BACKGROUND OF INVENTION
1. FIELD OF INVENTION
[0001] The present invention relates to a hydroelectric apparatus and, more particularly,
to a miniature hydroelectric generator.
2. RELATED PRIOR ART
[0002] A hydropower plant is often constructed with a dam extending across a river. The
hydropower plant includes a turbine rotated by a strong hydraulic current leaving
the dam and a generating module for converting the rotation of the turbine into electricity.
[0003] Generation of electricity by a hydropower plant is expected to be sustainable and
hence environmentally friendly. As mentioned above, a hydropower plant is often used
with a dam that suppresses floods, improves voyage and facilitates irrigation in addition
to the generation of electricity. However, the construction of a dam inevitably produces
a lot of methane that is not environmentally friendly.
[0004] The present invention is therefore intended to obviate or at least alleviate the
problems encountered in the prior art.
SUMMARY OF INVENTION
[0005] It is an objective of the present invention to provide a hydroelectric apparatus
for use in a canal without affecting the performance of the canal.
[0006] It is another objective of the present invention to provide an environmentally friendly
hydroelectric apparatus.
[0007] To achieve the foregoing objectives, the hydroelectric apparatus includes multiple
propellors, a generating module and a transmission. In use, the propellors are rotated
by a hydraulic current. The generating module converts the rotation of the propellors
into electricity. The transmission connects the propellors to the generating module.
[0008] Other objectives, advantages and features of the present invention will be apparent
from the following description referring to the attached drawings.
BRIEF DESCRIPTION OF DRAWINGS
[0009] The present invention will be described via detailed illustration of three embodiments
referring to the drawings wherein:
FIG. 1 is a perspective view of a hydroelectric apparatus according to the first embodiment
of the present invention;
FIG. 2 is a perspective view of the hydroelectric apparatus in another position than
shown in FIG. 1;
FIG. 3 is a perspective view of a hydroelectric apparatus according to the second
embodiment of the present invention;
FIG. 4 is a front view of the hydroelectric apparatus shown in FIG. 3;
FIG. 5 is a perspective view of the hydroelectric apparatus in another position than
shown in FIG. 3;
FIG. 6 is a front view of the hydroelectric apparatus shown in FIG. 5; and
FIG. 7 is a partial front view of a hydroelectric apparatus according to the third
embodiment of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS
[0010] Referring to FIGS. 1 and 2, a hydroelectric apparatus 10 includes multiple propellors
11, a common shaft 14, universal joints 15 and 17, a long axle 16, a short axle 161,
a joint bearing 18, a transmission 20, a connector 21 and a generating module 22 according
to a first embodiment of the present invention.
[0011] Each of the propellors 11 includes three blades 13 extending from a hub 12 located
around and connected to the common shaft 14 so that the propellors 11 are rotatable
with the common shaft 14 synchronously. The universal joint 15 connects the long axle
16 to the common shaft 14. The universal joint 17 connects the long axle 16 to the
short axle 161. Thus, the common shaft 14, the long axle 16 and the short axle 161
are not rotatable relative to one another in an axial direction while they are allowed
to pivot relative to one another. The transmission 20 is preferably a gear box including
an input shaft 20A (FIG. 4, not numbered) extending from an end of the transmission
20 and an output shaft 20B extending from an opposite end of the transmission 20.
[0012] The input shaft 20A is connected to the short axle 161 via the joint bearing 18.
The output shaft 20B is connected to a mandrel 23 of the generating module 22 through
the connector 21. A power cable 24 is electrically connected to the generating module
22.
[0013] In operation, the generating module 22, the connector 21, the transmission 20, the
joint bearing 18 and the short axle 161 are arranged along a same line. The long axle
16 is slant. There is an obtuse angle between the short axle 161 and the long axle
16. There is another obtuse angle between the long axle 16 and the common shaft 14.
Thus, the common shaft 14 extends substantially parallel to the mandrel 23 of the
generating module 22. The common shaft 14, which supports the propellors 11, rotates
the mandrel 23 of the transmission 20. The transmission 20 changes the rotational
speed of the short axle 161 to the rotational speed of the mandrel 23. That is, the
transmission 20 changes the torque in the short axle 161 to the torque in the mandrel
23. Thus, the torque in the mandrel 23 is suitable for the generating module 22 to
generate electricity. The electricity generated by the generating module 22 is transmitted
to an external device via the power cable 24.
