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(54) VIBRATION ANALYSIS METHOD, PROGRAM, AND STORAGE MEDIUM

(57) This vibration analysis method is a method for
analyzing vibrations of a large-scale system with local
strong nonlinearities, and includes a process (1) of ap-
plying the new type of complex modal analysis to an
equation for a linear state variable to convert the equation
to a real modal equation for lower-order modes, and cor-
recting an effect of higher-order modes of the linear state
variable from an equation for a nonlinear state variable
and eliminating the modes, a process (2) of selecting
secondary modes, which have a large effect on a solution
of an original large-scale system, from the real modal
equation for lower-order modes, and, in relation to sec-
ondary modes, which have a small effect, eliminating the
modes thereof by incorporating the effect to the equation
for nonlinear state variables as a correction term obtained
from an approximate solution of the real modal equation
for lower-order modes, and deriving the dimension re-
duced model, and a process (3) of calculating a frequency
response by using the dimension reduced model.
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Description

[Technical Field]

[0001] The present invention mainly relates to a high-performance vibration analysis method for large-scale systems
with local strong nonlinearities. More specifically, it relates to a dimensionality reduction method using a new type of
complex modal analysis. This application claims priority based on Japanese Patent Application No. 2020-161727 filed
in Japan on September 28, 2020, the content of which is incorporated herein.

[Background Art]

[0002] A machine is composed of a large number of elements that move relative to each other and has elements with
strong nonlinearities such as bearings at base supporting portions or gears at joints between the elements. Moreover,
in stress analysis and vibration analysis at design stage, by using a finite element method, and the like, it is modeled as
a precise large-scale degree-of-freedom system close to an actual machine in many cases. Therefore, almost all machines
are large-scale degree-of-freedom systems with local strong nonlinearities.
[0003] On the other hand, in recent years, there has been an increasing demand for higher performance of machines.
To realize this requirement, it is necessary to implement a vibration analysis that fully considers an effect of nonlinearity
that is unavoidably included in the system at a design stage. Moreover, to clarify the full picture of nonlinear vibrations
that are complicated and diverse, it is not sufficient to simply perform a numerical simulation for a specific system
parameter, and the full content of frequency response including the stability analysis needs to be clarified.
[0004] Until now, a Galerkin method based on linear eigenmode expansion (refer to, for example, Patent Document
1 described below) has often been used for a vibration analysis of multi-degree-of-freedom nonlinear systems because
it has an algorithm with regularity and can be applied to a wide range of problems.

[Citation List]

[Patent Literature]

[0005] [Patent Literature 1]
Japanese Unexamined Patent Application, First Publication No. 2017-211877

[Summary of Invention]

[Technical Problem]

[0006] However, the Galerkin method has significant disadvantages such as an explosive increase in calculation time
and memory size when an analysis with high accuracy is attempted by increasing the number of modes to be used and
the disappearance of a mode separation effect with nonlinearity by dispersing throughout a system after a conversion
to modal coordinates even if a model has nonlinearity only locally.
[0007] In order to overcome such a situation, research has been vigorously conducted to perform an analysis with
high accuracy using a dimension reduced model with a small number of modes but have not yet reached a fundamental
solution. The main problem is that accuracy of the analysis (especially an accuracy of stability analysis) deteriorates
significantly due to a coupling between modes specific to a nonlinear system if modes to be used are not appropriately
selected. In this manner, it is not an exaggeration to say that there are no practical vibration analysis methods for a
large-scale nonlinear system, and it is an urgent problem in numerical calculation related to mechanical design to develop
a high-performance vibration analysis method that can deal with this problem.
[0008] The present invention has been made with aims to fundamentally solve the problems described above and
provides a method of rationally constructing the dimension reduced model with high accuracy in which the effect of
nonlinearity is appropriately reflected for a large-scale system with local strong nonlinearity.

[Solution to Problem]

[0009] A proposed method is configured mainly from the following two processes.
[0010] (1) A process of applying the new type of complex modal analysis to the equations for linear state variables
[Equation (1) and Equation (4) to be described below] to convert the equations to the real modal equations for lower-
order modes, and correcting and eliminating an effect of higher-order modes of the linear state variables from the equation
for nonlinear state variables [Equation (2) to be described below], and (2) a process of selecting modes (dominant
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modes), which have a large effect on a solution of an original large-scale system, from the real modal equation for lower-
order modes, and, in relation to modes (secondary modes), which have a small effect, eliminating secondary modes by
incorporating the effect to the equation for the nonlinear state variables [Equation (2)] as correction terms obtained from
an approximate and deriving the dimension reduced model, and a process of selecting dominant modes from lower-
order modes (as rationally as possible) in a calculation procedure of a frequency response.

[Advantageous Effects of Invention]

[0011] By using this dimension reduced model, a vibration analysis including stability analysis of a large-scale nonlinear
system, which has not been possible, can be performed at high speed and with high accuracy. Moreover, the proposed
method has very high versatility and can be generally applied to large-scale vibration systems with local strong nonlin-
earities.

