[0001] This invention relates to an apparatus comprising a filtering device, for example
which can be used in a dust collector, and a cleaning system for cleaning the filtering
device.
[0002] The cleaning system is designed to be associated with the filtering device and selectively
activated when it is necessary to clean the filtering device, so as to remove, by
a mechanical percussion action, the dust which has been deposited on filtering surfaces
of the filtering device.
[0003] Dust collectors are industrial machines which treat gaseous fluids, normally air
contaminated by industrial transformation processes. The air treated by the dust collectors
contains a significant quantity of dust, which is much greater than the quantity of
dust normally present in ambient air. The function of these machines is to treat the
polluted industrial air to make it compatible with discharge into the atmosphere and/or
within the surrounding work environments.
[0004] Specifically, but not exclusively, the dust collectors can be used to remove dust
from gaseous fluids consisting of air containing dust which is generated in the loading
of silos or in transformation, movement, cutting or other industrial processes, performed,
for example, by mixing devices, conveyors, packaging machines, dosing machines, thermal
or mechanical cutting machines and/or the like. These gaseous fluids cannot be discharged
into the atmosphere or reused without prior removal of the dust contained therein.
[0005] The prior art dust collectors comprise a plurality of filtering devices, which can
be cleaned also using mechanical cleaning systems.
[0006] In industrial application, the dust collectors are configured for filtering fine
dusts having a grain size variable, approximately, between 1 micron and 200 microns.
These apparatuses are configured for filtering air flows having high concentrations
of dust, of between 0.5 g/m
3 and 500 g/m
3.
[0007] The dust collectors may comprise filtering devices which use a plurality of tubular
filtering elements made of a filter material, the tubular elements having cross sections
of different shapes (circular, oval, polygonal or others). More generally speaking,
the filtering devices comprise a plurality of filtering channels, defined, for example,
but not necessarily, inside the filtering elements, alternated with evacuation channels
for evacuating the fluid from which the dust has been removed.
[0008] The filtering elements have an open end and a closed end.
[0009] The dust follows an S-shaped path, since it enters a filtering channel, is intercepted
by the filter material and exits from the evacuation channel.
[0010] The dust, present in high concentrations in the air to be filtered, is intercepted
by the filter material and tends to clog the filtering channels, thereby progressively
reducing the efficiency thereof. For this reason, the filtering devices are combined
with a periodic cleaning system which detaches the dust particles from the filter
material and restores the initial filtering efficiency.
[0011] The filter material may be of various types, for example fabric or cellulose, and
may have a smooth or pleated configuration. The pleats increase the nominal filtering
surface but have the limit of being clogged quickly in the cusps, thereby limiting
the effectiveness of the filtering element. In effect, the sharp edges of the pleated
elements are critical points of adhesion of the dust which gradually reduce the active
filtering surface.
[0012] In order to improve dust collectors, it is therefore important to search for geometries
of the filtering element which optimise the effectiveness, but also, if not more so,
act on the cleaning system, so that the latter operates quickly, efficiently and with
a low energy consumption in order to restore the functional efficiency of the filtering
element.
[0013] Cleaning systems are known which comprise a percussion element for generating vibrations
in the filtering device, by applying to the latter a series of controlled percussions,
in order to detach the dust from filtering surfaces of one or more filtering elements
included in the filtering device.
[0014] International patent application WO 2020/144595 discloses a cleaning system comprising a percussion element which is raised and lowered
cyclically to cause shock waves on a head of the filtering device. The percussion
element acts on a distributor frame positioned in contact with the head of the filtering
device to distribute on the head the vibrations generated by the percussion element.
[0015] The prior art cleaning system comprises an insulator element which can be moved between
an open position and a closed position. In the open position, the insulator element
allows a flow of clean air coming from the filtering device to flow towards the outside
environment. In the closed position, the air coming from the filtering device is prevented
from flowing towards the outside environment.
[0016] The insulator element is hinged to a frame arranged in a fixed position relative
to the filtering device. In order to pass from the open position to the closed position,
or vice versa, the insulator element rotates about a hinge axis arranged along one
side of the frame.
[0017] The cleaning system disclosed in
WO 2020/144595 comprises a cam which can be rotated to move the insulator element to its closed
position, when the filtering device is to be cleaned. The cam has a contact element
which, during rotation, actuates the percussion element for a desired number of times.
[0018] An electromagnetic device is also provided, which can be activated to keep the insulator
element in the closed position during the cleaning operations. When the filtering
device has been cleaned, the electromagnetic device is deactivated to allow the insulator
element to return to the open position.
[0019] A drawback of the cleaning system described above derives from the fact that the
distributor frame has a non-optimised configuration. In particular, the distributor
frame has non-optimal performance with regard to the distribution of shock waves caused
by the percussion element. At the same time, the mechanical stresses applied by the
percussion element condition the effectiveness and the duration of operation over
time of the distributor frame. More specifically, these stresses are concentrated
in a central region of the distributor frame and may result in breakages in the central
region and/or a deformation of the head of the respective filtering device, as well
as adversely affecting the efficiency of the cleaning action in peripheral regions
of the filtering device.
[0020] A further drawback of the prior art cleaning system is that, in the open position,
the flow of clean air coming from the filtering device has to follow a rather tortuous
path to be brought outside the cleaning system. The flow of clean air leaves the filtering
device mainly passing from the zone in which the insulator element is furthest from
the frame, that is to say, from the side of the frame opposite to that along which
the hinge axis is defined and following a trajectory which is almost entirely arranged
transversely with respect to a longitudinal axis of the filtering element. In this
way, the insulator element creates a turbulence along the path of the air from which
dust has been removed, which reduces the efficiency of a suction apparatus arranged
for sucking the air coming from the filtering device. This also results in non-homogeneous
conditions for the escape of the flow of clean air, since the air coming from the
regions of the filtering device closest to the hinge axis has to follow a path which
is longer and curved with respect to the air coming from the regions of the filtering
device furthest from the hinge axis.
[0021] Another drawback of the prior art cleaning system is linked to its lack of flexibility
in the choice of the moment in which the insulator element is moved to the closed
position. Since the cam which actuates the percussion element also has the function
of moving the insulator element to the closed position, the insulator element is always
moved to the closed position when the percussion element applies the first percussion
to the distributor frame.
