strength of the aluminum alloy is 140-170 MPa, a tensile strength of the aluminum alloy is 220-300 MPa, an elongation rate of the aluminum alloy is 7%-15%, and a thermal conductivity of the aluminum alloy is 170-177 W/(k*m).
 - **[0014]** In another aspect, the present disclosure further provides a method for preparing the aluminum alloy described above, including: weighing required amounts of raw materials according to a ratio of elements in the aluminum alloy; adding the raw materials to a smelting furnace for smelting to obtain a molten solution; casting the molten solution after slag removal and refinement and degassing treatment to obtain an aluminum alloy ingot; and die-casting the aluminum alloy ingot.
 - [0015] Optionally, the method further includes: performing artificial aging treatment on the aluminum alloy ingot.
- [0016] Optionally, a treatment temperature of the artificial aging treatment is 320-330°C and a treatment time of the artificial aging treatment is 3-4 h.
 - **[0017]** Optionally, a yield strength of the aluminum alloy after the artificial aging treatment is 100-120 MPa, a tensile strength of the aluminum alloy after the artificial aging treatment is 220-241 MPa, an elongation rate of the aluminum alloy after the artificial aging treatment is 8%-15%, and a thermal conductivity of the aluminum alloy after the artificial aging treatment is 191-199 W/(k*m).
 - **[0018]** In another aspect, the present disclosure also provides an application of the aluminum alloy described above on a radiator.
 - **[0019]** In yet another aspect, the present disclosure also provides a radiator, where the radiator is at least partially formed of the aluminum alloy described above.
- [0020] According to the aluminum alloy provided in the present disclosure, by adjusting and controlling the ratio of elements in the aluminum alloy, the aluminum alloy has a high yield strength, tensile strength and elongation rate, and has a high thermal conductivity and excellent flowability without sacrificing various mechanical properties. In addition, the aluminum alloy has low process requirements and good process adaptability.

DETAILED DESCRIPTION

30

35

40

50

55

[0021] To make the technical problem to be solved, the technical solution, and the beneficial effects of the present disclosure clearer, the present disclosure is described in further detail with reference to examples. It should be understood that the specific embodiments described herein are merely used for explaining the present disclosure, and are not intended to limit the present disclosure.

[0022] In one aspect, the present disclosure provides an aluminum alloy, including, in percentages by weight: 9%-11% of Si, 0.001%-0.2% of Mg, 0.3%-0.7% of Fe, 0.003%-0.04% of Sr, 0.003%-0.03% of B, 0.001%-0.2% of Zn, 0.001%-0.1% of Cu, 0.001%-0.09% of Mn, less than 0.05% of Cr, 0.002%-0.05% of Ga, 0.001%-0.01% of Mo, and the balance of aluminum and other elements, where a total amount of the other elements is lower than 0.1%. In other words, the composition of the aluminum alloy is as follows in percentages by weight: the content of Si is 9%-11%, the content of Mg is 0.001%-0.2%, the content of Fe is 0.3%-0.7%, the content of Sr is 0.003%-0.04%, the content of B is 0.003%-0.03%, the content of Zn is 0.001%-0.2%, the content of Cu is 0.001%-0.1%, the content of Mn is 0.001%-0.09%, the content of Cr is 0.005%, the content of Ga is 0.002%-0.05%, the content of Mo is 0.001%-0.01%, and the balance is aluminum and other elements, where a total amount of the other elements is lower than 0.1%.

[0023] In some embodiments, the content of Si is 9.4%, 9.5%, 9.7%, or 9.8%, the content of Mg is 0.05%, 0.07%, 0.09%, 0.11%, 0.15%, or 0.19%, the content of Fe is 0.3%, 0.32%, 0.43%, or 0.52%, the content of Sr is 0.005%, 0.01%, 0.011%, 0.015%, 0.021%, or 0.025%, the content of B is 0.005%, 0.01%, 0.011%, 0.015%, 0.016%, or 0.019%, the content of Zn is 0.005%, 0.01%, 0.02%, 0.09%, 0.12%, or 0.17%, the content of Cu is 0.005%, 0.01%, 0.02%, or 0.09%, the content of Mn is 0.005%, 0.01%, 0.02%, or 0.09%, the content of Ga is 0.005%, 0.01%, 0.02%, or 0.03%, and the content of Mo is 0.003%, 0.005%, 0.006%, or 0.009%.