[0014] At least one buoy 27 is connected to the common shaft 14 so that the propellors 11
floats on the surface of water in a canal 40 (FIG. 3). The travel of the water in
the canal and hence the performance of the canal 40 are not considerably affected
by the propellors 11, which are supported on the common shaft 14, which is supported
by the buoy 27.
[0015] The transmission 20 renders the torque in the mandrel 23 of the generating module
22 than the torque in the common shaft 14. Such a higher torque increases the power
of the generation of electricity by the generating module 22. Moreover, the miniature
hydroelectric apparatus 10 requires only a low cost and is environmentally friendly.
[0016] Referring to FIGS. 3 and 4, there is shown a hydroelectric apparatus 10 according
to a second embodiment of the present invention. The second embodiment is identical
to the first embodiment except for several features.
[0017] Firstly, the hydroelectric apparatus 10 includes an additional primary box 30. The
primary box 30 covers and hence protects the generating module 22, the connector 21,
the transmission 20, the joint bearing 18, the short axle 161 and at least a section
of the long axle 16. The primary box 30 includes a slot (not numbered) to allow the
long axle 16 to pivot in and along the slot.
[0018] Secondly, the hydroelectric apparatus 10 includes two additional tracks 32 for supporting
the primary box 30. The tracks 32 extend longer than the primary box 30. Preferably,
the primary box 30 are not movable relative to the tracks 32.
[0019] Thirdly, the hydroelectric apparatus 10 includes an additional secondary box 31 movable
on and along the tracks 32 relative to the primary box 30. The secondary box 31 is
pivotally connected to an additional long axle 26 via an additional universal joint
(not numbered). The long axle 26 is pivotally connected to the common shaft 14 via
an additional universal joint 25. Thus, two ends of the common shaft 14 are pivotally
connected to the long axles 16 and 26, respectively. The secondary box 31 is movable
relative to the primary box 30 to allow the propellors 11 to be located on a surface
of water lower than tops of the tracks 32, which support the primary box 30.
[0020] For example, the hydroelectric apparatus 10 is used in vicinity of a canal 40. Each
of the tracks 32 extends on and along a top 42 of a wall 41 of the canal 40. Manually,
electrically or automatically, the secondary box 31 is moved toward the primary box
30 along the tracks 32. The long axles 16 and 26 support the common shaft 14 and the
propellors 11 while the propellors 11 descend to a surface 43 of water in the canal
40.
[0021] Referring to FIG. 4, as indicated by two arrow heads (not numbered), a hydraulic
current 44 travels in and along the canal 40 and goes past the propellors 11. The
propellors 11 rotate the common shaft 14 due to the connection of the hubs 12 to the
common shaft 14. The long axle 26 is rotatable relative to the secondary box 31 so
that secondary box 31 does not affect the rotation of the common shaft 14 considerably.
According to a predetermined ratio, the transmission 20 changes the rotational speed
of the common shaft 14 to the rotational speed of the mandrel 23. The generating module
22 generates electricity and transmits the electricity to an external device via the
power cable 24.
[0022] Referring to FIGS. 5 and 6, the secondary box 31 is moved from the primary box 30
along the tracks 32. Thus, the long axle 26, the common shaft 14 and the long axle
16 extend substantially along a straight line. Hence, the propellors 11 are hung over
the surface 43 of water, i.e., away from the hydraulic current 44. The hydroelectric
apparatus 10 stops generating electricity although the hydraulic current 44 continues
to travel in and along the canal 40.
[0023] Referring to FIG. 7, there is a hydroelectric apparatus 10 according to a third embodiment
of the present invention. The third embodiment is identical to the first embodiment
except for several features. Firstly, the hydroelectric apparatus 10 includes an additional
rocker 55 for containing the generating module 22, the connector 21, the transmission
20 and the joint bearing 18.
[0024] Secondly, the hydroelectric apparatus 10 includes an additional foundation 53 formed
with a protuberance 54 for supporting the rocker 55.
[0025] In use, the foundation 53 is kept in position on a bank 52. The rocker 55 pivots
toward a river 50 extending by the bank 52. The short axle 161 and long axle 16 support
the common shaft 14 while the propellors 11 descend to the river 50. As indicated
by arrow heads (not numbered), a hydraulic current 51 travels past the propellors
11 and hence rotates the propellors and the common shaft 14. As the transmission 20
is arranged between the common shaft 14 and the generating module 22, the generating
module 22 is allowed to generate electricity at a proper power.
[0026] The present invention has been described via the illustration of the embodiments.