[Brief Description of Drawings]

[0012]

FIG. 1 is a diagram which shows an overview of the present analysis technique.
FIG. 2 is a flowchart of the present analysis technique.
FIG. 3 is a schematic diagram which shows an analytical model of an application example of a dimensionality
reduction method.
FIG. 4 is a frequency response diagram which shows first-order to fifth-order primary resonance regions in the full
model.
FIG. 5 is a frequency response diagram which shows the first-order and second-order primary resonance regions
in the full model.
FIG. 6 is a frequency response diagram which shows the first-order to fifth-order primary resonance regions in the
dimension reduced model (nl=59, na=5).
FIG. 7 is a frequency response diagram which shows the first-order and second-order primary resonance regions
in the dimension reduced model (nl=59, na=5).
FIG. 8 is a frequency response diagram which shows the first-order to fifth-order primary resonance regions in the
dimension reduced model (nl=59, na=15).
FIG. 9 is a frequency response diagram of the first-order and second-order primary resonance regions in the di-
mension reduced model (nl=59, na=15).
FIG. 10 is a frequency response diagram which shows the first-order to fifth-order primary resonance regions in the
dimension reduced model (nl=5, na=5).
FIG. 11 is a frequency response diagram which shows the first-order to fifth-order primary resonance regions in the
dimension reduced model (nl=10, na=5).
FIG. 12 is a diagram which shows an effect of the lower-order modes number nl on the first-order natural frequency.
FIG. 13 is a diagram which shows an effect of the lower-order modes number nl on the second-order natural frequency.
FIG. 14 is a diagram which shows an effect of the lower-order modes number nl on the third-order natural frequency.
FIG. 15 is a diagram which shows an effect of the lower-order modes number nl on the fourth-order natural frequency.
FIG. 16 is a diagram which shows an effect of the lower-order modes number nl on the fifth-order natural frequency.
FIG. 17 is a frequency response diagram of the second-order primary resonance region in the full model.
FIG. 18 is a frequency response diagram of the second-order primary resonance region in the dimension reduced
model (nl=20, δ=5310-4).
FIG. 19 is a frequency response diagram of the second-order primary resonance region in the dimension reduced
model (nl=20, δ=1310-4).
FIG. 20 is a frequency response diagram of the second-order primary resonance region in the dimension reduced
model (nl=20, δ=1310-5).
FIG. 21 is a frequency response diagram of the first-order to second-order primary resonance regions in the dimension
reduced model (nl=15, δ=7310-4).
FIG. 22 is a frequency response diagram of the first-order to second-order primary resonance regions in the dimension
reduced model (nl=15, δ=1310-4).
FIG. 23 is a frequency response diagram of the first-order to second-order primary resonance regions in the dimension
reduced model (nl=15, δ=2310-5).
FIG. 24 is a frequency response diagram of the first-order to second-order primary resonance regions in the dimension
reduced model (nl=599, na=20).
FIG. 25 is a frequency response diagram of the fourth-order to fifth-order primary resonance regions in the dimension
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reduced model (nl=30, δ=1310-3).
FIG. 26 is a frequency response diagram of the fourth-order to fifth-order primary resonance regions in the dimension
reduced model (nl=30, δ=5310-4).
FIG. 27 is the frequency response diagram of the fourth-order to fifth-order primary resonance regions in the dimen-
sion reduced model (nl=30, δ=2310-4).
FIG. 28 is a frequency response diagram of the fourth-order to fifth-order primary resonance regions in the dimension
reduced model (nl=599, na=20).
FIG. 29 is a block diagram which shows an example of a device that implements the present analysis technique.

[Description of Embodiments]

[0013] Specific implementation items in the two processes described above will be described below.
[0014] It should be noted that, in the present specification, expressions of terms and mathematical formulas are
restricted in the sentences other than independent mathematical formulas that are captured as the images. For this
reason, for example, a term captured as an image in the present specification and expressed as a term (0-1) is expressed
as "cψ∼

1
T" in the sentence of the present specification. A term that is incorporated as an image in the present specification

and expressed as a term (0-2) is expressed as "y " in the text of the present specification. Note that "y " means a term
obtained by first-order differentiation of y with respect to time. [Math. 1] 

[Analysis target and fundamental equations]

[0015] A method proposed in the present invention analyzes a large-scale vibration system with N degrees of freedom
and local strong nonlinearities. The fundamental equations can be generally expressed as follows.
[Math. 2] 

