(11) **EP 4 184 088 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 24.05.2023 Bulletin 2023/21

(21) Application number: 21793703.6

(22) Date of filing: 28.04.2021

(51) International Patent Classification (IPC): F25C 5/18^(2018.01)

(52) Cooperative Patent Classification (CPC): F25C 5/18

(86) International application number: **PCT/CN2021/090383**

(87) International publication number: WO 2021/213528 (28.10.2021 Gazette 2021/43)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 16.07.2020 CN 202010685335

(71) Applicants:

- Qingdao Haier Refrigerator Co., Ltd Qingdao, Shandong 266101 (CN)
- Haier Smart Home Co., Ltd.
 Qingdao, Shandong 266101 (CN)

(72) Inventors:

 DU, Qihai Qingdao, Shandong 266101 (CN)

 ZHANG, Yanqing Qingdao, Shandong 266101 (CN)

 ZHAO, Zhenyu Qingdao, Shandong 266101 (CN)

 YANG, Jun Qingdao, Shandong 266101 (CN)

 ZHANG, Fangyou Qingdao, Shandong 266101 (CN)

(74) Representative: Lavoix Bayerstraße 83 80335 München (DE)

(54) ICE MAKING DEVICE AND REFRIGERATOR

(57) The present invention provides an ice making apparatus and a refrigerator. The ice making apparatus includes an ice making assembly and an ice storage box under the ice making assembly, wherein the ice storage box includes an outer box and an inner box arranged in the outer box; the outer box has an ice receiving region under the ice making assembly and an ice storage region adjacent to the ice receiving region; and the ice making apparatus further includes a driving assembly capable of driving the inner box to move from the ice receiving region to the ice storage region.

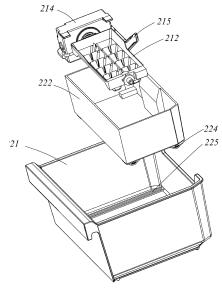


FIG. 2

TECHNICAL FIELD

[0001] The present invention relates to the field of home appliances, and in particular, to an ice making apparatus and a refrigerator.

1

BACKGROUND

[0002] In order to solve the above problems, the present invention provides an ice making device and a refrigerator.

[0003] In order to achieve one of the above-mentioned objects of the invention, an embodiment of the invention provides an ice making apparatus, comprising: an ice making assembly and an ice storage box under

the ice making assembly, wherein the ice making apparatus is characterized in that:

the ice storage box comprises an outer box and an inner box arranged in the outer box; the outer box has an ice receiving region under the ice making assembly and an ice storage region adjacent to the ice receiving region; and

the ice making apparatus further comprises a driving assembly capable of driving the inner box to move from the ice receiving region to the ice storage region.

[0004] As a further improvement to an embodiment of the present invention, further comprising: an ice amount detection module for detecting an amount of ice in the ice storage box; and a control module for: when the inner box is in the ice receiving region and the ice amount detection module detects that an amount of ice in the inner box reaches an upper storage limit of the inner box to move from the ice receiving region to the ice storage region.

[0005] As a further improvement to an embodiment of the present invention, wherein the control module is further used for: when the ice amount detection module detects that an amount of ice in the outer box or the ice storage box reaches a preset ice storage amount, controlling the ice making assembly to stop making ice.

[0006] As a further improvement to an embodiment of the present invention, wherein the ice amount detection module comprises a motor assembly and an ice probing rod, wherein the motor assembly is fixedly mounted on a side of an ice making tray; and the ice probing rod is rotatably mounted on a side of the ice making tray, may be driven by the motor assembly, and is used for probing an amount of ice in the ice receiving region.

[0007] As a further improvement to an embodiment of the present invention, wherein the ice amount detection module comprises a weight sensor mounted at a bottom of the outer box body.

[0008] As a further improvement to an embodiment of

the present invention, wherein the ice amount detection module comprises a first weight sensor mounted at a bottom of the inner box and a second weight sensor mounted at a bottom of the outer box.

