EP 4 195 156 A1

(19) Europdisches

Patentamt

European
Patent Office
Office européen

des brevets

(11) EP 4 195 156 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
14.06.2023 Bulletin 2023/24

(21) Application number: 22210668.4

(22) Date of filing: 30.11.2022

(51) International Patent Classification (IPC):

GO6T 11/40(2006.01) GOG6T 1/20 (2006.07)

(562) Cooperative Patent Classification (CPC):

GO06T 11/40; GO6T 1/20

(84) Designated Contracting States:
AL ATBE BG CH CY CZDE DKEE ES FI FR GB
GRHRHUIEISITLILTLULVMC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
KH MA MD TN

(30) Priority: 13.12.2021 GB 202117998
13.12.2021 GB 202117999

(71) Applicant: Imagination Technologies Limited

Kings Langley, Hertfordshire WD4 8LZ (GB)

(72) Inventor: de Lucas Casamayor, Enrique

Watford (GB)

(74) Representative: Cooney, Daniel Thomas et al

Imagination Technologies Ltd

Patent Dept.

Home Park Estate

Kings Langley, Hertfordshire WD4 8LZ (GB)

(54) GRAPHICS PROCESSING SYSTEM AND METHOD OF RENDERING

(67) Thereis provided a method of rendering a scene

formed by primitives in a graphics processing system.

The method comprises, for a sequence of primitives:
combining a pipeline fragment shading rate value and a
primitive fragment shading rate value for a primitive to
produce a combined fragment shading rate value for the
primitive; storing fragment shading rate data represent-
ing the combined fragment shading rate value for the
primitive and associating data identifying the primitive

with the fragment shading rate data; determining, for a

subsequent primitive, if a combined fragment shading
rate value for the subsequent primitive is the same as for
the preceding primitive, and if the combined fragment
shading rate value for the subsequent primitive is the
same as for the preceding primitive, associating data
identifying the subsequent primitive with the fragment
shading rate data that the data identifying the preceding
primitive is associated with, and repeating the determin-
ing step for a next subsequent primitive, if there is one;
or, if the combined fragment shading rate value for the
subsequent primitive is not the same as for the preceding
primitive, storing further fragment shading rate data rep-
resenting the combined fragment shading rate value for
the subsequent primitive and associating data identifying
the subsequent primitive with the further fragment shad-
ing rate data; and repeating the determining step for a
next subsequent primitive, if there is one.

102

{

K Memory
Graphics
1221 Memory 12?8
Transformed
parameter Frame
memory 126 buffer
124 Control
lists t
116
)
v _\ Parameter
Geometry 114 fetch unit
1083 fetch uni 13
unit 117
3 Tiling
Primitive unit " P
block Sampling unit
assembly HSR logic
logic <
' 1 [Aliachment |
[— logic !
[TFSR™T) [CuliCip L _FSRlogic |18
logic L _logic_ i unit r
b-== o 119 120
10571 111 112
119 . . X Texturing/
Primitive Processing Logic Shading unit
Geometry Processing Logic Rendering Logic

¢

104 106

FIG. 1

Processed by Luminess, 75001 PARIS (FR)

1 EP 4 195 156 A1 2

Description
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority from UK patent
application 2117998.1 filed on 13 December 2021, and
UK patent application 2117999.9 also filed on 13 Decem-
ber 2021, which are both herein incorporated by refer-
ence in their entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to graphics
processing systems, in particular those implementing
variable fragment shading rates.

BACKGROUND

[0003] Graphics processing systems are typically con-
figured to receive graphics data, e.g. from an application
running on acomputer system, and to render the graphics
data to provide a rendering output. For example, the
graphics data provided to a graphics processing system
may describe geometry within a three dimensional (3D)
scene to be rendered, and the rendering output may be
arendered image of the scene. Some graphics process-
ing systems (which may be referred to as "tile-based"
graphics processing systems) use a rendering space
which is subdivided into a plurality of tiles. The "tiles" are
sections of the rendering space, and may have any suit-
able shape, but are typically rectangular (where the term
"rectangular” includes square). As is known in the art,
there are many benefits to subdividing the rendering
space into tile sections. For example, subdividing the ren-
dering space into tile sections allows an image to be ren-
dered in a tile-by-tile manner, wherein graphics data for
a tile can be temporarily stored "on-chip" during the ren-
dering of the tile, thereby reducing the amount of data
transferred between a system memory and a chip on
which a graphics processing unit (GPU) of the graphics
processing system is implemented.

[0004] Tile-based graphics processing systems typi-
cally operate in two phases: a geometry processing
phase and a rendering phase. In the geometry process-
ing phase, the graphics data for a render is analysed to
determine, for each of the tiles, which graphics data items
are present within that tile. Then in the rendering phase
(e.g. a rasterisation phase), a particular tile can be ren-
dered by processing those graphics data items which are
determined to be present within that tile (without needing
to process graphics data items which were determined
in the geometry processing phase to not be present within
the particular tile).

[0005] When rendering an image, it is known that the
render may use more sample points than the number of
pixels with which an output image will be represented.
This over-sampling can be useful for anti-aliasing pur-
poses, and is typically specified to a graphics processing

10

15

20

25

30

35

40

45

50

55

pipeline as a constant (i.e. a single anti-aliasing rate) for
the entire image.

[0006] More recently, the idea of variable fragment
shading rates has been considered. Here, a render may
use fewer shading sample points than the number of pix-
els (which may be termed 'subsampling’) or more shad-
ing sample points than the number of pixels (which may
be termed ‘'multisampling’), depending on the situation.
Moreover, different parts of the same image may have
different fragment shading rates. For example, higher
sampling rates may still be useful for anti-aliasing pur-
poses in parts of great detail or focus, but lower shading
sampling rates may reduce the processing in rendering
areas of uniformity or low importance parts of the image.

SUMMARY

[0007] This Summary is provided to introduce a selec-
tion of concepts in a simplified form that are further de-
scribed below in the Detailed Description. This Summary
is not intended to identify key features or essential fea-
tures of the claimed subject matter, nor is it intended to
be used to limit the scope of the claimed subject matter.
[0008] According to a first aspect, there is provided a
method of rendering, in a rendering space, a scene
formed by primitives in a graphics processing system,
the method comprising one or more of: arendering phase
comprising the steps of: receiving data describing one or
more primitives and one or more associated fragment
shading rates to be used during rendering; storing in a
buffer sampler fragments for the one or more primitives
corresponding to sample positions of the one or more
primitives within a region of the rendering space; parsing
the buffer to produce microtiles, each microtile corre-
sponding to an array of sample positions within the region
and containing sampler fragments from the one or more
primitives; analysing the microtiles to identify shader frag-
ment task instances to be shaded, and arranging the
shader fragment task instances into blocks, wherein at
least one block of shader fragment task instances com-
prises shader fragment task instances from more than
one microtile; and shading the blocks of shader fragment
task instances.

[0009] The graphics processing system may be a tile-
based graphics processing system, wherein the method
comprises performing the steps of the rendering phase
on a tile-by-tile basis (i.e. performing the steps for each
tile separately). As such, the buffer (only) stores sampler
fragments for a single tile at a time.

[0010] The range of fragment shading rates may in-
clude a ’per-pixel’ fragment shading rate. However, the
one or more fragment shading rates associated with the
primitives may each be coarser than a ’'per-pixel’ frag-
ment shading rate (i.e. they may specify a plural number
of pixels to be shaded together).

[0011] Optionally, the atleast one block of shader frag-
ment task instances comprises shader fragment task in-
stances having the same fragment shading rate.

3 EP 4 195 156 A1 4

[0012] Optionally, the shader fragment task instances
arranged into a given block relate to neighbouring shader
fragments in the rendering space, optionally a 2x2 block
of shader fragment ins the rendering space.

[0013] Optionally, shading comprises, for a shader
fragment task instance of the at least one block, calcu-
lating a delta value for a parameter using information
about another one of the shader fragments that corre-
sponds to a shader fragment task instance within the
same block.

[0014] Optionally, analysing the microtiles comprises
identifying shader fragment task instances within a mi-
crotile.

[0015] Optionally, parsing the buffer to produce micro-
tiles comprises, for each one of a plurality of fragment
shading rates in turn, searching the buffer for samples
associated with the one of the plurality of fragment shad-
ing rates and outputting the associated microtiles.
[0016] Optionally, storing in a buffer comprises per-
forming hidden surface removal to identify and not store
one or more sampler fragments within the rendering
space that do not contribute to the scene to be rendered.
[0017] Optionally, storing in the buffer comprises stor-
ing sampler fragments for a plurality of primitives corre-
sponding to the sample positions within the region of the
rendering space.

[0018] Optionally, the method further comprises a ge-
ometry processing phase before the rendering phase.
[0019] Optionally, the geometry processing phase
comprises transforming the primitives into the rendering
space, and storing data relating to the transformed prim-
itives, and/or determining and storing control stream data
indicating which primitives are relevant for rendering dif-
ferent regions of the rendering space.

[0020] Accordingto asecond aspect, there is provided
a graphics processing system configured to render a
scene formed by primitives, wherein the graphics
processing system comprises rendering logic configured
to: receive data describing one or more primitives and
one or more associated fragment shading rates to be
used during rendering; store, in a buffer, sampler frag-
ments for the one or more primitives corresponding to
sample positions of the one or more primitives within a
region of the rendering space; parse the buffer to produce
microtiles, each microtile corresponding to an array of
sample positions within the region and containing sam-
pler fragments from the one or more primitives; analyse
the microtiles to identify shader fragment task instances
to be shaded, and arrange the shader fragment task in-
stances into blocks, wherein at least one block of shader
fragment task instances comprises shader fragment task
instances from more than one microtile; and shade the
blocks of shader fragment task instances.

[0021] The graphics processing system may be a tile-
based graphics processing system, wherein the render-
ing logic is configured to perform the recited steps on a
tile-by-tile basis (i.e. is configured to operate on each tile
separately). As such, the buffer (only) stores sampler

10

15

20

25

30

35

40

45

50

55

fragments for a single tile at a time.

[0022] The range of fragment shading rates may in-
clude a ’per-pixel’ fragment shading rate. However, the
one or more fragment shading rates associated with the
primitives may each be coarser than a ’'per-pixel’ frag-
ment shading rate (i.e. they may specify a plural number
of pixels to be shaded together).

[0023] Optionally, the at least one block of fragment
task instances comprises fragmenttaskinstances having
the same fragment shading rate.

[0024] Optionally, the fragment task instances ar-
ranged into a given block relate to neighbouring frag-
ments in the rendering space, optionally a 2x2 block of
shader fragment ins the rendering space.

[0025] Optionally, the rendering logic configured to
shade the blocks of shader fragment task instances is
further configured, for a shader fragment task instance
of the at least one block, to calculate a delta value for a
parameter using information about another one of the
shader fragments that corresponds to a shader fragment
task instance within the same block.

[0026] Optionally, the rendering logic configured to an-
alyse the microtiles is further configured to identify frag-
ment task instances within a microtile.

[0027] Optionally, the rendering logic configured to
parse the buffer to produce microtiles is further config-
ured, for each one of a plurality of fragment shading rates
in turn, search the buffer for samples associated with the
one of the plurality of fragment shading rates and output
the associated microtiles.

[0028] Optionally, the rendering logic configured to
store sampler fragments in a buffer is further configured
to perform hidden surface removal to identify and not
store one or more sampler fragments within the rendering
space that do not contribute to the scene to be rendered.
[0029] Optionally, the graphics processing system fur-
ther comprises geometry processing logic configured to
transform the primitives into the rendering space, and
store data relating to the transformed primitives inamem-
ory, and/or to determine and store in a memory control
stream data indicating which primitives are relevant for
rendering different regions of the rendering space.
[0030] According to a third aspect, there is provided a
graphics processing system configured to perform the
method of any preceding variation of the first aspect.
[0031] The graphics processing system may be em-
bodied in hardware on an integrated circuit. There may
be provided a method of manufacturing, at an integrated
circuit manufacturing system, the graphics processing
system. There may be provided an integrated circuit def-
inition dataset that, when processed in an integrated cir-
cuit manufacturing system, configures the system to
manufacture the graphics processing system. There may
be provided a non-transitory computer readable storage
medium having stored thereon a computer readable de-
scription of the graphics processing system that, when
processed in an integrated circuit manufacturing system,
causes the integrated circuit manufacturing system to

5 EP 4 195 156 A1 6

manufacture an integrated circuit embodying the graph-
ics processing system.

[0032] There may be provided an integrated circuit
manufacturing system comprising: a non-transitory com-
puter readable storage medium having stored thereon a
computer readable description of the graphics process-
ing system; a layout processing system configured to
process the computer readable description so as to gen-
erate a circuit layout description of an integrated circuit
embodying the graphics processing system; and an in-
tegrated circuit generation system configured to manu-
facture the graphics processing system according to the
circuit layout description.

