
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
21

3
02

1
A

1
EP004213021A1

(11) EP 4 213 021 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
19.07.2023 Bulletin 2023/29

(21) Application number: 23152024.8

(22) Date of filing: 17.01.2023

(51) International Patent Classification (IPC):
G06F 9/50 (2006.01) G06F 9/448 (2018.01)

(52) Cooperative Patent Classification (CPC):
G06F 9/5016; G06F 8/75; G06F 2209/504

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
KH MA MD TN

(30) Priority: 17.01.2022 KR 20220006723

(71) Applicant: Samsung Electronics Co., Ltd.
Gyeonggi-do 16677 (KR)

(72) Inventors:
• YANG, Seung Jun

16677 Suwon-si (KR)
• YI, Hye Joon

16677 Suwon-si (KR)
• CHO, Mi Jung

16677 Suwon-si (KR)

(74) Representative: Marks & Clerk LLP
15 Fetter Lane
London EC4A 1BW (GB)

(54) ELECTRONIC SYSTEM, OPERATING METHOD THEREOF, AND OPERATING METHOD OF
MEMORY DEVICE

(57) Provided are an electronic system of a real-time
operating system, an operating method thereof, and an
operating method for a memory device. The operating
method comprising obtaining a call graph by performing
static code analysis on at least one thread that corre-
sponds to a task, obtaining a stack usage of the thread
and a call probability for each node by performing runtime
profiling of the call graph, allocating a threshold value of
a stack size for a first memory area by taking into account
the call graph, the call probability for each node, and the
stack usage, expanding and storing a stack from the first
memory area to a second memory area according to a
comparison result between the threshold value and a
stack usage of the first memory area and returning the
stack to the first memory when execution is completed
in the second memory area, wherein the electronic sys-
tem comprises a memory device configured to include
the first memory area and the second memory area.

EP 4 213 021 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

1. Technical Field

[0001] The present disclosure relates to an electronic
system of a real-time operating system, an operating
method thereof, and an operating method for a memory
device.

2. Description of the Related Art

[0002] Solid state drives (SSDs) are gradually emerg-
ing from the personal user market, such as laptop com-
puters and smartphones, into other markets, such as
large-scale data centers and high-performance enter-
prises. At the same time, their functional requirements
thereof as applied to individual products, are becoming
more diverse and complex. Real-time operating system
(RTOS) may be applied to storage devices in an effort
to perform product development and maintenance faster
and more smoothly while satisfying varied and complex
requirements. The storage device may reduce the bur-
den on a developer by separating complex requirements
into individual threads and delegating scheduling over-
head to an RTOS kernel.
[0003] However, in order to more efficiently utilize the
RTOS, a separate stack must be allocated to each
thread. Each time a thread executes code, a stack frame
is stacked on an individual function of a stack allocated
to the thread, and thus the performance of the thread is
directly affected depending on where the stack allocated
to the thread is located in a memory layer of a system.
[0004] System developers may place a stack in a high-
performance memory to more efficiently process
threads, however in embedded systems in which SSDs
belong, high-performance memory is so limited that stack
overflow is likely to occur.

SUMMARY OF THE INVENTION

[0005] Aspects of the present disclosure provide an
electronic system for efficient thread management in a
real-time operating system (RTOS) under resource con-
straints, and an operating method thereof.
[0006] Aspects of the present disclosure also provide
an electronic system in which efficiency of resource uti-
lization is improved, performance is improved, and stack
overflow does not occur in an RTOS, and an operating
method thereof.
[0007] However, aspects of the present disclosure are
not restricted to those set forth herein. The above and
other aspects of the present disclosure will become more
apparent to one of ordinary skill in the art to which the
present disclosure pertains by referencing the detailed
description of the present disclosure as given below.
[0008] According to an aspect of the present disclo-

sure, there is provided an electronic system in a real-time
operating system, the operating method comprises get-
ting a call graph by performing static code analysis on at
least one thread that corresponds to a task, getting a
stack usage of the thread and a call probability for each
node by performing runtime profiling of the call graph,
allocating a threshold value of a stack size for a first mem-
ory area by taking into account the call graph, the call
probability for each node, and the stack usage, expand-
ing and storing a stack from the first memory area to a
second memory area according to a comparison result
between the threshold value and a stack usage of the
first memory area and returning the stack to the first mem-
ory when execution is completed in the second memory
area, wherein the electronic system comprises a memory
device configured to include the first memory area and
the second memory area.
[0009] According to another aspect of the present dis-
closure, there is provided an electronic system compris-
ing a real-time operating system (RTOS) module config-
ured to process a command from a host by dividing the
command into at least one thread, a call graph module
configured to get a call graph by performing static code
analysis on the thread, a runtime profiler configured to
get a stack usage of each node and a call probability for
each node by performing runtime profiling of the call
graph and a memory device configured to include a first
memory area and a second memory area, wherein the
RTOS module is configured to allocate a stack space
that corresponds to the thread to the first memory area
on the basis of a threshold value based on the stack
usage of each node and the call probability for each node,
store a stack corresponding to the thread in the allocated
stack space in the first memory area, and connect and
store a subsequent stack to the second memory area, in
response to an overflow alarm based on the call proba-
bility for each node and the stack usage of each node
being generated.
[0010] According to other aspect of the present disclo-
sure, there is provided an operating method of a memory
device in a real-time operating system, the memory de-
vice comprising a first memory area and a second mem-
ory area, the operating method comprises compiling a
task into multiple threads and exploring a call graph by
static code analysis on each thread, getting a stack usage
of each node and a call probability for each node by per-
forming dynamic code analysis on the explored call
graph, setting a stack size of the first memory area based
on the dynamic code analysis result, storing stack frames
corresponding to the thread in sequence in the first mem-
ory area and storing a subsequent stack frame in the
second memory area in response to an overflow alarm
for the first memory area being generated.
[0011] It should be noted that the effects of the present
disclosure are not limited to those described above, and
other effects of the present disclosure will be apparent
from the following description.
[0012] At least some of the above and other features

1 2

EP 4 213 021 A1

3

5

10

15

20

25

30

35

40

45

50

55

of the invention are set out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The above and other aspects and features of
the present disclosure will become more apparent by de-
scribing in detail example embodiments thereof with ref-
erence to the attached drawings, in which:

FIG. 1 is a block diagram illustrating an electronic
system according to some embodiments of the
present disclosure.
FIG. 2 is a block diagram illustrating an electronic
system according to some embodiments of the
present disclosure.
FIG. 3 is a block diagram illustrating a storage con-
troller 20 according to some embodiments.
FIG. 4 is a block diagram illustrating in more detail
a memory 100 included in the storage controller 20.
FIG. 5 is a diagram for describing stack overflow oc-
curring in the memory 100.
FIGS. 6 and 7 are call graphs of a thread according
to some embodiments.
FIG. 8 is a conceptual diagram illustrating first and
second memory areas for describing an operating
method of an electronic system according to some
embodiments.
FIG. 9 is a conceptual diagram for describing the
electronic system operating by expanding from the
first memory area to the second memory area ac-
cording to some embodiments.
FIG. 10 is a conceptual diagram for describing the
electronic system operating by expanding from the
first memory area to the second memory area ac-
cording to some embodiments.
FIG. 11 is a conceptual diagram for describing the
electronic system operating by expanding from the
first memory area to the second memory area ac-
cording to some embodiments.
FIG. 12 is a flowchart illustrating an operating meth-
od of an electronic system according to some em-
bodiments.
FIG. 13 is a diagram illustrating a system to which a
storage device according to one embodiment is ap-
plied.
FIG. 14 is a diagram illustrating a data center to which
a memory device according to some embodiments
is applied.