[0009] As a further improvement to an embodiment of the present invention, wherein the driving assembly comprises a coil and a magnet, wherein the coil is mounted on a side, close to the ice receiving region, at an exterior of the ice storage box and faces the ice storage region; the magnet is mounted on the inner box body; and the coil is opposite the magnet when the inner box is in the ice receiving region.

[0010] In order to achieve one of the above-mentioned objects of the invention, an embodiment of the invention provides a refrigerator, comprising: a cabinet and a door, as well as an ice making apparatus mounted in the cabinet or on the door, wherein the ice making apparatus comprises an ice making assembly and an ice storage box under the ice making assembly;

the refrigerator is characterized in that: the ice storage box comprises an outer box and an inner box arranged in the outer box; the outer box has an ice receiving region under the ice making assembly and an ice storage region adjacent to the ice receiving region; and the ice making apparatus further comprises a driving assembly capable of driving the inner box to move from the ice receiving region to the ice storage region.

[0011] As a further improvement to an embodiment of the present invention, wherein the refrigerator further comprises: an ice amount detection module for detecting an amount of ice in the ice storage box; and a control module for: when the inner box is in the ice

a control module for: when the inner box is in the ice receiving region and the ice amount detection module detects that an amount of ice in the inner box reaches an upper storage limit of the inner box, controlling the driving assembly to drive the inner box to move from the ice receiving region to the ice storage region.

[0012] As a further improvement to an embodiment of the present invention, wherein the control module is further used for: when the ice amount detection module detects that an amount of ice in the outer box or the ice storage box reaches a preset ice storage amount, controlling the ice making assembly to stop making ice.

[0013] As a further improvement to an embodiment of the present invention, wherein the ice amount detection module comprises a motor assembly and an ice probing rod, wherein the motor assembly is fixedly mounted on a side of an ice making tray; and the ice probing rod is rotatably mounted on a side of the ice making tray, may be driven by the motor assembly, and is used for probing an amount of ice in the ice receiving region.

[0014] As a further improvement to an embodiment of the present invention, wherein the ice amount detection module comprises a weight sensor mounted at a bottom of the outer box.

[0015] As a further improvement to an embodiment of the present invention, wherein the ice amount detection module comprises a first weight sensor mounted at a

bottom of the inner box and a second weight sensor mounted at a bottom of the outer box.

[0016] As a further improvement to an embodiment of the present invention, wherein the cabinet comprises a refrigerating chamber and a freezing chamber; the ice making assembly is mounted on a side of an inner back wall of the freezing chamber; the ice storage box is drawably mounted in the freezing chamber; the ice receiving region is formed on a side, close to a back wall of the freezing chamber, of the outer box; the ice storage region is formed on a side, away from the back wall of the freezing chamber, of the outer box; the driving assembly comprises a coil and a magnet; the coil is mounted on the back wall; the magnet is mounted on the inner box; and the coil is opposite the magnet when the inner box is in the ice receiving region.

[0017] According to an ice making apparatus and a refrigerator provided in the present invention, an ice storage box includes an outer box body and an inner box body arranged in the outer box body, and the inner box body can move from an ice receiving region to an ice storage region, so that both the ice receiving region and the ice storage region that are in the outer box body can store ice, thereby avoiding waste of an internal volume of the ice storage box because ice is accumulated only in the ice receiving region.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018]

FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention; and

FIG. 2 is a schematic diagram of an ice making apparatus according to an embodiment of the present invention.

DETAILED DESCRIPTION

[0019] To enable a person skilled in the art better understand the technical solutions of the present invention, the following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are merely some rather than all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.

[0020] Referring to FIG. 1, an embodiment of the present invention provides a refrigerator 100, including a cabinet 110 and a door used for opening and closing the cabinet 110. The cabinet 110 may be provided with a refrigerating chamber and a freezing chamber therein. An ice making apparatus is mounted in the freezing

chamber. Certainly, the ice making apparatus may be mounted on a freezing chamber door, a refrigerating chamber door, or in the refrigerating chamber.