[0022] An object of the invention is to improve the prior art apparatuses, particularly
the apparatuses comprising a cleaning system intended to clean a filtering device
by means of a mechanical percussion action.
[0023] A further object is to provide a cleaning system for cleaning a filtering device,
in which the risks of breakage of the components of the cleaning system are reduced.
[0024] Another object is to provide a cleaning system for cleaning a filtering device which
has a good cleaning effectiveness both in a central region and above all in a peripheral
zone of the filtering device.
[0025] Another object is to provide a cleaning system which is able to clean a filtering
device comprising a plurality of filtering elements having a large filtering surface
defined by multiple filtering channels. In particular, it is desirable that the cleaning
system is able to effectively clean a plurality of filtering elements which define
filtering channels that can be very close to one another, so as to increase the active
filtration surface under equal overall dimensions of the filtering device, or to reduce
the overall size of the filtering device with the same active filtering surface.
[0026] Another object is to provide an apparatus comprising a cleaning system for cleaning
a filtering device comprising a plurality of filtering elements in which the energy
consumption necessary for cleaning the filtering elements is reduced.
[0027] A further object is to provide an apparatus comprising a cleaning system which is
able to uniformly clean a filtering device comprising a plurality of filtering elements,
in such a way that the filtering device can maintain a filtration efficiency which
is constant over time and in each filtering element.
[0028] A further object is to provide an apparatus comprising a cleaning system provided
with a percussion element in which it is possible to effectively use the percussions
generated by the percussion element and distribute the energy deriving from these
percussions to a plurality of filtering elements included in the filtering device.
[0029] It is furthermore desired to optimise the mechanical structure of the cleaning system,
in such a way as to reduce the friction which is generated during movement of the
percussion element and consequently reduce the energy consumption by a motor which
drives the percussion element. Another object is to provide an apparatus comprising
a cleaning system for cleaning a filtering device in which the path of the flow of
clean air coming from the filtering device and passing through the cleaning system,
is improved.
[0030] Yet another object is to provide an apparatus comprising a cleaning system for cleaning
a filtering device which has an increased flexibility with respect to the prior art
cleaning systems, particularly when selecting the moment in which the cleaning action
is started or finished.
[0031] According to the invention, there is provided an apparatus comprising a filtering
device which includes a plurality of filtering elements made of a filter material,
the apparatus further comprising a cleaning system for periodically cleaning the filtering
device in order to remove contaminating particles from the filtering device, the cleaning
system having at least one percussion element for applying percussions at least on
an impact surface of an intermediate structure, so as to generate, for each percussion,
an impact which is able to detach from the filter material a first fraction of the
contaminating particles adhering to it and then vibrate the filter material to detach
from it further contaminating particles, the intermediate structure being interposed
between the percussion element and the filter material, the intermediate structure
having an inner region delimited at least partly by the impact surface and an outer
region which surrounds at least partly the inner region, wherein the intermediate
structure has a capacity to absorb energy deriving from the percussions which is greater
in the inner region than in the outer region.
[0032] During the percussion, the percussion element strikes the intermediate structure
and an impact of the percussion element is generated against the impact surface of
the intermediate structure. As a result of this impact, the percussion element transfers
kinetic energy to the intermediate structure. The latter in turn transfers energy
to the filter material and causes a significant fraction of the contaminating particles
adherent to the filter material to be detached from the filter material. Moreover,
the filter material is vibrated in order to detach the remaining contaminants from
it and prevent the particles from adhering again to the filter material. The contaminating
particles were present in the gaseous fluid from which the filtering device allows
dust to be removed.
[0033] In other words, the percussion applied by the percussion element produces a vibration
or sharp blow on the filter material which detaches from the filter material most
of the contaminating particles adhering to it. Subsequently, the energy transferred
from the percussion element to the intermediate structure vibrates the filter material,
so as to prevent the contaminating particles which have already been detached from
the filter material from adhering again to the latter, and so as to detach the contaminating
particles still adhering to the filter material, in such a way as to make their removal
subsequently possible.
[0034] In this way, the cleaning system is able to clean the filtering device in an optimum
manner, even if the filtering device comprises a large number of filtering elements
which are very close to each other.
[0035] Owing to the greater capacity to absorb energy, the inner region of the intermediate
structure absorbs a greater quantity of kinetic energy than the outer region. In this
way, the inner region dampens the effects of the impact more than the outer region.
Consequently, it is possible to reduce the stresses transmitted by the percussion
element to the intermediate structure in the inner region and distribute them towards
the outer region. Reducing the stresses transmitted by the percussion element to the
inner region of the intermediate structure reduces the risks of breakages in the intermediate
structure, even if the percussion element applies several hundreds of percussions
to the intermediate structure per day and tens of thousands of percussions per year.
[0036] In an embodiment, the capacity to absorb the energy deriving from the percussions
decreases progressively from a central part of the inner region towards the periphery
of the inner region.
[0037] Optionally, the capacity to absorb the energy deriving from the percussions may be
substantially constant in the central part of the inner region and decrease progressively
outside the central part of the inner region.
[0038] In an alternative embodiment, the capacity to absorb the energy deriving from the
percussions may be substantially constant in the entire inner region and have a lower
value in the outer region.
[0039] In an embodiment, the intermediate structure comprises a head which supports the
filtering elements and a distributor frame facing the percussion element for distributing
on the head the energy deriving from the percussions.
[0040] In an embodiment, the distributor frame and the head are spaced apart from each other
in the inner region and are in contact with each other in the outer region.
[0041] This is made possible owing to a recess formed on the distributor frame in the inner
region, or alternatively owing to a recess made on the head in the inner region.
[0042] In this way, in the inner region, between the head and the distributor frame, in
use, a gap is defined which makes possible an effective and homogeneous propagation
of the vibrations in the distributor frame, and in particular towards the respective
outer region, in which the distributor frame is operatively in contact with the head.
[0043] This makes it possible to transmit more effectively the impact and consequent active
vibrations to the portions of the filter material furthest away from the percussion
element, that is to say, supported by a peripheral region of the head.
[0044] The effectiveness of cleaning the filter material by the cleaning system is thus
improved and made more homogeneous.
[0045] In an embodiment, the head has a lower density in the inner region than in the outer
region. This may occur, for example, because the inner region of the head has been
made lighter than the outer region, or because a material with non-uniform properties
between the inner region and the outer region has been selected for the head.
[0046] Due to the lower density, the energy absorption in the inner region is greater than
in the outer region.