[0033] There maybe provided computer program code
for performing any of the methods described herein.
There may be provided non-transitory computer reada-
ble storage medium having stored thereon computer
readable instructions that, when executed at a computer
system, cause the computer system to perform any of
the methods described herein.

[0034] The above features may be combined as ap-
propriate, as would be apparent to a skilled person, and
may be combined with any of the aspects of the examples
described herein.

[0035] There is also provided a method of rendering,
in a rendering space in a graphics processing system, a
scene formed by primitives, the method comprising: a
rendering phase comprising the steps of: receiving data
describing one or more primitives and two or more asso-
ciated fragment shading rates to be used during render-
ing; identifying, from the primitives, shader fragment task
instances to be shaded, wherein the shader fragment
task instances comprise shader fragment task instances
associated with a first fragment shading rate and shader
fragment task instances associated with a second frag-
ment shading rate; combining shader fragment task in-
stances into a shading task, the shading task comprising
fragment task instances associated with the first frag-
ment shading rate and fragment task instances associ-
ated with the second fragment shading rate, and wherein
the fragment task instances combined into the shading
task require a common shader program; and processing
the shading task.

[0036] There is also provided a graphics processing
system configured to render a scene formed by primi-
tives, wherein the graphics processing system comprises
rendering logic configured to: receive data describingone
or more primitives and two or more associated fragment
shading rates to be used during rendering; identify, from
the primitives, shader fragment task instances to be
shaded, wherein the shader fragment task instances
comprise shader fragment task instances associated
with a first fragment shading rate and shader fragment
task instances associated with a second fragment shad-
ing rate; combine shader fragment task instances into a
shading task, the shading task comprising fragment task
instances associated with the first fragment shading rate
and fragment task instances associated with the second

10

15

20

25

30

35

40

45

50

55

fragment shading rate, and wherein the fragment task
instances combined into the shading task require a com-
mon shader program; and process the shading task.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] Examples will now be described in detail with
reference to the accompanying drawings in which:

Fig. 1 shows a graphics processing system;

Fig. 2 shows a method that can be implemented by
a graphics processing system such as that of Fig. 1;

Fig. 3 illustrates how a graphics processing system
can process a primitive for shading with a 1x1 frag-
ment shading rate;

Fig. 4 illustrates how a graphics processing system
can process a primitive for shading with a 2x2 frag-
ment shading rate;

Fig. 5A illustrates how attachment FSR values can
be determined for different sample points within a
primitive, and Fig. 5B illustrates how those sample
points can subsequently be shaded;

Fig. 6 shows a method of how primitives can be con-
verted to fragments and shaded;

Fig. 7 illustrates an example order in which microtiles
can be generated from sections of a buffer;

Fig. 8 shows a method for generating microtiles;

Fig. 9 shows a method of processing microtiles to
create blocks of shader fragment task instances;

Fig. 10 illustrates a sequence of microtiles with an
FSR value 2x4;

Fig. 11 illustrates a sequence of microtiles with an
FSR value of 1x4;

Fig. 12 illustrates a method of combining fragment
shader instance blocks into shader tasks;

Fig. 13 illustrates how shader fragments are derived
from a microtile containing sampler fragments with
different FSR values;

Fig. 14 shows a computer system in which a graphics
processing system is implemented; and

Fig. 15 shows an integrated circuit manufacturing
system for generating an integrated circuit embody-
ing a graphics processing system.

7 EP 4 195 156 A1 8

[0038] The accompanying drawings illustrate various
examples. The skilled person will appreciate that the il-
lustrated elementboundaries (e.g., boxes, groups of box-
es, or other shapes) in the drawings represent one ex-
ample of the boundaries. It may be that in some exam-
ples, one element may be designed as multiple elements
orthat multiple elements may be designed as one ele-
ment. Common reference numerals are used throughout
the figures, where appropriate, to indicate similar fea-
tures.

DETAILED DESCRIPTION

[0039] The following description is presented by way
of example to enable a person skilled in the art to make
and use the invention. The presentinvention is notlimited
to the embodiments described herein and various mod-
ifications to the disclosed embodiments will be apparent
to those skilled in the art.

[0040] Fragment shading rate (FSR) values can be
specified to a graphics processing system in a number
of ways. One way is to specify FSR values by a 'pipeline’
or 'per draw’ FSR technique, which associates a partic-
ular fragment shading rate value with a particular draw
call (and thus for the primitives associated with that draw
call). Another way is to specify FSR values by a ’primitive’
or 'provoking vertex’ FSR technique, which sets a par-
ticular fragment shading rate value at a per-primitive
granularity. A third way is to specify FSR values by an
‘attachment’ or 'screen space image’, which allows for
the fragment shading rate to be specified based on the
area of the image being rendered. For example, in the
attachment FSR technique the rendering space may be
divided into areas, each area (or region) associated with
a particular FSR value. The FSR values for the areas of
the rendering space may be specified using attachment
information defining texels that map to each of the areas
of the rendering space, each texel being associated with
an FSR value for its corresponding area of the rendering
space. Alternatively, a single FSR value may be set for
the whole rendering space.

[0041] These three different techniques for specifying
fragment shading rate values may be used individually
or in combination. As such, in practice, having all the
different techniques available creates different sources
of FSR information that need to be reconciled by a graph-
ics processing system. Forexample, a particular primitive
may be part of a particular draw call and rendered in a
particular area of the rendering space. In that example,
that particular primitive may be associated with some or
all of (i) a pipeline FSR value specified as part of the
particular draw call, (ii) a primitive FSR value specified
for that particular primitive and (iii) an attachment FSR
value specified for the particular area of the rendering
space in which the primitive is rendered. Indeed, the sit-
uation may be more complicated than that - the primitive
may fall across one or more boundaries between areas
of pixels that map to different attachment FSR texels, so

10

15

20

25

30

35

40

45

50

55

different sample points within the single primitive may
have different FSR values associated with them.

[0042] The manner in which the values from different
FSR sources are combined, to calculate a resolved com-
bined FSR thatwillbe applied for a primitive (or part there-
of), can be specified to the graphics processing system
by the instructing application. That is, different types of
combination operation are possible. In this sense, a com-
bination operation can be mathematical and/or logical in
nature. As such, a logical combination operation may be
specified that dictates that a value from a particular one
of the FSR sources should be selected for use. For ex-
ample, a so-called 'keep’ combination operation can
specify that a first one of a pair of FSR values (e.g. the
pipeline fragment shading rate and primitive fragment
shading rate) should be selected for use. As another ex-
ample, a so-called ‘replace’ combination operation can
specify that a second one of a pair of FSR values should
be selected for use. Another approach may require a
mathematical determination to inform a logical operation
performed on the different values from the different FSR
sources, to determine the resolved combined FSR. For
example, a so-called 'min’ combination operation can
specify that the minimum FSR value of a set or subset
of the FSR values should be selected for use. As another
example, a so-called ‘'max’ combination operation can
specify that the maximum FSR value of a set or subset
of FSR values should be selected for use. In these ex-
amples, a mathematical determination (i.e. establishing
which is the maximum or minimum value) is used to de-
cide which value to use. Other combination operations
may be thought of as more ’purely’ mathematical. For
example, the use of a so-called 'mul’ operation that spec-
ifies that a set or subset of the FSR values should be
multiplied together to calculate the FSR value for use. It
will be understood that in principle any other mathemat-
ical operation could be used to combine FSR values from
different sources.

[0043] It will also be understood that multiple combi-
nation operations may be used to combine the values
from different sources - e.g. a first combination operation
may be used to combine a pipeline FSR value and a
primitive FSR value, to produce a first combined FSR
value, and a second combination operation (which may
be of the same type as the first combination operation,
or a different type) may be used to combine an attach-
ment FSR value with the first combined FSR value to
produce a second or final combined FSR value.

[0044] The present disclosure presents ways in which
these different sources of fragment shading rate may be
handled and combined efficiently in a graphics process-
ing system.

[0045] Embodiments will now be described by way of
example only.

General System

[0046] Fig. 1 shows an example graphics processing

9 EP 4 195 156 A1 10

system 100. The example graphics processing system
100 s a tile-based graphics processing system. As men-
tioned above, a tile-based graphics processing system
uses a rendering space which is subdivided into a plu-
rality of tiles. The tiles are sections of the rendering space,
and may have any suitable shape, but are typically rec-
tangular (where the term "rectangular" includes square).
The tile sections within a rendering space are conven-
tionally the same shape and size.

[0047] The system 100 comprises a memory 102, ge-
ometry processing logic 104 and rendering logic 106. The
geometry processing logic 104 and the rendering logic
106 may be implemented on a GPU and may share some
processing resources, as is known in the art. The geom-
etry processing logic 104 comprises a geometry fetch
unit 108; primitive processing logic 109, which in turn
comprises geometry transform logic 110, FSR logic 111
and a cull/clip unit 112; primitive block assembly logic
113; and a tiling unit 114. The rendering logic 106 com-
prises a parameter fetch unit 116; a sampling unit 117
comprising hidden surface removal (HSR) logic 118; and
a texturing/ shading unit 120. The example system 100
is a so-called "deferred rendering" system, because the
texturing/shading is performed after the hidden surface
removal. However, a tile-based system does not need to
be a deferred rendering system, and although the present
disclosure uses a tile-based deferred rendering system
as an example, the ideas presented are also applicable
to non-deferred (known as immediate mode) rendering
systems or non-tile-based systems. The memory 102
may be implemented as one or more physical blocks of
memory and includes a graphics memory 122; a trans-
formed parameter memory 124; a control lists memory
126; and a frame buffer 128.

[0048] Fig. 2 shows a flow chart for a method of oper-
ating a tile-based rendering system, such as the system
shown in Fig. 1. The geometry processing logic 104 per-
forms the geometry processing phase, in which the ge-
ometry fetch unit 108 fetches geometry data (e.g. previ-
ously received from an application for which the render-
ing is being performed) from the graphics memory 122
(in step S202) and passes the fetched data to the prim-
itive processing logic 109. The geometry data comprises
graphics data items (i.e. items of geometry) which de-
scribe geometry to be rendered. For example, the items
of geometry may represent geometric shapes, which de-
scribe surfaces of structures in the scene. The items of
geometry may be in the form of primitives (commonly
triangles, but primitives may be other 2D shapes and may
also be lines or points to which a texture can be applied).
Primitives can be defined by their vertices, and vertex
data can be provided describing the vertices, wherein a
combination of vertices describes a primitive (e.g. a tri-
angular primitive is defined by vertex data for three ver-
tices). Objects can be composed of one or more such
primitives. In some examples, objects can be composed
of many thousands, or even millions of such primitives.
Scenes typically contain many objects. ltems of geometry

10

15

20

25

30

35

40

45

50

55

can also be meshes (formed from a plurality of primitives,
such as quads which comprise two triangular primitives
which share one edge). Items of geometry may also be
patches, wherein a patch is described by control points,
and wherein a patch is tessellated to generate a plurality
of tessellated primitives.

[0049] Instep S204 the geometry processing logic 104
pre-processes the items of geometry, e.g. by transform-
ing the items of geometry into screen space, performing
vertex shading, performing geometry shading and/or per-
forming tessellation, as appropriate for the respective
items of geometry. In particular, the primitive processing
logic 109 (and its sub-units) may operate on the items of
geometry, and in doing so may make use of state infor-
mation retrieved from the graphics memory 122. For ex-
ample, the transform logic 110 in the primitive processing
logic 109 may transform the items of geometry into the
rendering space and may apply lighting/attribute
processing as is known in the art. The resulting data may
be passed to the cull/clip unit 112 which may cull and/or
clip any geometry which falls outside of a viewing frustum.
FSR logic 111 may also be employed to determine an
FSR value associated with the various primitives. The
FSR value may be the result of combining some or all of
the relevant values from different FSR sources. For ex-
ample, the FSR logic 111 may be configured to determine
FSR values for the primitives by combining primitive and
pipeline FSR values. The remaining transformed items
of geometry (e.g. primitives) are provided from the prim-
itive processing logic 109 to the primitive block assembly
logic 113 which groups the items of geometry into blocks,
also referred to as "primitive blocks", for storage. A prim-
itive block is a data structure in which data associated
with one or more primitives (e.g. the transformed geom-
etry data related thereto) are stored together. For exam-
ple, each block may comprise up to N primitives, and up
to M vertices, where the values of N and M are an imple-
mentation design choice. For example, N might be 24
and M might be 16. Each block can be associated with
a block ID such that the blocks can be identified and
referenced easily. Primitives often share vertices with
other primitives, so storing the vertices for primitives in
blocks allows the vertex data to be stored once in the
block, wherein multiple primitives in the primitive block
can reference the same vertex data in the block. The
primitive blocks may also store the FSR information de-
termined by the FSR logic 111. In step S206 the primitive
blocks with the transformed geometric dataitems are pro-
vided to the memory 102 for storage in the transformed
parameter memory 124. The transformed items of ge-
ometry and information regarding how they are packed
into the primitive blocks are also provided to the tiling unit
114. In step S208, the tiling unit 114 generates control
stream data for each of the tiles of the rendering space,
wherein the control stream data for a tile includes a con-
trol list of identifiers of transformed primitives which are
to be used for rendering the tile, i.e. a list of identifiers of
transformed primitives which are positioned at least par-

11 EP 4 195 156 A1 12

tially within the tile. The collection of control lists of iden-
tifiers of transformed primitives for individual tiles may be
referred to as a "control stream list" or "display list". In
step S210, the control stream data forthe tiles is provided
to the memory 102 for storage in the control lists memory
126. Therefore, following the geometry processing phase
(i.e. after step S210), the transformed primitives to be
rendered are stored in the transformed parameter mem-
ory 124 and the control stream data indicating which of
the transformed primitives are present in each of the tiles
is stored in the control lists memory 126. In other words,
for given items of geometry, the geometry processing
phase is completed and the results of that phase are
stored in memory before the rendering phase begins.