[0021] Referring to FIG. 1 and FIG. 2, the ice making apparatus includes an ice making assembly 210 and an ice storage box 220 under the ice making assembly 210. The ice making assembly 210 may include an ice making rack 211, an ice making tray 212, and a water supply assembly. The ice making rack 211 is fixedly mounted in the cabinet 110 or the door of the refrigerator 100. The ice making tray 212 is connected to the ice making rack 211. The water supply assembly is used for supplying liquid water to the ice making tray 212. The ice making apparatus may separate ice by twisting or by using an ice ejecting apparatus.

[0022] The ice storage box 220 includes an outer box 221 and an inner box 222 arranged in the outer box 221. The outer box 221 has an ice receiving region 223 under the ice making assembly 210 and an ice storage region 224 adjacent to the ice receiving region 223. The ice making apparatus further includes a driving assembly 230. The driving assembly 230 can drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224.

[0023] In this embodiment, the bottom area of the outer box 221 is greater than the area of the ice making tray 212. A projection, towards a bottom surface of the outer box body 221, of the ice making tray 212 is completely in the bottom surface of the outer box body 221. The ice receiving region 223 may be disposed under the ice making tray 212. Ice discharged from the ice making tray 212 directly falls into the ice receiving region 223. The ice storage region 224 is adjacent to the ice receiving region 223. When the inner box 222 is disposed in the ice receiving region 223, the projection, towards the bottom surface of the outer box 221, of the ice making tray 212 is completely in a bottom surface of the inner box 222, and the bottom surface of the inner box 222 can completely cover the ice receiving region 223. When ice making is started, the inner box 222 may be disposed in the ice receiving region 223, and ice made by the ice making assembly 210 is directly discharged into the inner box 222. When amount of ice in the inner box 222 reaches an upper storage limit of ice in the inner box body 222, the driving assembly 230 drives the inner box 222 to move to the ice storage region 224. At this time, ice made by the ice making assembly 210 directly falls to the ice receiving region 223 of the outer box 221. Specifically, the area of the ice storage region 224 may be equal to the area of the ice receiving region 223, and the bottom area of the inner box 222 may be the same as the area of the ice receiving region 223.

[0024] An internal bottom surface of the outer box 221 is provided with a guide rail 225 extending from the ice receiving region 223 to the ice storage region 224. Rollers 226 matching the guide rail 225 are mounted at a bottom of the inner box 222. The inner box 222 can move from the ice receiving region 223 to the ice storage region 224

along the guide rail 225.

[0025] In this way, as the inner box 222 capable of moving from the ice receiving region 223 to the ice storage region 224 is disposed in the outer box 221 of the ice storage box 220, an internal volume of the ice storage box 220 can be fully utilized, thereby avoiding waste of the internal volume of the ice storage box 220 because ice is accumulated only in the ice receiving region 223 under the ice making tray 212.

[0026] Further, in an embodiment of the present invention, the refrigerator 100 further includes an ice amount detection module and a control module. The ice amount detection module is used for detecting the amount of ice in the ice storage box 220. When the inner box 222 is in the ice receiving region 223, and the ice amount detection module detects that the amount of ice in the inner box 222 reaches the upper storage limit of the inner box 222, the control module controls the driving assembly 230 to drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224.

[0027] In this embodiment, the ice amount detection module may be used for detecting an amount of ice in the inner box 222 or the outer box 221, or a total amount of ice in the outer box 221 and the inner box 222; and the ice amount detection module may be an ice probing rod 215 on a side of the ice making tray 212, or may be a weight sensor or another sensor. There may be one ice amount detection module; or there may be a plurality of ice amount detection modules used for detecting amounts of ice in different regions. The plurality of ice amount detection modules may use the same ice amount detection mode or different ice amount detection modes. [0028] The control module may be a control module in a refrigerator 100 system, or may be an independent module disposed on the ice making apparatus and independent of the refrigerator 100 system. The ice making apparatus may further include a position detection module used for detecting whether the inner box 222 is in the ice receiving region 223. The position detection module may be an ultrasonic sensor, an infrared sensor, or an optical proximity sensor mounted in the ice receiving region 223.