DETAILED DESCRIPTION OF THE PREFERRED EM-
BODIMENTS

[0014] Hereinafter, an electronic system according to
some embodiments of the present disclosure will be de-
scribed with reference to FIGS. 1 to 14.
[0015] FIG. 1 is a block diagram illustrating an elec-
tronic system according to some embodiments of the
present disclosure.

[0016] An electronic system 1 may include a host 10
and a storage system 2. The storage system may include
a storage controller 20-1 and at least one storage device
201.
[0017] In some embodiments, the host 10 may be a
computing device such as a personal computer, a server,
a notebook computer, a tablet computer, a smartphone,
or a cellular phone, but the present disclosure is not lim-
ited thereto.
[0018] The host 10 may communicate with a memory
system by using an interface protocol, such as peripheral
component interconnect-express (PCI-E), advanced
technology attachment (ATA), serial ATA (SATA), paral-
lel ATA (PATA), serial attached SCSI (SAS), or compute
eXpress link (CXL). The interface protocols between the
host 10 and the storage system 2 are not limited to the
examples listed above, and the interface protocol used
may be one of other interface protocols, such as universal
serial bus (USB), multi-media card (MMC), enhanced
small disk interface (ESDI), or integrated drive electron-
ics (IDE).
[0019] According to some embodiments, each of the
at least one storage device 201 may be a non-volatile
memory (NVM) device, such as a flash memory, a mag-
netoresistive random access memory (MRAM), a phase-
charge random access memory (PRAM), a ferroelectric
random access memory (FeRAM), or the like.
[0020] FIG. 2 is a block diagram illustrating an elec-
tronic system according to some embodiments of the
present disclosure.
[0021] Referring to FIG. 2, an electronic system 1 may
include a host 10 and a memory device 202. The host
10 may include a processor 11 and a memory controller
20-1, and the memory controller 20-1 may be connected
to a separate external memory device 202. The proces-
sor 11 may control the overall operation of the electronic
system, and may control, for example, operations of other
components included in the electronic system. The proc-
essor 11 may be implemented as a general-purpose
processor, or as another processor such as a dedicated
purpose processor or an application processor (AP).
[0022] The processor 11 may include one or more cen-
tral processing unit (CPU) cores, and the memory con-
troller 20-2 may be connected to at least one external
memory device 202 to control the external memory de-
vice 202. According to some embodiments, the proces-
sor 11 may be an accelerator block, such as a dedicated
circuit configured to perform high-speed data computa-
tion, such as artificial intelligence (AI) data computation.
For example, an accelerator block may be implemented
as a graphics processing unit (GPU), a neural processing
unit (NPU) and/or a data processing unit (DPU), and may
be implemented as a separate chip that is physically in-
dependent of other components in the processor.
[0023] The external memory device 202 may be one
or more dynamic random access memories (DRAMs),
such as double data rate synchronous dynamic random
access memory (DDR SDRAM), low power double data

3 4

EP 4 213 021 A1

4

5

10

15

20

25

30

35

40

45

50

55

rate (LPDDR) SDRAM, graphics double data rate (GD-
DR) SDRAM, and Rambus dynamic random access
memory (PDRAM).
[0024] The host 10 may communicate with the external
memory device 202 based on one of interface standards,
such as DDR, LPDDR, GDDR, wide I/O, high bandwidth
memory (HBM), hybrid memory code (HMC), or CXL.
[0025] FIG. 3 is a block diagram illustrating a storage
controller 20 according to some embodiments. FIG. 4 is
a block diagram illustrating in more detail a memory 100
included in the storage controller 20. FIG. 5 is a diagram
for describing stack overflow occurring in the memory
100.
[0026] Referring to FIG. 3, hereinafter a storage con-
troller is referred to as a storage controller 20, but the
storage controller 20 shown in FIG. 3 may be the storage
controller 20-1 of FIG. 1 according to some embodi-
ments. Alternatively, according to some embodiments,
the storage controller 20 of FIG. 3 may be the memory
controller 20-2 of FIG. 2.
[0027] According to some embodiments, the storage
controller 20 may include a host interface 21, an RTOS
module 22, a memory 100, a processor 23, a runtime
profiler 24, a call graph module 25, a machine learning
module 26, and a memory interface 27, and each of the
components 21 to 27 and 100 may be connected to a
system bus.
[0028] The storage controller 20 may communicate
with a host 10 via the host interface 21. The host interface
21 may communicate based on the interface standards
described with reference to FIG. 1 or 2.
[0029] The processor 23 controls the overall operation
of the storage controller 20. For example, upon receiving
a command from the host 10 or the host processor 11,
at least one thread for executing the command, for ex-
ample, a multi-thread is generated.
[0030] The RTOS module 22 may be executed by the
processor 23. The RTOS module 22 may perform sched-
uling in order to process various threads within a prede-
termined time. By the RTOS module 22, threads in states
such as ready, running, and blocked are scheduled and
pushed to an internal memory 100. According to the
number of threads defined by a designer of the electronic
system, the RTOS module 22 allocates a stack used by
each thread to the internal memory 100.
[0031] The internal memory 100 is divided into at least
one memory layer according to some embodiments. For
example, the internal memory 100 may include a first
memory area M1 and a second memory area M2 as
shown in FIG. 4. The first memory area M1 may be a
memory with fast read/write performance (e.g. a
read/write performance that is faster than that of the sec-
ond memory area M2), and may be implemented as, for
example, static RAM (SRAM). The second memory area
M2 may be a memory with read/write performance slower
than that of the first memory area M1, and may be im-
plemented as, for example, DRAM. In this case, a first
stack area placed in the first memory area and a second

