(11) EP 4 224 013 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 09.08.2023 Patentblatt 2023/32

(21) Anmeldenummer: 23000012.7

(22) Anmeldetag: 24.01.2023

(51) Internationale Patentklassifikation (IPC):

F04B 9/14 (2006.01) F04B 23/02 (2006.01)

F04B 49/06 (2006.01) F04B 51/00 (2006.01)

(52) Gemeinsame Patentklassifikation (CPC): F04B 9/14; F04B 23/026; F04B 23/028; F04B 49/065; F04B 51/00; F04B 2205/05; F04B 2207/70

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA

Benannte Validierungsstaaten:

KH MA MD TN

(30) Priorität: 04.02.2022 DE 202022000448 U

(71) Anmelder:

 Rothenberger AG 65779 Kelkheim (DE)

- eumig industrie-tv Gesellschaft m. b. H. 5081 Anif (AT)
- (72) Erfinder: Klimmer, Johann 5081 Anif (AT)
- (74) Vertreter: Schupp, Bernhard Rothenberger AG Spessartstraße 2-4 65779 Kelkheim (DE)

(54) **HYDRAULISCHE PRÜFPUMPE**

(57) Eine hydraulische Prüfpumpe 1 mit einen Behälter 2 für eine Prüfflüssigkeit, einer Anschlusseinrichtung 10 zum Anschuss an ein äußeres Leitungssystem, einem mit der Anschlusseinrichtung 10 hydraulisch verbundenen, mechanischen Druckanzeigeinstrument 4 sowie einer mit der Anschlusseinrichrtung 10 hydraulisch

verbindbare handbetätigte Kolbenpumpe 13 zum Fördern einer Prüfflüssigkeit aus dem Behälter 2 in ein an der Anschlusseinrichtung 10 angeschlossenes äußeres Leitungssystem umfasst weiterhin in hydraulischer Verbindung zu dem mechanischen Druckanzeigeinstrument 4 einen elektrischen Drucksensor 18.

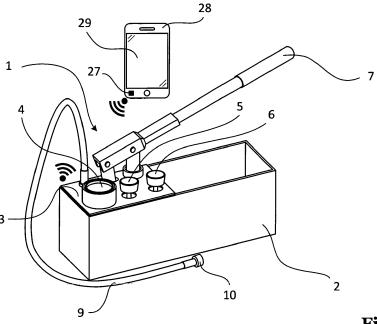


Fig. 1

15

Beschreibung

Technisches Gebiet

[0001] Die vorliegende Offenbarung betrifft eine hydraulische Prüfpumpe und insbesondere eine hydraulische Prüfpumpe mit einer handbetätigten Druckerzeugungseinrichtung und einer analogen Druckanzeige.

[0002] Als hydraulische Prüfpumpen, abkürzend auch als Prüfpumpen, werden bestimmte hydrostatische Prüfgeräte bezeichnet, die vorwiegend dem Zweck gewidmet sind, die Dichtigkeit von Heizungs-, Brauchwasser- oder Trinkwasserinstallationen zu untersuchen. Eine solche Untersuchung kann nach der Neuinstallation oder nach Reparaturen geboten sein, um unerwünschte nachfolgende Leckagen und resultierende Wasserschäden zu vermeiden.

[0003] Typisch kommen in solchen Szenarien hydraulische Prüfpumpen mit einer handbetätigten oder elektrisch angetriebenen Druckerzeugungseinrichtung zum Einsatz. Einige davon sind mit mechanischen analogen Instrumenten für die Anzeige des anliegenden Prüfdrucks ausgestattet.

[0004] In diesem Fall ist es dem Anwender aufgegeben, nach Aufbringen des Prüfdrucks die Anzeige abzulesen und eine angemessene Wartezeit festzulegen, nach der bei unveränderter Druckanzeige auf eine dichte Installation geschlossen werden darf.

[0005] Die angemessene Wartezeit kann durch Vorschriften festgelegt und/oder von den Einsatzbedingungen und der Arbeitsweise abhängen. Es kann dementsprechend unter bestimmten Umständen einen Bedarf für eine Bedienungsunterstützung bei der effizienten Einhaltung der Haltezeit geben.

Konzepte

[0006] Diesen Bedarf adressiert das technische Konzept des Anspruchs 1 in grundlegener Weise. Ausgestaltungen und Alternativen sind in den abhängigen Ansprüchen angegeben.