[0029] When the inner box 222 is in the ice receiving region 223, ice discharged by the ice making assembly 210 is directly received by the inner box 222. At this time, if the ice amount detection module detects that the amount of ice in the inner box 222 reaches the upper storage limit of the inner box 222, the control module may control the driving assembly 230 to drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224. After the inner box 222 moves from the ice receiving region 223 to the ice storage region 224, the ice receiving region 223 is in an ice-free state again, and the ice made by the ice making assembly 210 may continue being discharged to the ice receiving region 223.

[0030] In this way, an ice amount is detected by an ice amount sensor. When the amount of ice in the inner box

222 reaches the upper ice storage limit, the inner box 222 is automatically controlled to move from the ice receiving region 223 to the ice storage region 224. Therefore, internal storage space of the ice storage box 220 is fully utilized, and more ice can be stored in the ice storage box 220.

[0031] Further, in an embodiment of the present invention, the control module is further used for: when the ice amount detection module detects that an amount of ice in the outer box 221 or the ice storage box 220 reaches a preset ice storage amount, controlling the ice making assembly 210 to stop making ice.

[0032] In this embodiment, the preset ice storage amount may be an upper ice storage limit, or another value smaller than the upper ice storage limit. An ice amount input module may be disposed on the refrigerator 100. A user may input, according to the user's demand by using the ice amount input module, the preset ice storage amount by which ice is desired to be stored in the ice storage box 220. The control module controls running of the ice making assembly 210 according to the preset ice storage amount input by the user. If the user has not input the preset ice storage amount, it may be considered by default that the preset ice storage amount is the upper ice storage limit.

[0033] In this way, the start/stop of the ice making assembly 210 is automatically controlled according to an ice amount, which is convenient and fast.

[0034] Further, in an embodiment of the present invention, the ice amount detection module includes a motor assembly 214 and an ice probing rod 215. The motor assembly 214 is fixedly mounted on a side of the ice making tray 212. The ice probing rod 215 is rotatably mounted on a side of the ice making tray 212, may be driven by the motor assembly 214, and is used for probing an amount of ice in the ice receiving region 223.

[0035] In this embodiment, after ice separating of the ice making assembly 210 is completed, the motor assembly 214 may be started to drive the ice probing rod 215 to rotate, thereby detecting the amount of ice in the ice receiving region 223. When the inner box 222 is in the ice receiving region 223, ice discharged by the ice making assembly 210 is directly discharged into the inner box 222. At this time, when the ice probing rod 215 detects that the amount of ice in the ice receiving region 223 reaches the upper storage limit, that is, the amount of ice in the inner box 222 reaches the upper storage limit, the driving assembly 230 is controlled to drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224. After the inner box 222 moves to the ice storage region 224, the ice making assembly 210 continues to make ice. When the inner box 222 is in the ice storage region 224, if the ice probing rod 215 detects that the amount of ice in the ice receiving region 223 reaches the upper ice storage limit, that is, an amount of ice in the outer box 221 or the ice storage box 220 reaches the upper storage limit, the control module controls the ice making assembly 210 to stop making

ice.

[0036] In this way, by detecting the amount of ice in the ice receiving region 223 by the ice probing rod 215, the movement of the inner box body 222 and start/stop of an ice making assembly can be controlled, thereby ensuring that internal space of the ice storage box 220 is fully utilized, and the overall structure is simple and compact.

[0037] In another embodiment of the present invention, the ice amount detection module further includes a weight sensor mounted at a bottom of the outer box 221. The weight sensor can detect an amount of ice stored in the ice storage box 220, namely, a total amount of ice stored in the outer box 221 and the inner box 222. An ice amount input module may be disposed on the refrigerator 100. The user may input, by using the ice amount input module, a preset ice storage weight by which ice is desired to be stored in the ice storage box 220. When the weight sensor detects that the amount of ice storage weight or an upper ice storage limit of the ice storage box 220, the control module controls the ice making assembly 210 to stop making ice.