stack area placed in the second memory area may be
discontinuously disposed, which will be described in de-
tail below with reference to FIG. 8.
[0032] The internal memory 100 may be used as a buff-
er memory, i.e., an operating memory of the storage con-
troller 20. According to some embodiments, the internal
memory 100 may be a memory of one type, or memories
of several types. For example, the internal memory 100
may be an SRAM, a DRAM, or a combination of an SRAM
and a DRAM.
[0033] According to some embodiments, the RTOS
module 22 allocates a stack size for each thread to the
memory 100, and pushes a stack frame to the memory
when processing a thread. For example, when the elec-
tronic system starts to operate, the RTOS module 22 first
pushes/pops stack frames that correspond to a thread
to the first memory area M1. However, since the size of
the first memory area M1 is limited, the RTOS module
22 may set the stack size of the first memory area ac-
cording to a threshold value so as to prevent stack over-
flow from occurring in the first memory area M1, and may
generate an overflow alarm according to predetermined
conditions. When an overflow alarm occurs while a
thread is pushed to the first memory area M1, the thread
is then connected to and pushed to the second memory
area M2.
[0034] According to some embodiments, the current
stack usage is compared with a threshold value, and
when the current stack usage exceeds the threshold val-
ue, the overflow alarm may be generated. In one exam-
ple, when a stack is used within a red zone in a range
preset based on a threshold value, an overflow alarm
may be generated. For example, when a stack signature
is detected in the first memory area, an overflow alarm
may be generated. For example, an overflow alarm may
be generated by using call chain history information in
which whether an overflow occurs is recorded by com-
paring a call graph, a call chain for each node, and a call
probability for each node, which are obtained by the call
graph module and the runtime profiler, with the threshold
value. That is, the overflow alarm may be generated by
comparing the current usage and the call chain history
information.
[0035] The call graph module 25 performs static code
analysis on threads to be processed by the RTOS module
22. The static code analysis analyzes a call graph, for
example, the code constituting the thread, to identify a
call chain from a root function of the thread. That is, the
call graph module 25 may create a call graph including
all call chains reachable from a root function of a thread,
and extract the longest call chain, i.e., the maximum call
chain depth.
[0036] The runtime profiler 24 performs dynamic code
analysis on the call graph. For example, the runtime pro-
filer 24 performs runtime profiling of the call graph to get
a stack usage to be allocated to each thread in real time.
Accordingly, the RTOS module 22 may get the stack us-
age based on the maximum call chain depth obtained by

5 6

EP 4 213 021 A1

5

5

10

15

20

25

30

35

40

45

50

55

the call graph module, i.e., obtain the maximum stack
usage.
[0037] Also, the runtime profiler 24 may obtain the call
probabilities for each node of the call graph while getting
the stack usage of the thread-specific call function. That
is, the runtime profiler 24 gets the probability that the call
function is used for each call chain that starts from the
root function and is connected to several nodes, and gen-
erates an augmented call graph. The augmented call
graph will be described below with reference to FIGS. 6
and 7.
[0038] The machine learning module 26 may learn in
advance a threshold value that prevents an overflow from
occurring in a memory by taking into account the call
graph generated by the call graph module 25 and the
stack usage for each node and the maximum stack usage
which are generated by the runtime profiler 24. According
to some embodiments, the machine learning module 26
may store a threshold value that is learned in advance
and obtained by taking into account various thread-spe-
cific call functions, call graphs, stack usage, stack size
of the memory, and the like in a map table. Alternatively,
according to some embodiments, the machine learning
module 26 may be in the form of a computation module
which can get an appropriate threshold value from the
correlations of various thread-specific call functions, call
graphs, stack usage, and the stack size of the memory.
The machine learning module 26 may store a machine
learning model which maps features (e.g. various thread-
specific call functions, call graphs, stack usage, and the
stack size of the memory) to a predicted threshold value
(e.g. based on pre-learned correlations).
[0039] The machine learning module 26 may store in-
formation on a pre-learned overflow alarm, for example,
overflow prediction information, according to some em-
bodiments. For example, the machine learning module
26 may store the overflow occurrence probability with
respect to the thread, the call graph, the stack usage of
each node, and the call probabilities for each node in a
map table.
[0040] The memory interface 27 may be an interface
that is connected to the storage device 201 of FIG. 1 or
the memory device 202 of FIG. 2. According to some
embodiments, the memory interface 26 may be connect-
ed to the storage device 201 and may be an interface
protocol, such as PCI-E, ATA, SATA, PATA, SAS, or
CXL, or may be one of other interface protocols, such as
USB, MMC, ESDI, or IDE. Alternatively, according to
some embodiments, the memory interface 27 may be
connected to the memory device 202 to communicate
with the memory device 202 based on one of many in-
terface standards, such as DDR, LPDDR, GDDR, wide
I/O, HBM, HMC, or CXL.
[0041] Referring to FIG. 4, at least a portion of the in-
ternal memory 100 may be used as an operating memory
of the RTOS module 22. The internal memory 100 may
be divided into a plurality of memory areas. For example,
the internal memory 100 may be divided into a first mem-

ory area M1 and a second memory area M2.
[0042] According to some embodiments, the first mem-
ory area M1 and the second memory area M2 may be
used by dividing one memory into two areas. According
to some embodiments, a plurality of memories may be
respectively classified into the first memory area M1 and
the second memory area M2. For example, the first mem-
ory area M1 may be a SRAM, and the second memory
area M2 may be typical operating memory. In another
example, the first memory area M1 may be tightly coupled
memory for the RTOS module 22, and the second mem-
ory area M2 may be typical operating memory.
[0043] The first memory area M1 may access data at
a faster speed than that of the second memory area M2.
The RTOS module 22 may first push a thread to the first
memory area M1, and then push a thread to the second
memory area when a stack overflow alarm is generated
in the first memory area M1.
[0044] Referring to FIG. 5, the RTOS module 22 allo-
cates an independent stack area for each thread to the
internal memory 100.
[0045] According to some embodiments, in the first it-
eration of thread processing, the stack usage of threads
are within the stack size (2 KB, 2 KB, 2 KB, 2 KB) in all
allocated areas, and thus the iteration may be performed
without any problem.
[0046] According to some embodiments, in the second
iteration of thread processing, when the stack usage of
a call function exceeds the allocated stack size 1 KB, as
shown in the second section A-2, stack overflow may
occur.
[0047] According to some embodiments, in the third
iteration, a stack is used within a larger allocated stack
size (A-3), and thus stack overflow does not occur.
[0048] In order to prevent overflow by coping with var-
ious situations in which overflow occurs as in the exam-
ples described above, a stack size needs to be conserv-
atively determined based on the maximum stack usage
with the maximum call chain on the basis of the call graph
for each thread. However, since the resource of the first
memory area M1 is limited and a stack is allocated for
each thread, the memory may be inefficiently used be-
cause the resource must be allocated even when the
allocated area is not actually used frequently.
[0049] Thus, the RTOS module 22 should allocate a
stack size for each thread to the first memory area by
taking into account the appropriate stack usage rather
than the maximum stack usage. Hereinafter, allocation
of an appropriate stack usage according to FIGS. 6 and
7 will be described.
[0050] FIGS. 6 and 7 are call graphs of a thread ac-
cording to some embodiments.
[0051] Referring to FIGS. 6 and 7, it is assumed that
the RTOS module 22 divides a task given by the proc-
essor 23 into at least one thread. The call graph module
25 may get a call graph as shown in FIG. 6 by analyzing
call functions of the thread.
[0052] For example, it is assumed that the thread in-