[0024] In some embodiments, in the aluminum alloy, the content of Cu is 0.001%-0.1%, and the content of Mn is 0.001%-0.09%. A small amount of Cu and Mn in the aluminum alloy results in an improvement in the yield strength and thermal conductivity of the aluminum alloy material.

[0025] In some embodiments, the content of Cr is $0.002\% \le \text{Cr} < 0.05\%$, for example, 0.002%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, etc.

[0026] In some embodiments, a weight ratio of Sr and B is (1-1.6):1, for example, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, etc.

[0027] The addition of Sr and B has a great improvement on the internal structure of the aluminum alloy, and has a good effect on the improvement of casting quality. The detailed mechanism is mainly as follows: Sr and B promote the formation of fine grains in the aluminum alloy, so that the coarse eutectic silicon becomes smaller and fibrous, the reaction between Al and B to generate AlB_2 can reduce the solid solubility of impurity elements, and the element B promotes the refinement of grains and optimizes the grains structure. When Sr > 0.04% and B > 0.03%, the mechanical properties of the aluminum alloy increase significantly, but the thermal conductivity decreases seriously. When Sr < 0.003% and Sr = 0.003%, the coarse eutectic silicon leads to a serious decrease in intercrystalline thermal conductivity, a decrease in the thermal conductivity of the aluminum alloy, and low mechanical properties. When Sr > 0.04% but Sr > 0.003% in the aluminum alloy, the mechanical properties of the aluminum alloy increase significantly and the thermal conductivity decreases significantly. Through adjustment and testing, the aluminum alloy has good performance when the contents of Sr and Sr and Sr added in the aluminum alloy satisfy Sr < 0.04%, Sr < 0.04%, Sr < 0.03%, and Sr and S

[0028] In some embodiments, a weight ratio of Sr, B, and Ga is (1-2):1:(1.5-2), for example, 1:1:1.5, 1.5:1:1.5, 2:1:1.5, 1:1:2, 1.5:1:2, 2:1:2, etc.

[0029] On the basis of adding Sr and B, the addition of the element Ga can increase the nucleation rate and decrease the speed of nucleus growth, promoting grain refinement, improving mechanical properties, optimizing the intercrystalline structure, improving the thermal conductivity, and improving the strength. When Ga > 0.05%, the mechanical properties of the aluminum alloy drop sharply. The addition of the element Ga can significantly improve the mechanical properties of the aluminum alloy after thermal treatment. When the content of Ga is 0.002%-0.05%, the yield strength of the aluminum alloy after thermal treatment at 320°C may be maintained between 100-120 Mpa. The yield strength of the aluminum alloy after thermal treatment under the same conditions is only 95 Mpa by relying on the deteriorating agents Sr and B alone.

[0030] Through adjustment, the aluminum alloy exhibits good performance, when the content of Sr is 0.003%-0.04%, the content of B is 0.003%-0.03%, the content of Ga is 0.002%-0.05%, and the contents of the elements have a relationship of Sr:B:Ga = (1-2):1:(1.5-2). Therefore, a high thermal conductivity is ensured while ensuring the mechanical properties in the F state. After artificial aging at 320°C for 3 h, the thermal conductivity of the aluminum alloy is greatly increased, meanwhile, the mechanical properties do not decrease too much, and can be kept between 100-120 Mpa.

[0031] In some embodiments, a weight ratio of Si, Fe, Mn, and Mg is (19-16):1:(0.1-0.13):(0.1-0.14), for example, 19:1:0.1:0.1, 18:1:0.1:0.1, 17:1:0.1:0.1, 16:1:0.1:0.1, 16:1:0.13:0.1, 16:1:0.13:0.1, 16:1:0.12:0.1

[0032] The addition of Si in the above ratio range not only ensures good flowability and moldability of the aluminum alloy, but also ensures good mechanical properties without sacrificing the thermal conductivity of the aluminum alloy. After artificial aging, the thermal conductivity may reach 198 W/(m*K). When the Si content is too low, the flowability of the aluminum alloy is poor, making it not easy to form complex thin-walled members, and the mechanical properties are low. When the Si content is too high, the thermal conductivity of the aluminum alloy is low. The thermal conductivity of the aluminum alloy is low when the Fe content exceeds the above range. Under the condition that the aluminum alloy has good flowability and anti-sticking performance and excellent mechanical properties, the weight ratio of Si and Fe is (19-16):1, and in this case, the Fe content is strictly controlled to be within the range of 0.3%-0.7%.