[0038] Specifically, in this embodiment, in addition, the amount of ice in the ice receiving region 223 may be detected by the ice probing rod 215. After ice separating of the ice making assembly 210 is completed, the motor assembly 214 is started to drive the ice probing rod 215 to detect the amount of ice in the ice receiving region 223. When the inner box 222 is in the ice receiving region 223, and the ice probing rod 215 detects that the amount of ice in the ice receiving region 223 reaches the upper storage limit, that is, the amount of ice in the inner box 222 reaches the upper storage limit, the driving assembly 230 may be controlled to drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224. If the weight sensor detects that the amount of ice in the ice storage box 220 reaches the preset ice storage amount, the ice making assembly 210 may be controlled to stop making ice. When the inner box 222 is in the ice storage region 224, if the ice probing rod 215 detects that the amount of ice in the ice receiving region 223 reaches the upper storage limit, or if the weight sensor detects that an ice amount reaches the preset ice storage amount, the ice making assembly 210 is controlled to stop making ice.

[0039] In this way, an amount of ice stored in the ice storage box 220 can be accurately obtained by providing the weight sensor. The weight sensor may be used in combination with the ice probing rod 215, thereby improving control accuracy and preventing ice from overflowing the ice storage box 220 because the ice amount is too large.

[0040] In still another embodiment of the present invention, the ice amount detection module includes a first weight sensor mounted at a bottom of the inner box 222 and a second weight sensor mounted at a bottom of the outer box 221. The first weight sensor can detect the

amount of ice stored in the inner box 222. The second weight sensor can detect the amount of ice stored in the ice storage box 220, that is, the second weight sensor can detect the total amount of ice stored in the inner box 222 and the outer box 221.

[0041] In this embodiment, when the inner box 222 is in the ice receiving region 223, if the first weight sensor detects that the amount of ice in the inner box 222 reaches the upper ice storage limit of the inner box 222, the driving assembly 230 is controlled to drive the inner box 222 to move from the ice receiving region 223 to the ice storage region 224. If the second weight sensor detects that the amount of ice in the ice storage box 220 reaches the preset ice storage amount, the ice making assembly 210 is controlled to stop making ice. The preset ice storage amount may be input by the user using the ice amount input module, or may be the upper ice storage limit of the ice storage box 220 set at the factory.

[0042] In this way, the two weight sensors are provided to respectively detect amounts of ice in the inner box 222 and the ice storage box 220, thereby ensuring accuracy of ice amount detection.

[0043] Further, in an embodiment of the present invention, the driving assembly 230 is an electromagnetic driving assembly 230. The driving assembly 230 includes a coil 231 and a magnet 232. The coil 231 is mounted on a side, close to the ice receiving region 223, at an exterior of the ice storage box 220 and faces the ice storage region 224. The magnet 232 is mounted on the inner box 222. The coil 231 is opposite the magnet 232 when the inner box 222 is in the ice receiving region 223. Specifically, an accommodating space for accommodating the magnet 232 is provided in a back wall, adjacent to the coil 231, of the inner box 222.

[0044] The coil 231 may be mounted independent of the ice storage box 220. The coil 231 may be mounted on the cabinet 110 or the door of the refrigerator 100; or an independent bracket used for mounting of the coil 231 may be disposed on a side of the ice storage box 220. The magnet 232 is fixed on the inner box 222 and can move together with the inner box 222.

[0045] In this embodiment, when the inner box 222 is in the ice receiving region 223, and the ice amount detection module detects that the amount of ice in the inner box 222 reaches the upper storage limit, the control module controls the coil 231 to be energized, thereby driving the magnet 232 to drive the inner box 222 to move towards the ice storage region 224. When the ice amount detection module detects that an amount of ice in the outer box 221 or the ice storage box 220 reaches the upper storage limit, the ice making assembly 210 is controlled to stop making ice.