7 8

EP 4 213 021 A1

6

5

10

15

20

25

30

35

40

45

50

55

cludes a call chain divided from a root function Root()
into three nodes. It is assumed that the thread is divided
from a root function Root() into call function A(), call func-
tion B(), and call function C() and each call function con-
stitutes a call chain including at least one independent
call function. According to various embodiments, the call
functions may intersect, link, or depend on one another,
but for convenience of description, it is assumed that
each call chain is independent of one another. In the il-
lustrated example, call function A() has a call chain con-
nected to dependent call function Foo() and dependent
call function Goo(), call function B() does not have a sep-
arate dependent call function, and call function C() has
a call chain connected to dependent call function Hoo().
[0053] The runtime profiler 24 gets the call probabilities
for each node while getting the stack usage, i.e., memory
usage, for each call function by performing runtime pro-
filing of the call graph. In the illustrated example, the runt-
ime profiler 24 may get the stack usage of a first node
as [A, Foo, Goo]=[200 kilobytes, 400 kilobytes, 600 kilo-
bytes], the stack usage of a second node as [B]=[100
kilobytes], and the stack usage of a third node as [C,
Hoo]=[300 kilobytes, 400 kilobytes].
[0054] The runtime profiler 24 may extract a call chain
with the maximum call chain depth on the basis of each
call chain length of the call graph and the stack usage of
each call function. In the illustrated example, the total
stack usage when the first node based on call function
A() is used is 200+400+600=1200 kilobytes. The total
stack usage of the second node based on call function
B() is 100, and the total stack usage of the third node
based on call function C() is 300+400=700 kilobytes. The
runtime profiler 24 may set the first node having the max-
imum value of 1200 kilobytes to be the maximum call
chain based on the total stack usage, and determine that
the maximum stack size is 1200 kilobytes.
[0055] The runtime profiler 24 may get the call proba-
bilities for each node by predicting the frequency at which
each call function is called, while profiling the call graph.
Given that the total probability is 1, it is predicted that, in
the illustrated example, the first node based on call func-
tion A() is called with a probability of 0.01, the second
node based on call function B() is called with a probability
of 0.9, and the third node based on call function C() is
called with a probability of 0.7.
[0056] Referring to FIG. 7, the RTOS module 22 may
set a threshold value used for expanding from the first
memory area M1 to the second memory area M2 by tak-
ing into account the call probabilities for each node and
the total stack usage.
[0057] For example, it is assumed that the total stack
usage of the first node A is set to be a threshold value.
Based on the call function for each node, the second
node B or the third node C is more frequently called than
the first node A. In this case, among the stack areas of
the first memory area allocated to threads, a stack area
corresponding to the stack usage difference
(1200-100=1100) between the first node A and the sec-

ond node B, i.e., a stack area of 1100 kilobytes, is allo-
cated as space that is unused until the first node is called,
and remains empty. Alternatively, a stack area corre-
sponding to the stack usage difference (1200-700=500
kilobytes) between the first node A and the third node C,
i.e., a stack area of 500 kilobytes, is allocated as space
that is unused until the first node is called, and remains
empty. Thus, the larger the empty space area is, the more
difficult it is to allocate the stack size for other threads.
[0058] Meanwhile, in the case where the total stack
usage of the second node is set to be a threshold value
of the stack size by taking into account only the call prob-
abilities for each node, when the call functions of the third
node and the first node are executed, it may be more
frequent that the call functions are executed by expand-
ing from the first memory area to the second memory
area by the difference between the threshold value and
the stack usage. Since the second memory area may
have a larger memory capacity than the first memory
area, but has low processing performance, expansion to
the second memory area is frequent and the overall per-
formance of the electronic system 1 may be lowered.
[0059] Therefore, the RTOS module 22 may set the
threshold value by taking into account the call probabil-
ities for each node and the stack usage of each node,
according to some embodiments, in order to provide an
appropriate empty space that is allocated as a space for
each thread for processing and to prevent stack overflow.
For example, the stack usage of a call chain having a
high call probability for each node and a high stack usage
of each node may be set as a threshold value.
[0060] In the case where the total stack usage of the
third node C is set as a threshold value (Th=700 kilo-
bytes), when the second node or the third node is called,
the thread may be processed without stack overflow.
However, when the first node A is called, the stack size
exceeding the threshold value may be expanded to the
second memory area and processed. That is, when the
first node A is called, the first memory area M1 is prefer-
entially used, but the stack area exceeding the threshold
value when call function Foo() of the first node is proc-
essed may be connected to the second memory area M2
to process and push the remaining stack area of call func-
tion Foo() and call function Goo().
[0061] FIG. 8 is a conceptual diagram illustrating first
and second memory areas for describing an operating
method of an electronic system according to some em-
bodiments. It is assumed that a threshold value is set as
700 kilobytes which is the stack usage of the second
node in the example of FIG. 7 and that the first node is
called.
[0062] Referring to FIG. 8, the storage controller 20
that operates as a real-time operating system processes
a stack corresponding to a thread by executing a pro-
logue function and an epilogue function that a compiler
generates in advance for each individual function at com-
pile time. These functions push or pop the stack in a
preset direction according to a preset calling convention.

9 10

EP 4 213 021 A1

7

5

10

15

20

25

30

35

40

45

50

55

[0063] It is assumed that data is stored in the first mem-
ory area M1 by executing call function A() of the first node
and then call function Foo() is executed. In order to con-
nect from the first memory area to the second memory
area, a predetermined address of the second memory
area is required, and the two separate areas may be con-
nected by notifying the specified address.
[0064] The first memory area M1 in the illustrated ex-
ample may store data from bottom to top, i.e., in a direc-
tion in which an address increases (low address → high
address). That is, the first memory area M1 may pop the
data. However, according to various embodiments, the
first memory area M1 may store data in a direction in
which an address decreases (high address→ low ad-
dress), that is, the first memory area M1 may push the
data. In the following description, a direction in which a
stack grows, i.e., an address increases (pop) is de-
scribed, but the present disclosure is not limited thereto.
[0065] In a context switching situation at a specific
point in time, when call function Goo() is executed, a plu-
rality of stack frames are accumulated in the first memory
area M1. At this time, the threshold value, i.e., the stack
size, is 700 kilobytes, so the remaining area after the
stack usage (600 kilobytes=200+400) already used for
call functions A() and Foo() is subtracted from the stack
size is 100 kilobytes(=700-600). When only this remain-
ing area 100 kilobytes is used, overflow may occur since
the stack usage of call function Goo() exceeds the stack
size (i.e., the threshold value) allocated to the first mem-
ory area (100 kilobytes of remaining area size < stack
usage of 600 kilobytes of call function Goo()). In order to
prevent overflow, the RTOS module 22 may expand from
the first memory area M1 to the second memory area M2
when context switching takes place between threads.
The RTOS module 22 may generate an overflow alarm
when overflow is probable to occur.
[0066] According to some embodiments, when the
overflow alarm is generated, the RTOS module 22 stores
a callee’s stack pointer (SP) Add_x1 used in the first
memory area M1 and a link register value LR(original),
and copies the stack frame X most recently stored in the
first memory area M1 to the second memory area M2. In
this case, it is assumed that the stack frame X most re-
cently stored in the first memory area M1 starts from ad-
dress Add_x1 and has addresses up to address Add_x2.
The stack frame X may include, for example, local vari-
ables, stacks R4, R5, and R6, and the link register value
LR(original), and has a stack size smaller than 600 kilo-
bytes since the stack frame X is one of a plurality of stacks
of call function Goo().
[0067] That is, the RTOS module 22 copies the callee’s
SP of the first memory area M1 to address Add_y1 of the
second memory area M2 (callee’s SP(new), and copies
the stack frame X to a stack frame Y For example, the
callee’s SP of the first memory area M1 is copied to ad-
dress Add_y1 of the second memory area M2 using ex-
pandTo function, and the local variables, stacks R4, R5,
and R6, and link register value LR(original) included in