[0033] A small amount of Mg and Fe in the aluminum alloy can react with Si to form Mg_2Si and $Al_{12}Fe_3Si$, not only increases the strength of the aluminum alloy, but also has a positive effect on the thermal treatment, i.e., it also can improve the thermal conductivity of the aluminum alloy. The thermal conductivity of the aluminum alloy after artificial aging is greatly improved, without reducing the mechanical properties too much.

10

30

35

50

55

[0034] The relationship between the contents of Fe and Mn also affects the thermal conductivity and anti-sticking performance of the aluminum alloy. When the content of Fe is in the range of 0.3%-0.7%, the content of Mn satisfies 0.001% < Mn < 0.09%, and the weight ratio of Fe and Mn satisfies 1:(0.1-0.13), the elements Fe and Mn can reduce the reaction of the aluminum alloy with the mold during die casting, and reduce the anti-sticking performance of the aluminum alloy, allowing the aluminum alloy to be used to form more complex and precision devices. When the content of Mn is too high, the joint effect of Mn and Fe has great impact on the thermal conductivity of the aluminum alloy, and the anti-sticking performance of the aluminum alloy is not improved.

[0035] On the other hand, although adding an appropriate amount of Fe and Mn can reduce the mold sticking phenomenon during die casting of the aluminum alloy, the needle-shaped ferrite will block the motion such as slippage of the material on the crystal surface, which not only affects the flowability of the aluminum alloy, but also reduces the intercrystalline thermal conductivity. The reaction of Mn with Al to form Al_6Mn also reduces the machining performance of the aluminum alloy. Therefore, when Mg, Fe, Si and Mn are added together in the above ratio, the granular $Al_{15}(FeMn)_3Si_2$ formed in the aluminum alloy can serve as a heterogeneous nucleation substrate for the aging-strengthened phase Mg_2Si , promoting Mg_2Si phase precipitation, and also improving the solid solubility of Fe, so that the aluminum alloy has a good plasticity.

[0036] In some embodiments, a weight ratio of Fe and Mo is 1:(0.002-0.008), for example, 1:0.002, 1:0.003, 1:0.004, 1:0.005, 1:0.006, 1:0.007, 1:0.008, etc.

[0037] When the content of Mo is 0.001%-0.01%, the hardness and mechanical properties of the aluminum alloy are significantly improved. The binding of Fe to Mo effectively improves the strength and hardness of the Al-Fe matrix. A too high Mo content leads to a decrease in the toughness of the aluminum alloy. In addition, the element Mo effectively improves the number of solute atoms of the solid solution, and improves the stability of the beta tissue in the aluminum alloy tissue. The resistance of the misalignment motion is increased due to the solute atom-dislocation interaction, so that the microhardness of the aluminum alloy increases with the increase of the content of the element Mo.

[0038] In some embodiments, the other elements include one or more of Pb, Bi, or Sb.

[0039] In some embodiments, a yield strength of the aluminum alloy is 140-170 MPa (for example, 140 MPa, 145 MPa, 150 MPa, 155 MPa, 160 MPa, 165 MPa, 170 MPa, etc.), a tensile strength of the aluminum alloy is 220-280 MPa (for example, 220 MPa, 230 MPa, 240 MPa, 250 MPa, 260 MPa, 270 MPa, 280 MPa, etc.), an elongation rate of the aluminum alloy is 7%-15% (for example, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, etc.), and a thermal conductivity of the aluminum alloy is 170-177 W/(k*m) (for example, 170 W/(k*m), 171 W/(k*m), 172 W/(k*m), 173 W/(k*m), 174 W/(k*m), 175 W/(k*m), 176 W/(k*m), 177 W/(k*m), etc.).

[0040] It should be noted that, the above properties of the aluminum alloy are test parameters of the aluminum alloy before artificial aging.

[0041] In another aspect, the present disclosure further provides a method for preparing the aluminum alloy described above, including:

weighing required amounts of raw materials according to a ratio of elements in the aluminum alloy; adding the raw materials to a smelting furnace for smelting to obtain a molten solution; casting the molten solution after slag removal and refinement and degassing treatment to obtain an aluminum alloy ingot; and die-casting the aluminum alloy ingot. In other words, the method may include the following steps: weighing required amounts of raw materials according to a ratio of elements in the aluminum alloy, melting the raw materials in a smelting furnace, performing slag removal and refinement and degassing treatment and then casting to obtain an aluminum alloy ingot, and then die-casting the aluminum alloy ingot.