[0046] In an embodiment of the present invention, the ice making assembly 210 is mounted on a side of a back wall of the freezing chamber. A length direction of the ice making tray 212 may be parallel to a width direction of the back wall of the freezing chamber, that is, the ice making tray 212 is transversally disposed in the freezing

20

25

30

35

40

45

50

chamber, thereby facilitating mounting of the ice making assembly 210. The ice storage box 220 is drawably mounted in the freezing chamber. A back wall of the ice storage box 220 is adjacent to the back wall of the freezing chamber. Specifically, the back wall of the ice storage box 220 is adjacent to an air duct cover plate 113 on the back wall of the freezing chamber. The ice receiving region 223 is formed on a side, close to the back wall of the freezing chamber, of the ice storage box 220; and the ice storage region 224 is formed on a side, away from the back wall of the freezing chamber, of the ice storage box 220. The coil 231 is mounted on the back wall of the freezing chamber. Specifically, the coil 231 is mounted on the air duct cover plate 113 on the back wall of the freezing chamber.

[0047] The driving assembly 230 is an electromagnetic driving assembly 230. The coil 231 and the magnet 232 are separated from each other. The user may directly take out the ice storage box 220 to get ice, or merely take out the inner box 222 in the outer box 221 to get ice. After getting the ice, the user only needs to put the inner box 222 back to the ice receiving region 223, or put the ice storage box 220 back to an original position. Therefore, the operation is convenient.

[0048] In summary, according to the ice making apparatus and the refrigerator 100 provided in the present invention, the ice storage box 220 includes the outer box 221 and the inner box 222 arranged in the outer box 221, and the inner box 222 can move in the outer box 221 from the ice receiving region 223 to the ice storage region 224, thereby avoiding an influence on the utilization of the internal volume of the ice storage box 220 caused by accumulation of ice in the ice receiving region 223.

[0049] It should be understood that although the present invention is described in terms of embodiments in the description, not every embodiment includes only one independent technical solution. The statement mode of the description is merely for clarity, and those skilled in the art should regard the description as a whole. The technical solutions in various embodiments may also be combined properly to develop other embodiments that can be understood by those skilled in the art.

[0050] The series of detailed illustrations listed above are merely for specifically illustrating the feasible embodiments of the present invention, but not intended to limit the protection scope of the present invention. Any equivalent embodiments or variations made without departing from the technical spirit of the present invention shall fall within the protection scope of the present invention.

Claims

 An ice making apparatus, comprising: an ice making assembly and an ice storage box under the ice making assembly, wherein the ice making apparatus is characterized in that: the ice storage box comprises an outer box and an inner box arranged in the outer box; the outer box has an ice receiving region under the ice making assembly and an ice storage region adjacent to the ice receiving region; and the ice making apparatus further comprises a driving assembly capable of driving the inner box to move from the ice receiving region to the ice

2. The ice making apparatus according to claim 1, further comprising: an ice amount detection module for detecting an amount of ice in the ice storage box; and a control module for: when the inner box is in the ice receiving region and the ice amount detection module detects that an amount of ice in the inner box reaches an upper storage limit of the inner box, controlling the driving assembly to drive the inner box to move from the ice receiving region to the ice storage region.

storage region.

- 3. The ice making apparatus according to claim 2, wherein the control module is further used for: when the ice amount detection module detects that an amount of ice in the outer box or the ice storage box reaches a preset ice storage amount, controlling the ice making assembly to stop making ice.
- 4. The ice making apparatus according to claim 2, wherein the ice amount detection module comprises a motor assembly and an ice probing rod, wherein the motor assembly is fixedly mounted on a side of an ice making tray; and the ice probing rod is rotatably mounted on a side of the ice making tray, may be driven by the motor assembly, and is used for probing an amount of ice in the ice receiving region.
- 5. The ice making apparatus according to claim 2, wherein the ice amount detection module comprises a weight sensor mounted at a bottom of the outer box body.
- **6.** The ice making apparatus according to claim 2, wherein the ice amount detection module comprises a first weight sensor mounted at a bottom of the inner box and a second weight sensor mounted at a bottom of the outer box.
- 7. The ice making apparatus according to claim 1, wherein the driving assembly comprises a coil and a magnet, wherein the coil is mounted on a side, close to the ice receiving region, at an exterior of the ice storage box and faces the ice storage region; the magnet is mounted on the inner box body; and the coil is opposite the magnet when the inner box is in the ice receiving region.
- 8. A refrigerator, comprising: a cabinet and a door, as