the stack frame X are stored in the second memory area
M2.
[0068] Since the copied stack frame Y is stored in the
second memory area M2, the stacks stored in the first
memory area M1 and the stacks stored in the second
memory area M2 are discontinuous. In the illustrated ex-
ample, the stacks at the addresses Add_x1 to Add_x2
and the stacks after the address Add_y1 are not contin-
uous.
[0069] The second memory area M2 copies the stack
frame, and changes the link register value LR(original)
to a return location Add_x2 which is a separate epilogue
function address (LR(backTo)) in order to later return to
the first memory area when thread execution is complet-
ed. Thereafter, the RTOS module 22 executes call func-
tion Goo() up to address Add_y3, and connect an exe-
cution flow to the call point for a caller function by exe-
cuting the epilogue function. That is, the original link reg-
ister value LR(original) is restored by calling a backTo
function while returning to a pre-stored stack pointer
SP(caller) (i.e., Add_x2) of the first memory area M1. The
RTOS module 22 returns the executed stack to the first
memory area M1 on the basis of the restored stack point-
er and link register value. That is, the RTOS module 22
performs the execution flow smoothly.
[0070] For convenience of description, the epilogue
function, the backTo function, and the like are described.
However, these are merely examples, and it will be ap-
parent that these functions may be referred to differently
according to various embodiments.
[0071] FIG. 9 is a conceptual diagram for describing
the electronic system operating by expanding from the
first memory area to the second memory area according
to some embodiments.
[0072] Referring to FIG. 9, when a stack is used in a
red zone of the first memory area M1, i.e., when stacks
are stacked in one direction and filled up to the red zone,
the electronic system according to some embodiments
generates an overflow alarm. The red zone may refer to
a memory area in a preset range based on a threshold
value that is a stack size allocated for each thread to the
first memory area. In the illustrated example, if the thresh-
old value is set at a point smaller than a high address,
the red zone may mean an area in an address range that
is added to or subtracted from the threshold value.
[0073] According to some embodiments, the electronic
system may use a frame pointer to indicate a stack usage
of a call function included in a thread. In execution of a
specific call function included in a thread, the RTOS mod-
ule 22 may build a stack from stack pointer point Add_x1,
and, when the frame point indicating the stack usage of
the specific call function enters into the red zone, the
RTOS module 22 may generate an overflow alarm and
expand to the second memory area in accordance with
FIG. 8.
[0074] FIG. 10 is a conceptual diagram for describing
the electronic system operating by expanding from the
first memory area to the second memory area according

11 12

EP 4 213 021 A1

8

5

10

15

20

25

30

35

40

45

50

55

to some embodiments.
[0075] Referring to FIG. 10, the electronic system may
use a stack signature to compare a stack usage of a call
function included in a thread with the stack size of the
first memory area M1.
[0076] According to some embodiments, the stack sig-
nature may be a preset code value 0xdeadbeef as shown
in FIG. 10. Alternatively, according to some embodi-
ments, the stack signature may be a value set according
to the rules specified by the RTOS module 22.
[0077] The RTOS module 22 may insert the stack sig-
nature to a preset position based on a set threshold value.
In one example, the stack signature may be inserted into
the red zone described with reference to FIG. 9. Alterna-
tively, in another example, the stack signature may be
inserted to a position corresponding to the threshold val-
ue.
[0078] When the RTOS module 22 detects the stack
signature in the first memory area M1 while building a
stack, the RTOS module 22 connects and expands an
address from the first memory area M1 to the second
memory area M2. As for the connection and expansion
of an address, the address may be connected to the sec-
ond memory area as described with reference to FIG. 8.
[0079] FIG. 11 is a conceptual diagram for describing
the electronic system operating by expanding from the
first memory area to the second memory area according
to some embodiments.
[0080] Referring to FIG. 11, the electronic system may
use a stack pointer and a preset expand function to com-
pare a stack usage of a call function included in a thread
with the stack size of the first memory area M1.
[0081] According to some embodiments, a designer or
user of the electronic system may arbitrarily insert code
that calls the expand function into a stack frame which
corresponds to the thread. For example, the RTOS mod-
ule 22 connects and expands an address from the first
memory area M1 to the second memory area M2 by call-
ing the preset expand function after a frame size based
on a stack pointer indicating the start of the stack frame.
As for the connection and expansion of an address, the
address may be connected to the second memory area
as described with reference to FIG. 8.
[0082] FIG. 12 is a flowchart illustrating an operating
method of an electronic system according to some em-
bodiments.
[0083] Referring to FIG. 12, an operating method of an
electronic system in an RTOS, when a task is given,
threads corresponding to the task are identified (S10),
and a call graph is explored by performing static code
analysis on each thread (S20). When the call graph is
determined, the electronic system obtains a stack usage
of each node by performing dynamic code analysis, i.e.,
runtime profiling, and obtains a call probability for each
node of a call graph (S30).
[0084] The electronic system sets a threshold value
that determines a stack size of a thread on the basis of
the call graph, the stack usage of each node, and the call

probability for each node (S40). Call functions associated
with the threads are preferentially executed in a first
memory area M1 (S50) until an overflow alarm is gener-
ated (S60, N). When the overflow alarm is generated
(S60), the stack of the thread being executed in the first
memory area M1 is connected to a second memory area
M2 (S70) and subsequent stacks of the call functions are
executed in the second memory area (S80).
[0085] When execution of the call function of a corre-
sponding thread is completed in the second memory area
M2, setting of an address connected for expansion re-
turns back to the first memory area M1 (S90) and thread
processing according to a call chain of the corresponding
node is completed (S100).
[0086] FIG. 13 is a diagram illustrating a system to
which a storage device according to one embodiment is
applied. A system 1000 of FIG. 13 may be, e.g., a mobile
system such as a portable communication terminal (a
mobile phone), a smartphone, a tablet personal computer
(PC), a wearable device, a healthcare device, or an In-
ternet of Things (IoT) device. However, the system 1000
of FIG. 13 is not limited to a mobile system and may be
a PC, a laptop computer, a server, a media player, or an
automotive device such as a navigation device.
[0087] Referring to FIG. 13, the system 1000 may in-
clude a main processor 1100, memories 1200a and
1200b, and storage devices 1300a and 1300b, and may
further include one or more of an image capturing device
1410, a user input device 1420, a sensor 1430, a com-
munication device 1440, a display 1450, a speaker 1460,
a power supplying device 1470, and a connecting inter-
face 1480.
[0088] According to some embodiments, the main
processor 1100 and the memories 1200a and 1200b may
be the host 10 and the memory device 202 of FIG. 1.
Alternatively, according to some embodiments, the stor-
age devices 1300a and 1300b may be the storage system
2 of FIG. 2.
[0089] The main processor 1100 may control an overall
operation of the system 1000, e.g., control operations of
the other components included in the system 1000. The
main processor 1100 may be implemented as a general-
purpose processor, a dedicated purpose processor, an
AP, or the like.
[0090] The main processor 1100 may include one or
more CPU cores 1110 and may include a controller 1120
configured to control the memories 1200a and 1200b
and/or the storage devices 1300a and 1300b. According
to some embodiments, the main processor 1100 may
include an accelerator block 1130 that is a dedicated cir-
cuit configured to perform high speed data calculation,
such as AI data calculation. The accelerator block 1130
may include a GPU, an NPU, a DPU, and/or the like, and
may be implemented as a separate chip physically inde-
pendent of the other components in the main processor
1100.
[0091] The memories 1200a and 1200b may be used
as a main memory device of the system 1000 and may