[0050] In the rendering phase, the rendering logic 106
renders the items of geometry (primitives) in a tile-by-tile
manner. In step S212, the parameter fetch unit 116 re-
ceives the control stream data for a tile, and in step S214
the parameter fetch unit 116 fetches the indicated trans-
formed primitives from the transformed parameter mem-
ory 124, as indicated by the control stream data for the
tile. In step S216 the rendering logic 106 renders the
fetched primitives by performing sampling on the primi-
tives to determine primitive fragments which represent
the primitives at discrete sample points within the tile,
and then performing hidden surface removal and textur-
ing/shading on the primitive fragments. In particular, the
fetched transformed primitives are provided to the sam-
pling unit 117 (which may also access state information,
either from the graphics memory, or stored with the trans-
formed primitives), which performs sampling and deter-
mines the primitive fragments to be shaded. As part of
determining the primitive fragments to be shaded, the
sampling unit 117 uses hidden surface removal (HSR)
logic 118 to remove primitive fragments which are hidden
(e.g. hidden by other primitive samples). Methods of per-
forming sampling and hidden surface removal are known
in the art. Conventionally, the term "fragment" refers to
a sample of a primitive at a sampling point, which is to
be shaded to assist with determining how to render a
pixel of an image (N.B. with anti-aliasing, multiple sam-
ples might be shaded to determine how to render a single
pixel). However, with variable FSR, there may not be a
one to one correspondence between the fragments gen-
erated by sampling, and the fragments that are shaded.
Therefore, the terms "sampler fragments" (fragments
created by sampling primitives) and "shader fragments"
(fragments upon which fragment shader programs are
executed) are used herein where it is necessary to dis-
tinguish between fragments at different units of the GPU.
For example, one shader fragment may be processed to
determine colour values for more than one sampler frag-
ment. The term "sampling" is used herein to describe the
process of generating discrete fragments (sampler frag-
ments) from items of geometry (e.g. primitives), but this
process can sometimes be referred to as "rasterisation”
or "scan conversion". As mentioned above, the system
100 of Fig. 1 is a deferred rendering system, and so the

10

15

20

25

30

35

40

45

50

55

hidden surface removal is performed before the textur-
ing/shading. However, other systems may render frag-
ments before performing hidden surface removal to de-
termine which fragments are visible in the scene.
[0051] Sampler fragments which are not removed by
the HSR logic 118 are provided from the sampling unit
117 to the texturing/shading unit 120, where, as shader
fragments, texturing and/or shading is applied. Before
that, attachment FSR logic 119 may be used to further
determine FSR values associated with the samples. This
may be additional to or instead of the determination per-
formed by FSR logic 111, depending on the system (and
hence both FSR logic blocks are indicated by dashed
lines, to show that one or the other may be optional).
However, if FSR logic 111 determined the combination
of the pipeline and primitive FSR values, the attachment
FSR logic 119 may be configured to combine the results
of those first combinations with any attachment FSR val-
ues, for example.

[0052] The texturing/shading unit 120 is typically con-
figured to efficiently process multiple fragments in paral-
lel. This can be done by determining individual fragments
that require the same processing (e.g. need to run the
same fragment shader) and treating them as instances
of the same task, which are then runin parallel, in a SIMD
(single instruction, multiple data) processor for example.
To assist with this, in some implementations, sampler
fragments from the same primitive may be provided to
the texturing/shading unit 120 in so-called 'microtiles’,
being groups of sampler fragments. A microtile may cor-
respond to, for example, a 4x4 array of sample points
corresponding to a particular area of the render space,
and thus may include up to 16 sampler fragments (de-
pending on the primitive coverage within the microtile),
and thus up to 16 task instances, if each sampler frag-
ment is shaded as one shader fragment. It will be under-
stood that these microtiles are separate to the 'tiles’ used
in tile-based rendering. As explained above, a tile is a
sub-division of the overall render space for which the
graphics data can be temporarily stored "on-chip" during
the rendering of the tile. As such, the sampling results of
a single tile may be stored in a buffer (e.g. within the
sampling unit). A microtile represents the sampling (and
optionally hidden surface removal) result of part or all of
a particular primitive or primitives in a particular sub-area
of a tile, and which is issued from the sampling unit 117
to the texturing/shading unit 120. As such, multiple mi-
crotiles may be generated from the buffer storing the
sampling results of a single tile.

[0053] Although it is not shown in Fig. 1, the textur-
ing/shading unit 120 may receive texture data from the
memory 102 in order to apply texturing to the primitive
fragments, as is known in the art. The texturing/shading
unit 120 may apply further processing to the primitive
fragments (e.g. alpha blending and other processes), as
is known in the art in order to determine rendered pixel
values of an image. The rendering phase is performed
for each of the tiles, such that a whole image can be

13 EP 4 195 156 A1 14

rendered with pixel values for the whole image being de-
termined. In step S218, the rendered pixel values are
provided to the memory 102 for storage in the frame buff-
er 128. The rendered image can then be used in any
suitable manner, e.g. displayed on a display, or stored
in memory or transmitted to another device, etc.

Interaction of FSR with General System

[0054] Figs 3 and 4 illustrate how different fragment
shading rate values can affect the workload on the gen-
eral processing system set out above.

[0055] Fig. 3 illustrates the simplest situation of using
a 1x1 fragment shading rate value, in which each shader
fragmentinstance corresponds to one sampler fragment.
In the example, an object 302 is formed by four right-
angular triangle primitives meeting at the centre of the
object. During rasterisation, it is determined that the ob-
ject 302 covers four microtiles 312, 314, 316 & 318 (a
microtile being, in this example, a 4x4 array of sampler
fragments). In the example, each primitive is in a single
microtile for ease of understanding, but this need not be
the case in practice. The sampler fragment coverage
within each microtile 312, 314, 316 & 318 is determined
and indicated by the cross-hatching. In this example, us-
ing a 1x1 FSR value, each sampler fragment corre-
sponds to a shader fragment that is shaded individually
during rasterisation, and so corresponds to one shading
task instance. In this example, the shader fragments are
grouped into blocks of instances (Blocks 0 to 7 in Fig. 3)
for shading in parallel. In this example, 2x2 instances
from the microtiles 312, 314, 316 & 318 are grouped into
a block (i.e. Blocks 0 & 1 are derived from microtile 312,
Blocks 2 & 3 are derived from microtile 314, Blocks 4 &
5 are derived from microtile 316, Blocks 6 & 7 are derived
from microtile 318), but this depends on the configuration
of the texturing/shading unit. To emphasise that each
shader fragment, despite the block grouping, is shaded
individually, a dashed box is shown around each shader
fragment in each of the blocks. As such, the contents of
each dashed box can be considered to be a task instance
to be processed (i.e. shaded) by texturing/shading unit
120. After shading, in this simple example, the shading
results can be directly combined to form the output 332
(inwhich the factthatthe fragments have been processed
is indicated by use a different cross-hatching).

[0056] In contrast, Fig. 4 illustrates the use of a 2x2
fragment shading rate value, in which each shader frag-
ment corresponds to 2x2 sampler fragments. The exam-
ple begins in a similar way to the Fig. 3 example, with
the primitives forming object 402 being determined to
cover four microtiles 412, 414, 416 & 418. Again, each
microtile 412,414,416 &418inthe example corresponds
to an array of 4x4 sample points. Again, the sampler frag-
ment coverage within each microtile is indicated by the
cross-hatching. Whilst this 4x4 sampler granularity is re-
tained for coverage information (as will be seen later),
the 2x2 fragment shading rate value means that the shad-

10

15

20

25

30

35

40

45

50

55

er fragments and therefore the task instances for shading
are created from 2x2 sets of sampler fragments, which
are then grouped into blocks (Blocks 0 to 3 in Fig. 4, with
Block 0 being derived from microtile 412, Block 1 being
derived from microtile 414, Block 2 being derived from
microtile 416, Block 3 being derived from microtile 418).
As in Fig. 3, dashed boxes have been shown around
each shader fragment in the blocks in Fig. 4. However,
in contrast to Fig. 3, it will be seen that the content of
each dashed box corresponds to four (that is: 2x2) of the
original sampler fragments from microtiles 412, 414, 416
& 418. A single shader task instance is run for each
dashed box. Put another way, shader fragments are cre-
ated with each fragment corresponding to four original
sampler fragments, and a single shading task is created
foreach shader fragment. As shown for one of the dashed
boxes from Block 3, this produces a single shading result
422 corresponding to the original sampler fragments for
which the task instance was constructed. That single
shading result 422 can then be recombined with the cov-
erage information (e.g. as shown in microtiles 412, 414,
416 & 418) to produce a set of appropriately shaded frag-
ments 424 at the same spatial resolution as the original
set of 2x2 sampler fragments (in the illustrated example,
thisresults in a single shaded fragment at that resolution).
After performing a similar process for each task instance,
the shaded fragments can be combined to form the output
432. In other words, although the ‘coarser’ shader frag-
ment size in this example causes sampler fragments to
be grouped together to be shaded, in a way that can also
cover sample points which may not actually be covered
by the primitive being shaded, the shading results 422
are applied only at the sample positions known to be
covered, meaning that the outputs 332 & 432 from Figs
3 and 4 are the same in terms of spatial coverage. How-
ever, fewer task instances need to be processed to
achieve the same (in terms of spatial coverage) output,
leading to greater processing efficiency. That can be
seen by comparing the number of dashed boxes in the
blocks of Fig. 3 compared to those in Fig. 4 - Fig. 3 re-
quires 32 dashed boxes (shader task instances) whereas
Fig. 4 only requires 16. On the other hand, that process-
ing efficiency comes at a loss of spatial resolution when
determining shading results. Thatis, although the outputs
332 and 432 may have the same spatial coverage, there
may be less variation in the shading results within the
covered area in the output of Fig. 4. There may not be
any difference, depending on the uniformity of the area
covered, and it is thus up to the programmer to judge
when such loss of spatial resolution in the shading results
are an acceptable trade-off for increased processing ef-
ficiency.

[0057] It will be noted that in Fig. 3, there are some
task instances (dashed boxes) in Blocks 0-6 which do
not contain any sampler fragments and so do not actually
require shading. Similarly, in Fig. 4, there are task in-
stances in Blocks 0-3 which do not contain any sampler
fragments that require shading. Such 'empty’ or 'helper’

15 EP 4 195 156 A1 16

instances can be created if the system architecture ex-
pects to receive blocks containing a certain number of
task instances (e.g. 2x2 instances in the examples pre-
sented). Whilst systems such as SIMD systems are most
efficient when every instance being processed is 'useful’
work, the system can still operate by using such helper
instances, and can still operate (overall) more efficiently
that a system which does not exploit parallelism.

[0058] Figs. 5A and 5B illustrate (in a similar manner
to how Figs. 3 and 4 illustrated how a single FSR value
interacts with a graphics processing system) how the at-
tachment FSR technique interacts with other sources of
FSR values in a graphics processing system.

[0059] In the example of Figs. 5A and 5B, the attach-
ment texel corresponds (or maps) to an area of 8x8 pix-
els, meaning that the rendering space is divided into a
grid of 8x8 pixel areas, and an FSR value is specified for
each such 8x8 pixel area. Those FSR values may be
differentor the same (although, in practice, if all the texels
had the same FSR value, a larger FSR texel size would
likely be more appropriate/ efficient). Fig. 5A illustrates
aportion 502 of a rendering space that contains four pixel
areas 504_3, and in this example each pixel area corre-
sponds to a different attachment texel that specifies a
different FSR value (the attachment texel corresponding
to pixel area 504 specifies an FSR value of 1x1; the
attachment texel corresponding to pixel area 504, spec-
ifies an FSR value of 2x2; the attachment texel corre-
sponding to pixel area 504, specifies an FSR value of
4x4; the attachment texel corresponding to pixel area
504, specifies an FSR value of 2x1). The area of pixels
corresponding to a particular FSR texel or value may also
be referred to as an FSR region.