Kurzbeschreibung der Figuren

[0007] Zwei exemplarische Ausführungsformen einer Antriebseinheit unter Anwendung eines oder mehrerer der vorangehend umrissenen Konzepte werden im nachfolgenden Abschnitt mit Bezug auf die anhängenden Zeichnungen erläutert. Darin zeigt:

- Fig. 1 eine exemplarische handbetätigte hydraulische Prüfpumpe in einer perspektivischen Ansicht:
- Fig. 2 einen schematischen hydraulischen und elektrischen Schaltplan zu der hydraulischen Prüfpumpe gemäß Fig. 1;

- Fig. 3 eine mögliche Alternative zum Ausschnitt "X" im hydraulischen Schaltplan der Fig. 2;
- Fig. 4 einen schematischen hydraulischen Schaltplan eines äußeren Leitungssystems mit einer Leckagesituation;
- Fig. 5 einen schematischen hydraulischen Schaltplan eines äußeren Leitungssystems mit einer inneren Ausgleichsituation; und
- Fig. 6 ein Schaubild für zwei einfache mathematische Modelle der Druck-Zeit-Abhängigkeit in den Situationen der Fig. 4 und 5.

Ausführungsbeispiele

[0008] Gemäß den Fig. 1 umfasst eine exemplarische hydraulische Prüfpumpe 1 ein quaderförmiges Becken 2 zur Aufnahme der Prüfflüssigkeit. Das Vorratsbecken 2 ist nach oben teilweise durch eine Armaturenplatte 3 abgedeckt.

[0009] Die Armaturenplatte 3 umfasst eine Aufnahme für ein mechanisches Druckanzeigeinstrument 4. Das mechanische Druckanzeigeinstrument 4 ist in der exemplarischen Ausführung ein analoges Rundzeigerinstrument. Insbesondere kann das analoge Rundzeigerinstrument 4 in an sich bekannter Weise mit einem Schleppzeiger zum Festhalten eines maximalen Anzeigewerts ausgerüstet sein.

[0010] Ferner sind auf der Armaturenplatte 3 zwei Drehgriffe 5, 6 und ein Hebelantrieb 7 angeordnet. Schließlich enthält die Armaturenplatte 3 einen hydraulischen Ausgang 8, an dem ein flexibler Druckschlauch 9 angeschlossen ist.

[0011] Der flexible Druckschlauch 9 hat eine endständige Anschlusseinrichtung 10, die dazu genutzt werden kann, eine dichte Verbindung mit einem kompatiblen Prüfanschluss an einem zu prüfenden äußeren Leitungssystem herzustellen. In einem einfach gelagerten Fall kann es sich bei der Anschlusseinrichtung 9 um einen Schraubanschluss mit einer Flachdichtung und einer Überwurfmutter handeln. Diese Einzelheiten sind in der Zeichnung nicht dargestellt.

[0012] Einige für die Gesamtfunktion der hydraulischen Prüfpumpe 1 relevante Funktionseinheiten liegen unterhalb der Armaturenplatte 3 und sind deshalb in der Fig. 1 gleichfalls nicht zu erkennen. Da es für die Gesamtfunktion lediglich auf die funktionalen Beiträge dieser Funktionseinheiten ankommt, wird sich deren Erläuterung vorliegend auf die aus den schematischen hydraulischen Schaltpläne der Fig. 2, 3 und 4 erkennbaren Zusammenhänge beschränken. Zweckmäßige Realisierungsmöglichkeiten dieser Funktionseinheiten sind aus der einschlägigen Fachliteratur bekannt.

[0013] Gemäß Fig. 2 ist der flexible Druckschlauch 9 über den hydraulischen Ausgang 8 und eine anschließende Rohrleitung 11 mit dem Druckanzeigeinstrument

4 und einem ersten Ventil 12 verbunden. Das erste Ventil 12 ist in der exemplarischen Ausführungsform mechanisch an den Drehgriff 5 auf der Armaturenplatte 2 angeschlossen. Über den ersten Drehgriff 5 kann eine Bedienperson das Ventil 12 öffnen und dadurch eine Verbindung zwischen der Leitung 11 und einer Handpumpe 13 herstellen. Die Bedienperson kann über den Drehgriff 5 das Ventil 12 schließen, um die Verbindung zwischen der Handpumpe 13 und der Rohrleitung 11 zu unterbrechen.