[0047] The head with a lower density in the inner region may also be used without the distributor
frame. In this embodiment, the intermediate structure comprises only the head.
[0048] This embodiment is particularly easy to construct owing to the reduced number of
components.
[0049] In an embodiment, the cleaning system may optionally comprise an insulator element
movable between a closed position, in which the insulator element blocks a gaseous
flow coming from the filtering device, and an open position, in which the insulator
element allows passage of the gaseous flow.
[0050] The insulator element blocks the gaseous flow, that is to say, the flow of clean
air coming out of the filtering device during the cleaning operations, so that these
operations are not disturbed by the flow of clean air.
[0051] In an embodiment, the insulator element is movable between the closed position and
the open position owing to a movement of the insulator element on a plane.
[0052] The plane on which the insulator element is movable may be arranged transversally,
in particular substantially perpendicularly, to a longitudinal axis of each filtering
element.
[0053] In this way, in the open position, the flow of clean air can flow from the filtering
device towards the outside environment, passing through the insulator element, along
a direct and non-tortuous path, with uniform conditions almost throughout the entire
filtering device.
[0054] In an embodiment, the insulator element can be driven between the open position and
the closed position independently of the percussion element. This makes it possible
to increase the flexibility of the cleaning apparatus, since a user can decide, depending
on the operating conditions and the type of fluid treated by the filtering device,
to actuate the percussion element after a predetermined time has elapsed from the
closing of the insulator element, and/or to move the insulator element to the open
position after the percussion element has been deactivated for a predetermined time.
[0055] The invention can be better understood and implemented with reference to the accompanying
drawings which illustrate non-limiting example versions of it and in which:
Figure 1 is a perspective view showing an apparatus comprising a cleaning system connected
to a filtering device;
Figure 2 is a view from above of the apparatus of Figure 1;
Figure 3 is a cross-section along the plane III-III of Figure 2;
Figure 4 is an exploded perspective view of the apparatus of Figure 1;
Figure 5 is an exploded side view of the apparatus of Figure 1;
Figure 6 is a schematic side view, with some parts in cross section, showing an apparatus
according to an alternative embodiment;
Figure 7 is a view like that of Figure 6, showing an apparatus according to another
alternative embodiment;
Figure 8 is a view like that of Figure 6, showing an apparatus according to a further
alternative embodiment.
[0056] Figure 1 shows an apparatus comprising a cleaning system 1 which is coupled to a
filtering device 2, in order to clean the filtering device 2. In the example shown,
the cleaning system 1 is positioned above the filtering device 2.
[0057] The filtering device 2 may be included in a dust collector suitable for removing
dust from a gaseous fluid, for example of the type disclosed in international patent
application
WO 2018/116268. As shown in Figures 2 and 3, the filtering device 2 comprises a plurality of filtering
elements 3 having respective transversal cross sections which may be closed geometrical
shapes, for example circular, elliptical, oval or other. Alternatively, the filtering
elements 3 may be shaped like channels, for example having an elongate geometry, in
a transversal cross section of the filtering device 2.
[0058] The filtering device 2 extends along a longitudinal axis H which may be parallel
to respective axes of the filtering elements 3. During operation, the longitudinal
axis H may be positioned vertically. This arrangement of the longitudinal axis H is
possible, for example, if the dirty gaseous fluid enters from one end of the filtering
device 2 and the clean gaseous fluid leaves from the opposite end of the filtering
device 2.
[0059] However, the longitudinal axis H may also be positioned not vertically, for example
horizontally or in an oblique direction relative to the horizontal direction, particularly
if the dirty gaseous fluid has an inlet direction arranged transversely to the outlet
direction of the clean gaseous fluid, that is to say, if - for example - the dirty
gaseous fluid enters the filtering device 2 from a respective lateral surface and
the clean gaseous fluid exits from an end of the filtering device 2.
[0060] The filtering elements 3 may be made of a filter material which may be, for example,
a semi-rigid material, such as non-woven fabric or cellulose. The filtering elements
3 of the filtering device 2 may be kept in contact along a direction parallel to their
length in such a way as to enclose therebetween corresponding flow channels 4 for
the gaseous fluid.
[0061] Inside each filtering element 3 a flow duct is defined, delimited by a filtering
surface 5, that is to say, by a surface of the filtering element which may extend
parallel to the longitudinal axis H.
[0062] Each filtering element 3 has an open end through which a gaseous fluid from which
dust is to be removed can enter.
[0063] During operation, the fluid from which dust is to be removed may enter the filtering
elements 3 through the respective open ends and may leave the filtering elements 3
through the filtering surface 5, after the contaminating particles, for example dust,
have been retained on the inner surface of the filtering elements 3. Through the filtering
surface 5, the fluid from which dust has been removed flows into the flow channels
4 through which the fluid from which dust has been removed is discharged.
[0064] It is also possible to provide an opposite path for the gaseous fluid to be removed,
that is to say, a path according to which the fluid enters into the flow channels
4 through respective open end sections, penetrates into the filtering elements 3 by
passing through the respective filtering surface 5, and then leaves the filtering
device 2 through the open ends of the filtering elements 3. In this case, the dust
settles on the outer surface of the filtering elements 3.
[0066] For example, according to an alternative embodiment, the filtering device 2 may comprise
a single flow channel for the dirty gaseous fluid, inside of which a plurality of
filtering elements 3 is arranged. The clean gaseous fluid can pass inside the filtering
elements 3.
[0067] According to a further alternative embodiment, the filtering device 2 may comprise
a plurality of rows of filter material, wherein between two adjacent rows of filter
material a channel for the dirty gaseous fluid is defined or alternatively a channel
for the clean gaseous fluid is defined. In this way, in a transversal cross-section
of the filtering device 2, elongate channels for the clean gaseous fluid alternate
with elongate channels for the dirty gaseous fluid.
[0068] The cleaning system 1 is configured for periodically cleaning the filtering device
2 by a mechanical action, more specifically by a percussion action which generates
an impact and consequent vibrations, having the aim of detaching from the filtering
surface 5 the contaminating particles, for example the dust particles, which have
remained attached to that surface. The cleaning system 1 comprises a percussion element
6, movable along a movement direction Z which may be parallel to the longitudinal
axis H. According to the example shown, the movement direction Z is vertical. As shown
in Figure 5, the percussion element 6 may comprise a stem 7 at an end of which a mass
8 is provided. The mass 8 may be, for example, located at the lower end of the stem
7.