[0060] A triangular primitive 506 overlaps the four pixel
areas 504,_3. The primitive 506 is associated with its own
FSR value, which in this case is a 2x2 FSR value. This
could be an FSR value as specified by one FSR source
(e.g. a primitive FSR value), but it may also be an FSR
value established following a combination of values from
different FSR sources (e.g. primitive and pipeline FSR
values). In any case, the FSR value associated with the
primitive is combined with the attachment FSR value dur-
ing the sampling process for the primitive. In this case,
as illustrated in Fig. 5A, although the attachment texels
correspond to pixel areas of 8x8 pixels, the microtile size
is still 4x4 samples, and so the primitive 506 is found to
overlap eight microtiles 508_; (and the sample coverage
of the primitive 506 within each microtile is indicated by
cross hatching). In turn, each microtile overlaps a pixel
area corresponding to a particular attachment texel, as-
sociated with a particular attachment FSR value. For the
samplerfragments within each microtile, a resolved com-
bined FSR value (i.e. which mightbe a’second’ combined
FSR value if the primitive’s FSR value was a first, pre-
liminary, combined value derived from combining pipe-
line and primitive FSR values) can be calculated based
on the FSR value associated with the primitive and the
FSR value of the attachment texel corresponding to the

10

15

20

25

30

35

40

45

50

55

pixel area that the microtile is overlapping. So, for sam-
pler fragments in microtile 508, derived from pixel area
504, the attachment FSR value is 1x1. In this example
the combination operation for the attachment FSR value
and the FSR value associated with the primitive is a’'max-
imum’ combiner, so the FSR value forthe forthe sampler
fragments in microtile 5080 is 2x2 (being the FSR value
associated with the primitive 506, which is larger than
the 1x1 FSR value of the corresponding attachment tex-
el). With similar reasoning it can be understood how the
other FSR values shown in Fig. 5A for the sampler frag-
ments in each of the eight microtiles 508,_; are derived.
It can be seen that for many of the microtiles the resulting
FSR value for the sampler fragments they contain is 2x2,
but two microtiles 508, & 508s have an FSR value of 4x4
for the sampler fragments they contain.

[0061] Itis noted that although the forgoing description
relates the position of the microtiles to the attachment
texels, to determine the relevant attachment FSR, in oth-
er implementations it may be the positions of the frag-
ments themselves which are considered with respect to
the attachment texels.

[0062] Fig. 5B continues the rasterisation process
started in Fig. 5A. Based on the FSR values, sampler
fragments from the microtiles 508, ; illustrated in Fig. 5A
are grouped into blocks of shader fragments for shading
in parallel. The five microtiles with FSR values of 2x2
(microtiles 508,_3 and 508¢_7) are converted to FSR 2x2
Blocks 0-5 in Fig. 5B. As in Figs 3 and 4, a dashed box
is shown around each shader fragment in each of the
blocks. In addition, the two microtiles with the 4x4 FSR
value (microtiles 508, & 508s) are converted to FSR 4x4
Blocks 0 & 1 in Fig. 5B. Again a dashed box is shown
around each shader fragment within that block.

[0063] As previously discussed with respect to Figs. 3
and 4, a single shader task instance is run for each
dashed box. As shown for one of the dashed boxes from
FSR 2x2 Block 2, this produces a single shading result
510 corresponding to the original sampler fragments for
which the task instance was constructed. That single
shading result 510 can then be recombined with the cov-
erage information from original microtile 508, to produce
a set of appropriately shaded fragments 512 at the same
spatial resolution as the original set of 2x2 sampler frag-
ments. In this case, all four of the sample points to which
the task instance corresponds are found to be covered
by the primitive, so four shaded fragments are obtained.
In contrast, one of the dashed boxes from FSR 4x4 Block
0 is shown to produce a single shading result 514 corre-
sponding to 16 sample points that were not all covered
by the primitive for which the task instance was construct-
ed. In this case the primitive only covered eight of the 16
sample points to which the task instance corresponded,
so when the single shading result 514 is recombined with
the coverage information from original microtile 508, it
produces eight fragments shaded in accordance with the
single shading result 514, but at the spatial resolution of
the original sampler fragments. After performing a similar

17 EP 4 195 156 A1 18

process for each task instance, the shaded fragments
can be combined to form the output 518.

[0064] It will be understood that although, compared
to Figs. 3 and 4, the introduction of the attachment FSR
technique opens up the possibility of different FSR values
for different parts of the same primitive, once the FSR
values for individual fragments have been determined
the process is much the same as previously described.
In other words, although the coarser fragment size (com-
pared to shading each sample point individually) causes
sampler fragments to be grouped together to be shaded,
in a way that can also cover sample points which may
not actually be covered by the primitive being shaded,
the shading results 510 and 514 are applied only at the
sample positions known to be covered. This means, few-
er task instances need to be processed to achieve the
shading output, leading to greater processing efficiency.
[0065] However, it can be observed that in Fig. 3 the
eight blocks contain fifteen 'empty’ or ’helper’ task in-
stances out of a total of 32 task instances, whilst in Fig.
4 there are eight helper task instances out of a total of
16 (as indicated by the dashed boxes). In other words,
the fraction of helper tasks in the task instance pool has
risen from Fig. 3 to Fig. 4. This apparent decrease in
efficiency can be more than counteracted by the fact that
each (useful) task instance processed contributes to
shading more than one sampler fragment, meaning the
system is still more efficient in terms of processing the
incoming work more quickly. However, considering the
system is processing very large numbers of primitives,
this increase in helper task instance usage has been
identified as an opportunity to make further efficiency
savings. In particular, the issue becomes even more sig-
nificant when considering the situation where coarser
FSR rates are used. In Fig. 5A, microtiles 508, and 508
are the only microtiles associated with an FSR value of
4x4 rather than 2x2. Each of those microtiles, if they had
an FSRvalue of 2x2, would have generated four fragment
task instances, and thus each would have created one
block of fragment task instances without any helper task
instances. In contrast, as shown in Fig. 5B, each of those
microtiles actually creates one fragment task instance,
and thus one block of fragment task instances with three
helper task instances. So, these blocks contain only one
quarter 'useful’ work compared to being completely 'use-
ful’ work if they had been processed at an FSR value of
2x2.

[0066] In other words, at an FSR value of 1x1, a 4x4
sample microtile contains up to 16 task instances ('up to’
because not every sample position is necessarily cov-
ered by a primitive) from which to construct the instance
blocks. In contrast, at an FSR value of 2x2 there are only
up to 4 task instances and at an FSR value of 4x4 there
can only be one task instance. So, as the fragments get
coarser, there are fewer fragments per microtile, and
therefore fewer task instances to gather from the microtile
into an instance block. This issue becomes further mag-
nified when anti-aliasing is taken into account. For ex-

10

15

20

25

30

35

40

45

50

55

10

ample, at an FSR value of 2x2 with a 4x anti-aliasing rate
(i.e. doubling the number of sampler fragments in both
the height and width directions) a microtile would again
only include one fragment and thus one task instance.
Since both the FSR value and anti-aliasing can affect the
number of samples required per pixel, for simplicity the
examples discussed below are assumed to have no anti-
aliasing. The skilled person will readily understand that
the anti-aliasing setting, in the absence of FSR, does not
cause the issue of reduced numbers of task instances
per microtile. The skilled person will also readily under-
stand how anti-aliasing can affect the number of samples
per task instance, and thus the number of task instances
in a microtile, for FSR values greater than 1x1.

[0067] To address the issue of reduced task instances
per microtile, it is worth first further understanding the
formation of the instance blocks from the microtiles in
greater detail. These instance blocks may also be known
or referred to as ‘quad-fragments’, due to the fact that
they relate to four neighbouring fragments - i.e. they re-
late to a group of 2x2 adjacent fragments. In any case,
part of the reason it is beneficial to form the instance
blocks from groups of 2x2 adjacent instances is to assist
with performing certain calculations during shading. For
example, it is often necessary to compute a delta value
for a parameter, be that a difference or gradient for the
parameter, at the particular position of a fragment (e.g.
perhaps a depth gradient when mapping a texture) and
such deltas cannot be determined from the information
at asingle location. If each task instance were processed
totally independently, computing a delta would require
retrieving additional information about other positions
whilst processing the task instance (which would incur
processing delay), or require including such information
in the original task instance (which would increase the
size of every task instance, and thus the amount of in-
formation being transferred through the system). How-
ever, by grouping and processing blocks of adjacent in-
stances together, the information about surrounding po-
sitions becomes readily accessible from the other in-
stances in the block, and therefore the computation of
deltas becomes more efficient. When there are not
enough adjacent instances to fill an instance block, help-
er instances can be created containing information to as-
sist in the computation of the deltas. Of course, SIMD
processors are often able to process more than four in-
stances of a task in parallel, and so the instance blocks
may be further grouped together into larger shading tasks
that process multiple instance blocks (and thus task in-
stances from multiple instance blocks) in parallel. The
further grouping of instance blocks into larger shading
tasks may be based, at least in part, on whether the
blocks relate to the same fragment shader (i.e. so the
instance blocks within a given larger shading task all re-
late to the same fragment shader). Some systems may
apply further criteria for the grouping, based upon some
other state associated with the instance blocks (e.g. per-
haps derived from state information associated with the

19 EP 4 195 156 A1 20

primitive blocks from which the task instances in the in-
stance block are derived). In such situations, it will be
appreciated that there may be multiple larger tasks cre-
ated that relate to the same fragment shader but differ in
respect to the other state. In other words, whilst all in-
stances within a larger shading task may relate to the
same fragment shader, that does not preclude there be-
ing other larger shading tasks that relate to that same
fragment shader. In any case, this further grouping does
not affect the delta computations, as only whole blocks
are combined into the larger tasks.

[0068] To make this approach possible in a pipelined
system, it is efficient to supply task instances to be proc-
essed in a manner that collects instances of a same task
(i.e. instances of a same fragment shader operating on
different shader fragments) together. This is part of the
reason why it is beneficial for the sampling unit 117 to
issue microtiles to the texturing/ shading unit 120 - it col-
lects together task instances in a way that preserves the
spatial arrangement of the fragments. This then makes
it possible to subsequently group together adjacent task
instances into the instance blocks.

[0069] It should be noted that whilst Figs 3, 4 & 5A
illustrate the microtile coverage of a single primitive, in
practice a microtile may contain sampling results from
different primitives (i.e. because different primitives are
visible in different areas of the rendering space corre-
sponding to the microtile). If the different primitives re-
quire the same fragment shader, then in some implemen-
tations the samples may be collected into the same in-
stance block. However, if the different primitives require
different fragment shaders then, when the microtile is
processed to create the instance blocks, the instance
block formation may take this into account by separating
sampler fragments relating to primitives with different
fragment shaders into different instance blocks. In other
words, even though the microtiles may contain sampler
fragments relating to different fragment shaders, the in-
stance blocks created will each relate to a single fragment
shader. This may result in more instance blocks being
created from the microtile than if e.g. all the sampling
positions within the microtile are covered by the same
primitive, with the same fragment shader.

[0070] For example, a microtile measuring 4x4 sam-
pling points, entirely covered by a single primitive, would
lead to 4 2x2 instance blocks (for an FSR value of 1x1).
If the microtile was exactly half-covered (e.g. the left half)
by a first primitive and half covered (e.g. the right half)
by a second primitive requiring a different fragment shad-
er, then 4 2x2 instance blocks would also result (as the
instance blocks would correspond to top-left, top-right,
bottom-left and bottom-right quarters of the microtile, and
each quarter is only covered by one primitive). However,
if the first primitive covered all but one sample point in
the microtile, with the second primitive covering the final
one sample point, this would lead to 5 2x2 microtiles -
each quarter solely covered by the first primitive would
lead to one instance block, whilst the remaining quarter

10

15

20

25

30

35

40

45

50

55

1"

would generate two instance blocks, one for the samples
from the first primitive and one for the sample from the
second primitive (e.g. along with three helper instances).
[0071] One aspect of the present approach relates to
identifying that the system of creating instance blocks
can be further extended, to reduce the number of helper
instances required, and thus increase the overall efficien-
¢y, when processing coarser fragments. By creating in-
stance blocks from instances derived from not just a sin-
gle microtile, there is greater opportunity to fillan instance
block with "useful’ work.

[0072] Fig. 6 illustrates an example method according
to this approach. The method could be performed in a
rendering phase of a tile based system as discussed
above.