Where, 

[0016] y1 is an n-dimensional vector that summarizes the physical coordinates of state variables on which the nonlinear
forces do not act, and y2 is an m-dimensional vector that summarizes the physical coordinates of state variables on
which the nonlinear forces act. In the following description, y1 will be referred to as a linear state variable and y2 will be
referred to as a nonlinear state variable. For convenience, Equation (1) will be referred to as a linear state equation and
Equation (2) will be referred to as a nonlinear state equation. n2 is set to a strong nonlinear function with respect to y2
and yÙ2, and f1 and f2 are set to the harmonic forced external forces of a period 2π/ω. M is a coefficient matrix (a mass
matrix) for mass elements. C is a coefficient matrix (a damping matrix) for damping elements. K is a coefficient matrix
(a stiffness matrix) for linear spring elements. Positive definiteness for M11, C11 and K11 are not assumed to ensure
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versatility of the proposed method. The fact that m<<<n indicates that the nonlinearity exists only locally. In this manner,
the proposed method is applicable to almost large-scale vibration systems with local strong nonlinearities.
[0017] In formulating a dimensionality reduction method, a following system in which the coefficient matrices of Equation
(1) are replaced with the transposed matrices and the external force set to zero is treated at the same time.
[Math. 3] 

[0018] Where, an upper right subscript "T" is the transposition symbol. y2 in Equation (4) is a solution that satisfies
Equations (1) and (2), but since y1 is generally different from a solution that satisfies Equations (1) and (2), it is expressed
as y∗1 in Equation (4). In the following description, Equation (4) is referred to as a dual system of Equation (1).

«Application of new type of complex modal analysis to linear state equation»

[Conversion to first-order differential equation]

[0019] To formulate the dimensionality reduction method based on the new type of complex modal analysis, Equations
(1) and (4) are transformed into the first-order differential equations as follows. Note that In denotes an nth order unit matrix.
[Math. 4] 

Where, 

[General eigenvalue problem]

[0020] In the dimensionality reduction method, first, the nonlinear state variables are fixed by setting xÙ2=0 and x2=0
in Equations (5) and (6), and a following general eigenvalue problem is derived from a free vibration system with g1=0.
[Math. 5] 

[0021] The eigenvalues λ obtained from Equations (8) and (9) are consistent with each other and generally become
complex numbers. In addition, corresponding eigenvectors X1 and X∗

1 are also complex vectors. X1 is a right complex
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eigenvector and X∗
1 is a left complex eigenvector for Equation (8), and X∗

1 is a right complex eigenvector and X1 is a
left complex eigenvector for Equation (9). In terms of vibration engineering, an imaginary part of the eigenvalue λ
corresponds to a natural angular frequency, and X1 and X∗

1 correspond to left and right complex constraint modes.

[Lower-order modes of complex constraint modes]

[0022] As a first step, the complex eigenvalues and the left and right complex eigenvectors (the complex constraint
modes) are obtained from Equations (8) and (9). However, when a dimension 2n of the general eigenvalue problem is
large, it is difficult to obtain all eigenvalues and eigenvectors (a solution of a large-scale general eigenvalue problem
remains an unsolved conundrum in a field of numerical calculation and is virtually almost impossible). However, it is still
possible to obtain eigenvectors corresponding to a relatively small number of eigenvalues in order from a lower order
(in ascending order of an absolute value).
[0023] On the other hand, it is known that an effect on vibration characteristics generally decreases as a mode order
increases in both linear and nonlinear systems.
[0024] Therefore, in this dimensionality reduction method, only relatively lower-order eigenvalues and eigenvectors
from the first order to n1

th (n1<<n) order, which may have a large effect on an accuracy of a solution, are obtained from
the general eigenvalue problem, an effect of higher-order modes of an (n1+1)th order or higher is approximated using
lower-order modes up to the n1

th order. A value of n1 can be set based on a maximum order of a natural frequency (an
imaginary part of an eigenvalue) present within a frequency range about several times a maximum frequency to be
analyzed.
[0025] The relational equations required for this procedure are as follows. In the equations, subscripts "l" and "h"
indicate variables or physical quantities associated with lower-order modes and higher-order modes, respectively. A
physical quantity with an upper left subscript "C" indicates that it is a complex number, and similarly, "R" and "I" in
principle represent the real part and the imaginary part thereof, respectively.
[0026] First, left and right eigenvectors corresponding to eigenvalues from the first order to the nl

th (nl<<n) order in
Equation (8) are obtained. These eigenvalues are assumed to have negative complex numbers for all real parts, and a
pth order (p=1, ..., nl) complex conjugate eigenvalue is expressed as follows.
[Math. 6]

[0027] Where, ωp,1 and ζp,1 represent an undamped natural angular frequency and a damping ratio of a pth order
mode, respectively. Furthermore, these nl pairs of eigenvalues (2nl eigenvalues in total) are put together and displayed
in a matrix as follows.
[Math. 7] 
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Where, diag[ ] represents a diagonal matrix.
[0028] A right complex constraint modal matrix in which nl sets (2nl pieces) of the right complex eigenvectors of
Equation (8) corresponding to this complex eigenvalue are put together is set as CΦ^

1l. Similarly, a left complex constraint
modal matrix in which nl sets (2nl pieces) of left complex eigenvectors are put together is set as CΨ^

1l. It is assumed
that CΦ^

1l and CΨ^
1l are normalized to satisfy the following equation.