[0042] The raw materials include an aluminum-containing material, a Si-containing material, a Mg-containing material, a Fe-containing material, a Sr-containing material, a B-containing material, a Zn-containing material, a Cu-containing material, a Mn-containing material, a Cr-containing material, a Ga-containing material, and a Mo-containing material. In the present disclosure, the aluminum-containing material, the Si-containing material, the Mg-containing material, the Fe-containing material, the Sr-containing material, the Cu-containing material, the Sr-containing material, the Cu-containing material, the Sr-containing material, the Cu-containing material, the Sr-containing material, the

taining material, the Mn-containing material, the Cr-containing material, the Ga-containing material, and the Mo-containing material may be materials capable of providing the various elements required for preparing the die-cast aluminum alloy of the present disclosure, and may be alloys containing the above elements or simple substances, as long as the components in the aluminum alloy obtained after smelting the added aluminum alloy raw materials are within the above ranges.

[0043] In some embodiments, the method further includes: performing artificial aging treatment on the aluminum alloy ingot. In some embodiments, a treatment temperature of the artificial aging treatment is 320-330°C (for example, 320°C, 321°C, 322°C, 323°C, 323°C, 325°C, 326°C, 327°C, 328°C, 329°C, 330°C, etc.), and a treatment time of the artificial aging treatment is 3-4 h (for example, 3 h, 3.5 h, 4 h, etc.).

[0044] In some embodiments, a yield strength of the aluminum alloy after the artificial aging treatment is 100-120 MPa (for example, 100 MPa, 105 MPa, 110 MPa, 115 MPa, 120 MPa, etc.), a tensile strength of the aluminum alloy after the artificial aging treatment is 220-241 MPa (220 MPa, 225 MPa, 230 MPa, 235 MPa, 240 MPa, etc.), an elongation rate of the aluminum alloy after the artificial aging treatment is 8%-15% (for example, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, etc.), and a thermal conductivity of the aluminum alloy after the artificial aging treatment is 191-199 W/(k*m) (for example, 191 W/(k*m), 192 W/(k*m), 193 W/(k*m), 194 W/(k*m), 195 W/(k*m), 196 W/(k*m), 197 W/(k*m), 198 W/(k*m), 199 W/(k*m), etc.).

[0045] Although the aluminum alloy after the artificial aging have a certain degree of decrease in yield strength and tensile strength, however its thermal conductivity increases with the increase of the treatment temperature.

[0046] In another aspect, the present disclosure also provides an application of the aluminum alloy described above on a radiator. In other words, the present disclosure provides a radiator. The radiator includes the aluminum alloy described above, or in other words, the radiator is at least partially formed of the aluminum alloy described above.

[0047] The application of the aluminum alloy on the radiator can effectively improve the heat dissipation effect of the radiator, and ensures that the radiator has good mechanical properties and can meet the various requirements of the die casting process.

[0048] The present disclosure is further described below with reference to examples.

5

10

15

20

25

30

35

40

45

50

55

5		Inevitable impurities and Al	Other impurities < 0.1																								
15		Mo	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.0012	0.0048	0.003	0.003
		Ga	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.015	0.02	0.018	0.018	0.018	0.018
20		Cr	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.03	0.002	0.002	0.002	0.002	0.002	0.002
25		Mn	0.07	0.07	0.07	0.07	0.07	0.05	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	90.0	0.078	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
	1	Cu	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.003	60.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
30	Table	Zn	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.002	0.2	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
35		В	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		Sr	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.01	0.02	0.01	0.02	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.005	0.03
40		Fe	9.0	9.0	9.0	9.0	9.0	0.5	0.65	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.6	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
		ВМ	0.07	20'0	20'0	90.0	0.084	20'0	20'0	20'0	20'0	20'0	20'0	20'0	20'0	20'0	20'0	20'0	0.07	20.0	20'0	20'0	20'0	0.07	20'0	20.0	20.0
45		Si	10	9.6	11	10	10	9.5	10.4	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
50 55			Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Example 9	Example 10	Example 11	Example 12	Example 13	Example 14	Example 15	Example 16	Example 17	Example 18	Example 19	Example 20	Example 21	Example 22	Example 23	Example 24	Example 25
55																											