15

20

30

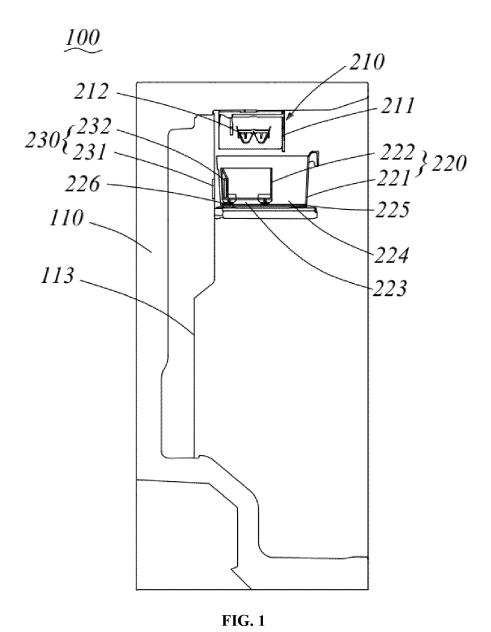
35

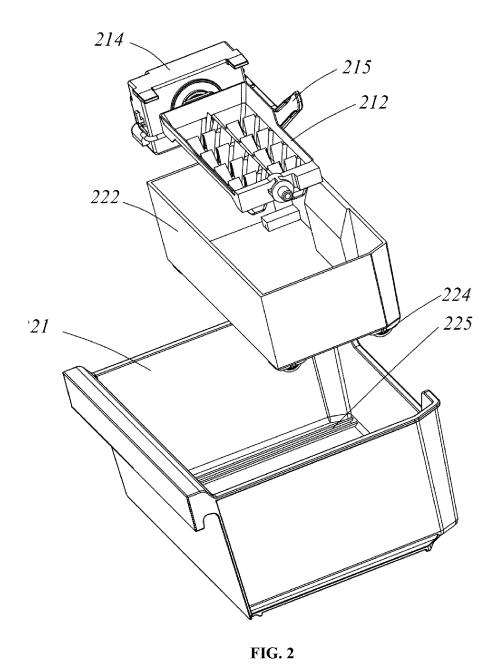
40

45

well as an ice making apparatus mounted in the cabinet or on the door, wherein the ice making apparatus comprises an ice making assembly and an ice storage box under the ice making assembly;

the refrigerator is **characterized in that**: the ice storage box comprises an outer box and an inner box arranged in the outer box; the outer box has an ice receiving region under the ice making assembly and an ice storage region adjacent to the ice receiving region; and the ice making apparatus further comprises a driving assembly capable of driving the inner box to move from the ice receiving region to the ice storage region.


9. The refrigerator according to claim 8, wherein the refrigerator further comprises: an ice amount detection module for detecting an amount of ice in the ice storage box; and a control module for: when the inner box is in the ice receiving region and the ice amount detection module detects that an amount of ice in the inner box reaches an upper storage limit of the inner box, controlling the driving assembly to drive the inner box to move from the ice receiving region to the ice storage region.


10. The refrigerator according to claim 9, wherein the control module is further used for: when the ice amount detection module detects that an amount of ice in the outer box or the ice storage box reaches a preset ice storage amount, controlling the ice making assembly to stop making ice.