13 14

EP 4 213 021 A1

9

5

10

15

20

25

30

35

40

45

50

55

include volatile memories, such as SRAM and/or DRAM,
or include NVM memories, such as flash memory, PRAM,
and/or RRAM. The memories 1200a and 1200b may be
implemented in the same package as the main processor
1100.
[0092] The storage devices 1300a and 1300b may
function as an NVM storage device configured to store
data regardless of whether power is supplied thereto,
and may have a larger storage capacity than the mem-
ories 1200a and 1200b. The storage devices 1300a and
1300b may include storage controllers 1310a and 1310b
and NVM storages 1320a and 1320b configured to store
data under the control of the storage controllers 1310a
and 1310b, respectively. The NVM storage 1320a and
1320b may include V-NAND flash memory of a two-di-
mensional (2D) or three-dimensional (3D) structure, or
another type of NVM, such as PRAM and/or RRAM.
[0093] The storage devices 1300a and 1300b may be
included in the system 1000 physically separated from
the main processor 1100, or may be implemented in the
same package as the main processor 1100. Also, the
storage devices 1300a and 1300b may have a form such
as an SSD or a memory card form to be detachably cou-
pled to the other components in the system 1000 through
an interface such as the connecting interface 1480 de-
scribed below. The storage devices 1300a and 1300b
may be devices to which a standard protocol, such as a
UFS protocol, is applied, but are not limited thereto.
[0094] The image capturing device 1410 may capture
a still image or a moving picture, and may include a cam-
era, a camcorder, a webcam, and/or the like.
[0095] The user input device 1420 may receive various
types of data from a user of the system 1000, and may
include a touch pad, a keypad, a keyboard, a mouse, a
microphone, and/or the like.
[0096] The sensor 1430 may sense various types of
physical quantities, which may be obtained from the en-
vironment, and convert the sensed physical quantity into
an electrical signal. The sensor 1430 may include a tem-
perature sensor, a pressure sensor, an illuminance sen-
sor, a position sensor, an acceleration sensor, a biosen-
sor, a gyroscope, and/or the like.
[0097] The communication device 1440 may perform
signal transmission and reception between the system
1000 and other devices outside the system 1000 accord-
ing to various communication protocols. The communi-
cation device 1440 may be implemented using an anten-
na, a transceiver, a modem, and/or the like.
[0098] The display 1450 and the speaker 1460 may
function as output devices configured to output visual
information and auditory information to the user of the
system 1000, respectively.
[0099] The power supplying device 1470 may convert
power supplied from a battery (not shown) in the system
1000 and/or an external power source, and supply the
converted power to each component in the system 1000.
[0100] The connecting interface 1480 may provide a
connection between the system 1000 and an external

device connected to the system 1000 to transmit and
receive data to and from the system 1000. The connect-
ing interface 1480 may be implemented by various inter-
face schemes, such as an ATA interface, a SATA inter-
face, an e-SATA interface, a small computer small inter-
face (SCSI), SAS, a PCI interface, a PCIe interface, an
NVM express (NVMe) interface, an Institute of Electrical
and Electronics Engineers (IEEE) 1394 interface, a USB
interface, a secure digital (SD) card interface, a multi-
media card (MMC) interface, an eMMC interface, a UFS
interface, an embedded UFS (eUFS) interface, and a
compact flash (CF) card interface.
[0101] FIG. 14 is a diagram illustrating a data center
to which a memory device according to some embodi-
ments is applied.
[0102] Referring to FIG. 14, a data center 2000 is a
facility that collects various data and provides services,
and may also be referred to as a data storage center.
The data center 2000 may be or include a system for
search engines and data base operations, and may be
or include a computing system used by companies, such
as banks, or government agencies. The data center 2000
may include application servers 2100 to 2100n and stor-
age servers 2200 to 2200m. The number of application
servers 2100 to 2100n and the number of storage servers
2200 to 2200m may be variously selected according to
an embodiment, and the number of application servers
2100 to 2100n and the number of storage servers 2200
to 2200m may be different from each other.
[0103] The application server 2100 or the storage serv-
er 2200 may include at least one of the processors 2110
and 2210 and at least one of the memories 2120 and
2220. According to some embodiments, the processors
2110 and 2210 and the memories 2120 and 2220 may
be the host 10 and the memory device 202 of FIG. 1.
[0104] Taking the storage server 220 as an example,
the processor 2210 may control the overall operation of
the storage server 2200, and access the memory 2220
to execute commands and/or data loaded into the mem-
ory 2220. The memory 2220 may be a double data rate
synchronous DRAM (DDR SDRAM), an HBM, a HMC, a
dual in-line memory module (DIMM), an Optane DIMM
or an NVMDIMM. According to an embodiment, the
number of processors 2210 and the number of memories
2220 included in the storage server 2200 may be vari-
ously selected. In an embodiment, the processor 2210
and the memory 2220 may provide a processor-memory
pair. In an embodiment, the number of processors 2210
and the number of memories 2220 may be different from
each other. The processor 2210 may include a single-
core processor or a multicore processor. The aforemen-
tioned description of the storage server 2200 may also
be similarly applied to the application server 2100. Ac-
cording to an embodiment, the application server 2100
need not include the storage device 2150. The storage
server 2200 may include at least one or more storage
devices 2250. The number of storage devices 2250 in-
cluded in the storage server 2200 may be variously se-