[Math. 8] 

[0029] At this time, CΦ^
1l and CΨ^

1l are expressed as follows. Note that Rϕp,1 and Iϕp,1 are a real part and an imaginary
part of the right complex eigenvector of the pth order mode, respectively. In addition, Rψp,1 and Iψp,1 are a real part and
an imaginary part of the left complex eigenvector of the pth order mode, respectively.
[Math. 9] 

[Realization of lower-order modes of complex constraint modes]

[0030] In order to speed up the calculation, a right real constraint modal matrix RΦ^
1l and a left real constraint modal

matrix RΨ^
1l are derived from the right and left complex constraint modal matrices CΦ^

1l and CΨ^
1l for the lower-order

modes as follows.
[Math. 10] 
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[Introduction of real modal coordinates for lower-order modes]

[0031] Physical coordinates x1 and x∗1 of the linear state variables can be represented by a sum of x1l and x∗1l based
on the lower-order modes and x1h and x∗1h based on the higher-order modes as follows. Note that y1l and y∗1l are the
linear state variables for the lower-order modes, respectively. y1h and y∗1h are the linear state variables for the higher-
order modes, respectively.
[Math. 11]

[0032] Among these, for x1l and x∗1l, real modal coordinates η1l and η∗1l are introduced by the following equations via
RΦ^

1l and RΨ^
1l respectively. Note that ξ1l is the real modal coordinates corresponding for the physical coordinates of

the lower-order modes.
[Math. 12] 
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[Derivation of real modal equation for lower-order modes]

[0033] After substituting Equations (15) and (17) into Equation (5), multiplying it by RΨ^
1l

T from the left and rearranging
it, a real modal equation for the lower-order modes is derived as follows.
[Math. 13] 

[0034] For the dual system, substituting Equations (16) and (18) into Equation (6), multiplying it by RΦ^
1l

T from the left
and rearranging it, a real modal equation for the lower-order modes is derived as follows.
[Math. 14] 

[0035] In this manner, even if the coefficient matrices do not satisfy positive definiteness, the mass, damping, and
stiffness matrices can be diagonalized simultaneously, and the modal equations can be derived in the form of real-type
second-order differential equation. This is the most important feature of the new type of complex modal analysis.

[Correction of effect of higher-order modes by using lower-order modes]

[0036] The linear state variable y1 in the nonlinear state equation [Equation (2)] is represented by a sum of y1l based
on the lower-order modes and y1h based on the higher-order modes as shown in Equation (15), and y1l is converted
into the real modal coordinates corresponding to the lower-order modes introduced in Equation (17). Furthermore, if the
effect of y1h based on the higher-order modes is corrected and eliminated, the following equation is obtained.
[Math. 15] 
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[0037] Where, M∼
22h, C∼

22h, K∼
22h, p21h, and q21h represent correction terms of the higher-order modes. These are

all obtained from the lower-order modes as follows.
[Math. 16]

<<Derivation of Dimension reduced model>>

[Separation of dominant modes and secondary modes]

[0038] Among the real modal coordinates η1l and η∗1l introduced in Equation (17) and Equation (18), there are modal
coordinates that have a large effect on an accuracy of a solution of an original large-scale system (referred to as a
dominant mode), and modal coordinates that have a small effect (referred to as a secondary mode). Subscripts "a" and
"b" indicate variables or physical quantities associated with the dominant modes and the secondary modes, respectively.
For example, η1a represents the dominant modal coordinates and η1b represents the secondary modal coordinates.
[0039] The left and right real modal matrices RΦ^

1l and RΨ^
1l for the lower-order modes obtained by Equation (14) are

separated into modal matrices RΦ^
1a and RΨ^

1a consisting of na pairs (2na pieces) of the dominant modes and modal
matrices RΦ^

1b and RΨ^
1b consisting of nb pairs (2nb pieces) of the secondary modes (nl=na+nb), and they are rearranged

as follows. A subscript "#" represents "a" or "b" in the following description.
[Math. 17] 
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[0040] Corresponding to the separation of the real modal matrices, modal coordinates of Equation (19), Equation (20)
and Equation (21) are also separated into the dominant modes and the secondary modes as follows.
[Math. 18]

[Approximate solution of secondary mode]

[0041] Since an effect of nonlinearity is small for the secondary modes, then, ignoring this effect and assuming that
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y2, ξ1b and ξ∗1b vibrate harmonically with the fundamental period 2π/ω yields y¨2=-ω2y2, ξ¨1b=-ω2ξ1b, ξ∗¨1b=-ω2ξ∗1b.
Furthermore, considering that f¨1=-ω2f1 holds for the harmonic external force, from Equations (24) and (25), an approx-
imate solution of the secondary modes is obtained as follows.
[Math. 19]

[Elimination of secondary modes and derivation of dimension reduced model]

[0042] By substituting the approximate solution of Equation (27) into the secondary modal coordinates ξ1b, ξÙ1b, ξ¨1b
in Equation (26) and correcting and eliminating the secondary modes, the following equation is obtained (the result of
Equation (28) is used in this derivation process).
[Math. 20] 

[0043] Where, M∼
22b, C∼

22b, K∼
22b, p21b and q21b represent correction terms of the secondary modes and are given

by the following equations.
[Math. 21] 
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[0044] Furthermore, from the equation with the subscript "#" in Equation (24) replaced with "a" and Equation (29), an
equation whose dimensionality is reduced to (na+m) dimension is obtained as follows.
[Math. 22]

[0045] The model represented by Equation (31) is called the dimension reduced model. The approximate solution is
calculated using Equation (31).