nevitable impurities and Al 5 Other impurities < 0.1 10 0.003 0.003 0.003 0.006 0.003 0.001 15 ₽ 0.018 0.01 0.03 Ga 20 0.002 ပ် 0 0.09 0.25 0.04 0.07 ₹ 25 0.05 0.3 C continued) 30 0.02 0.3 Zn 0 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Ш 35 0.015 0.001 0.05 ഗ് 40 0.05 9.0 9.0 9.0 9.0 9.0 9.0 0.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 0.8 9.0 9.0 9.0 9.0 9.0 9.0 Е 0.04 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 9.0 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 Μg 0.1 0 45 11.5 10 9 9 9 10 10 9 10 9 9 9 10 9 10 9 9 9 9 9 9 9 10 S 0 Comparative Example 10 Comparative Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 2 9 Comparative Example 8 Comparative Example 9 Comparative Example 2 Comparative Example 4 Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example 50 Example 26 Example 28 Example 29 Example 32 Example 33 Example 35 Example 36 Example 30 Example 34 Example 27 Example 31 55

5		Inevitable impurities and Al	Other impurities < 0.1				
15		ОМ	0.003	0.003	0.003	0	0.03
		Ga	0.018	0.001	1.0	0.018	0.018
20		JO	0.1	0.002	0.002	0.002	0.002
25		Mn	0.07	0.07	0.07	0.07	0.07
	(pər	Cu	0.05	0.05	0.05	0.05	0.05
30	(continued)	Zn	0.02	0.02	0.02	0.02	0.02
35		В	0.01	0.01	0.01	0.01	0.01
		JS	0.015	0.015	0.015	0.015	0.015
40		Fe	9.0	9.0	9.0	9.0	9.0
		Mg	0.07	0.07	0.07	0.07	0.07
45		Si	10	10	10	10	10
50			Comparative Example 15	Comparative Example 16	Comparative Example 17	Comparative Example 18	Comparative Example 19
55			Comp	Comp	Comp	Comp	Comp

Example 1

[0049] This example is used to describe the aluminum alloy and the preparation method thereof disclosed in the present disclosure, including the following steps.

[0050] As shown in Table 1, the composition of the aluminum alloy is as follows in percentages by weight: The content of Si is 10%, the content of Mg is 0.05%, the content of Fe is 0.6%, the content of Sr is 0.015%, the content of B is 0.01%, the content of Zn is 0.02%, the content of Cu is 0.05%, the content of Mn is 0.07%, the content of Cr is 0.002%, the content of Ga is 0.02%, the content of Mo is 0.003%, and the balance is Al and inevitable impurities, where the content of the inevitable impurities is less than 0.1%. Weights of various intermediate alloys or elemental metals required were calculated according to the percentages by weight of the components of the aluminum alloy. Then the intermediate alloys or elemental metals were added to a smelting furnace for smelting. A slag removal agent was added to the molten metal for refinement and degassing, followed by casting to obtain an aluminum alloy ingot.

15 Examples 2-36

10

20

30

35

40

[0051] Examples 2-36 are used to describe the aluminum alloy and the preparation method thereof disclosed in the present disclosure, and include most of the operations in Example 1. Differences are as follows:

Based on the aluminum alloy compositions corresponding to the Examples 2-36 shown in Table 1, weights of various intermediate alloys or elemental metals required were calculated according to the percentages by weight of the components of the aluminum alloy. Then the intermediate alloys or elemental metals were added to a smelting furnace for smelting. A slag removal agent was added to the molten metal for slag removal. A refining agent was added to the molten metal for refinement and degassing, followed by casting to obtain an aluminum alloy ingot.

25 Comparative Example 1

[0052] This comparative example is used to describe the aluminum alloy and the preparation method thereof disclosed in the present disclosure through comparison, including the following operations.

[0053] As shown in Table 1, the composition of the aluminum alloy is as follows in percentages by weight: The content of Si is 10%, the content of Mg is 0.07%, the content of Fe is 0.6%, the content of Sr is 0.015%, the content of B is 0.01%, the content of Zn is 0.02%, the content of Cu is 0.05%, the content of Mn is 0.07%, the content of Cr is 0.002%, the content of Ga is 0.018%, the content of Mo is 0.003%, and the balance is Al and inevitable impurities, where the content of the inevitable impurities is less than 0.1%. Weights of various intermediate alloys or elemental metals required were calculated according to the percentages by weight of the components of the aluminum alloy. Then the intermediate alloys or elemental metals were added to a smelting furnace for smelting. A slag removal agent was added to the molten metal for refinement and degassing, followed by casting to obtain an aluminum alloy ingot.