[0069] An intermediate structure 100 is interposed between the percussion element 6 and
the filtering device 2. The percussion element 6 is configured for applying successive
percussions to the intermediate structure 100, thereby transferring to the intermediate
structure 100 kinetic energy which the intermediate structure 100 transmits in turn
to the filtering device 2, more specifically to the filter material which forms the
filtering elements 3. The filter material is thus made to vibrate to detach the contaminating
particles which have remained attached to the filter material.
[0070] The intermediate structure 100 may comprise a distributor frame 9. The percussion
element 6 is configured to interact with the distributor frame 9 for applying on the
distributor frame 9 a plurality of percussions. Each percussion generates an impact
and consequent vibrations in the distributor frame 9. The distributor frame 9 may
be positioned below the percussion element 6. Therefore, in an operating configuration,
the distributor frame 9 is interposed between the percussion element 6 and the filtering
device 2.
[0071] The intermediate structure 100 may further comprise a head 101 included in the filtering
device 2. The head 101 is in particular positioned at one end of the filtering device
2 and can support the filtering elements 3.
[0072] The head 101 is operatively interposed between the distributor frame 9 and the filter
material.
[0073] The distributor frame 9 extends mainly on a plane perpendicular to the movement direction
Z, that is to say, on a horizontal plane. The distributor frame 9 has a plurality
of openings through which the flow of clean air coming from the filtering device 2
can pass. The distributor frame 9 has an impact surface 10 on which the percussions
of the percussion element 6 are applied. According to the example shown, the impact
surface 10 is an upper surface of the distributor frame 9. The latter also has an
inner region 50, delimited at least partly by the impact surface 10. The inner region
50 is adjacent to the impact surface 10. According to the example shown, the inner
region 50 is positioned below the impact surface 10, but this condition is not necessary
as it depends on the mutual arrangement of the cleaning system 1 and the filtering
device 2, as well as on the orientation of the longitudinal axis H. The inner region
50 may have, in plan view, an area greater than the impact surface 10.
[0074] According to the example shown, the inner region 50 is a central region, that is,
arranged approximately at the centre of the distributor frame 9, but this condition
is not necessary.
[0075] The distributor frame 9 comprises a plurality of ribs 11 arranged around the impact
surface 10, which may, for example, be directed radially relative to the impact surface
10. The ribs 11 may be arranged at respective constant angular distances. According
to the example shown, eight ribs 11 are provided, the ribs 11 being arranged at an
angular distance of 45° from each other. The ribs 11 may be substantially rectilinear.
The ribs 11 are joined to each other, at respective outer ends, by a perimeter structure
or connecting structure 12. The connecting structure 12 has a geometrical shape corresponding
to the shape of the filtering device 2 below. In particular, the connecting structure
12 may have a rectangular or square shape, but this condition is not necessary.
[0076] A further connecting structure 13 may be provided inside the connecting structure
12, for joining to one another respective intermediate regions of the ribs 11.
[0077] According to an alternative embodiment, several further connecting structures 13
may be provided inside the connecting structure 12, arranged one inside the other.
[0078] The ribs 11 are joined to the further connecting structure 13 at one or more nodes
98, as shown in Figure 4. The ribs 11 and the further connecting structure 13 define
a branched structure which covers the filtering element in a capillary manner. The
nodes 98 actively participate in the homogeneous distribution of the energy deriving
from the impact.
[0079] The distributor frame 9 is configured to rest, during use, on an end 14 of the filtering
device 2, in particular on the upper end of the filtering device 2. More specifically,
the distributor frame 9 may be rested on a perimeter edge 15 of the filtering device
2. The perimeter edge 15 may delimit the head 101.
[0080] It has been found experimentally that the geometry of the distributor frame 9 described
above allows the impact and the consequent vibrations generated by the percussion
element 6 to be distributed uniformly on the end 14 of the filtering device 2, in
such a way that almost the entire filtering surface 5 receives the impact propagated
and the relative vibrations.
[0081] It is, however, also possible to use geometries of the distributor frame 9 different
from the one described above.
[0082] The distributor frame 9 is intended to be interposed between the percussion element
6 and the head 101, in such a way that the percussion element 6 periodically strikes
the distributor frame 9 and the latter transmits the impact and the vibrations thus
generated directly to the filtering device 2.
[0083] According to an alternative embodiment not illustrated, one or more intermediate
elements may be interposed between the percussion element 6 and the distributor frame
9. Similarly, one or more intermediate components may be interposed between the distributor
frame 9 and the end 14.
[0084] The cleaning system 1 further comprises a supporting structure 16 for supporting
the percussion element 6.
[0085] According to the example shown, the supporting structure 16 comprises an outer frame
17 from which a plurality of arms 18 extend. The arms 18 join each other at a central
support 19, inside of which the percussion element 6 may be housed.
[0086] The outer frame 17 rests on an outer surface of the filtering device 2 and has a
twofold function, that is to say, it serves for locking the filtering device 2 and
containing the distributor frame 9.
[0087] The supporting structure 16 is fixed to a plate, not illustrated, which separates
a clean zone of the filtering device 2 from a dirty zone. In the clean zone there
is a gaseous fluid from which the dust has already been removed, whilst in the dirty
zone there is a gaseous fluid which has not yet been filtered. The supporting structure
16 is fixed to the above-mentioned plate by a plurality of fixing elements 20 which
also perform a shock absorbing and anti-vibration function.
[0088] The percussion element 6 is slidably housed inside the central support 19, so as
to be movable forwards and backwards parallel to the movement direction Z.
[0089] An elastic element 21, for example a helical spring, may be interposed between the
percussion element 6 and the central support 19. The elastic element 21 may be mounted
in such a way as to push the percussion element 6 towards the filtering device 2.
The purpose of the elastic element 21 is also to absorb part of the impact due to
the return of the percussion element 6. Owing to the elastic element 21, when the
percussion element 6 returns backwards after striking the intermediate structure 100,
it is possible to transmit to the supporting structure 16 a reduced energy with respect
to that which would be transmitted to the supporting structure 16 if the elastic element
21 were not present. The elastic element 21 has a damping effect against the vibrations
generated during the return stroke of the percussion element 6.
[0090] It is possible to use an elastic element 21 shaped in a different manner from a helical
spring, for example shaped like a polyurethane block.