[0014] Die Rohrleitung 11 führt ferner zu einem zweiten Ventil 14, das exemplarisch an den zweiten Drehgriff 6 auf der Armaturenplatte 2 angeschlossen ist. Über den zweiten Drehgriff 6 kann eine Bedienperson das Ventil 14 öffnen und dadurch eine Verbindung zwischen der Rohrleitung 11 und einer Entlastungsleitung 15 herstellen. Die Bedienperson kann über den zweiten Drehgriff 6 das Ventil 14 schlie-βen, um die Verbindung zwischen der Entlastungsleitung 15 und der Rohrleitung 11 zu unterbrechen.

[0015] Die Handpumpe 13 ist an den Hebelantrieb 7 angeschlossen. Durch Betätigen des Hebelantriebs 7 kann eine Bedienperson mit der Handpumpe 13 eine im Vorratsbecken 2 stehende Flüssigkeit über die Steigleitung 16 zum ersten Ventil 12 gefördert werden. In der exemplarischen Ausführungsform ist in der Steigleitung 16 ein Filter 17 angeordnet, um einer eventuellen Verschmutzung der Handpumpe 13 und der davon stromabwärts liegenden hydraulischen Funktionseinheiten zu begegnen.

[0016] Die vorangehend beschriebenen hydraulischen Funktionseinheiten ermöglichen die manuelle Druckprüfung durch den folgenden exemplarischen Bedienablauf. Zunächst befüllt eine Bedienperson das Vorratsbecken 2 mit einer ausreichenden Menge einer geeigneten Messflüssigkeit, bspw. mit Wasser. Danach öffnet die Bedienperson das erste Ventil 12 und das zweite Ventil 14.

[0017] Dann hält die Bedienperson mit der einen Hand das freie Ende 10 des Druckschlauchs 9 über das Vorratsbecken und betätigt mit dem Hebelantrieb 7 die Handpumpe 13. Dadurch wird die Messflüssigkeit aus dem Vorratsbecken 2 durch das erste Ventil 12 in die Rohrleitung 11 gefördert. Von dort strömt ein Teil der Messflüssigkeit über das zweite Ventil 14 und die Entlastungsleitung 15 zurück in das Vorratsbecken 2. Ein anderer Teil der Messflüssigkeit strömt durch den Druckschlauch 9 zurück in das Vorratsbecken 2. Mit diesen Strömungen werden Luftblasen aus dem hydraulischen System entfernt.

[0018] Sobald die Messflüssigkeit blasenfrei aus dem Druckschlauch 9 abläuft, beendet die Bedienperson die Betätigung der Handpumpe 13. Sie schließt das zweite Ventil 14 und verbindet das freie Ende des Druckschlauchs 9 mit der endständige Anschlusseinrichtung 10 mit dem zu prüfenden äußeren Leitungssystem.

[0019] Danach baut die Bedienperson durch erneutes Betätigen der Handpumpe 13 einen Druck in der Rohr-

leitung 11, dem Druckschlauch 9 und dem verbundenen äußeren Leitungssystem auf. Den Druckaufbau verfolgt die Bedienperson durch Beobachten des Druckanzeigeinstruments 4. Sobald der vorgesehene Prüfdruck erreicht ist, schließt die Bedienperson das erste Ventil 12 und beendet die Betätigung der Handpumpe 13. Wegen der geschlossenen Ventile 12 und 13 kann die Messflüssigkeit nicht aus der Rohrleitung 11 in die Handpumpe 13 oder die Entlastungsleitung 15 abfließen.

[0020] Wenn die Bedienperson auf dem Druckanzeigeinstrument 4 nachfolgend über einen vorgegebenen Zeitraum, insbesondere die vorgeschriebene Haltezeit, hinweg keinen Druckabfall beobachtet, darf eine Leckage des äußeren Leitungssystems mit guter Sicherheit ausgeschlossen werden. Dieser Abschnitt stellt die eigentliche Druckprüfung dar. Um Ablesefehler in diesem Abschnitt der Prüfung zu reduzieren, kann das Druckanzeigeinstrument 4 mit einem sogenannten Schleppzeiger ausgerüstet sein, der den Maximalwert des in der Prüfung erreichten Drucks festhält und einen nachfolgenden Abfall erkennbar macht. In typischen Anwendungsszenarien wird die Bedienperson die Einhaltung der Haltezeit anhand einer Armbanduhr oder eines Kurzzeitmessers prüfen.

[0021] Nach Abschluss der Druckprüfung öffnet die Bedienperson das zweite Ventil 14 und entlastet damit die Rohrleitung 11, den Druckschlauch 9 und das damit verbundene äußere Leitungssystem vom Restdruck. Danach kann die Verbindung des Druckschlauchs 9 zu dem äußeren Leitungssystem gelöst werden.