[Approximate solution of physical coordinates of linear state variables]

[0046] When approximate solutions ξ1a, ξÙ1a, y2, yÙ2 are obtained from Equation (31) of the dimension reduced model,
the approximate solutions for linear state variables are converted into physical coordinates when necessary.
[0047] The relational equations required for this procedure are as follows.
[Math. 23]



EP 4 220 105 A1

14

5

10

15

20

25

30

35

40

45

50

55

Where, 

[0048] y1a, yÙ1a represent physical coordinates based on the dominant modes, y1b, yÙ1b represent physical coordinates
based on the secondary modes, and y1h, yÙ1h represent physical coordinates based on the higher-order modes.

[Selection method of dominant modes]

[0049] When full content of a complicated and diverse frequency response is clarified while gradually changing an
angular frequency ω of an external force in a nonlinear system, an approximate solution obtained for a certain ω is often
used as an initial value for ω6Δω in iterative approximation calculation. Therefore, ξ1a to be used for ω6Δω can be
selected by using information included in the approximate solution obtained for a certain ω.
[0050] The relational equations required for this procedure are as follows.
[0051] Now, suppose that an approximate solution of the dimension reduced model consisting of ξ1a, ξÙ1a, y2 and yÙ2
is obtained for a certain ω. From this approximate solution y2, yÙ2, an approximate solution of lower-order modal coor-
dinates ξ1l can be calculated by the following equation.
[Math. 24] 
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[0052] An amplitude for each mode of this approximate solution can be defined by the following equation.
[Math. 25] 

[0053] In the calculation of ω6Δω, only a mode whose modal amplitude iξ1,pi is greater than a set threshold value δ
is selected as ξ1a. If it is assumed that the number of selected dominant modes is na and the number of remaining
secondary modes is nb, n1=na+nb. An upper limit value na,max of na may be defined depending on a case.
[0054] With this method, it is possible to efficiently calculate a frequency response while appropriately selecting dom-
inant modes as few as possible according to characteristics of a solution. In this method, the problem is how to set the
threshold value δ for the modal amplitude and the upper limit value na,max for the number of dominant modes. In practical
use, by obtaining multiple frequency responses while gradually decreasing δ and gradually increasing na,max, and when
the analytical results no longer change, a highly accurate solution is considered to have been obtained. Since the
dimension reduced model can be calculated fairly fast, it is considered that a cost for a plurality of calculations is not a
significant issue in practice. Note that a case when the analytical results do not change includes not only a case where
the analytical results do not change at all, but also a case where a difference between the analytical results is less than
a predetermined reference.
[0055] As for the method of setting the number of dominant modes na at a first ω at which the calculation is started,
for example, na=nl (the number of lower-order modes) may be set.

«Calculation procedure of frequency response»

[0056] A procedure for calculating the frequency response is briefly summarized below (refer to FIG. 1 and FIG. 2).

(Step 1) Preprocessing
(Step 1-1)
Calculation of the complex eigenvalues and the complex eigenvectors of the lower-order modes for the linear state
variables [Equation (8), Equation (10), Equation (12), Equation (13)] and realization of the complex eigenvectors
[Equation (14)]
(Step 1-2)
Introduction of the real modal coordinates for the physical coordinates of the lower-order modes [Equation (17),
Equation (18)] and derivation of the real modal equation [Equation (19), Equation (20)]
(Step 1-3)
Correction of the effect of the higher-order modes using the lower-order modes for the equation for the nonlinear
state variables [Equation (21)]
(Step 2) Selection of the dominant mode [Equation (36), Equation (37)]
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(Step 3) Derivation of the dimension reduced model
(Step 3-1)
Separation of the dominant mode and the secondary mode [Equation (23), Equation (24), Equation (25), Equation
(26)]
(Step 3-2) Calculation of the approximate solution of the secondary mode [Equation (27), Equation (28)]
(Step 3-3)
Derivation of the dimension reduced model [Equation (29), Equation (30), Equation (31)]
(Step 4)
Calculation of the periodic solution of the dimension reduced model [Equation (31)]
(Step 5) Determination of calculation end or continuation

[0057] The calculation will end when the angular frequency ω reaches an upper or lower limit of an analysis range.
When it does not reach the limit, ω6Δω is replaced with ω. The processing returns to Step 1 when M11, C11, and K11
are the functions of ω, and returns to Step 2 to continue the calculation when they are constants.