Those skilled in the art can derive variations from the embodiments without departing
from the scope of the present invention. Therefore, the embodiments shall not limit
the scope of the present invention defined in the claims.
1. A hydroelectric apparatus comprising:
multiple propellors (11) to be rotated by a hydraulic current (51);
a generating module (22) for converting the rotation of the propellors (11) into electricity;
and
a transmission (20) for connecting the propellors (11) to the generating module (22).
2. The hydroelectric apparatus according to claim 1, comprising a common shaft (14) for
supporting the propellors (11) so that the common shaft (14) is rotatable with the
propellors (11), wherein the generating module (22) comprises a mandrel (23), wherein
the transmission (20) comprises an input shaft (20A) connected to the common shaft
(14) and an output shaft (20B) connected to the mandrel (23).
3. The hydroelectric apparatus according to claim 2, comprising:
a first long axle (16) pivotally connected to the common shaft (14); and
a short axle (161) comprising a first end pivotally connected to the first long axle
(16) and a second end connected to the input shaft (20A) of the transmission (20).
4. The hydroelectric apparatus according to claim 3, comprising:
a first universal joint (15) for connecting the first long axle (16) to the common
shaft (14);
a second universal joint (17) for connecting the first end of the short axle (161)
to the first long axle (16);
a joint bearing (18) for connecting the second end of the short axle (161) to the
input shaft (20A) of the transmission (20); and
a connector (21) for connecting the output shaft (20B) of the transmission (20) to
the mandrel (23) of the generating module (22).
5. The hydroelectric apparatus according to claim 4, comprising a primary box (30) for
covering the generating module (22), the transmission (20), the joint bearing (18)
and short axle (161).
6. The hydroelectric apparatus according to claim 5, comprising two tracks (32) for supporting
the primary box (30).
7. The hydroelectric apparatus according to claim 6, comprising:
a secondary box (31) movable on and along the tracks (32) relative to the primary
box (30);
a second long axle (26) pivotally connected to the secondary box (31); and
a third universal joint (25) for connecting the second long axle (26) to the common
shaft (14).
8. The hydroelectric apparatus according to claim 3, comprising:
a rocker (55) for covering the generating module (22) and the short axle (161);
and
a foundation (53) pivotally connected to the rocker (55).
9. The hydroelectric apparatus according to claim 8, wherein the foundation (53) comprises
a protuberance (54) pivotally connected to the rocker (55).
10. The hydroelectric apparatus according to claim 2, comprising at least one buoy (27)
connected to the common shaft (14).
Amended claims in accordance with Rule 137(2) EPC.
1. A hydroelectric apparatus comprising:
multiple propellors (11) to be rotated by a hydraulic current (51);
a generating module (22) for converting the rotation of the propellors (11) into electricity;
a transmission (20) for connecting the propellors (11) to the generating module (22),
a common shaft (14) for supporting the propellors (11) so that the common shaft (14)
is rotatable with the propellors (11), wherein the generating module (22) comprises
a mandrel (23), wherein the transmission (20) comprises an input shaft (20A) connected
to the common shaft (14) and an output shaft (20B) connected to the mandrel (23);
a first long axle (16) pivotally connected to the common shaft (14);
a short axle (161) comprising a first end pivotally connected to the first long axle
(16) and a second end connected to the input shaft (20A) of the transmission (20);
a first universal joint (15) for connecting the first long axle (16) to the common
shaft (14);
a second universal joint (17) for connecting the first end of the short axle (161)
to the first long axle (16);
a joint bearing (18) for connecting the second end of the short axle (161) to the
input shaft (20A) of the transmission (20);
a connector (21) for connecting the output shaft (20B) of the transmission (20) to
the mandrel (23) of the generating module (22);
a primary box (30) for covering the generating module (22), the transmission (20),
the joint bearing (18) and short axle (161); and
two tracks (32) for supporting the primary box (30);
characterized by
a secondary box (31) movable on and along the tracks (32) relative to the primary
box (30);
a second long axle (26) pivotally connected to the secondary box (31); and
a third universal joint (25) for connecting the second long axle (26) to the common
shaft (14).
2. The hydroelectric apparatus according to claim 1, comprising:
a rocker (55) for covering the generating module (22) and the short axle (161); and
a foundation (53) pivotally connected to the rocker (55).
3. The hydroelectric apparatus according to claim 2, wherein the foundation (53) comprises
a protuberance (54) pivotally connected to the rocker (55).
4. The hydroelectric apparatus according to claim 1, comprising at least one buoy (27)
connected to the common shaft (14).