[0022] Zur Vereinfachung und Beschleunigung der Druckprüfung umfasst die exemplarische Prüfpumpe 1 zusätzliche Einrichtungen, die eine elektronische Erfasung des Druckverlaufs, eine Protokollierung der erfassten Druckdaten und weitere Funktionen unterstützen.

[0023] Zunächst ist ein elektrischer oder elektronischer Drucksensor 18 vorgesehen, der an die Rohrleitung 11 angeschlossen ist und dem damit der derselbe statische Druck zugeführt wird, der auch das Druckanzeigeinstrument 4 aussteuert.

[0024] Der Drucksensor 18 ist über eine Datenverbindung 19 mit einer elektronischen Datenerfassungseinheit 20 verbunden. Diese Datenverbindung 19 kann exemplarisch zur elektrischen Übertragung analoger oder digital codierter Signale eingerichtet sein. Die Datenverbindung 19 erlaubt das zeitlich wiederkehrende oder regelmäßige Übernehmen von entsprechenden Repräsentationen der Druckwerte aus dem Drucksensor 18 in die elektronischen Datenerfassungseinheit 20.

[0025] Die exemplarische Darstellung der elektronischen Datenerfassungseinheit 20 unterstellt eine integrierte Energiequelle, beispielsweise eine kleine Batterie oder einen Akkumulator. Separat von der elektronischen Datenerfassungseinheit 20 ist exemplarisch ein Pegelschalter 21 vorgesehen, der den Füllstand der Messflüssigkeit im Vorratsbecken 2 erfasst. Der Pegelschalter 21 ist über eine exemplarisch elektrische Verbindung an die elektronischen Datenerfassungseinheit 20 angeschlos-

45

sen. Der Pegelschalter 21 kann dazu eingerichtet sein, die Energieversorgung der elektronischen Datenerfassungseinheit 20 bei Nichtgebrauch der hydraulischen Prüfpumpe 1 zu unterbrechen oder die elektronischen Datenerfassungseinheit 20 in eine energiesparende Betriebsart umgeschaltet werden.

[0026] Die elektronischen Datenerfassungseinheit 20 kann weiterhin wie exemplarisch dargestellt eine Datenschnittstelle 21 für einen Datenaustausch mit einem externen Gerät 28 umfassen. Die Datenschnittstelle 21 kann insbesondere als Funkdatenschnittstelle 21 ausgebildet sein, wie dies durch das Antennensymbol exemplarisch unterstellt ist. Die elektronischen Datenerfassungseinheit 20 kann dazu eingerichtet sein, die aus dem Drucksensor 18 übernommenen Repräsentationen des Druckmesswerts in Zeitreihen zu speichern und gespeicherte Zeitreihen über die Datenschnittstelle 21 an das externe Gerät 28 zu übertragen.

[0027] Alternativ oder zusätzlich kann die elektronische Datenerfassungseinheit 20 dazu eingerichtet sein, die aus dem Drucksensor 18 übernommenen Repräsentationen des Druckmesswerts ohne technisch vermeidbaren Zeitversatz an die korrespondierende Datenschnittstelle 27 eines externen Geräts 28 zu übertragen. In diesem Fall kann die Datenerfassungseinheit 20 insbesondere dazu eingerichtet sein, die aus dem Drucksensor 18 übernommenen Repräsentationen des Druckmesswerts nur dann zu übertragen, wenn im Verhältnis zur zeitlich vorangehend übertragenen Repräsentationen des Druckmesswerts eine Änderung vorliegt.

[0028] Bei einer drahtlosen Datenübertragung über das sog. "Bluetooth Low Energy" (BLE) Protokoll enst-pricht dies einem sog. "notify" Verhalten der in der Rolle des Servers beteiligten elektronische Datenerfassungseinheit 20. Das externe Gerät 27 kann bspw. ein Smartphone sein, das mit einer Bildschirmanzeige 29 ausgestattet ist. In diesem Fall kann der interpolierte Verlauf der Zeitreihe der übertragenen Repräsentationen des Druckmesswerts der Bedienperson grafisch dargestellt werden.

[0029] Die elektronischen Datenerfassungseinheit 20 kann ferner dazu eingerichtet sein, die Bedienperson bei der Durchführung der Druckprüfung durch automatisierte Analysen und Auswertungen der aus dem Drucksensor 18 übernommenen Repräsentationen des Druckmesswerts zu unterstützen. Mögliche Szenarien werden nachfolgend kursorisch erläutert.

