BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
[0001] The present invention generally relates to a security system, and more particularly
to a surveillance device adaptable to the security system.
2. DESCRIPTION OF RELATED ART
[0002] A smart home network or home automation system may connect a variety of home electronic
systems such as lighting, temperature control, entertainment, security and alarm systems,
and may be used to improve quality of life, increase personal productivity, enhance
home security and promote convenience of entertainment.
[0003] A surveillance device in the smart home network may communicate with a central monitor
station (CMS) or an end user via the Internet, thereby resulting in a security system.
Images captured by the surveillance device of the smart home network may be transmitted
to the CMS or the end user for visual verification.
[0004] However, as the data amount of images is generally large, it usually occupies considerable
portion of transmission bandwidth and requires large response time and power consumption.
The required transmission bandwidth, response time and power consumption can be reduced
by transmitting fewer images, however, at the cost of sacrificing the accuracy of
visual verification and increasing probability of false alarm.
[0005] A need has thus arisen to propose a novel scheme to improve transmission bandwidth,
response time and power consumption in the security system.
SUMMARY OF THE INVENTION
[0006] In view of the foregoing, it is an object of the embodiment of the present invention
to provide a security system and method capable of effectively reducing required transmission
bandwidth, response time and power consumption by adopting edge computing.
[0007] According to one embodiment, a security system includes a surveillance device and
a controller. The surveillance device monitors a predetermined event and captures
images in a monitor scene. The controller controls the surveillance device and transmits
the captured images. The surveillance device adjusts image capture amount, image transmit
amount, image transmit order or image resolution when the predetermined event is detected
and an object is detected on the captured images.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008]
FIG. 1 shows a block diagram illustrating a security system according to one embodiment
of the present invention; and
FIG. 2 shows a flow diagram illustrating a security method according to one embodiment
of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0009] FIG. 1 shows a block diagram illustrating a security system 100 adaptable to, but
not limited to, a smart home network according to one embodiment of the present invention.
[0010] In the embodiment, the security system 100 may include a surveillance device 11 configured
to monitor a predetermined event and to capture images in a monitor scene. In one
embodiment, the predetermined event refers to occurrence of motion of an object (e.g.,
human or animal). In another embodiment, the predetermined event refers to occurrence
of an object (e.g., smoke or flame).
[0011] The security system 100 may include a controller 12, such as a gateway, configured
to control the surveillance device 11 and transmit the captured images to a central
monitor station (CMS) 14 or an end user 15 for visual verification via a network 13
(e.g., the Internet). The communication between the controller 12 and the surveillance
device 11 may adopt wireless standard such as sub-GHz RF, ZigBee, Bluetooth Low Energy
(BLE), Z-Wave or Low Power Wi-Fi; or adopt wired standard such as RS-485.
[0012] The surveillance device 11 of the embodiment may include a sensor 111. In the embodiment,
the sensor 111 may include a passive sensor. In one example, the sensor 111 may include
a passive infrared (PIR) sensor, acting as a motion sensor, configured to detect motion
of an object (e.g., human or animal) according to infrared emitted by the object.
In another example, the sensor 111 may include a fire sensor, such as smoke sensor
or heat sensor, configured to detect object (e.g., smoke or flame) associated with
fire.
[0013] The surveillance device 11 of the embodiment may include a camera 112 configured
to capture the images in the monitor scene, which is then transmitted to the CMS 14
or the end user 15. The surveillance device 11 may include a memory (device) 113 configured
to temporality store the captured image.
[0014] According to one aspect of the embodiment, the surveillance device 11 may include
an edge computing processor 114 configured to process the captured image (of the camera
112) to determine whether the image contains an object (e.g., human, animal, smoke
or flame). In the computing field, the term edge computing refers to computation (and
data storage) being closer to a source of data but away from a central processor.
Take the security system 100 of the embodiment as an example, the edge computing processor
114 (and the memory 113) are closer to the camera 112 (i.e., the source of data) but
away from the CMS 14 or the end user 15. Accordingly, required transmission bandwidth,
response time and power consumption may be effectively reduced.
[0015] FIG. 2 shows a flow diagram illustrating a security method 200 operable in the security
system 100 of FIG. 1 according to one embodiment of the present invention. In step
21, the controller 12 (e.g., a gateway) determines whether the smart home network
is currently in away mode. If the smart home network is currently in away mode, indicating
that a user is presently not at home, the flow goes to step 22, in which the controller
12 initiates the sensor 111. Next, in step 23, the sensor 111 determines whether a
predetermined event is detected. In one embodiment, a passive infrared (PIR) sensor
is used as the sensor 111 configured to detect motion of an object (e.g., human or
animal). If the motion of the object is detected, the predetermined event is assumably
detected. In another embodiment, a fire sensor (e.g., smoke sensor or heat sensor)
is used as the sensor 111 configured to detect an object (e.g., smoke or flame). If
the object is detected, the predetermined event is assumably detected.
[0016] If the predetermined event is detected (step 23), the sensor 111 activates the camera
112 to capture an image (step 24). Further, when the predetermined event is detected
by the sensor 111, the surveillance device 11 notifies the controller 12, which then
notifies the CMS 14 or the end user 15. After the camera 112 obtains captured images,
which are then transmitted to the controller 12, the controller 12 subsequently transmits
the captured images to the CMS 14 or the end user 15 for visual verification.
[0017] In step 25, the edge computing processor 114 receives the captured image (from the
camera 112), on which edge computing (e.g., object detection) is performed to determine
whether the image contains detected object (e.g., human, animal, smoke or flame) (step
26). Further, the image captured by the camera 112 may be temporarily stored in the
memory 113.