«Application example of dimensionality reduction method»

[1. Analytical model]

[0058] To confirm effectiveness of the dimensionality reduction method using the new type of complex modal analysis,
particularly effectiveness of the elimination method of higher-order modes and the selection method of dominant modes,
the dimensionality reduction method is applied to an in-plane bending vibration of a straight beam structure. FIG. 3
shows a schematic diagram of an analytical model, and Table 1 shows parameters used for the calculation.

[0059] In this model 10, both ends of a beam 1 having a uniform hollow circular section of 1.5m in length, 30mm in
outer diameter, and 25mm in inner diameter are supported by nonlinear elements 2 (viscous dampers and cubic springs
of hardening type), and a piecewise linear spring 3 (gap) is disposed at a position of 0.5 m from the left end. In addition,
a harmonic external force F of a centrifugal force type is applied on a position of 1 m from the left end so that a vibration
with a large amplitude generates and the effect of nonlinearity strongly appear even in a region where a frequency of
the external force is relatively high.
[0060] Physical properties of beam 1 are assumed to be steel material. The beam 1 has been equally divided into 30
small elements, and the mass and stiffness matrices have been derived by the finite element method. In this case, the
degrees of freedom are n=59 for the linear state variables, m=3 for the nonlinear state variables, and N=62 for the total
degree of freedom.
[0061] The degrees of freedom of this analytical model are not large enough to be called a large-scale system, but
they are close to a limit at which the solution can be obtained without applying the dimensionality reduction method. The

[Table 1]

Beam Total length [m] 1.5

Outer diameter [mm] 30

Inner diameter [mm] 25

Distributed damping of 
beam

Translational direction 
[kg/(m s)]

50

Rotational direction 
[kg/s]

1.0

Restoring force of support 
portion

Both ends [N]
 

Position of 0.5 m from 
left end [N]

 

External force Position of 1 m from left 
end [N]

0.001ω2sinωt
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damping matrix is assumed to be a non-proportional damping based on distributed damping so that an advantage of
the new type of complex modal analysis appears. Table 2 shows the first-order to tenth order undamped natural fre-
quencies of the linearized system with the coefficient of the cubic term of the nonlinear spring in this analytical model
set to zero.

[0062] FIGS. 4 to 9 show the frequency response diagrams of this analytical model. FIGS. 4, 6, and 8 show the first-
order to fifth-order primary resonance regions, and FIGS. 5, 7, and 9 show the enlarged views of the first-order and
second-order primary resonance regions. FIGS. 4 and 5 show the results when the dimensionality reduction method is
not applied (referred to as the full model), and FIGS. 6 to 9 show results when the dimensionality reduction method is
applied (referred to as the dimension reduced model).
[0063] The dimension reduced model is constructed by selecting a fixed number (na = 5, 15) of dominant modes in
the order that the natural frequency of the constraint mode is closer to the frequency of the external force, without both
applying the elimination method of higher-order modes and the selection method of dominant modes. In the results of
the dimension reduced model, the numbers of dominant modes (numerical values are denoted on the right axis) are
indicated by a filled ∇ marks, but they are constant in FIGS. 6 to 9, so that the results are presented as an apparently
thick solid line.
[0064] All response curves in the frequency response denote a maximum half-amplitude at the point where the gap
is disposed and bend when the amplitudes exceed a gap width (0.0025m). In the figures, a solid line represents a stable
solution, a dashed line represents an unstable solution, an s mark represents a saddle-node bifurcation point, a h mark
represents a pitchfork bifurcation point, and a Δ mark represents a hopf bifurcation point.
[0065] A result of comparison between FIGS. 6 and 7 when na=5 and FIGS. 4 and 5 of the full model shows a generally
good consistency therebetween, but the shapes of the response curves, the peak amplitude values, and the results of
stability analysis are different in a region where the effect of a gap that is strong nonlinearity appears. As shown in FIGS.
8 and 9, when the number of dominant modes is increased to na=15, the results consistent with those of the full model
are obtained.

[2. Application of elimination method of higher-order modes]

[0066] The elimination method of higher-order modes is applied to this analytical model, and the effect on an analytical
result of the number of lower-order modes nl used for the analysis is investigated. FIGS. 10 and 11 show results when
the number of dominant modes is fixed at na=5 and the number of lower-order modes is m=5, 10. Compared to FIG. 6
(m=n=59) when the elimination method of higher-order modes is not applied, almost the same response is obtained in
the first-order and second-order primary resonance regions with m=5 in FIG. 10. However, the difference increases as
the frequency increases. If m=10 in FIG. 11, it can be seen that the almost consistent results are obtained in the analytical
frequency range.
[0067] In this manner, the required number of lower-order modes changes depending on the range of frequency for
performing the analysis, and the solution can be obtained with high accuracy up to a higher frequency range by increasing
the number of lower-order modes. In this analytical model, since the effect of higher-order mode can be estimated with
high accuracy with only 10 out of 59, that is a small number of lower-order modes, this property is expected to be