[0030] In einer Ausführungsform kann die elektronischen Datenerfassungseinheit 20 mit einer Einrichtung zur Kurzzeitmessung ausgerüstet oder verbunden sein, um die Bedienperson bei der Anwendung der vorgeschriebenen Haltezeit bei der Druckprüfung zu unterstützen. Der Beginn der automatischen Verfolgung der Haltezeit kann dabei durch die Bedienperson oder automatisch mit dem Erreichen des Prüfdrucks ausgelöst werden.

[0031] Das Erreichen der Haltezeit kann der Bedienperson durch eine mit der elektronischen Datenerfassungseinheit 20 verbundene Signalisiereinrichtung signalisiert werden. In der exemplarischen Schaltung ist die Signalisiereinrichtung mit der Datenerfassungseinheit 20 baulich integriert und dementsprechend in der schematischen Darstellung nicht gesondert angelegt.

[0032] Alternativ oder zusätzlich kann die Signalisierung durch Übermittlung entsprechend repräsentativer Daten gemäß Fig. 1 an die korrespondierende Datenschnittstelle 27 des externen Geräts 28 erfolgen, wenn dieses mit einer geeigneten externen 72 Signalisiereinrichtung verbunden oder ausgerüstet ist. Das exemplarisch dargestellte Smartphone 28 kann insbesondere mittels einer drahtlosen Datenübertragung über die WiFi oder BLE Schnittstelle 27 zur Ausgabe eines Bildschirmsignals 29 angesteuert wird.

[0033] Alternativ kann die elektronische Datenerfassungseinheit 20 bereits zu Beginn der Haltezeit das externe Gerät 28 zu einer um die Haltezeit versetzten Ausgabe eines Signals ansteuern. Insbesondere in der Ausgestaltung des externen Geräts 28 als Smartphone kann dessen Bildschirm 29 zur Anzeige einer ablaufenden Uhr angesteuert werden. Die vorangehend beschriebenen Funktionen zur automatischen Überwachung der Haltezeit können einer Bedienperson in bestimmten Situationen ermöglichen, während des Abwartens der Haltezeit einer anderen Aufgabe nachzugehen. Durch die automatische Benachrichtigung über das Ende der Haltezeit kann das unbeabsichtigte Überschreiten der notwendigen Haltezeit vermieden werden. Dadurch kann die Durchführungen von mehreren Druckprüfungen an verschiedenen äußeren Leitungssystemen oder Teilen von äußeren Leitungssystemen bspw. in einem verzweigten Gebäude beschleunigt werden.

[0034] Alternativ oder zusätzlich kann die elektronischen Datenerfassungseinheit 20 dazu eingerichtet sein, einen frühzeitig messbaren signifikanten Druckabbau bereits vor dem Ende der Haltezeit zu signalisieren. Das kann den andernfalls beim Zuwarten bis zum Ablauf der Haltezeit resultierenden Verlust produktiver Zeit der Bedienperson reduzieren. Die Datenerfassungseinheit kann dazu eingerichtet sein, den in einem kurzen Zeitintervall gemessenen Druckabfall auf die gesamte Haltezeit zu extrapolieren. Dies kann in manchen Situationen der Bedienperson bei der Diagnose der Leckage nützlich sein.

[0035] In einer weiteren alternativen oder zusätzlichen Ausgestaltung kann die elektronischen Datenerfassungseinheit 20 dazu eingerichtet sein, der Bedienperson die Unterscheidung zu erleichtern, ob eine beobachtbare Druckverringerung auf einen thermischen Ausgleichsvorgang zurückgeht oder auch eine Leckage in der zu untersuchenden äußeren Leitungssystem ursächlich zurückgeht. Im ersten Fall wäre der Prüfdruck lediglich durch Nachpumpen auf einen Wert zu erhöhen, der nach Abschluss der Anpassung noch sicher über dem Prüfdruck liegt. Im zweiten Fall könnte die Druckprüfung bereits vor dem Ende der Haltezeit abgebrochen werden, weil das Ergebnis schon feststeht.

40

[0036] Die Fig. 4 verdeutlicht eine erste prototypische hydraulische Situation in einem äußeren Leitungswassersystem, das einen Abschnitt einer ideal wassergefüllten Rohrleitung 22 umfasst. An dieser Rohrleitung 22 befindet sich eine ideale Anschlussstelle 23 für die hydraulische Prüfpumpe 1.