Comparative Examples 2-19

[0054] Comparative Examples 2-19 are used to describe the aluminum alloy and the preparation method thereof disclosed in the present disclosure through comparison, and include most of the operations in Example 1. Differences are as follows:

Based on the aluminum alloy compositions corresponding to the Comparative Examples 2-19 shown in Table 1, weights of various intermediate alloys or elemental metals required were calculated according to the percentages by weight of the components of the aluminum alloy. Then the intermediate alloys or elemental metals were added to a smelting furnace for smelting. A slag removal agent was added to the molten metal for slag removal. A refining agent was added to the molten metal for refinement and degassing, followed by casting to obtain an aluminum alloy ingot.

50 Performance test

[0055] The following performance tests were performed on the aluminum alloys prepared in Examples 1-36 and Comparative Examples 1-19:

55 Tensile strength test:

[0056] The tensile strength, yield strength and elongation rate of the material were tested with reference to "GB/T 228.1-2010 Metallic materials - Tensile testing - Part 1: Method of test at room temperature".

Thermal conductivity test:

[0057] The aluminum alloy was made into a cast thermally conductive round sheet of ϕ 12.7*3 mm. A graphite coating is uniformly sprayed on both sides of the sample to be tested. The treated sample was placed into a laser flash apparatus for testing. A laser thermal conductivity test was carried out in accordance with ASTM E1461 "Standard Test Method for Thermal Diffusivity of Solids by the Flash Method".

[0058] The aluminum alloys prepared in Examples 1-36 and Comparative Examples 1-19 were subjected to artificial aging treatment at 320°C for 3 h. The above performance tests were carried out on the aluminum alloys after the artificial aging treatment.

10 [0059] The test results obtained are shown in Table 2.

EP 4 170 051 A1

5			Thermal conductivity of ingot W/(m*K)	198	195	198.4	195	194	194	195	193	196	191	196	193	188	193	194	193	193	191	194	191	193	196	195
15		320°C/3 h	Elongation rate	13.68	12.6	13.5	13.89	14	11.95	12.93	13.1	12.1	13.1	12.1	9.3	12.1	14.1	13.68	69.6	11.63	12.3	13.9	14	10.2	14.7	13.68
20			Tensile strength (MPa)	240	236	240	228	229	238	241	237	239	237	239	233	240	235	240	236	238	223	240	220	230	230	240
25			Yield strength (MPa)	117	107	118	110	117	116	118	109	116	110	116	105	118	106	107	112	117	109	118	104	115	114	118
30 35	Table 2		Thermal conductivity of ingot W/(m*K)	175	173	172	172	170	170	173	170	174	173	174	171	170	172	170	170	171	174	173	172	170	170	173
40		F state	Elongation rate	11.25	11.5	12.04	14.52	2.6	10.32	11.02	11.31	11.95	11.31	11.95	6	10.75	9.25	10.35	10.6	12.26	10.23	14.13	15	12.68	13	11
45			Tensile strength (MPa)	296	294	288	284	285	297	299	296	294	296	293	278	300	293	297	289	300	277	290	279	280	273	296
50			Yield strength (MPa)	143	147	144	141	144	140	150	140	148	141	148	135	150	141	147	148	145	140	149	135	143	138	143
55				Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Example 9	Example 10	Example 11	Example 12	Example 13	Example 14	Example 15	Example 16	Example 17	Example 18	Example 19	Example 20	Example 21	Example 22	Example 23

EP 4 170 051 A1

EP 4 170 051 A1

5			Thermal conductivity of ingot W/(m*K)	181	178	186	179	186	178	179	183	177	179	182	183	187
15		320°C/3 h	Elongation rate	11.16	13.05	11.63	10.1	11.63	9.3	12.7	13.7	11.12	10.19	14	10.5	11.53
20			Tensile strength (MPa)	246	242	241	236	241	233	242	231	240	238	217	213	212
25			Yield strength (MPa)	121	110	117	112	120	105	129	109	120	128	96	109	106
30 35	(continued)		Thermal conductivity of ingot W/(m*K)	160	147	168	166	170	140	145	158	155	169	168	166	170
40		F state	Elongation rate	9.22	10.1	12.36	10.8	12.36	6	12.32	10.65	10.7	11.27	15.1	12.4	12.4
45			Tensile strength (MPa)	311	293	300	296	302	278	319	296	307	311	279	273	268
50			Yield strength (MPa)	161	142	145	140	145	135	160	144	150	153	133	128	139
55				Comparative Example 6	Comparative Example 7	Comparative Example 8	Comparative Example 9	Comparative Example 10	Comparative Example 11	Comparative Example 12	Comparative Example 13	Comparative Example 14	Comparative Example 15	Comparative Example 16	Comparative Example 17	Comparative Example 18