[0091] A damping function similar to that of the elastic element 21 is performed by the
fixing elements 20.
[0092] A seal 42, shown in Figure 3, also cooperates in damping the vibrations generated
during the return stroke of the percussion element 6. The seal 42 acts as a sealing
element to isolate the clean zone of the filtering device 2 from the dirty zone.
[0093] The cleaning system 1 further comprises a drive device 22 for moving the percussion
element 6 along the movement direction Z. The drive device 22 may comprise a motor
23, for example an electric motor, and a transmission device 24, for transmitting
movement from the motor 23 to the percussion element 6 while transforming the rotary
movement of a shaft of the motor 23 into a linear movement of the percussion element
6. The transmission device 24 may comprise a lever 25 having a first end rotatably
connected to a shaft of the motor 23 and a second end suitable for interacting periodically
with a movement member 28 fixed relative to the percussion element 6. The lever 25,
rotated by the motor 23, periodically interacts with the movement member 28, thereby
moving the latter upwards together with the percussion element 6. Subsequently, the
lever 25, while continuing to rotate, disengages from the movement member 28 and the
percussion element 6, which is no longer held, moves downwards due to the force of
gravity, in the movement direction Z.
[0094] The percussion element 6 may at this stage be assisted by the elastic element 21,
which pushes the percussion element 6 towards the distributor frame 9 as soon as the
lever 25 disengages from the movement member 28.
[0095] In this way, the percussion element 6 strikes the distributor frame 9, thereby generating
an impact which in turn generates vibrations which propagate throughout the distributor
frame 9 and are transmitted by the latter to the filtering device 2. In more detail,
the impact and the vibrations generated by the percussion element 6 are transmitted
by the distributor frame 9 to the head 101 of the filtering device 2 and, consequently,
to the filter material located below the head 101.
[0096] For each revolution of the motor 231, a forward and backward stroke of the percussion
element 6 is generated, since at each rotation of the motor 23 the lever 25 lifts
the percussion element 6 and then lets it fall, thereby generating an impact which
is amplified by the elastic element 21.
[0097] As shown in Figure 3, the distributor frame 9 has an interface surface 29 which,
in use, faces the filtering device 2. The interface surface 29 may, at least in some
of the portions thereof, be in contact with the filtering device 2, in particular
with the head 101, for transmitting to the filtering device 2 the impact and the vibrations
generated by the percussion element 6.
[0098] On the interface surface 29 of the distributor frame 9 a recess 30 is made, which
extends in the inner region 50 of the distributor frame 9. More specifically, the
recess 30 penetrates into the inner region 50 of the distributor frame 9, towards
the impact surface 10.
[0099] When the cleaning system 1 is coupled to the filtering device 2, the interface surface
29 comes into contact, in a peripheral zone thereof (that is to say, in an outer region
60 which surrounds the inner region 50), with the head 101 of the filtering device
2.
[0100] Due to the recess 30, in an operating condition of the cleaning system 1, that is
to say, when the cleaning system 1 is coupled to the filtering device 2, the distributor
frame 9 is spaced from the head 101 in the inner region 50. The impact of the percussion
element 6 against the impact surface 10 of the distributor frame 9 and the vibrations
deriving therefrom are very intense in the inner region 50, which is closer to the
percussion element 6, and they diffuse gradually passing from the inner region 50
towards the outer region 60 of the distributor frame 9.
[0101] The recess 30 acts as a discharge and defines a bridge structure which gradually
diffuses the impact of the percussion element 6 and, in the inner region 50, prevents
the direct contact between the distributor frame 9 and the head 101. This reduces
the risks that, during operation of the cleaning system 1, the distributor frame 9
and the end 14 of the filtering device 2, in particular the head 101, are damaged
in the inner region 10, thereby rendering impact and vibrations to be transmitted
in the filtering elements 3 progressively ineffective.
[0102] In other words, the recess 30 defines between the distributor frame 9 and the head
101, in the inner region 10, an empty space which acts as a distribution volume for
effectively distributing the impact and the consequent vibrations in the inner region
10, that is to say, in the portion of the distributor frame 9 which - in the absence
of the recess 30 - would be more stressed and could be damaged together with the filtering
device 2, in particular with the relative head 101.
[0103] The recess 30 may have a different depth at different points of the inner region
50. According to the example shown, the recess 30 has a maximum depth D, which may
be substantially constant, immediately below the impact surface 10. The depth of the
recess 30 decreases progressively when moving away from the impact surface 10. The
depth of the recess 30 becomes zero, that is to say, the recess 30 is absent, in the
outer region 60.
[0104] The recess 30 does not reduce the effectiveness of the cleaning system 1, since the
distributor frame 9, following the action of the percussion element 6, still transmits
kinetic energy and vibrations to the filtering device 2, at least in a peripheral
zone of the distributor frame 9. Due to the elastic nature of the filter material
with which the filtering elements 3 are formed, the kinetic energy and the vibrations
propagate throughout the filter material, guaranteeing an effective cleaning of the
filtering device 2, that is to say, an effective detachment of the contaminating particles
from the filtering surface 5.
[0105] The recess 30 gives the intermediate structure 100, which comprises the distributor
frame 9 and the head 101, a differentiated capacity of absorbing the kinetic energy
which the percussion element 6 transfers to the intermediate structure 100 each time
a percussion (that is to say, an impact) is applied to the distributor frame 9. More
specifically, the capacity to absorb energy is greater in the inner region 50 of the
intermediate structure 100 than in the region of the intermediate structure 100 surrounding
the inner region 50. In this way, peak stresses are avoided in the inner region 50
and the energy deriving from the impact is distributed in a more uniform manner also
in the outer region 60 of the intermediate structure 100, that is to say, in the region
surrounding the inner region 50.
[0106] In the example shown in Figure 3, the capacity to absorb the energy deriving from
the percussions is maximum in a central part of the inner region 50, wherein the recess
30 has the maximum depth D. The capacity to absorb vibrations decreases moving towards
the periphery of the inner region 50, as the depth of the recess 30 is reduced, until
reaching a minimum value in the outer region 60.
[0107] According to the example shown, some cavities 32 are provided on the interface surface
29 for technological reasons linked to the production of the distributor frame 9.
The cavities 32 are not important for the operation of the apparatus according to
the invention.