[0037] Eine erste, in einem realen Wasserleitungssystem eventuell vorliegende Abweichung von einem idealen Verhalten ist in der Fig. 4 durch zwei Ersatzsymbole verdeutlicht. Auf der rechten Seite ist das Symbol einer einer Engstelle 24 eingetragen, was einem Leck in einer realen, wassergefüllten Rohrleitung entspricht. Auf der linken Seite ist das Symbol eines Druckausgleichsgefäßes 25 eingetragen, das einer Luftblase und/oder einer strukturellen Elastizität in einem oder mehreren Teilen eines realen, wassergefüllten Wasserleitungssystem entspricht.

[0038] Die Fig. 5 verdeutlicht eine zweite prototypische hydraulische Situation in einem äußeren Leitungssystem, das wiederum einen Abschnitt einer ideal wassergefüllten Rohrleitung 22 umfasst und eine eine ideale Anschlussstelle 23 für die hydraulische Prüfpumpe 1 aufweist

[0039] Im Unterschied zur Fig. 4 sind in der prototypischen hydraulischen Situation der Fig. 5 zwei Druckausgleichsgefäßes 25, 26 dargestellt. Das erste Druckausgleichsgefäß 25 auf der linken Seite versinnbildlicht wie in Fig. 4 eine Luftblase oder eine strukturelle Elastizität in einem oder mehreren Teilen einer realen, wassergefüllten Wasserleitungssystem.

[0040] Das zweite Druckausgleichsgefäß 26 ist auf der rechten Seite nach dem Symbol der Engstelle 32 eingetragen. Der Zusammenhang aus Engstelle 24 und dem zweiten Druckausgleichsgefäß 26 verdeutlicht modellhaft einen langsamen leckagefreien Ausgleichsvorgang in einem realen Wasserleitungssystem. Bei diesem langsamen leckagefreien Ausgleichsvorgang kann es sich um einen Druckausgleich über ein versehentlich teilweise geschlossenes Absperrorgan handeln oder um einen Temperaturausgleich. Ein Temperaturausgleich kann sich in der Praxis nach der Befüllung eines Wasserleitungssystem mit verhältnismäßig wäremerm oder kälterem Wasser einstellen. In einem solchen Fall wird sich zunächst ein Temperaturausgleich zwischen dem eingefüllten Wasser und dem Material des Leitungswassersystems vollziehen. Ein wesentlich langsamerer Ausgleich wird sich zugleich zwischen dem gefüllten Leitungswassersystem und dem angrenzenden Außenraum oder der angrenzenden Bausubstanz vollziehen. Der Einfachheit halber wird hier allerdings nicht auf mehrstufige Ausgleichsvorgänge abgehoben.

[0041] Der praktisch relevante Unterschied zwischen der durch die Fig. 4 verdeutlichten, ersten prototypischen hydraulischen Situation und der durch die Fig. 5 verdeutlichten, zweiten prototypischen hydraulischen Situation liegt offenbar darin, dass im ersten Fall ein Leck vorliegt, im zweiten Fall hingegen nicht. Gleichermaßen für die Praxis relevant ist die Erkenntnis, dass sich die hydrau-

lischen Situationen in den Fig. 4 und 5 unmittelbar nach dem Befüllen und Anlegen eines Prüfdrucks mit einer Prüfpumpe über die Anschlussstelle 23 nicht unterscheiden. In beiden Situationen fällt an der Engstelle 24 der gesamte Druck ab. Daher fließt in beiden Fällen die gleiche Menge Prüfflüssigkeit aus der Rohrleitung 22 durch die Engstelle 24 ab. Im ersten Moment wird der Druck in der Rohrleitung also in beiden Situationen mit derselben zeitlichen Rate absinken.

[0042] Deshalb kann aus der Sicht einer Bedienperson aus der Beobachtung eines Druckabfalls mittels der angeschlossenen Prüfpumpe direkt nach dem Druckaufbau nicht auf das Vorliegen eines Lecks geschlossen werden. Vielmehr wird die Bedienperson von eventuellen Ausgleichsvorgängen ausgehen und deren Fortschritt solange beobachten und abwarten, bis sich ein eindeutiges asymptotisches Verhalten abzeichnet. Sobald sich der beobachtete Druck stabilisiert hat, wir die Bedienperson den Druckverlust durch Nachpumpen kompensieren und die eigentliche Druckprüfung durchführen.