[0018] If no object is detected on the image (step 26), the flow goes back to step 24 until
image capture amount has been reached (step 27). If an object is detected on the image
(step 26), the surveillance device 11 adjusts the image capture amount, image transmit
amount, image transmit order or image resolution (step 28), and the flow goes back
to step 24.
[0019] When the capture amount has been reached (step 27), the controller 12 transmits the
captured images, via the network 13 (e.g., the Internet), to the CMS 14 or the end
user 15 for visual verification according to the image transmit amount or the image
resolution (step 29).
[0020] In one embodiment, the controller 12 transmits all captured images to the CMS 14
or the end user 15 according to the image transmit amount. In another embodiment,
the controller 12 transmits only images with the detected object to the CMS 14 or
the end user 15, thereby further reducing required transmission bandwidth, response
time and power consumption.
[0021] In a further embodiment, if an object is detected on the image (step 26), the image
transmit order is then adjusted (step 28) such that the images are transmitted in
a particular order instead of being in chronological order. Specifically, in the embodiment,
upon detecting the object on the image (step 26), the image containing the detected
object is immediately transmitted, before other images are captured or transmitted,
to the CMS 14 or the end user 15 for preliminary visual verification. Owing to the
adjustment of the image transmit order, the efficiency of visual verification can
be substantially enhanced.
[0022] In a further embodiment, the controller 12 transmits the captured images, via the
network 13 (e.g., the Internet), to the CMS 14 or the end user 15 for visual verification
according to the image resolution. In the embodiment, the controller 12 transmits
images with detected object with a first (high) resolution image standard, and transmits
images without detected object with a second (low) resolution image standard, where
the second resolution is lower than the first resolution. For example, the first (high)
resolution adopts Video Graphics Array (VGA) image standard, while the second (low)
resolution adopts Quarter Video Graphics Array (QVGA) image standard. As QVGA is a
quarter the resolution of VGA, more transmission bandwidth, response time and power
consumption may be effectively reduced.
1. A security system, comprising:
a surveillance device that monitors a predetermined event and captures images in a
monitor scene; and
a controller that controls the surveillance device and transmits the captured images;
wherein the surveillance device adjusts image capture amount, image transmit amount,
image transmit order or image resolution when the predetermined event is detected
and an object is detected on the captured images.
2. The system of claim 1, wherein the controller comprises a gateway.
3. The system of claim 1, further comprising:
a central monitor station or an end user, to which the controller transmits the captured
images via a network.
4. The system of claim 1, wherein the surveillance device comprises:
a sensor that detects the predetermined event;
a camera that obtains the captured images; and
an edge computing processor that detects an object on the captured images.
5. The system of claim 4, wherein the surveillance device further comprises:
a memory that temporarily stores the image captured by the camera.
6. The system of claim 4, wherein the sensor comprises a passive sensor.
7. The system of claim 6, wherein the passive sensor comprises a passive infrared sensor,
and the predetermined event refers to occurrence of motion of the object.
8. The system of claim 6, wherein the passive sensor comprises a fire sensor, and the
predetermined event refers to occurrence of the object associated with fire.
9. The system of claim 8, wherein the fire sensor comprises a smoke sensor and the predetermined
event refers to occurrence of smoke, or comprises a heat sensor and the predetermined
event refers to occurrence of flame.
10. The system of claim 4, wherein the controller initiates the sensor when away mode
is determined.
11. The system of claim 4, wherein the sensor activates the camera to capture the images
when the sensor detects the predetermined event.
12. The system of claim 11, wherein the controller transmits the captured images according
to the image transmit amount when the edge computing processor detects the object
on the captured images.
13. The system of claim 12, wherein the controller transmits the image containing detected
object immediately when the object is detected by the edge computing processor.
14. The system of claim 12, wherein the controller transmits only images with detected
object.
15. The system of claim 12, wherein the controller transmits images with detected object
with first resolution, and transmits images without detected object with second resolution
that is lower than the first resolution.
Amended claims in accordance with Rule 137(2) EPC.
1. A security system (100), comprising:
a surveillance device (11) configured to monitor a predetermined event and captures
images in a monitor scene; and
a controller (12) configured to control the surveillance device and transmits the
captured images;
wherein the surveillance device adjusts image capture amount, image transmit amount,
image transmit order or image resolution when the predetermined event is detected
and an object is detected on the captured images, characterized in that
the surveillance device comprises:
a sensor (111) configured to detect the predetermined event;
a camera (112) configured to capture an image; and
an edge computing processor (114) configured to detect an object on one image captured
by the camera;
wherein upon detecting the object on the one image, the controller immediately transmits
the one image containing the detected object to a central monitor station (14) or
an end user (15) via a network (13) before other images are captured or transmitted.
2. The system of claim 1, wherein the controller comprises a gateway.
3. The system of claim 1, wherein the surveillance device further comprises:
a memory (113) configured to temporarily store the image captured by the camera.
4. The system of claim 1, wherein the sensor comprises a passive sensor.
5. The system of claim 4, wherein the passive sensor comprises a passive infrared sensor,
and the predetermined event refers to occurrence of motion of the object.
6. The system of claim 1, wherein the controller is configured to initiate the sensor
when away mode is determined.
7. The system of claim 1, wherein the controller transmits the captured images according
to the image transmit amount.
8. The system of claim 1, wherein the controller transmits only images with detected
object.
9. The system of claim 1, wherein the controller transmits images with detected object
with first resolution, and transmits images without detected object with second resolution
that is lower than the first resolution.