[0073] At step S602, data describing a primitive is re-
ceived. For ease of understanding only one primitive is
considered, but it will be understood that the primitive
could be received as one of a plurality of primitives, which
could each be processed in a similar manner. The data
could be received by the rendering logic in the form of a
primitive block, retrieved from a memory separate to the
rendering logic. Data is also received describing one or
more fragment shading rates associated with the primi-
tive. As explained above, that data may be received in
the same way as the data describing the primitive (e.g.
as part of the information in a primitive block) or may be
provided separately (e.g. as an FSR attachment).
[0074] At step S603, shader fragment task instances
to be shaded are identified from the primitives indicated
in the data received at step S602. As shown in Fig. 6,
step S603 can be further divided into three steps S604,
S606 and S608.

[0075] Atstep S604, the results of sampling are stored
in a buffer (e.g. within the sampling unit). This can occur
as part of a rasterisation process, in which the primitives
are sampled and optionally hidden surface removal is
performed. The buffer corresponds to a region of the ren-
dering space, forexample atile in the tile-based approach
discussed above, and is used to store the results of sam-
pling before shading and texturing. The sampling results
can be sampler fragments for the primitive, each sampler
fragment corresponding to a sample position within the
render space is overlapped by the primitive. Considering
multiple primitives, each primitive will be subject to the
sampling process and, as such, the buffer may store sam-
pling results from multiple primitives.

[0076] At step S606 the buffer is parsed to produce
microtiles. This is discussed in greater detail below, but
may be part of flushing a buffer so it may be re-used.
However, in summary, each microtile output from this
step corresponds to an array of sample positions within
the region. According to this aspect, each microtile con-
tains samples to be shaded with a common fragment
shading rate - that is, within one microtile the same frag-
ment shading rate is to be used for all samples contained
therein, but another microtile (potentially corresponding
to the same overall area of the rendering space as the

21 EP 4 195 156 A1 22

former microtile) may contain samples that are all to be
shaded with a different fragment shading rate.

[0077] At step S608, the microtiles are analysed to
identify shader fragment task instances to be shaded.
Again, this is discussed in greater detail below. However,
in summary, the number of shader fragment task instanc-
es in a microtile can vary. A shader fragment, to be shad-
ed as a single shader fragment task instance, may cover
multiple sampler fragments. As such a microtile covering
16 (i.e. 4x4) sampler fragments from a single primitive
may contain fewer than 16 shader fragments. For exam-
ple, if the FSR value for the sampler fragments in the
microtile is 4x4, the result of analysing the microtile will
be that only one shader fragment, and thus a single shad-
er fragment task instance, is identified. In other circum-
stances, for example if the microtile contains sampler
fragments from different primitives, there may be multiple
shader fragments and they may require different frag-
ment shader programs.

[0078] Atstep S609, fragment task instances requiring
a common fragment shader program are combined into
a shading task. As explained above, some systems may
apply further criteria to the step of combining task instanc-
es into a shading task, e.g. based upon some other state
associated with the instances. In other words, this step
does notrequire that allinstances with the same fragment
shader are combined into the same shading task. In-
stead, it should be understood that all the instances con-
tained in a given shading task produced by this step relate
to the same the same fragment shader, but that there
may be multiple shading tasks that relate to the same
fragment shader. In any case, as shown in Fig. 6, step
S609can be performed in two steps S610 and S612.
[0079] Atstep S610, the shaderfragmenttaskinstanc-
es are arranged into blocks. As explained above, this
arrangement of instances of a particular type of task (e.g.
requiring a particular fragment shader) helps with
processing the task instances in parallel, such as in a
SIMD processor. The block collects instances of tasks
of the same type, which can then be processed together.
In one approach, the shader fragment task instances in
a given block would be derived from the same microtile
but as discussed above, according to one aspect of the
present approach, whilst that may still occur the system
is not limited to creating blocks in that way - in other
words, at least one block of the shader fragment task
instances so created may comprise shader fragmenttask
instances from more than one microtile (with those dif-
ferent microtiles being derived from the same parsing
step, i.e. from different parts of the same buffer content).
[0080] At step S612, the blocks of shader fragment
task instances may then be gathered into shader tasks.
That is, blocks of shader fragment task instances which
relate to the same fragment shader can be gathered to-
gether in a task to be processed in parallel. The blocks
gathered into the same task may be derived from the
same primitive or may be derived from different primitives
which call the same fragment shader. As explained

10

15

20

25

30

35

40

45

50

55

12

above, multiple tasks may be created that relate to the
same fragment shader if other criteria are also used to
determine which blocks to include in the same task.
[0081] Finally, at step S614, the shader tasks are proc-
essed, e.g. by texturing/ shading unit 120 in the example
system described, to produce shaded fragments. In other
words, the blocks of shader fragment task instances with-
in a task are shaded in parallel to produce shaded frag-
ments.

[0082] However, forming instance blocks by randomly
combining fragment shader task instances from different
microtiles (with the same FSR value) into blocks is not
the most efficient option.

[0083] Rather, to further increase the opportunity for
fragmentinstances from different microtiles to be assem-
bled in the same block in a way that facilitates the delta
calculations during shading and texturing, the microtiles
can be issued in an order that preserves the locality of
the microtiles, such as a Z-order or Morton order. Fig. 7
illustrates an example of such an order.

[0084] Fig. 7 schematicallyillustrates a buffer 702 (e.g.
maintained by the sampling unit 117) corresponding to
at least a part of the rendering space. For example, in
the tile based system described above, the buffer 702
can correspond to a tile. It is noted that the buffer 702 is,
in practice, an area of memory, and may store values in
a different way to the 2D layout shown in Fig. 7, which
depicts the buffer in a manner that assists with under-
standing.

[0085] The example buffer 702 is shown as being di-
vided into an array of 4x4 (i.e. 16) sections 704, each
outlined in Fig. 7 with a thick dashed line, from which
microtiles are created and issued to the texturing/ shad-
ing unit 120. Each section 704 can store the results of
sampling at an array of sampling positions -i.e. a sampler
fragment 706 corresponding to each sampling position,
outlined by thin continuous lines in Fig. 7.

[0086] In the depicted example, a section 704 corre-
sponds to an array of 4x4 (i.e. 16) sampling positions
with corresponding sampler fragments 706. However, it
should be noted that a sampler fragment 706 is not nec-
essarily present for each sampling position - i.e. there
can be sampling positions which are not overlapped by
any primitives and therefore for which no sampler frag-
ments are generated. As such each section may contain
differing numbers of sampler fragments 706, up to a max-
imum being the number of sampling positions corre-
sponding to the section (16 in the example of Fig. 7).
[0087] A microtile is only created for a section 704 con-
taining sampler fragments 706. Then, according to the
present aspect, a microtile is issued for every FSR value
associated with those sampler fragments 706. For ex-
ample, if all the sampler fragments 706 have the same
FSR value, then only one microtile will be issued, but if
different sampler fragments 706 have different FSR val-
ues then multiple microtiles will be issued, one for each
different FSR value. In this way, should primitives con-
tribute sampler fragments 706 with different FSR values

23 EP 4 195 156 A1 24

to a particular section 704 of the buffer 702, the sampler
fragments within that section 704 will be separated into
different microtiles. As a result, each microtile itself com-
prises an array of (up to) 4x4 (i.e. 16) sampler fragments
with a single FSR value (but potentially relating to differ-
ent fragment shaders, as discussed above).

[0088] The arrows in Fig. 7 illustrate an example order
in which microtiles generated from the sections 704 can
be issued for shading. As mentioned above, this is a type
of Morton order or Z-order, which preserves the locality
of the microtiles. However, similar locality preserving or-
ders could be used in other examples (e.g. using an N-
order). By following such an order for each FSR value in
turn, the locality of microtiles with the same FSR value
is maintained, facilitating the possibility that task instanc-
es from different microtiles can be gathered together into
instance blocks.

[0089] Fig 8 shows an illustrative method for generat-
ing the microtiles. That is, Fig. 8 is an example method
for performing step S606 of Fig. 6.

[0090] Fig. 8 starts at S802, when it is time to flush the
buffer 702. The buffer is then traversed, or parsed, to
produce the microtiles. An efficient way to do this in terms
of memory access, in the tile-based system described
above, is to consider the buffer primitive block by primitive
block (although this is only an example, and need not be
the case - instead sampler fragments may be collected
into microtiles without regard to the primitive blocks).
Therefore the first primitive block associated with the tile
is identified, S804, for example from a control list for the
tile associated with the buffer 702.

[0091] A first pass is then begun, in which the buffer
702 is traversed to identify sampler fragments corre-
sponding to primitives stored in that primitive block. When
a first sampler fragment corresponding to that primitive
block is identified, S806, the FSR value for that sampler
fragment is determined and the pass continues, S808,
constrained to finding sampler fragments with that same
first FSR value (and still from the same primitive block),
and any identified sampler fragments are issued as mi-
crotiles. In some cases, the process of identifying sample
fragments and issuing microtiles, corresponding to steps
S806 and S808, may be further divided into a two stage
process in which a relevant set of primitives in the buffer
is first identified (e.g. a group of primitives from the same
primitive block) and then relevant (i.e. with the same FSR
value) sampler fragments for that set of primitives are
identified and issued as microtiles. This can reduce the
total number of primitives contributing to a particular mi-
crotile, which in turn can reduce the number of different
fragment shaders the contents of a given microtile might
relate to. This can therefore assist with the later grouping
of the shader fragments.

[0092] Once the pass is complete, and assuming at
least one sampler fragment was identified, S810-"Yes",
the buffer is scanned again looking for further sampler
fragments corresponding to primitives from the first prim-
itive block. In this scan, the sampler fragments from the

10

15

20

25

30

35

40

45

50

55

13

previous scan are no longer considered ‘valid’ and so are
not re-identified.

[0093] As long as such further sampler fragments are
present, the process will continue to iterate through steps
S806 to S810 to perform repeated scans of the buffer.
In each iteration the FSR value of the first valid sample
identified from the relevant primitive block will be used
to constrain the rest of that pass, until no more samples
corresponding to that primitive block are identified.
[0094] Inthatcase, S810-"No", ifthere is another prim-
itive block associated with the tile, S812-"Yes", the next
primitive block will be selected, S814, and the process
will again iterate through steps S806 to S810 for that next
primitive block. Eventually, when there are no more prim-
itive blocks left, S812-"No", the flush of the buffer is com-
plete, S816.

[0095] As such, the result of flushing the buffer 702 is
a stream of microtiles. In the example described, the re-
sult of the constraint to perform each pass for a particular
FSR value means that microtiles of the same FSR value
are issued together (amongst the microtiles relating to
each particular primitive block, if the search was also
constrained to be performed on a per-primitive block ba-
sis). These microtiles are then received by the texturing/
shading unit 120 in the same order. Fig. 9 shows an ex-
ample method of how those microtiles are processed by
the texturing/ shading unit 120 to create blocks of shader
fragment task instances, representing steps S608 and
S610 of Fig. 6 in greater detail.

[0096] The method of Fig. 9 starts with receiving the
microtiles at S902. For the purposes of this example, it
is assumed that the received microtiles have the same
FSR value, and the method of Fig. 9 is shown as a con-
tinuous process, although it will be appreciated that the
process will come to an end should there be no more
microtiles to process (e.g. because of a change of FSR
value, in which case the method of Fig. 9 can be repeated
for that batch, or because all available microtiles have
been processed).

[0097] The next step is to analyse a microtile (as in
S608) to identifying shader fragment task instances,
S904. For the purposes of the first iteration it is assumed
that the microtile has a different FSR value to the previ-
ously processed microtile. Using the FSR value associ-
ated with the microtile, and the anti-aliasing setting when
applicable, the texturing/ shading unit 120 can group the
sampler fragments to create shader fragments of the ap-
propriate size, from which the shader fragment task in-
stances are then generated. Where a shader fragment
would otherwise only cover empty sample positions (i.e.
where no sampler fragments were present), a shader
fragment is not generated.

[0098] The shader fragment task instances are then
grouped (as in S610) into one or more (complete or in-
complete) shader fragment instance blocks, S906. In an
example, each block is a block of 2x2 (i.e. 4) task instanc-
es. The number of blocks will depend on the number of
shader fragment task instances identified in S904, which

25 EP 4 195 156 A1 26

in turn will depend upon the number of sampler fragments
and the FSR value associated with them (and thus the
microtile).

[0099] It is possible that processing a single microtile
may produce one or more complete shader fragment in-
stance blocks (if the microtile is entirely covered by only
a few primitives and the FSR value is low - e.g. an FSR
value of 1x1 could produce four fragment task instances
from a 4x4 microtile covered by a single primitive), and
any complete blocks can then be issued for processing.
However, in other situations it may be impossible for one
microtile to produce enough task instances arranged in
the appropriate way to fill a block - e.g. a 4x4 microtile
with an FSR value of 2x4, even if entirely covered by a
single primitive, will only produce two task instances; and
the same 4x4 microtile with an FSR value of 1x4 will
produce four task instances but not arranged in a 2x2
block. In such cases it may be possible to complete the
block with task instances from the next microtile(s), so it
cannot yet be determined whether to issue the incom-
plete block.