[0043] In der Fig. 6 sind exemplarische zeitliche Druckverläufe 29, 30 für beide Möglichkeiten veranschaulicht. Bei einem leckagefreien Ausgleichsvorgang wird sich der beobachtete Druck typisch auf der Kurve 29 an ein mehr oder weniger weit unterhalb des Anfangsdrucks p_0 liegendes Niveau p_1 annähern. Im Fall eines Lecks wird der Druck hingegen aymptotisch vollständig verschwinden und die Anzeige der Prüfpumpe 1 dementsprechend tendenziell auf Null zurückgehen, wie dies mit der unteren Kurve 30 angedeutet ist.

[0044] Vor diesem Hintergrund kann die Datenerfassungseinheit 20 zusätzlich oder alternativ dazu eingerichtet sein, der Bedienperson eine Unterstützung bei der Abgrenzung zwischen den zwei vorangehend erläuterten Ursächlichkeiten für einen zu Beginn der Druckprüfung beobachtbaren Druckabfall zu bieten. Insbesondere kann die Datenerfassungseinheit 20 dazu eingerichtet sein, für ein parametrisiertes mathematisches Modell eines Ausgleichsvorgangs die besten Parameter gemäß den dem Drucksensor 18 übernommenen Repräsentationen des Druckmesswerts zu schätzen.

[0045] In einer grundlegenden Ausführungsform kann es sich dabei um die Entscheidung handeln, ob die gewonnenen Druckmesswerte durch ein mathematisches Modell der Situation in Fig. 4 oder durch ein mathematisches Modell der Situation in Fig. 5 genauer approximiert werden können.

[0046] Insbesondere kann ein geschlossener Ausdruck für die Approximation der Zeitabhängigkeit des Drucks in den Modellen der Fig. 4 und 5 offenbar durch die Formel $p(t) = p_0 \cdot e^{-\beta t}$ entsprechend der Kurve 31 in Fig. 6 bzw. durch die Formel $p'(t) = p_{\infty} + (p_0 - p_{0\infty}) \cdot e^{-\beta t}$ angegeben werden, entsprechend der Kurve 31 in Fig. 6. In den Formeln bezeichnet p_0 den Anfangsdruck zu Beginn der Prüfung und p_{∞} den asymptotischen Enddruck, dem sich das Modell mit fortschreitender Zeit immer weiter annähert. Der Modellparameter β ist das In-

15

30

45

50

verse der Zeitspanne, nach deren Verstreichen sich die Differenz zwischen dem approximierte Druck p(t) und

dem Nullniveau bzw. dem Wert p_{∞} auf den 1/e Bruchteil reduziert hat, was einem Absinken um ca. 73% entspricht.

[0047] Ein einfacher, in der Datenerfassungseinheit 20 ausgeführter Algorithmus kann dazu eingerichtet sein, für jede Menge von Druckmesswerten eine best-fit Schätzung der Parameter in beiden Modellen vorzunehmen und mit zunehmender Anzahl an verfügbaren zeitlichen Druckmesswerten dasjenige Modell auszuwählen, das die beste Anpassung im Sinne der rechnerischen Abweichungsbewertung zeigt.

[0048] Falls der Algorithmus entscheidet, dass die Approximation entsprechend dem Modell p(t) der Fig. 4 besser an die sich erweiterende Menge von zeitlichen Druckmesswerten angepasst werden kann, deutet dies auf ein Leck hin. Für diesen Fall kann der Algorithmus dazu eingerichtet sein, der Bedienperson über eine Signalisiereinrichtung zu signalisieren, dass eine Lecksituation vorliegt. Damit erübrigt sich für die Bedienperson weiteres Zuwarten.

[0049] Falls der Algorithmus entscheidet, dass die Approximation p'(t) entsprechend dem Modell der Fig. 5 besser an die sich erweiterende Menge von zeitlichen Druckmesswerten angepasst werden kann, deuet dies auf einen inneren Ausgleichsvorgang hin. Für diesen Fall kann der Algorithmus dazu eingerichtet sein, der Bedienperson über eine Signalisiereinrichtung zu signalisieren, dass nach dem Wiederherstellen des Prüfdrucks eine erfolgreiche Druckprüfung nicht ausgeschlossen ist. [0050] Fig. 3 zeigt schließlich einen alternativen hydraulischen Schaltplan für den Ausschnitt 'X' in Fig. 2, mit dem sich eine mögliche Abwandlung der vorangehend erläuterten hydraulischen Prüfpumpe 1 verdeutlichen lässt. Anstelle des über einen Drehgriff betätigbaren Ventils 12 in Fig. 2 ist alternativ ein selbstätig arbeitendes Rückschlagventil 32 vorgesehen. Durch das selbstätige Arbeiten des Rückschlagventils 32 erübrigt sich ein Drehgriff, wodurch die Bedienung unter Umständen intuitiver sein kann.