5			Thermal conductivity of ingot W/(m*K)	183
15		320°C/3 h	Elongation	11.19
20			Tensile strength (MPa)	229
25			Yield strength (MPa)	127
30 35	(continued)		Thermal conductivity of ingot W/(m*K)	167
40		F state	Elongation	9.86
45			Tensile strength (MPa)	311
50			Yield strength (MPa)	146
55				Comparative Example 19

[0060] From the test results in Table 1, it can be seen that compared with the aluminum alloys of which the element contents are not within the ranges provided in the present disclosure, the aluminum alloy provided in the present disclosure has better mechanical strength, can meet the requirements of the die casting process, and has a better thermal conductivity, elongation rate, and die-casting formability. In particular, the aluminum alloy provided in the present disclosure has an excellent thermal conductivity and is especially suitable for use in heat dissipation materials.

[0061] The foregoing descriptions are merely optional embodiments of the present disclosure, but are not intended to limit the present disclosure. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present disclosure shall fall within the protection scope of the present disclosure.

10

15

30

35

40

45

Claims

- **1.** An aluminum alloy, comprising, in percentages by weight: 9%-11% of Si, 0.001%-0.2% of Mg, 0.3%-0.7% of Fe, 0.003%-0.04% of Sr, 0.003%-0.03% of B, 0.001%-0.2% of Zn, 0.001%-0.1% of Cu, 0.001%-0.09% of Mn, less than 0.05% of Cr, 0.002%-0.05% of Ga, 0.001%-0.01% of Mo, and the balance of aluminum and other elements, wherein a total amount of the other elements is lower than 0.1%.
- 2. The aluminum alloy according to claim 1, wherein a content of Cr is $0.002\% \le \text{Cr} < 0.05\%$.
- 20 3. The aluminum alloy according to claim 1 or 2, wherein a weight ratio of Sr and B is (1-1.6):1.
 - 4. The aluminum alloy according to any one of claims 1 to 3, wherein a weight ratio of Sr, B and Ga is (1-2):1:(1.5-2).
- The aluminum alloy according to any one of claims 1 to 4, wherein a weight ratio of Si, Fe, Mn and Mg is 25 (19-16):1:(0.1-0.13):(0.1-0.14).
 - 6. The aluminum alloy according to any one of claims 1 to 5, wherein a weight ratio of Fe and Mo is 1:(0.002-0.008).
 - The aluminum alloy according to any one of claims 1 to 6, wherein the other elements comprise one or more of Pb, Bi, or Sb.
 - 8. The aluminum alloy according to any one of claims 1 to 7, wherein a yield strength of the aluminum alloy is 140-170 MPa, a tensile strength of the aluminum alloy is 220-300 MPa, an elongation rate of the aluminum alloy is 7%-15%, and a thermal conductivity of the aluminum alloy is 170-177 W/(k*m).

9. A method for preparing the aluminum alloy according to any one of claims 1 to 8, comprising:

weighing required amounts of raw materials according to a ratio of elements in the aluminum alloy; adding the raw materials to a smelting furnace for smelting to obtain a molten solution; casting the molten solution after slag removal and refinement and degassing treatment to obtain an aluminum alloy ingot; and die-casting the aluminum alloy ingot.

- 10. The method for preparing the aluminum alloy according to claim 9, wherein the method further comprises: performing artificial aging treatment on the aluminum alloy ingot.
- 11. The method for preparing the aluminum alloy according to claim 10, wherein a treatment temperature of the artificial aging treatment is 320-330°C and a treatment time of the artificial aging treatment is 3-4 h.
- 50 12. The method for preparing the aluminum alloy according to claim 10 or 11, wherein a yield strength of the aluminum alloy after the artificial aging treatment is 100-120 MPa, a tensile strength of the aluminum alloy after the artificial aging treatment is 220-241 MPa, an elongation rate of the aluminum alloy after the artificial aging treatment is 8%-15%, and a thermal conductivity of the aluminum alloy after the artificial aging treatment is 191-199 W/(k*m).
- 55 13. An application of the aluminum alloy according to any one of claims 1 to 8 on a radiator.
 - 14. A radiator, wherein the radiator is at least partially formed of the aluminum alloy according to any one of claims 1 to 8.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2021/097984