[0100] Figs 10 and 11 illustrate this point visually. In
Fig. 10, four microtiles 1004 being processed with an
FSR value of 2x4 are shown. The order in which they are
issued (i.e. read out from the buffer 702) is illustrated by
the arrows. Dashed lines are used to indicate a group of
sampler fragments 1006 that correspond to a shader
fragment 1008. The shader fragments are filled with dif-
ferent patterns to indicate the different shader fragment
instance blocks that may be formed. In this case, the four
shader fragments from the two leftmost microtiles can
form a 2x2 block (indicated by a fill pattern with lines
sloping up to the right), whilst the four shader fragments
from the two rightmost microtiles can form another 2x2
block (indicated by a fill pattern with lines sloping down
to the right). As such, after processing the first (i.e. top
left) microtile 1004 (and assuming all shader fragments
are present and relate to the same fragment shader),
there will be one incomplete block; processing the sec-
ond tile will start a new block, whilst it remains possible
to complete the previous block; processing the third tile
will complete the first block; and processing the fourth
microtile will complete the second block.

[0101] Similarly, in Fig. 11, four microtiles 1104 are be-
ing processed with an FSR value of 1x4. Again, dashed
lines are used to indicate a group of sampler fragments
1106 that correspond to a shader fragment 1108. The
shader fragments are filled with different patterns to in-
dicate the different shader fragment instance blocks that
may be formed. In this case, the two left-most shader
fragments in each of the two leftmost microtiles can form
a 2x2 block (indicated by a fill pattern with lines sloping
up to the right), the two right-most shader fragments in
each of the two leftmost microtiles can form a 2x2 block
(indicated by a fill pattern with vertical lines), the two left-
most shader fragments in each of the two rightmost mi-
crotiles can form a 2x2 block (indicated by a fill pattern
with lines sloping down to the right), the two rightmost

10

15

20

25

30

35

40

45

50

55

14

shader fragments in each of the two rightmost microtiles
can form another 2x2 block (indicated by a fill pattern
with crossed lines). As such, after processing the first
(i.e. top left) microtile 1104 (and assuming all shader frag-
ments are present and relate to the same fragment shad-
er), there will be two incomplete blocks; processing the
second tile will start two further blocks, whilst it remains
possible to complete the previous blocks; processing the
third tile will complete the first two blocks; and processing
the fourth microtile will complete the remaining two
blocks.

[0102] So, returning to Fig. 9, at step S906 any com-
plete shader fragmentinstance blocks can be issued, but
any incomplete blocks that may be completed by subse-
quent shader fragments from subsequent microtiles may
be kept pending. Of course, itis still possible for situations
to occur in which some blocks cannot be completed, for
example if not all possible shader fragments are present
in the relevant microtiles (i.e. because the relevant sam-
ple points are not covered by a relevant primitive). As
such, it remains possible for the system to issue incom-
plete blocks (with helper instances) in these circumstanc-
es. But by enabling the construction of shader fragment
instance blocks the frequency of such scenarios is much
reduced compared to a situation in which only task in-
stances from a single microtile can be used to construct
a shader fragment instance block.

[0103] The method then moves on to analyse the next
microtile, S908, and the shader fragment task instances
from that microtile are identified in a similar way to step
S904. The method then moves to step S910, which is
similar to step S906 except for the fact that there may
already be incomplete blocks. Thus, in this step, shader
fragmentinstance blocks are created from both the newly
identified task instances and the incomplete blocks from
the previous step. In some cases it may be possible to
add newly identified task instances to a previously in-
complete block which may complete the block or may
not. For example, in the case of 4x4 microtiles and a 4x4
FSR value, each microtile will only create one shader
fragment, and - assuming all shader fragments relate to
the same fragment shader - the first microtile in a se-
quence will start a new incomplete block, the second and
third microtiles will each add a further task instance to
the incomplete block without completing it, and the fourth
microtile will add the final fourth task instance that com-
pletes the block. In other cases, there may be existing
incomplete blocks thatcannot be added to, and additional
incomplete blocks are created (the situation, forexample,
when processing the second microtile in each of Figs 10
and 11). In still other cases, there may simply be no in-
complete blocks from the previous step. In any case, any
completed blocks are issued, as are any incomplete
blocks that will not be completed (as discussed above,
e.g. because of empty/missing shader fragments due to
lack of primitive coverage), whilst any incomplete blocks
that may still be completed are kept pending.

[0104] The method then returns to step S908, cycling

27 EP 4 195 156 A1 28

through steps S908 and S916 until all the microtiles are
processed (at which point any remaining incomplete
blocks may also be issued). As mentioned above, this
may be because the next microtiles relate to a different
FSR value, in which case the method can start again,
separately, for those microtiles.

[0105] As a result, the texturing/ shading unit 120 can
group shader fragments into shader fragment instance
blocks containing fewer helper instances. As these
blocks are then grouped to form larger tasks to be proc-
essed by the texturing/ shading unit 120 (e.g. in a SIMD
processor), this allows more useful work to be performed
in parallel and thus contributes to a faster and more ef-
ficient processing.

[0106] Another way of developing the instance block
approach to shading, in the context of FSR, is to allow
instance blocks with different FSR values to be combined
into the same larger task.

[0107] In a system that doesn’'t account for FSR, a
SIMD shading processor might expect not only that the
task instances within an instance block would relate to a
single fragment size, but also that each instance block
would relate to fragments of the same size. That is, in
the absence of FSR, the fragment size over a render
would be invariant (although it might vary from render to
render, e.g. subject to anti-aliasing) and so it is relatively
easy to combine instance blocks into larger tasks in a
way that efficiently uses the full width of the SIMD proc-
essor. In that case, shading processes such as interpo-
lation, which rely on the sampling pattern used to create
the fragments, can be performed easily and reliably. This
can be done, for example, by providing information de-
fining a single sampling pattern, used by all the instance
blocks collected into the task, as part of the overall task
information. That information can then be used for all the
fragments being processed in parallel. However, intro-
ducing FSR complicates this.

[0108] In one approach, only instance blocks relating
to the same FSR value might be combined into larger
tasks and thus runin parallel. This approach is facilitated
by the example method of Fig. 8, which creates microtiles
from the buffer on an FSR-by-FSR basis, which in turn
leads to shader fragment instance blocks being created
in batches having the same FSR value, which in turn
makes it easy to gather shader fragment instance blocks
having the same FSR value into a task. This has the
benefit of requiring relatively little change to how the tasks
are submitted to the processor, as each fragment within
the collected blocks would be the same size, similarto
the conventional system. This means operations that rely
on the fragment size or sampling pattern, such as inter-
polation, can still be handled by providing information
defining a single sampling pattern, used by all the in-
stance blocks collected into the task, as part of the overall
task information. However, the drawback of this ap-
proach is that it becomes more difficult to collect enough
instance blocks together to keep the processor efficiently
busy. That is, even though the example of Fig. 8 leads

10

15

20

25

30

35

40

45

50

55

15

to shader fragment instance blocks being created in
batches having the same FSR value, there may still be
a relatively small number of shader fragment instance
blocks with a particular FSR value (e.g. compared to a
situation where there is no variable FSR/ all fragments
are the same size). It may therefore be difficult to create
full tasks, or it may at least be more frequent that a task
cannot be completely filled (i.e. to take advantage of the
processor parallelism to the greatest extent). In other
words, it is more efficient to submit a single task com-
posed of four instance blocks than to submit two tasks
each composed of two instance blocks, but the latter sit-
uation becomes more likely if there are multiple FSR val-
ues and blocks with different FSR values must be kept
in separate tasks.

[0109] Therefore, another approach is to create tasks
that include task instances relating to different fragment
sizes. This can be done by grouping instance blocks re-
lating to different fragment sizes into the same task for
processing. However, this then impacts processes such
as the aforementioned interpolation, which rely on the
fragment size and/or sampling pattern, as now the in-
stances within a task can be of different sizes with differ-
ent sampling patterns. Therefore, the present approach
provides the relevant information (e.g. the FSR value,
from which the sampling pattern and fragment size can
be derived) in a way that enables each task instance to
be processed irrespective of the fragment size. In partic-
ular, the relevant information can be provided at a per
instance block granularity.

[0110] Itmightbe considered thatthe greatestflexibility
would be achieved by allowing fragments of different siz-
es to be included within an instance block, and then pro-
viding the relevant information about sample size and
sampling pattern at the task instance granularity. How-
ever, defining the information at a higher granularity has
drawbacks. In particular, there is a data (and thus band-
width) overhead, because there is extra data to be trans-
mitted as part of every task, and thus the size of each
task is increased. This can be a significant overhead for
large SIMD widths, and can be particularly significant in
devices such as mobile devices where memory and
bandwidth are ata premium. Moreover, allowing different
fragment sizes to be present within an instance block
also complicates issues such as the delta calculations
mentioned above. For these reasons, a preferred imple-
mentation is to provide the sampling information at a per
instance block granularity, with the task instances within
agiven instance block all having the same fragment size.
This enables the creation of larger tasks (i.e. combining
more instance blocks together) whilst minimising the ex-
tra data overhead and avoiding the need for more exten-
sive changes to existing systems. This enables the
processing of fragment task instances associated with
differentfragmentshading rates in parallel using the com-
mon shader program, i.e.. they may be processed simul-
taneously in the SIMD processor. That is, fragment task
instances associated with different fragment shading

29 EP 4 195 156 A1 30

rates may be present in different lanes of the SIMD proc-
essor.

[0111] Fig. 12 illustrates a method of combining frag-
ment shader instance blocks, which each individually
contain tasks related to a particular FSR value, into a
task that includes task instances relating to different frag-
ment sizes.

[0112] TheFig. 12 method starts, S1202, from the point
atwhich a buffer (e.g. buffer 704) is parsed into microtiles
to be sent to the texturing/ shading unit 120, which is
equivalent to sub-step S606 of step S603 in Fig. 6. Fig.
8 presented one example for implementing this parsing
in more detail. For the purposes of this example, it suf-
fices to note that, in comparison to the Fig. 8 example, it
is of less benefit to perform different scans of the buffer
for different FSR values. That is because the separate
passes of Fig. 8 contribute to the creation of fragment
instance blocks in batches, as explained above, but that
is not so important if the eventual tasks can be composed
of blocks related to different FSR values. In addition, the
separate FSR passes can lead to sampler fragments re-
lated to the same primitive being separated in the stream
of issued microtiles, making it less likely that the shader
fragments, created from those sampler fragments later
in the pipeline, can be collected into the same task. So,
by parsing the buffer without regard to FSR value, sam-
pler fragments related to the same primitive are more
likely to be grouped together in the same microtile, mak-
ing itmore likely the shader fragments derived from those
samples can be grouped (via their corresponding shader
fragment task instance blocks) into the same task. That
is, this contributes to creating better-filled tasks.

[0113] The produced microtiles are sent to the textur-
ing/ shading unit 120, where they are analysed to identify
shader fragment task instances which are then arranged
into blocks, S1204. This is equivalent to steps S608 (a
sub-step of step S603) and S610 (a sub-step of step
S609) in Fig. 6, for which Fig. 9 presented one example
implementation in more detail. For the purposes of this
example, it suffices to note that an effect of having mul-
tiple FSR values in the same microtile is that shader frag-
ments of different sizes (i.e. relating to different FSR val-
ues) may be identified from the same microtile. This in
turn may make itdesirable to make a larger memory/buff-
er provision at this step, to allow more shader fragment
instance blocks to be kept pending, as it may be expected
that a microtile will contain shader fragments that would
be collected into different shader fragment instance
blocks for different FSR values (whilst maintaining the
relationship that one shaderfragmentinstance block con-
tains shader fragment task instances relating to one frag-
ment shader). Fig. 13 illustrates this, showing a microtile
1302 containing sampler fragments with an FSR value
of 2x4 (shaded with lines sloping down to the right) and
also with an FSR value of 1x4 (shaded with vertical lines).
The figure shows how the shader fragments obtained
from microtile 1302 are equivalent to those obtained from
two single-FSR microtiles 1304 and 1306, on which are

10

15

20

25

30

35

40

45

50

55

16

illustrated how the extents of the obtained shader frag-
ments compare to the extents of the sample fragments.
The resulting shader fragments thus relate to different
FSR values and will contribute to different shader frag-
ment instance blocks, which will need to created/filled in
parallel. In contrast, in the situation that the incoming
microtiles of different FSR value are separated into
batches (i.e. in a temporal sense) due to the buffer flush
being performed in per-FSR passes, it is not necessary
to maintain partially filled shader fragment instance
blocks for different FSR values. Rather, a change in the
FSR value of incoming microtiles would instigate a flush
of any partially filed shader fragment instance block(s)
for the previous FSR value.