15 16

EP 4 213 021 A1

10

5

10

15

20

25

30

35

40

45

50

55

lected according to an embodiment. According to some
embodiments, the storage device 2250 may be the stor-
age system 2 of FIG. 2.
[0105] The application servers 2100 to 2100n and the
storage servers 2200 to 2200m may communicate with
each other through a network 2300. The network 2300
may be implemented using a fiber channel (FC), an Eth-
ernet, or the like. The FC is a medium used for relatively
high-speed data transmissions, and may use an optical
switch which provides high performance and/or high
availability. The storage servers 2200 to 2200m may be
provided as a file storage, a block storage or an object
storage, depending on an access type of the network
2300.
[0106] In an embodiment, the network 2300 may be a
storage-dedicated network, such as a storage area net-
work (SAN). For example, the SAN may be an FC-SAN
using an FC network and implemented according to an
FC Protocol (FCP). In another example, the SAN may
be an IP-SAN using a TCP/IP network and implemented
according to an iSCSI (SCSI over TCP/IP or Internet SC-
SI) protocol. In another embodiment, the network 1300
may be a general network such as the TCP/IP network.
For example, the network 1300 may be implemented ac-
cording to protocols, such as FC over Ethernet (FCoE),
network-attached storage (NAS), NVMe over Fabrics
(NVMe-oF)
[0107] Hereinafter, the application server 2100 and the
storage server 2200 will be mainly described. The de-
scription of the application server 2100 may be applied
to another application server 2100n, and the description
of the storage server 2200 may be applied to another
storage server 2200m.
[0108] The application server 2100 may store data re-
quested by the user or a client to be stored in one of the
storage servers 2200 to 2200m through the network
2300. In addition, the application server 2100 may ac-
quire data requested by the user or the client to be read
from one of the storage servers 2200 to 2200m through
the network 2300. For example, the application server
2100 may be implemented as a web server or a database
management system (DBMS).
[0109] The application server 2100 may access a
memory 2120n or a storage device 2150n included in
another application server 2100n through the network
2300, or may access memories 2220 to 2220m or storage
devices 2250 to 2250m included in the storage servers
2200 to 2200m through the network 2300. Accordingly,
the application server 2100 may perform various opera-
tions on data stored in the application servers 2100 to
2100n and/or the storage servers 2200 to 2200m. For
example, the application server 2100 may execute com-
mands for moving or copying data between the applica-
tion servers 2100 to 2100n and/or the storage servers
2200 to 2200m. At this time, the data may be moved to
the memories 2120 to 2120n of the application servers
2100 to 2100n through the memories 2220 to 2220m of
the storage servers 2200 to 2200m or directly from the

storage devices 2250 to 2250m of the storage servers
2200 to 2200m. The data moving through the network
2300 may be encrypted data for security or privacy.
[0110] Taking the storage server 2200 as an example,
an interface 2254 may provide a physical connection be-
tween the processor 2210 and a controller 2251 and a
physical connection between an NIC 2240 and the con-
troller 2251. For example, the interface 2254 may be im-
plemented by a direct attached storage (DAS) method
that directly connects the storage device 2250 with a ded-
icated cable. In addition, for example, the interface 2254
may be implemented by various interface schemes, such
as an ATA interface, a SATA interface, an e-SATA inter-
face, a SCSI, SAS, a PCI interface, a PCIe interface, an
NVM express (NVMe) interface, an IEEE 1394 interface,
a USB interface, an SD card interface, an MMC interface,
an eMMC interface, a UFS interface, an eUFS interface,
and a CF card interface.
[0111] The storage server 2200 may further include a
switch 2230 and an NIC 2240. The switch 2230 may se-
lectively connect the processor 2210 and the storage de-
vice 2250 or selectively connect the NIC 2240 and the
storage device 2250 under the control of the processor
2210.
[0112] In an embodiment, the NIC 2240 may include
a network interface card, a network adapter, and the like.
The NIC 2240 may be connected to the network 2300 by
a wired interface, a wireless interface, a Bluetooth inter-
face, an optical interface, or the like. The NIC 2240 may
include an internal memory, a DSP, a host bus interface,
and the like, and may be connected to the processor
2210 and/or the switch 2230 through a host bus interface.
The host bus interface may be implemented as one of
the examples of the interface 2254 described above. In
an embodiment, the NIC 2240 may be integrated with at
least one of the processor 2210, the switch 2230, and
the storage device 2250.
[0113] In the storage servers 2200 to 2200m or the
application servers 2100 to 2100n, the processor may
program or read data by transmitting a command to the
storage devices 2130 to 2130n and 2250 to 2250m, or
the memories 2120 to 2120n and 2220 to 2220m. In this
case, the data may be error-corrected data through an
error correction code (ECC) engine. The data is data bus
inversion (DBI) or data masking (DM) processed data,
and may include cyclic redundancy code (CRC) informa-
tion. The data may be encrypted data for security or pri-
vacy.
[0114] The storage devices 2150 to 2150m and 2250
to 2250m may transmit a control signal and a com-
mand/address signal to the NAND flash memory devices
2252 to 2252m in response to a read command received
from the processor. Accordingly, when data is read from
the NAND flash memory devices 2252 to 2252m, a read
enable (RE) signal is input as a data output control signal,
and may serve to output the data to a DQ bus. A data
strobe (DQS) may be generated using the RE signal. The
command and the address signal may be latched in a

17 18

EP 4 213 021 A1

11

5

10

15

20

25

30

35

40

45

50

55

page buffer according to a rising edge or a falling edge
of a write enable (WE) signal.
[0115] The controller 2251 may control the overall op-
eration of the storage device 2250. In an embodiment,
the controller 2251 may include an SRAM. The controller
2251 may write the data to the NAND flash 2252 in re-
sponse to a write command, or may read the data from
the NAND flash 2252 in response to a read command.
For example, the write command and/or the read com-
mand may be provided from the processor 2210 in the
storage server 2200, the processor 2210m in another
storage server 2200m, or the processors 2110 and 2110n
in the application servers 2100 and 2100n. A DRAM 2253
may temporarily store (buffer) the data to be written to
the NAND flash 2252 or the data read from the NAND
flash 2252. In addition, the DRAM 2253 may store meta-
data. The metadata may be user data or data generated
by the controller 2251 to manage the NAND flash 2252.
The storage device 2250 may include a secure element
(SE) for security or privacy.
[0116] While example embodiments of the inventive
concept have been shown and described above, it will
be apparent to those skilled in the art that modifications
and variations in these embodiments can be made with-
out departing from the scope of the present inventive
concept as defined in the appended claims.
[0117] Further embodiments are set out in the following
clauses:

1. An operating method of an electronic system in a
real-time operating system, the operating method
comprising:

obtaining a call graph by performing static code
analysis on at least one thread that corresponds
to a task;
obtaining a stack usage of the thread and a call
probability for each node by performing runtime
profiling of the call graph;
allocating a threshold value of a stack size for a
first memory area by taking into account the call
graph, the call probability for each node, and the
stack usage;
expanding and storing a stack from the first
memory area to a second memory area accord-
ing to a comparison result between the threshold
value and a stack usage of the first memory area;
and
returning the stack to the first memory when ex-
ecution is completed in the second memory ar-
ea,
wherein the electronic system comprises a
memory device configured to include the first
memory area and the second memory area.

2. The operating method of clause 1, wherein the
threshold value is set based on the call graph of the
thread, the stack usage of each node, and the call

probability for each node and the set threshold value
has a smaller size than a maximum stack usage of
the call graph.

3. The operating method of clause 1, wherein the
expanding from the first memory area to the second
memory area comprises:

generating an overflow alarm in the first memory
area;
copying a stack frame most recently executed
in the first memory area to the second memory
area;
executing and storing remaining stack frames
of the thread in the second memory area; and
returning a stack pointer of the second memory
area back to the first memory area in response
to completion of execution of the remaining
stacks.

4. The operating method of clause 3, wherein the
copying comprises storing a stack pointer and a link
register value of the first memory area, copying the
stack frame most recently executed in the first mem-
ory area to the second memory area, and changing
the stored link register value to a return location of
the first memory area.

5. The operating method of clause 4, wherein sub-
sequent stacks are executed in the second memory
area and the executed stacks are returned back to
the first memory area based on the stored stack
pointer and the changed return location.