[Table 2]

Order number Natural frequency [Hz]

1 34.81

2 138.2

3 306.9

4 535.1

5 812.7

6 1125

7 1459

8 1820

9 2235

10 2728
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extremely effective for an analysis of large-scale systems.
[0068] To examine the effect of the number of lower-order modes on the natural frequencies, the first-order to fifth-
order natural frequencies in the analytical frequency range are shown in FIGS. 12 to 16. These natural frequencies were
obtained from the dimension reduced model (nl=na) derived by applying only the elimination method of higher-order
modes. The dots represent the natural frequencies of the dimension reduced model, and the dashed line represents the
natural frequency of the full model.
[0069] From the comparison of FIGS. 12 to 16, the lower order natural frequencies have better accuracy and the
higher the order, the lower the accuracy. It can also be seen that the accuracy improves as the number of lower-order
modes increases. Since the accuracy of the natural frequencies and the accuracy of the frequency response analytical
results show similar trends with respect to the number of lower-order modes, it is considered that the accuracy of the
natural frequencies can be used as a guide for setting the number of lower-order modes nl from the viewpoint of calculation
cost.

[3. Application of selection method of dominant modes]

[0070] The selection method of dominant modes is applied to the analytical model. The analysis range is limited to
the second-order primary resonance region. The elimination method of higher-order modes is also applied to the dimen-
sionality reduction method, and the number of lower-order modes is set as nl=20. FIG. 17 is a result of the full model,
and FIGS. 18 to 20 are results of applying the selection method of dominant modes with the respective threshold values
set as δ=5310-4, 1310-4, and 1310-5, respectively. It can be seen that the number of dominant modes varies with the
frequency of the external force. It can be seen that when the threshold value is gradually decreased from FIG. 18 to
FIG. 20, the number of modes increases and the modes required for the analysis are appropriately selected, and thereby
the solution of the full model is approached. At δ=1310-5 in FIG. 20, the results consistent with those of the full model
are obtained.
[0071] It is confirmed that, at any threshold value, the number of dominant modes is relatively small in a region where
the amplitude of the solution is small and the effect of nonlinearity does not appear, the number of dominant modes
increases as an amplitude of a solution increases, and the analysis can be performed efficiently by changing the dominant
modes according to the characteristics of the solution.

[4. Model with large degree of freedom]

[0072] The present method is applied to the analytical model with 300 divisions to verify the effectiveness. In this case,
the degrees of freedom are n=599 for the linear state variables, m=3 for the nonlinear state variables, and N=602 for
the total degree of freedom. With this degree of freedom, the analysis for the full model becomes difficult. The analysis
is performed separately in the first-order to second-order primary resonance regions and the fourth-order to fifth-order
primary resonance regions.

[4.1. First-order and second-order primary resonance regions]

[0073] The analytical range of the frequency of the external force is set to 20 Hz to 200 Hz based on the natural
frequencies and the results of Chapter 1 [1. analytical model]. The number of lower-order modes when the elimination
method of higher-order modes is applied is set to m=15 based on a sixth-order natural frequency, which is about five
times the maximum frequency of 200 Hz.
[0074] FIGS. 21 to 23 show the results of applying the selection method of dominant modes while respective threshold
values are gradually decreased to δ=7310-4, 1310-4, and 2310-5. A comparison between FIG. 21 and FIG. 22 shows
that there is a difference in the responses of the first-order and second-order resonances. From a comparison between
FIG. 22 and FIG. 23, it can be seen that a solution near the second-order peak is slightly different although the change
in response is small.
[0075] To confirm that the result of FIG. 23 is a highly accurate result, an analysis of the dimension reduced model is
performed while na is gradually increased as in Chapter 1 without applying both the elimination method of higher-order
modes and the selection method of dominant modes, and a result when there was no change in the response was
regarded as a correct solution for the analytical model. The result is shown in FIG. 24, where the number of lower-order
modes is m=599 and the number of dominant modes is na=20. It can be seen that this result shows very good consistency
with FIG. 23.

[4.2. Fourth-order and fifth-order primary resonance regions]