[0114] As a result, following step S1204, the shader
fragment task instances have been collected into shader
fragment instance blocks but, in contrast to the method
of Fig. 9, the blocks are not necessarily issued in groups
having the same FSR value but are more mixed together.
Next, at step S1206, those blocks can be collected such
that blocks (and thus shader fragment task instances)
requiring a common fragment shader program are com-
bined into a shading task. As previously explained, other
criteria (e.g. the sharing of some other state) may addi-
tionally be applied to determine which blocks to group
into a larger shading task. As also mentioned above, be-
cause the method allows for blocks relating to different
FSR values (but the same shader) to be combined into
a shader task, the most efficient way of providing the
relevantinformation about sample size and sampling pat-
tern is to maintain thatinformation at a per instance block
granularity in the created shader task. This allows for the
shader task to then be processed, with the individual
blocks being handled in much the same way as previ-
ously, particularly with respect to the calculation of delta
values between task instances, whilst also allowing
blocks relating to the different FSR values to be proc-
essed in parallel.

[0115] Fig. 14 shows a computer system in which the
graphics processing systems described herein may be
implemented. The computer system comprises a CPU
1402, a GPU 1404, a memory 1406 and other devices
1414, such as a display 1416, speakers 1418 and a cam-
era 1422. One or more processing blocks 1410 (e.g. cor-
responding to processing blocks 104 and 106) can im-
plemented onthe GPU 1404, as well as aNeural Network
Accelerator (NNA) 1411. In other examples, the process-
ing block(s) 1410 may be implemented on the CPU 1402
or withinthe NNA 1411. The components of the computer
system can communicate with each other via a commu-
nications bus 1420. A store 1412 (corresponding to mem-
ory 102) is implemented as part of the memory 1406.
[0116] While Fig. 14 illustrates one implementation of
a graphics processing system, it will be understood that
a similar block diagram could be drawn for an artificial
intelligence accelerator system - for example, by replac-
ing either the CPU 1402 or the GPU 1404 with a Neural
Network Accelerator (NNA) 1411, or by adding the NNA

31 EP 4 195 156 A1 32

as a separate unit. In such cases, again, the processing
block(s) 1410 can be implemented in the NNA.

[0117] The graphics processing system of Fig. 1 is
shown as comprising a number of functional blocks. This
is schematic only and is not intended to define a strict
division between different logic elements of such entities.
Each functional block may be provided in any suitable
manner. It is to be understood that intermediate values
described herein as being formed by a graphics process-
ing system need not be physically generated by the
graphics processing system at any point and may merely
represent logical values which conveniently describe the
processing performed by the graphics processing sys-
tem between its input and output.

[0118] The graphics processing systems described
herein may be embodied in hardware on an integrated
circuit. The graphics processing systems described here-
in may be configured to perform any of the methods de-
scribed herein. Generally, any of the functions, methods,
techniques or components described above can be im-
plemented in software, firmware, hardware (e.g., fixed
logic circuitry), or any combination thereof. The terms
"module," "functionality," "component", "element”, "unit",
"block" and "logic" may be used herein to generally rep-
resent software, firmware, hardware, or any combination
thereof (the term "block" is also used to refer to a group
of gathered shader fragment task instances, and the dif-
ferent usages are apparent from the context). In the case
of a software implementation, the module, functionality,
component, element, unit, block or logic represents pro-
gram code that performs the specified tasks when exe-
cuted on a processor. The algorithms and methods de-
scribed herein could be performed by one or more proc-
essors executing code that causes the processor(s) to
perform the algorithms/methods. Examples of a compu-
ter-readable storage medium include a random-access
memory (RAM), read-only memory (ROM), an optical
disc, flash memory, hard disk memory, and other memory
devices that may use magnetic, optical, and other tech-
niques to store instructions or other data and that can be
accessed by a machine.

[0119] The terms computer program code and compu-
ter readable instructions as used herein refer to any kind
of executable code for processors, including code ex-
pressed in a machine language, an interpreted language
or a scripting language. Executable code includes binary
code, machine code, bytecode, code defining an inte-
grated circuit (such as a hardware description language
or netlist), and code expressed in a programming lan-
guage code such as C, Java or OpenCL. Executable
code may be, forexample, any kind of software, firmware,
script, module or library which, when suitably executed,
processed, interpreted, compiled, executed at a virtual
machine or other software environment, cause a proc-
essor of the computer system at which the executable
code is supported to perform the tasks specified by the
code.

[0120] A processor, computer, or computer system

10

15

20

25

30

35

40

45

50

55

17

may be any kind of device, machine or dedicated circuit,
or collection or portion thereof, with processing capability
such that it can execute instructions. A processor may
be or comprise any kind of general purpose or dedicated
processor, such as a CPU, GPU, NNA, System-on-chip,
state machine, media processor, an application-specific
integrated circuit (ASIC), a programmable logic array, a
field-programmable gate array (FPGA), or the like. A
computer or computer system may comprise one or more
processors.

[0121] Itisalsointended to encompass software which
defines a configuration of hardware as described herein,
such as HDL (hardware description language) software,
as is used for designing integrated circuits, or for config-
uring programmable chips, to carry out desired functions.
That s, there may be provided a computer readable stor-
age medium having encoded thereon computer readable
program code in the form of anintegrated circuit definition
dataset that when processed (i.e. run) in an integrated
circuit manufacturing system configures the system to
manufacture a graphics processing system configured
to perform any of the methods described herein, or to
manufacture a graphics processing system comprising
any apparatus described herein. An integrated circuitdef-
inition dataset may be, for example, an integrated circuit
description.

[0122] Therefore, there may be provided a method of
manufacturing, at an integrated circuit manufacturing
system, a graphics processing system as described
herein. Furthermore, there may be provided an integrat-
ed circuit definition dataset that, when processed in an
integrated circuit manufacturing system, causes the
method of manufacturing a graphics processing system
to be performed.

[0123] An integrated circuit definition dataset may be
in the form of computer code, for example as a netlist,
code for configuring a programmable chip, as a hardware
description language defining hardware suitable for man-
ufacture in an integrated circuit at any level, including as
register transfer level (RTL) code, as high-level circuit
representations such as Verilog or VHDL, and as low-
level circuit representations such as OASIS (RTM) and
GDSII. Higher level representations which logically de-
fine hardware suitable for manufacture in an integrated
circuit (such as RTL) may be processed at a computer
system configured for generating a manufacturing defi-
nition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements
and rules for combining those elements in orderto gen-
erate the manufacturing definition of an integrated circuit
so defined by the representation. As is typically the case
with software executing at a computer system so as to
define a machine, one or more intermediate user steps
(e.g. providing commands, variables etc.) may be re-
quired in order for a computer system configured for gen-
erating a manufacturing definition of an integrated circuit
to execute code defining an integrated circuit so as to
generate the manufacturing definition of that integrated

33 EP 4 195 156 A1 34

circuit.

[0124] An example of processing an integrated circuit
definition dataset at an integrated circuit manufacturing
system so as to configure the system to manufacture a
graphics processing system will now be described with
respect to Fig. 15.

[0125] Fig. 15 shows an example of an integrated cir-
cuit (IC) manufacturing system 1502 which is configured
to manufacture a graphics processing system as de-
scribed in any of the examples herein. In particular, the
IC manufacturing system 1502 comprises a layout
processing system 1504 and an integrated circuit gen-
eration system 1506. The IC manufacturing system 1502
is configured to receive an IC definition dataset (e.g. de-
fining a graphics processing system as described in any
of the examples herein), process the IC definition data-
set, and generate an IC according to the IC definition
dataset (e.g. which embodies a graphics processing sys-
tem as described in any of the examples herein). The
processing of the IC definition dataset configures the IC
manufacturing system 1502 to manufacture an integrat-
ed circuit embodying a graphics processing system as
described in any of the examples herein.

[0126] The layout processing system 1504 is config-
ured to receive and process the IC definition dataset to
determine a circuit layout. Methods of determining a cir-
cuit layout from an IC definition dataset are known in the
art, and for example may involve synthesising RTL code
to determine a gate level representation of a circuit to be
generated, e.g. in terms of logical components (e.g.
NAND, NOR, AND, OR, MUX and FLIP-FLOP compo-
nents). A circuit layout can be determined from the gate
level representation of the circuit by determining posi-
tional information for the logical components. This may
be done automatically or with user involvementin orderto
optimise the circuit layout. When the layout processing
system 1504 has determined the circuit layout it may out-
put a circuit layout definition to the IC generation system
1506. A circuit layout definition may be, for example, a
circuit layout description.

[0127] The IC generation system 1506 generates an
IC according to the circuit layout definition, as is known
in the art. For example, the IC generation system 1506
may implement a semiconductor device fabrication proc-
ess to generate the IC, which may involve a multiple-step
sequence of photo lithographic and chemical processing
steps during which electronic circuits are gradually cre-
ated on a wafer made of semiconducting material. The
circuitlayout definition may be in the form of a mask which
can be used in a lithographic process for generating an
IC according to the circuit definition. Alternatively, the
circuit layout definition provided to the IC generation sys-
tem 1506 may be in the form of computer-readable code
which the IC generation system 1506 can use to form a
suitable mask for use in generating an IC.

[0128] The different processes performed by the IC
manufacturing system 1502 may be implemented all in
one location, e.g. by one party. Alternatively, the IC man-

10

15

20

25

30

35

40

45

50

55

18

ufacturing system 1502 may be a distributed system such
that some of the processes may be performed at different
locations, and may be performed by different parties. For
example, some of the stages of: (i) synthesising RTL
code representing the IC definition dataset to form a gate
level representation of a circuit to be generated, (ii) gen-
erating a circuit layout based on the gate level represen-
tation, (iii) forming a mask in accordance with the circuit
layout, and (iv) fabricating an integrated circuit using the
mask, may be performed in different locations and/or by
different parties.

[0129] In other examples, processing of the integrated
circuit definition dataset at an integrated circuit manufac-
turing system may configure the system to manufacture
a graphics processing system without the IC definition
dataset being processed so as to determine a circuit lay-
out. For instance, an integrated circuit definition dataset
may define the configuration of a reconfigurable proces-
sor, such as an FPGA, and the processing of that dataset
may configure an IC manufacturing system to generate
a reconfigurable processor having that defined configu-
ration (e.g. by loading configuration data to the FPGA).
[0130] In some embodiments, an integrated circuit
manufacturing definition dataset, when processed in an
integrated circuit manufacturing system, may cause an
integrated circuit manufacturing systemtogenerate ade-
vice as described herein. For example, the configuration
of anintegrated circuit manufacturing system in the man-
ner described above with respect to Fig. 15 by an inte-
grated circuit manufacturing definition dataset may
cause a device as described herein to be manufactured.
[0131] In some examples, an integrated circuit defini-
tion dataset could include software which runs on hard-
ware defined at the dataset or in combination with hard-
ware defined at the dataset. In the example shown in Fig.
15, the IC generation system may further be configured
by an integrated circuit definition dataset to, on manu-
facturing an integrated circuit, load firmware onto that
integrated circuit in accordance with program code de-
fined at the integrated circuit definition dataset or other-
wise provide program code with the integrated circuit for
use with the integrated circuit.

[0132] The implementation of concepts set forth in this
application in devices, apparatus, modules, and/or sys-
tems (as well as in methods implemented herein) may
give rise to performance improvements when compared
with known implementations. The performance improve-
ments may include one or more of increased computa-
tional performance, reduced latency, increased through-
put, and/or reduced power consumption. During manu-
facture of such devices, apparatus, modules, and sys-
tems (e.g. in integrated circuits) performance improve-
ments can be traded-off against the physical implemen-
tation, thereby improving the method of manufacture. For
example, a performance improvement may be traded
against layout area, thereby matching the performance
of a known implementation but using less silicon. This
may be done, for example, by reusing functional blocks

35 EP 4 195 156 A1 36

in a serialised fashion or sharing functional blocks be-
tween elements of the devices, apparatus, modules
and/or systems. Conversely, concepts set forth in this
application that give rise to improvements in the physical
implementation of the devices, apparatus, modules, and
systems (such as reduced silicon area) may be traded
for improved performance. This may be done, for exam-
ple, by manufacturing multiple instances of a module
within a predefined area budget.

[0133] Theapplicantherebydisclosesinisolationeach
individual feature described herein and any combination
of two or more such features, to the extent that such
features or combinations are capable of being carried
out based on the present specification as a whole in the
light of the common general knowledge of a person
skilled in the art, irrespective of whether such features or
combinations of features solve any problems disclosed
herein. In view of the foregoing description it will be evi-
dent to a person skilled in the art that various modifica-
tions may be made within the scope of the invention.