[0108] The recess 30 may have different shapes and sizes from those described above, depending
on the materials used and the geometries of the distributor frame 9 and of the filtering
device 2, in particular of the head 101.
[0109] According to an alternative embodiment, shown in Figure 6, the differentiated capacity
of absorbing energy of the intermediate structure 100 may be obtained by providing
a recess 130 in the head 101, instead of in the distributor frame 9. In this case,
the recess 130 is obtained on a face 103 of the head 101, the face 103 facing the
distributor frame 9. In this case, the interface surface 29 of the distributor frame
9 may be substantially flat.
[0110] The recess 130 prevents direct contact between the distributor frame 9 and the head
101 in the inner region 50, exerting a shock absorbing action against the impacts
which the percussion element 6 applies on the intermediate structure 100. Outside
the inner region 50, that is to say, in the outer region 60, the distributor frame
9 is, on the other hand, in contact with the head 101. Owing to the recess 130, the
intermediate structure 100 has, in the inner region 50 partly delimited by the impact
surface 10, a capacity to absorb the energy deriving from the impact which is less
than in the outer region 60.
[0111] According to a further alternative embodiment, shown in Figure 7, the differentiated
capacity of absorbing energy of the intermediate structure 100 may be obtained by
acting on the head 101, without using the recess 130. For example, it is possible
to provide a distribution of lightening portions 102 in the head 101, which produce
a compliance of the head 101 which is greater in the inner region 50 than the outer
region 60. For example, the lightening portions 102 may have larger dimensions in
the inner region 50 than in the outer region 60, or they may be absent in the outer
region 60, so as to guarantee a higher energy absorption in the inner region 50.
[0112] It is possible to obtain the same result by suitably selecting the material of the
head 101, for example using a material for the head 101 with a differentiated density,
the material being less dense in the inner region 50 and more dense in the outer region
60.
[0113] More generally speaking, the differentiated capacity of absorbing energy (greater
in the inner region 50 than in the outer region 60) of the intermediate structure
100 may be obtained by acting on the geometry and/or on the material of the head 101
and/or of the distributor frame 9, more specifically in a portion of the distributor
frame 9 facing towards the head 101.
[0114] According to an alternative embodiment, shown in Figure 8, the distributor frame
9 may be omitted. In this case, the percussion element 6 comprises a distributor mass
108 connected to the stem 7, wherein the distributor mass 108 is shaped like a plate
which is able to make contact with a relatively large impact surface 10 of the face
103 of the head 101, in such a way as to distribute the energy deriving from the impact
on a majority extension of the face 103.
[0115] In this case, the intermediate structure 100 comprises only the head 101, the differentiated
capacity of which to absorb energy (greater in the inner region 50 than in the outer
region 60) can be obtained by intervening on the geometry or on the material of the
head 101, as described above with reference to Figure 7.
[0116] The cleaning system 1 may comprise a containment element 34 for enclosing the percussion
element 6 and the respective drive mechanism inside of the containment element 34.
The containment element 34 may, for example, be shaped like a bell.
[0117] The containment element 34 is suitable for being fixed to the supporting structure
16.
[0118] The containment element 34 has, on an end wall 37 thereof, a plurality of openings
38 through which a flow of clean air coming from the filtering device 2 can reach
the outside environment, after passing through the containment element 34. The end
wall 37 is positioned on the opposite side of the cleaning system 1 relative to the
filtering device 2. The end wall 37 is, in the example illustrated, an upper surface
of the containment element 34. The openings 38 may be shaped as wedges distributed
about a centre lying, for example, on the longitudinal axis H.
[0119] A suction device, not illustrated, is provided to suck the gaseous flow through the
openings 38.
[0120] An insulator element 39 is also provided for opening or selectively closing the openings
38.
[0121] More specifically, the insulator element 39 is movable between a closed position
and an open position. In the closed position, the insulator element 39 closes the
openings 38 thereby preventing a flow of clean air coming from the filtering device
2 from reaching the outside environment and isolating the suction device from the
filtering device 2. In the open position, shown in Figure 2, the insulator element
39 leaves the openings 38 open, thereby putting the filtering device 2 in fluid communication
with an outlet duct, not illustrated, through the containment element 34. The outlet
duct not illustrated, along which a suction apparatus can be positioned, has the purpose
of bringing the clean air to the outside environment.
[0122] The insulator element 39 may be shaped as a disc or a wheel, or as a grid. The insulator
element 39 has a plurality of occluding portions 40 each of which is intended to close
an opening 38. Each occluding portion 40 may be shaped like a circular sector, for
example having dimensions slightly greater than the dimensions of the corresponding
opening 38.
[0123] The insulator element 39 may be mounted inside the containment element 34, for example
immediately below the end wall 37, in such a way as to be in contact with the end
wall 37.
[0124] The insulator element 39 is movable on a plane arranged transversally, in particular
perpendicularly, to the movement direction Z, so as to pass from the closed position
to the open position or vice versa.
[0125] In particular, the insulator element 39 may be rotatable about an axis arranged parallel
to the movement direction Z to pass from the closed position to the open position.
[0126] In more detail, in the closed position, the occluding portions 40 are positioned
at the openings 38, so as to close the openings. In the open position, the insulator
element 39 is rotated in such a way that each occluding portion 40 is interposed between
two consecutive openings 38, so as to leave the openings 38 free.
[0127] According to an embodiment not illustrated, the insulator element could have a plurality
of occluding portions positioned in such a way as to define a grid and could be moved
by a linear actuator suitable for displacing the grid between an open position and
a closed position by moving in a direction substantially perpendicular to the axis
Z.
[0128] The cleaning system 1 comprises a driving element for moving the insulator element
39 between the open position and the closed position. The driving element may comprise
an electric motor, for example a servomotor 41 arranged for rotating the insulator
element 39 about a vertical axis.
[0129] The driving element which drives the insulator element 39 is independent of the drive
device which actuates the percussion element 6.
[0130] This makes it possible to optimise the operation of the cleaning system 1 depending
on the type of application in which the cleaning system 1 is intended to be used.
[0131] For example, the insulator element 39 may be moved to the closed position before
activating the percussion element 6.
[0132] When the insulator element 39 is moved to the closed position, the filtering device
2 is isolated from the suction device having the function of sucking the clean air
in the outlet duct. In this way, the negative pressure generated by the suction device
in the outlet duct is eliminated or reduced, which helps the contaminating particles
to be detached from the filter material.