11. The refrigerator according to claim 9, wherein the ice amount detection module comprises a motor assembly and an ice probing rod, wherein the motor assembly is fixedly mounted on a side of an ice making tray; and the ice probing rod is rotatably mounted on a side of the ice making tray, may be driven by the motor assembly, and is used for probing an amount of ice in the ice receiving region.

- **12.** The refrigerator according to claim 9, wherein the ice amount detection module comprises a weight sensor mounted at a bottom of the outer box.
- 13. The refrigerator according to claim 9, wherein the ice amount detection module comprises a first weight sensor mounted at a bottom of the inner box and a second weight sensor mounted at a bottom of the outer box.
- **14.** The refrigerator according to claim 8, wherein the cabinet comprises a refrigerating chamber and a freezing chamber; the ice making assembly is mounted on a side of an inner back wall of the freez-

ing chamber; the ice storage box is drawably mounted in the freezing chamber; the ice receiving region is formed on a side, close to a back wall of the freezing chamber, of the outer box; the ice storage region is formed on a side, away from the back wall of the freezing chamber, of the outer box; the driving assembly comprises a coil and a magnet; the coil is mounted on the back wall; the magnet is mounted on the inner box; and the coil is opposite the magnet when the inner box is in the ice receiving region.

INTERNATIONAL SEARCH REPORT

International application No. PCT/CN2021/090383 5 CLASSIFICATION OF SUBJECT MATTER F25C 5/18(2018.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED 10 Minimum documentation searched (classification system followed by classification symbols) F25C5/18, F25C5/02, F25C1/24 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 15 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CNABS; VEN; CNTXT; USTXT; CNKI: 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, 张延庆, 杜启海, 阳军, 赵振 丽, 张方友, 储冰, 外盒, 内盒, 接冰, 存冰, 移动, 空间, ice stor+, outer, box, inner, ice reception, mov+, space, volume DOCUMENTS CONSIDERED TO BE RELEVANT C. Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 20 CN 202002416 U (HAIER GROUP CORP. et al.) 05 October 2011 (2011-10-05) 1-14 A description, paragraphs [0001]-[0030] and figures 1-3 Α CN 207865778 U (SHENZHEN ICEPLUS SMART FURNITURE CO., LTD.) 14 September 1-14 2018 (2018-09-14) entire document 25 1-14 CN 102345955 A (LG ELECTRONICS INC.) 08 February 2012 (2012-02-08) Α entire document CN 106766458 A (QINGDAO HAIER CO., LTD.) 31 May 2017 (2017-05-31) Α 1 - 14entire document 30 Α KR 200150820 Y1 (SAMSUNG ELECTRONICS CO., LTD.) 15 July 1999 (1999-07-15) 1-14 entire document JP 0336475 A (SANYO ELECTRIC CO., LTD.) 18 February 1991 (1991-02-18) 1-14 Α entire document 35 See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered 40 to be of particular relevance earlier application or patent but published on or after the international filing date document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed 45 document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 01 June 2021 21 June 2021 Name and mailing address of the ISA/CN Authorized officer 50 China National Intellectual Property Administration (ISA/ CN) No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing 100088 China

Form PCT/ISA/210 (second sheet) (January 2015)

Facsimile No. (86-10)62019451

55

Telephone No.

EP 4 184 088 A1

INTERNATIONAL SEARCH REPORT International application No. Information on patent family members PCT/CN2021/090383 5 Publication date Patent document Publication date Patent family member(s) (day/month/year) (day/month/year) cited in search report 202002416 05 October 2011 CN U None CN 207865778 U 14 September 2018 None CN 102345955 08 February 2012 2012024002 02 February 2012 A US A110 KR 20120012228 09 February 2012 A EP 01 February 2012 2413071 A2 CN 106766458 31 May 2017 CN 106766458 В 02 August 2019 KR 200150820 $\mathbf{Y}1$ 15 July 1999 KR 19980019829 U 15 July 1998 JP 0336475 A 18 February 1991 JP H0336475 A 18 February 1991 15 20 25 30 35 40 45 50

Form PCT/ISA/210 (patent family annex) (January 2015)