6. The operating method of clause 1, wherein the
threshold value based on the call graph, the stack
usage, and the call probability for each node is
learned in advance and set via machine learning.

7. An operating method of a memory device in a real-
time operating system, the memory device compris-
ing a first memory area and a second memory area,
the operating method comprising:

compiling a task into multiple threads and ex-
ploring a call graph by static code analysis on
each thread;
obtaining a stack usage of each node and a call
probability for each node by performing dynamic
code analysis on the explored call graph;
setting a stack size of the first memory area
based on the dynamic code analysis result;
storing stack frames corresponding to the thread
in sequence in the first memory area; and
storing a subsequent stack frame in the second
memory area in response to an overflow alarm
for the first memory area being generated.

19 20

EP 4 213 021 A1

12

5

10

15

20

25

30

35

40

45

50

55

8. The operating method of clause 7, wherein a first
stack of the first memory area and a second stack
of the second memory area are discontinuously dis-
posed in the memory device.

9. The operating method of clause 7, wherein the
storing of the subsequent stack frame in the second
memory area comprises:

copying a stack frame most recently stored in
the first memory area to the second memory ar-
ea;
storing the subsequent stack frame continuous-
ly in the second memory area; and
in response to execution of the subsequent
stack frame being terminated in the second
memory area, returning the executed stack to
the first memory area.

10. The operating method of clause 7, wherein the
first memory area comprises a red zone in a preset
range and the memory device generates the over-
flow alarm when the stack frame enters into the red
zone.

11. The operating method of clause 7, wherein the
overflow alarm is generated by comparing call chain
history information with a currently executed call.

12. The operating method of clause 7, wherein the
stack size of the first memory area is set based on
the call graph, the stack usage of each node, and
the call probability for each node, so that a stack
usage with a maximum call chain depth reachable
from a root function of the thread is less than or equal
to a maximum stack usage.

13. The operating method of clause 12, wherein the
stack size of the first memory area is learned in ad-
vance and set via machine learning.

14. The operating method of clause 7, wherein the
overflow alarm is used to connect the first memory
area to the second memory area by calling a preset
expand function.

15. The operating method of clause 7, wherein the
overflow alarm is generated when a stack signature
is detected while the stack frame is being stored in
the first memory area.

Claims

1. An operating method of an electronic system in a
real-time operating system, wherein the electronic
system comprises a memory device configured to
include a first memory area and a second memory

area, the operating method comprising:

obtaining a call graph by performing static code
analysis on at least one thread that corresponds
to a task;
obtaining a stack usage of the thread and a call
probability for each node by performing runtime
profiling of the call graph;
allocating a threshold value of a stack size for
the first memory area by taking into account the
call graph, the call probability for each node, and
the stack usage;
expanding and storing a stack from the first
memory area to the second memory area ac-
cording to a comparison result between the
threshold value and a stack usage of the first
memory area; and
returning the stack to the first memory area when
execution is completed in the second memory
area.

2. The operating method of claim 1, wherein the thresh-
old value is set based on the call graph of the thread,
the stack usage of each node, and the call probability
for each node and the set threshold value has a
smaller size than a maximum stack usage of the call
graph.

3. The operating method of claim 1 or claim 2, wherein
the expanding from the first memory area to the sec-
ond memory area comprises:

generating an overflow alarm in the first memory
area;
copying a stack frame most recently executed
in the first memory area to the second memory
area;
executing and storing remaining stack frames
of the thread in the second memory area; and
returning a stack pointer of the second memory
area back to the first memory area in response
to completion of execution of the remaining
stacks.

4. The operating method of claim 3, wherein the copy-
ing comprises storing a stack pointer and a link reg-
ister value of the first memory area, copying the stack
frame most recently executed in the first memory
area to the second memory area, and changing the
stored link register value to a return location of the
first memory area.

5. The operating method of claim 4, wherein subse-
quent stacks are executed in the second memory
area and the executed stacks are returned back to
the first memory area based on the stored stack
pointer and the changed return location.

21 22

EP 4 213 021 A1

13

5

10

15

20

25

30

35

40

45

50

55

6. The operating method of any preceding claim,
wherein the threshold value based on the call graph,
the stack usage, and the call probability for each
node is learned in advance and set via machine
learning.

7. An electronic system comprising:

a real-time operating system module configured
to process a command from a host by dividing
the command into at least one thread;
a call graph module configured to get a call graph
by performing static code analysis on the thread;
a runtime profiler configured to get a stack usage
of each node and a call probability for each node
by performing runtime profiling of the call graph;
and
a memory device configured to include a first
memory area and a second memory area,
wherein the RTOS module is configured to:

allocate a stack space that corresponds to
the thread to the first memory area on the
basis of a threshold value based on the
stack usage of each node and the call prob-
ability for each node,
store a stack corresponding to the thread in
the allocated stack space in the first memory
area, and
connect and store a subsequent stack to
the second memory area, in response to an
overflow alarm based on the call probability
for each node and the stack usage of each
node being generated.

8. The electronic system of claim 7, wherein a first stack
of the first memory area and a second stack of the
second memory area are discontinuously disposed
in the memory device.

9. The electronic system of claim 7 or claim 8, wherein
the storing of the subsequent stack in the second
memory area comprises:

copying a stack frame most recently stored in
the first memory area to the second memory ar-
ea;
storing the subsequent stack frame continuous-
ly in the second memory area; and
in response to execution of the subsequent
stack frame being terminated in the second
memory area, returning the executed stack to
the first memory area.

10. The electronic system of any of claims 7-9, wherein
the first memory area comprises a red zone in a pre-
set range and the real-time operating system module
is configured to generate the overflow alarm in re-

sponse to the stack frame entering into the red zone.

11. The electronic system of any of claims 7-10, wherein
the real-time operating system module is configured
to generate the overflow alarm by comparing call
chain history information with a currently executed
call.

12. The electronic system of any of claims 7-11, wherein
the real-time operating system module is configured
set the stack size of the first memory area based on
the call graph, the stack usage of each node, and
the call probability for each node, so that a stack
usage with a maximum call chain depth reachable
from a root function of the thread is less than or equal
to a maximum stack usage.

13. The electronic system of claim 12, wherein the stack
size of the first memory area is learned in advance
and set via machine learning.

14. The electronic system of any of claims 7-13, wherein
the real-time operating system module is configured
to use the overflow alarm to connect the first memory
area to the second memory area by calling a preset
expand function.

15. The electronic system of any of claims 7-14, wherein
the real-time operating system module is configured
to generate the overflow alarm in response to a stack
signature being detected while the stack frame is
being stored in the first memory area.

23 24

EP 4 213 021 A1

14

EP 4 213 021 A1

15

EP 4 213 021 A1

16

EP 4 213 021 A1

17

EP 4 213 021 A1

18

EP 4 213 021 A1

19

EP 4 213 021 A1

20

EP 4 213 021 A1

21

EP 4 213 021 A1

22

EP 4 213 021 A1

23

EP 4 213 021 A1

24

EP 4 213 021 A1

25

EP 4 213 021 A1

26

EP 4 213 021 A1

27

5

10

15

20

25

30

35

40

45

50

55

EP 4 213 021 A1

28

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