5	A. CLASSIFICATION OF SUBJECT MATTER											
	C22C	21/02(2006.01)i; C22C 1/02(2006.01)i; C22F 1/043	3(2006.01)i; F28F 21/08(2006.01)i									
	According to	International Patent Classification (IPC) or to both na	tional classification and IPC									
	B. FIEL	DS SEARCHED										
10	Minimum documentation searched (classification system followed by classification symbols)											
	C22C;	C22F; F28F										
	Documentati	on searched other than minimum documentation to the	e extent that such documents are included in	the fields searched								
15		ata base consulted during the international search (name		*								
	CNABS; CNTXT; CNKI; VEN; USTXT; WOTXT; EPTXT: 铝合金, 硅, 镁, 铜, 锶, 镓, 铬, 硼, 钼, 锰, 散热, 人工时效, 硬度, 熔炼, 除渣, 压铸, 浇铸, 除气, aluminium alloy, Si, silicon, magnesium, Mg, cuprum, copper, Cu, strontium, Sr, chrom+, Cr,											
boron, B, molybdenum, Mo, manganese, Mn, heat dissipation, artificial seasoning, rigidity, fusion, clinker remo												
		, degassing										
20	C. DOC	UMENTS CONSIDERED TO BE RELEVANT										
	Category*	Relevant to claim No.										
	X	CN 111101029 A (FNA GROUP INC.) 05 May 202 description paragraphs 0004, 0006	1-8, 13, 14									
25	X	CN 104616897 A (SHOWA DENKO K. K.) 13 May description, paragraphs 0010-0013	(SHOWA DENKO K. K.) 13 May 2015 (2015-05-13) aragraphs 0010-0013									
	Y	CN 111101029 A (FNA GROUP INC.) 05 May 202 description paragraphs 0004, 0006	0 (2020-05-05)	9-12								
	Y	9-12										
30	Y	CN 103572111 A (JIANGSU JIANGXU CASTING description, paragraph 0003	GROUP) 12 February 2014 (2014-02-12)	9-12								
	A	1-14										
35	A	CN 106282702 A (MAANSHAN SHUNFA MACH 04 January 2017 (2017-01-04) entire document	NERY MANUFACTURING CO., LTD.)	1-14								
	Further d	locuments are listed in the continuation of Box C.	See patent family annex.									
10	* Special c	ntional filing date or priority on but cited to understand the										
40	to be of p "E" earlier ap	particular relevance oplication or patent but published on or after the international	principle or theory underlying the inventi "X" document of particular relevance; the c	laimed invention cannot be								
	filing dat "L" documen	to involve an inventive step										
	special re	establish the publication date of another citation or other cason (as specified) t referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive st	ep when the document is								
45	means	t published prior to the international filing date but later than	combined with one or more other such debeing obvious to a person skilled in the a	rt								
45		ty date claimed	"&" document member of the same patent fan	niiy								
	Date of the act	tual completion of the international search	Date of mailing of the international search	report								
		29 July 2021	19 August 2021									
50	Name and mai	ling address of the ISA/CN	Authorized officer									
50		tional Intellectual Property Administration (ISA/										
	100088	ucheng Road, Jimenqiao, Haidian District, Beijing										
	China Facsimile No.	(86-10)62019451	Telephone No.									
55		(30-10)02019451 /210 (second sheet) (January 2015)	reteptione No.									

Form PCT/ISA/210 (second sheet) (January 2015)

International application No.

INTERNATIONAL SEARCH REPORT

Information on patent family members PCT/CN2021/097984 Patent document Publication date Publication date 5 Patent family member(s) cited in search report (day/month/year) (day/month/year) 111101029 CN 05 May 2020 US 2020131605 30 April 2020 **A**1 A CN 104616897 A 13 May 2015 CN 104616897 В 17 October 2017 HK 1208956 **A**1 08 June 2018 HK 1208956 A0 18 March 2016 10 CN 103572111 12 February 2014 None A CN 111041302 A 21 April 2020 None CN 106282702 04 January 2017 A None 15 20 25 30 35 40 45 50

Form PCT/ISA/210 (patent family annex) (January 2015)