[0133] Moreover, owing to the insulator element 39 which isolates the filtering device 2,
it is possible to facilitate the detachment of the contaminating particles from the
filter material owing to a sort of suction action generated by adjacent filtering
devices, not shown in the drawings, which continue to operate whilst the filtering
device 2 is cleaned.
[0134] Moreover, the insulator element 39 may be moved to the open position after a predetermined
period of time has passed from the application of the last percussion by the percussion
element 6. This allows the dust particles moved with the last percussion to be left
with time to deposit in a lower region of the filtering device 2, so as to maximise
the effectiveness of the last percussion applied by the percussion element 6.
[0135] In this way it is possible to effectively use all the percussions applied to the
distributor frame 9 by the percussion element 6 and consequently optimise the number
of percussions. In this way, a saving in the energy required for operation of the
cleaning system 1 can be obtained.
[0136] When the filtering device 2 operates normally, the insulator element 39 is arranged
in the open position, in such a way that the flow of clean air, from which the dust
has been removed in the filtering device 2, passes from the filtering device 2 in
the containment element 34 and from the latter goes into the outlet duct through the
openings 38.
[0137] In particular, the flow of clean air exits from the openings 38 following a linear
path, that is to say, a non-tortuous path, which extends substantially in a direction
parallel to the movement direction Z of the percussion element 6. The flow of clean
air leaves in a homogeneous manner from all the openings 38, that is to say, there
are no substantial differences between one opening 38 and the other with regard to
the passage of clean air directed towards the outside environment.
[0138] This makes the operation of the cleaning system 1 homogeneous with reference to different
zones of the filtering device 2.
[0139] In the open position of the insulator element 39, the openings 38 define, in their
entirety, a transit section for the flow of clean air coming out of the cleaning system
1. This transit section may have an area substantially equal to the area of a total
outlet section through which the flow of clean air exits from the filtering device
2 to the end 14. More specifically, for a predetermined filtering device 2, the sum
of the areas of the openings 38 is determined on the basis of the sum of the areas
of the passages of the filtering device 2 through which the clean gaseous flow is
evacuated, for example the filtering elements 3. It is desirable to have a balance
or an equivalence between the two sums of areas.
[0140] This makes it possible to limit the pressure drop in the cleaning system 1. The cleaning
system 1 and the filtering device 2 may be inserted in a filtering system which comprises
a plurality of filtering devices 2, each of which is connected to a respective cleaning
system 1.
[0141] The filtering system comprises a central control unit configured for controlling
and coordinating the operation of all the cleaning systems 1 and of all the filtering
devices 2 forming part of the filtering system.
[0142] Each cleaning system 1 (and the corresponding filtering device 2) is associated with
a slave control device configured to control the percussion element 6 of each cleaning
system 1.
[0143] During operation of the filtering system, the pressure difference is detected between
the pressure of the gaseous flow, in particular of air, to be filtered which enters
each filtering device 2 and the pressure of the clean gaseous flow, in particular
of air, which comes out of each filtering device 2.
[0144] When the central control unit detects that, for a particular filtering device 2,
the above-mentioned pressure difference exceeds a predetermined threshold value (which
means that the filtering device 2 needs to be cleaned), the central control unit sends
a signal to the slave control device associated with the filtering device 2 to be
cleaned. A cleaning cycle is thus activated for the filtering device 2 at issue, which
is controlled by the slave device associated with that filtering device 2. In particular,
the slave device generates two signals. A first signal is a closure signal directed
to the servomotor 41, so as to activate the servomotor 41 so that the latter moves
the insulator element 39 to the closed position. This signal is absent if there is
no insulator element 39.
[0145] A second signal is a percussion start signal directed to the motor 23, so as to activate
the motor 23, which moves the percussion element 6 along the movement direction Z
away from the head 101.
[0146] At the end of the cleaning cycle, the insulator element 39 is again rotated to be
returned to the open position. This occurs owing to the intervention of the slave
device associated with the filtering device 2. The slave device also blocks the rotation
of the motor 23, so as to stop the movement of the percussion element 6.
[0147] The slave device associated with the filtering device 2 just cleaned also signals
to the central control unit that the cleaning cycle for cleaning the filtering device
2 is finished and that a new cleaning cycle for cleaning another filtering device
2 can be started. It is also possible to start cleaning cycles in a different order,
in a manner controlled by the central control unit. Several filtering devices might
also be cleaned simultaneously.
[0148] The instants in which the insulator element 39 is moved to the closed and open position,
respectively, the instants in which the percussion element 6 starts to generate percussion
and, respectively, terminates the generation of percussion, the number of percussions
applied by the percussion element 6 for each cleaning cycle and the time between two
successive percussions can be freely selected as a function of the type of application
to which the filtering device 2 is dedicated.
[0149] This makes the cleaning system 1 very versatile and able to adapt to different applications
of the filtering device 2.
[0150] The insulator element 39 is an optional component of the cleaning system 1. According
to an alternative embodiment not illustrated, the insulator element 39 may be absent,
as well as the suction device. In this case, the filtering device remains in fluid
communication with the outside environment both when the cleaning system 1 is inactive
and when the cleaning system 1 is active.
[0151] For example, the insulator element 39 may be superfluous if the fluid processed by
the filtering device 2 is a fluid containing dry and heavy dust, which following the
percussions applied by the percussion element 6 detach from the filtering surface
5 even if in the filtering device 2 there is a flow of air directed towards the cleaning
system 1.
[0152] The operating modes of the filtering device 2 also influence the need to use the
insulator element 39. If the cleaning system 1 cleans the filtering device 2 whilst
the latter is inactive, the insulator element 39 may be omitted.
[0153] According to an embodiment not illustrated, the insulator element 39 may have a shape
and operating mode different from that shown in Figures 1 to 5. For example, the insulator
element could comprise one or more grilles slidable in a plane arranged transversally,
for example perpendicularly, to the movement direction Z.
[0154] In the example shown, a filtering device 2 having a square transversal cross section
has always been shown, taken on a plane perpendicular to the movement direction Z.
The filtering device 2 may alternatively have a transversal cross-section different
from that illustrated, for example rectangular, polygonal, circular or other. The
shape of the distributor frame 9 will therefore be modified to adapt it to the shape
of the transversal cross section of the filtering device 2.
[0155] Moreover, the distributor frame 9 may have shapes different from that shown in the
drawings or even be absent.