Claims

1. Amethod of rendering, in arendering space, a scene
formed by primitives in a graphics processing sys-
tem, the method comprising:

a rendering phase comprising the steps of:

receiving (S602) data describing one or more
primitives and one or more associated fragment
shading rates to be used during rendering;
storing (S604) in a buffer sampler fragments for
the one or more primitives corresponding to
sample positions of the one or more primitives
within a region of the rendering space;

parsing (S606) the buffer to produce microtiles,
each microtile corresponding to an array of sam-
ple positions within the region and containing
sampler fragments from the one or more primi-
tives;

analysing (S608) the microtiles to identify shad-
er fragment task instances to be shaded,and
arranging (S610) the shader fragment task in-
stances into blocks, wherein at least one block
of shader fragment task instances comprises
shader fragment task instances from more than
one microtile; and

shading (S614) the blocks of shader fragment
task instances.

2. The method of claim 1, wherein:

the at least one block of shader fragment task
instances comprises shader fragment task in-
stances having the same fragment shading rate;
and optionally wherein the shader fragment task
instances arranged into a given block relate to

10

15

20

25

30

35

40

45

50

55

19

neighbouring shader fragments in the rendering
space, optionally a 2x2 block of shader fragment
ins the rendering space; and/or

shading comprises, for a shader fragment task
instance of the at least one block, calculating a
delta value for a parameter using information
about another one of the shader fragments that
corresponds to a shader fragment task instance
within the same block.

3. The method of any preceding claim, wherein:

analysing the microtiles comprises identifying
shader fragment task instances within a micro-
tile; and/or

parsing the buffer to produce microtiles compris-
es, for each one of a plurality of fragment shad-
ing ratesinturn, searching the bufferfor samples
associated with the one of the plurality of frag-
ment shading rates and outputting the associat-
ed microtiles.

4. The method of any preceding claim, wherein storing
in a buffer comprises:

performing hidden surface removal to identify
and not store one or more sampler fragments
within the rendering space that do not contribute
to the scene to be rendered; and/or

storing sampler fragments for a plurality of prim-
itives corresponding to the sample positions
within the region of the rendering space.

5. The method of any preceding claim, wherein the
method further comprises a geometry processing
phase before the rendering phase, and optionally
wherein the geometry processing phase comprises
transforming the primitives into the rendering space,
and storing data relating to the transformed primi-
tives, and/or determining and storing control stream
data indicating which primitives are relevant for ren-
dering different regions of the rendering space.

6. A graphics processing system configured to render
a scene formed by primitives, wherein the graphics
processing system comprises rendering logic con-
figured to:

receive data describing one or more primitives
and one or more associated fragment shading
rates to be used during rendering;

store, in a buffer, sampler fragments for the one
or more primitives corresponding to sample po-
sitions of the one or more primitives within a re-
gion of the rendering space;

parse the buffer to produce microtiles, each mi-
crotile corresponding to an array of sample po-
sitions within the region and containing sampler

7.

8.

10.

1.

37

fragments from the one or more primitives;
analyse the microtiles to identify shader frag-
ment task instances to be shaded, and
arrange the shader fragment task instances into
blocks, wherein atleastone block of shaderfrag-
menttask instances comprises shader fragment
task instances from more than one microtile; and
shade the blocks of shader fragment task in-
stances.

The graphics processing system of claim 6, wherein:

the atleast one block of fragment task instances
comprises fragment task instances having the
same fragment shading rate; and/or

the rendering logic configured to shade the
blocks of shader fragment task instances is fur-
ther configured, for a shader fragment task in-
stance of the at least one block, to calculate a
delta value for a parameter using information
about another one of the shader fragments that
corresponds to a shader fragment task instance
within the same block.

The graphics processing system of any one of claims
6 to 7, wherein:

the rendering logic configured to analyse the mi-
crotiles is further configured to identify fragment
task instances within a microtile; and/or

the renderinglogic configured to parse the buffer
to produce microtiles is further configured, for
each one of a plurality of fragment shading rates
in turn, search the buffer for samples associated
with the one of the plurality of fragment shading
rates and output the associated microtiles.

The graphics processing system of any one of claims
6 to 8, wherein the rendering logic configured to store
sampler fragments in a buffer is further configured
to perform hidden surface removal to identify and
not store one or more sampler fragments within the
rendering space that do not contribute to the scene
to be rendered.

The graphics processing system of any one of claims
6 to 9, further comprising geometry processing logic
configured to transform the primitives into the ren-
dering space, and store data relating to the trans-
formed primitives in a memory, and/or to determine
and store in amemory control stream data indicating
which primitives are relevant for rendering different
regions of the rendering space.

A method of manufacturing, using an integrated cir-
cuit manufacturing system, a graphics processing
system as claimed in any of claims 6 to 10.

10

15

20

25

30

35

40

45

50

55

20

EP 4 195 156 A1

12.

13.

14.

15.

38

Computer readable code configured to cause the
method of any of claims 1 to 5 or 11 to be performed
when the code is run.

A computerreadable storage medium having encod-
ed thereon the computer readable code of claim 12.

An integrated circuit definition dataset that, when
processed in an integrated circuit manufacturing
system, configures the integrated circuit manufac-
turing system to manufacture a graphics processing
system as claimed in any of claims 6 to 10.

An integrated circuit manufacturing system config-
ured to manufacture a graphics processing system
as claimed in any of claims 6 to 10.

EP 4 195 156 A1
100

2‘ 102

8

. Memory
Graphics
12271 Merrrjlolry 128
Q
Transformed
parameter Frame
memory buffer
~ A /\/1 26
124 Control
lists T
y
116
)
v
L] N Parameter
108 Geometry 114 fetch unit
] fetch unit 113 8 117
Tiling ~
szglct:lll/e u;|t Sampling unit
assembly HSR logic
logic
‘ ________
Yy : Attachment | q
F————— — FSR logic !|118
Transform | I~ FSR™ ™1 [CullClp L2 odt
logic ' logic | unit [
0 D 119 120
10973 111 112 A
11Q . _ _ Texturing/
Primitive Processing Logic Shading unit
Geometry Processing Logic Rendering Logic

(

104

FIG. 1

21

(

106

Geometry
Processing =
Phase

EP 4 195 156 A1

Fetch items of geometry

—~— 5202

A 4

Pre-process items of geometry

Store pre-processed items of geometry

—~— S206

h 4

Perform tiling to determine which tiles the items of
geometry are present within, thereby forming a control
list for each tile

—~— S208

Rendering ___
Phase

Store control lists

—~— S210

Receive control lists

Fetch identified items of geometry

h 4

Render the items of geometry by performing scan
conversion, hidden surface removal and texturing/
shading

L~ S216

Send rendered image values for storage in the frame
buffer

FIG. 2

22

EP 4 195 156 A1

ey

1444

ey

€ 12019

¢ X20Id

I %9019

0 %°0I1g

A

.

A

44

7
XA

L

9
30|19 M901d %9019 Mo0Id X90|g %901d X20|g X20|g

G

14

€

4

L

¥ 'Old

0

Y

%

v
LV

%

Hw L€

Hm_\m

lrv_\m

€ "Old

23

EP 4 195 156 A1

‘180G

\.mwom \mwom
| X2 dS4 Xy 4S54
juswiyoelly JUsSWyoely
N s s 1 quom
¢XZ dS4d ¢XZ yS4 PXp 454 PXy 4S4 .\
7 *b0g u e
2772 < T~ \zpog
Vs 77 N oxedsd A
£Q0G P iy N / e 20S
zdsd oxeusd \ ozusd \Cigoe oo | ./
%%0G
280G
¢XZ YS4 IXL o
S S4 Hmom
N\, swiyoeny JUsWyYoEnY
809
¢X¢C ¥S4

v$ "OId

24

EP 4 195 156 A1

143

olg

81G

cls 0Lg

L4

5
NN

o

%

[

N\

7%

oy L\ﬁ\m

7 7

\ v

N

L %9019
Xy 4S5S4

0 20
Xy 4S4d

G X20Ig
¢X¢ dS4

v %o0ld
¢X¢ "4S4

€ %209

¢X¢ "84

¢XC dS4

¢ 20|d | ¥o01d

¢Xc dS4

0 ¥o01d
¢XC dS4

gs "'Old

25

EP 4 195 156 A1

Receive data describing primitive(s
gp (s) N\ 5602
4 Store sampling results in buffer —_ S604
S603 — Parse buffer to produce microtiles —— S606

\ insta

Analyse microtiles to identify shader fragment task

nces

A

y

Arrange shader fragment

task instances into blocks

S609

A

Gather blocks into shader tasks

Process shader tasks

FIG. 6
704/J
706
/
- i

FIG.7

2

6

702

EP 4 195 156 A1

Initiate Buffer Flush

l

Identify first primitive block as current primitive block

—— S804

For current primitive block, scan buffer for first (valid)

—» sampler fragment corresponding to a primitive from —~—- S806
the current primitive block
y
Continue scan using FSR value of first sampler __S808
fragment
Yes Was at least
i one sampler fragment S810
identified?
No
Select next p.rlr'rlwlltve block ~_S814
as current primitive block
Are there further
primitive blocks associated S812
with the tile?
Flush is complete —~— S816

FIG. 8

27

EP 4 195 156 A1

S902 —~_ Receive microtiles

:

S904 —~— ldentify shader fragment task instances from microtile

:

Create shader fragment instance block(s) from S906
identified task instances N

:

Identify shader fragmept ta.sk instances from next | S908
microtile

Create shader fragment instance block(s) from newly
identified task instances and any remaining —~— S916
incomplete fragment instance block(s)

FIG. 9

j1008 1108
1004 AN SR NN ;
pN%7 77BN\ NS NN

s . ‘\;\‘ 1

1OOGJ |
%27/ MNNNN (ENNGE
77 gNaNY gNs
FIG. 10 FIG. 11

28

EP 4 195 156 A1

S$1202—_ Parse buffer to produce microtiles

:

S1204—~_ Analyse.mlcrotlles to identify shgder fragment task
instances, and arrange into blocks

I

S1206—_{ Create tasks from shader fragment instance blocks

FIG. 12

o2t 777
e I ~
\ S ‘||E
hes N \w‘z. \:\' y 1306
FIG. 13

29

EP 4 195 156 A1

1402 1404
14l 1414
CPU 8 GPU 2
~_1410

— Display 1416

f‘j Speakers 1418
1420

— Camera [N1422

1406 ™~ Memory
~_1412
FIG. 14
1502
1504 8 1506
))
((
Circuit layout Interarated
IC definition Layout definition rora Integrated
: » circuit > circuit
dataset processing . circul
generation

FIG. 15

30

10

15

20

25

30

35

40

45

50

55

9

Europdisches
Patentamt

European
Patent Office

Office européen
des brevets

EP 4 195 156 A1

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 22 21 0668

AL) 23 August 2018 (2018-08-23)
* abstract *

* figures 4, 7, 10, 12 *

* paragraph [0025] *

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant passages to claim APPLICATION (IPC)
A US 2015/287240 Al (JANCZAK TOMASZ [PL] ET |1-15 INV.
AL) 8 October 2015 (2015-10-08) G06T11/40
* abstract * GO6T1/20
* figures 1, 2, 6, 4, 14 *
* paragraph [0023] - paragraph [0053] *
* paragraph [0072] - paragraph [0073] *
* paragraph [0107] - paragraph [0122] *
A US 2018/240268 Al (NEVRAEV IVAN [US] ET 1-15

TECHNICAL FIELDS
SEARCHED (IPC)

GO6T

1 The present search report has been drawn up for all claims

Place of search Date of completion of the search Examiner
§ Munich 3 May 2023 Katartzis, Antonios
j=3
a
§ CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
= E : earlier patent document, but published on, or
b4 X : particularly relevant if taken alone after the filing date
2 Y : particularly relevant if combined with another D : document cited in the application
e document of the same category L : document cited for other reasons
z Atechnological Background e e
Q@ O : non-written disclosure & : member of the same patent family, corresponding
o P :intermediate document document
o
w

31

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

ANNEX TO THE EUROPEAN SEARCH REPORT

EP 4 195 156 A1

ON EUROPEAN PATENT APPLICATION NO.

EP 22 21 0668

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-05-2023
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2015287240 Al 08-10-2015 CN 104978760 A 14-10-2015
CN 110246210 A 17-09-2019
KR 20150115626 A 14-10-2015
T™W 201539372 A 16-10-2015
Us 2015287240 Al 08-10-2015

US 2018240268 Al 23-08-2018 CN 110383337 A 25-10-2019
EP 3563349 Al 06-11-2019
Us 2018240268 Al 23-08-2018
Us 2019172257 Al 06-06-2019
Us 2020134913 A1 30-04-2020
WO 2018152017 A1 23-08-2018

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

32

EP 4 195 156 A1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

« GB 2117998 A[0001] « GB 2117999 A [0001]

33

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