[0076] The analytical frequency range is set from 450 Hz to 1000 Hz, and the number of lower-order modes is set to
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m=30 based on the tenth-order natural frequency, which is about three times the maximum frequency of 1000 Hz. As
in the previous section, the selection method of dominant modes is applied while the threshold value is gradually de-
creased. FIGS. 25 to 27 show the results when the threshold values are set to δ=1310-3, 5310-4, and 2310-4, respectively.
[0077] From the comparison of FIGS. 25 to 27 in the same manner as in the previous section, it can be seen that the
change in response of the dimension reduced model is getting smaller. In addition, from the comparison between FIG.
27 and the results of nl=599 and na=20 in FIG. 28, even in this frequency range, the results that are almost the same
as those of the full model can be efficiently calculated by the dimensionality reduction method. However, the number of
lower-order modes and the optimum threshold value differ depending on the frequency range for performing the analysis.
[0078] As described above, the effectiveness of the present invention was confirmed through specific numerical cal-
culations for this analytical model.
[0079] Note that the analytical method described above may be implemented by an analysis device 100 as shown in
FIG. 29.
[0080] The analysis device 100 is realized by a device such as a personal computer, a server, or an industrial computer.
The analysis device 100 includes a processing unit 110, a storage unit 120, an input unit 130, and an output unit 140.
The processing unit 110 applies the new type of complex modal analysis to the equation for linear state variables to
convert it into the real modal equations for lower-order modes and corrects and eliminates the effect of higher-order
modes of the linear state variables from the equation for nonlinear state variable. The processing unit 110 selects the
dominant modes, which have the large effect on the solution of the original large-scale system, from the real modal
equation, and, in relation to the secondary mode, which have the small effect, eliminates the modes thereof by incorpo-
rating the effect to the equation for nonlinear state variables as correction terms obtained from an approximate solution
of the real modal equation for lower-order modes, and derives the dimension reduced model. The processing unit 110
calculates the frequency response by using the dimension reduced model. The processing unit 110 is realized by, for
example, a hardware processor such as a central processing unit (CPU) executing a program (software) stored in the
storage unit 120. In addition, some or all of these functional units may be realized by hardware (a circuit unit; including
circuitry) such as large scale integration (LSI), an application specific integrated circuit (ASIC), an field-programmable
gate array (FPGA), and a graphics processing unit (GPU), or may be realized by software and hardware in cooperation.
The program may be stored in advance in a storage device (a storage device including a non-transitory storage medium)
such as a hard disk drive (HDD) or flash memory or may be stored in a removable storage medium (non-transitory
storage medium) such as a DVD or CD-ROM and installed by the storage medium being attached to a drive device. The
input unit 130 is realized by, for example, a keyboard, a mouse, a touch panel, or the like. The output unit 140 is realized
by, for example, a display, a printer, a touch panel, or the like. When an analysis method is realized, information that
needs to be set, such as a threshold value, may be stored in advance in the storage unit 120 or may be input by a
researcher from the input unit 130. The analytical result may be output to the output unit 140.

Claims

1. A vibration analysis method for analyzing vibrations of a large-scale system with local strong nonlinearities com-
prising:

a process (1) of applying the new type of complex modal analysis to an equation for linear state variables to
convert the equation to a real modal equation for lower-order modes, and correcting an effect of higher-order
modes of the linear state variables and eliminating the modes from an equation for nonlinear state variables;
a process (2) of selecting dominant modes, which have a large effect on a solution of an original large-scale
system, from the real modal equation for lower-order modes, and, in relation to secondary modes, which have
a small effect, eliminating the modes by incorporating the effect to the equation for nonlinear state variables as
a correction term obtained from an approximate solution of the real modal equation for lower-order modes, and
deriving the dimension reduced model; and
a process (3) of calculating a frequency response by using the dimension reduced model.

2. The vibration analysis method according to claim 1,
wherein, in relation to an angular frequency ω, an angular frequency ω6Δω is replaced with ω and the process (1)
to the process (3) are repeated until the angular frequency ω reaches an upper or lower limit of an analysis range.

3. The vibration analysis method according to claim 2,
wherein, when an angular frequency ω6Δω is replaced with ω and the process (1) to the process (3) are repeated,
the dominant modes and the secondary modes at an angular frequency ω6Δω are separated on the basis of the
approximate solution obtained for the dimension reduced model at an angular frequency ω.
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4. The vibration analysis method according to claim 3,
wherein the dominant modes and the secondary modes at an angular frequency ω6Δω are separated on the basis
of a relationship between a modal amplitude obtained from the dimension reduced model at an angular frequency
ω and a predetermined threshold value.

5. The vibration analysis method according to any one of claims 1 to 4,
wherein, in the new type of complex modal analysis, calculation of complex eigenvalues and complex eigenvectors
for lower-order modes of linear state variables and realization of the complex eigenvectors are performed, and
introduction of real modal coordinates for physical coordinates of lower-order modes and derivation of real modal
equations are performed.

6. A program which causes a computer as a device for analyzing vibrations of a large-scale system with local strong
nonlinearities to function as:

a first processing unit configured to apply the new type of complex modal analysis to an equation for a linear
state variable to convert the equation to a real modal equation for lower-order modes and correct an effect of
higher-order modes of the linear state variables and eliminate the modes from an equation for a non-linear state
variable,
a second processing unit configured to select dominant modes, which have a large effect on a solution of an
original large-scale system, from the real modal equation for lower-order modes, and, in relation to secondary
modes, which have a small effect, eliminate the modes by incorporating the effect to the equation for nonlinear
state variables as a correction term obtained from an approximate solution of the real modal equation for lower-
order modes, and derive the dimension reduced model, and
a third processing unit configured to calculate a frequency response by using the dimension reduced model.

7. A storage medium which has stored the program according to claim 6.
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