[0156] The cleaning system 1 may be associated with one or other end of the filtering device
2, so as to operate at the outlet end of the clean gaseous fluid or alternatively
at the inlet end of the dusty gaseous fluid. It is also possible to position the cleaning
system 1 along an outer side surface of the filtering device 2, depending on the path
of the gaseous fluid. According to an alternative embodiment not illustrated, the
impact surface 10 of the intermediate structure 100 on which the percussion element
6 applies the percussions could be arranged in a peripheral position of the intermediate
structure 100 instead of being arranged in the central position shown in the drawings.
[0157] The terms "inner region 50" and "outer region 60" are therefore to be understood
in a relative sense, that is to say, they simply indicate that the outer region 60
is in a position more external than the inner region 50, without, however, implying
that the inner region 50 is positioned exactly at the centre of the intermediate structure
100.
[0158] Moreover, the transversal dimensions of the inner region 50, in a plane positioned
perpendicularly to the axis H, may be greater than the corresponding dimensions of
the contact surface 10. In general, the inner region 50 has transversal dimensions
which depend not only on the dimensions of the percussion element 6, but also on the
dimensions of the portion of the intermediate structure 100 on which the most significant
part of the stresses, deriving from the impact of the percussion element 6 on the
impact surface 10, is discharged.
[0159] According to another alternative embodiment, instead of a single percussion element
6 it is possible to have a plurality of percussion elements which apply respective
percussions on distinct impact surfaces of the intermediate structure 100. In this
case, the different capacity to absorb the energy deriving from the impact is provided
in inner regions adjacent to each impact surface.
1. An apparatus comprising a filtering device (2) which includes a plurality of filtering
elements (3) made of a filter material, the apparatus further comprising a cleaning
system (1) for periodically cleaning the filtering device (2) in order to remove contaminating
particles from the filtering device (2), the cleaning system (1) having at least one
percussion element (6) for applying percussions at least on an impact surface (10)
of an intermediate structure (100), so as to generate, for each percussion, an impact
which is able to detach from the filter material a first fraction of the contaminating
particles adhering to it and then vibrate the filter material to detach from it further
contaminating particles, the intermediate structure (100) being interposed between
the percussion element (6) and the filter material, the intermediate structure (100)
having an inner region (50) delimited at least partly by the impact surface (10) and
an outer region (60) which surrounds at least partly the inner region (50), wherein
the intermediate structure (100) has a capacity to absorb energy deriving from the
percussions which is greater in the inner region (50) than in the outer region (60).
2. The apparatus according to claim 1, wherein the intermediate structure (100) has a
greater flexibility in the inner region (50) than in the outer region (60), or wherein
the intermediate structure (100) has, in the inner region (50), a geometry different
from the outer region (60), so that the capacity to absorb energy in the inner region
(50) is greater than in the outer region (60).
3. The apparatus according to any preceding claim, wherein the intermediate structure
(100) comprises a head (101) which supports the filtering elements (3) and a distributor
frame (9) facing the percussion element (6) for receiving the percussions and distributing
on the head (101) the energy deriving from the percussions.
4. The apparatus according to claim 4, wherein the distributor frame (9) and the head
(101) are spaced apart from each other in the inner region (50) and are in contact
with each other in the outer region (60), and optionally wherein, in the inner region
(50), the distributor frame has a recess (30) facing the head (101), and/or the head
(101) has a recess (130) facing the distributor frame (9).
5. The apparatus according to claim 3 or 4, wherein the distributor frame (9) comprises
a plurality of ribs (11), which extend in respective radial directions from the impact
surface (10), a connecting structure (12) which joins respective ends of the ribs
(11) furthest away from the impact surface (10) and a further connecting structure
(13), which joins respective intermediate regions of the ribs (11).
6. The apparatus according to claim 1 or 2, wherein the intermediate structure (100)
comprises a head (101) which supports the filtering elements (3), the percussion element
(6) having a distributor mass (108) for applying the percussions directly on the head
(101).
7. The apparatus according to any one of claims 3 to 6, wherein the head (101) is made
of a material with a variable density, having a density greater in the inner region
(50) than in the outer region (60), or wherein the head (101) has a distribution of
lightening portions to make the capacity of absorbing the energy deriving from the
percussions greater in the inner region (50) than in the outer region (60).
8. The apparatus according to any preceding claim, and further comprising a supporting
structure (16) which can be positioned above the intermediate structure (100) for
supporting the percussion element (6), the supporting structure (16) comprising a
supporting portion (19) inside of which the percussion element (6) is slidable, an
elastic element (21) being interposed between the supporting portion (19) and the
percussion element (6) for pushing the percussion element (6) towards the intermediate
structure (100).
9. The apparatus according to any preceding claim, and further comprising an insulator
element (39) movable between an open position, in which the insulator element (39)
lets pass a gaseous flow coming from the filtering device (2), and a closed position,
in which the insulator element (39) blocks the gaseous flow.
10. The apparatus according to claim 9, wherein the insulator element (39) is movable
between the open position and the closed position by moving in a plane arranged perpendicularly
to a longitudinal axis (H) of the filtering device (2).
11. The apparatus according to claim 10, wherein the insulator element (39) is movable
between the open position and the closed position by a rotational movement about an
axis of rotation parallel to the longitudinal axis (H).
12. The apparatus according to any one of claims 9 to 11, wherein, in the open position,
the insulator element (39) is configured to allow the gaseous flow coming from the
filtering device (2) to escape from the insulator element (39) along an outlet direction
(H) substantially parallel to a longitudinal axis of the filtering device (2), or
wherein the insulator element (39) is movable between the open position and the closed
position independently of the percussion element (6).
13. The apparatus according to any preceding claim, and further comprising a containment
element (34) which houses the percussion element (9), the containment element (34)
being optionally mounted in a removable manner so as to be removable from the apparatus.
14. The apparatus according to claim 13, wherein the containment element (34) comprises
an end wall (37) having a plurality of openings (38) each of which is shaped like
a wedge, the openings (38) being distributed around a central zone of the end wall
(37).
15. The cleaning apparatus according to claim 14, as claim 13 is appended to any one of
claims 9 to 12, wherein the insulator element (39) comprises a disc having a plurality
of occluding portions (40) shaped like circular sectors for closing the openings (40),
an empty space being interposed between two occluding portions (40).