[0051] Da über das Rückschlagventil 32 eine von der Bedienperson steuerbare Entlastung des Strangs 11 nicht möglich ist, muss das zur Entlastungsleitung 15 führende handbetätigte Ventil 6 stromabwärts in Förderrichtung der Pumpe hinter dem Rückschlagventil 31 abzweigen. Dadurch wird in der Druckprüfung effektiv die Dichtheit von zwei hydraulischen Absperrgliedern 12, 32 inhärent mitgeprüft. In der Auslegung gemäß Fig. 2 wird hingegen nur die Dichtheit des Ventils 12 das Ergebnis der Druckprüfung beeinflussen. Unter diesem Aspekt könnte man den Aufbau gemäß dem hydraulischen Schaltplan der Fig. 2 für technisch robuster ansehen.

Patentansprüche

- Hydraulische Prüfpumpe (1) aufweisend einen Behälter (2) für eine Prüfflüssigkeit, einer Anschlusseinrichtung (10) zum Anschuss an ein äußeres Leitungssystem, einem mit der Anschlusseinrichtung (10) hydraulisch verbundenes mechanisches Druckanzeigeinstrument (4) sowie eine mit der Anschlusseinrichrtung verbindbare handbetätigte Kolbenpumpe (13) zum Fördern einer Prüfflüssigkeit aus dem Behälter (2) in ein an der Anschlusseinrichtung (10) angeschlossenes äußeres Leitungssystem, dadurch gekennzeichnet, dass in hydraulischer Verbindung zu dem mechanischen Druckanzeigeinstrument (4) ein elektrischer Drucksensor (18) angeordnet ist.
- 2. Hydraulische Prüfpumpe (1) nach Anspruch 1, weiterhin aufweisend eine elektronische Datenerfassungseinheit (20), die über eine Datenverbindung (19) mit dem elektrischen Drucksensor (18) verbunden ist, wobei die Datenverbindung (19) für das zeitlich wiederkehrende oder regelmäßige Übernehmen von entsprechenden Repräsentationen der Druckwerte aus dem Drucksensor (18) in die elektronischen Datenerfassungseinheit (20) eingerichtet ist.
- Hydraulische Prüfpumpe (1) nach Anspruch 2, weiterhin aufweisend eine mit der elektronischen Datenerfassungseinheit (20) leistungsverbindbare elektrische Energiequelle, wobei insbesondere die Leistungsverbindung durch einen Pegelschalter in Abhängigkeit vom Füllstand in dem Behälter (2) hergestellt und/oder unterbrochen wird.
- 4. Hydraulische Prüfpumpe (1) nach Anspruch 2 oder 3, wobei die elektronische Datenerfassungseinheit (20) mit einer Einrichtung zur Kurzzeitmessung ausgerüstet ist, um eine Bedienperson bei der Anwendung der vorgeschriebenen Haltezeit bei der Druckprüfung zu unterstützen.
- 5. Hydraulische Prüfpumpe (1) nach Anspruch 4, weiterhin aufweisend eine Signalisiereinrichtung, die dazu eingerichtet ist, eine Bedienperson über das Vertreichen der vorgeschriebenen Haltezeit bei der Druckprüfung zu unterrichten.
- 6. Hydraulische Prüfpumpe (1) nach einem der Ansprüche 2 bis 5, weiterhin aufweisend eine Datenschnittstelle (21), wobei die Datenschnittstelle (21) mit der Datenerfassungseinheit (20) verbunden ist, um einen Datenaustausch zwischen der Datenerfassungseinheit (20) und einem externen Gerät (28) zu erlauben, und wobei die Datenschnittstelle (21) insbesondere eine Funkdatenschnittstelle ist.
- 7. Hydraulische Prüfpumpe (1) nach einem der An-

sprüche 2 bis 6, wobei die elektronischen Datenerfassungseinheit (20) eine Entscheidungseinrichtung umfasst, die bei einer in den Repräsentationen der Druckwerte aus dem Drucksensor (18) nachweisbaren Druckverringerung einen Plausibilitätswert errechnet, der interpretierbar ist als Schätzung, ob die Druckverringerung zurückgeht entweder auf einen Ausgleichsvorgang ohne Verlust von Prüfflüssigkeit oder auf eine Leckage mit Verlust von Prüfflüssigkeit

10

8. Hydraulische Prüfpumpe (1) nach Anspruch 7, wobei die Entscheidungseinrichtung zur Optimierung von Modellparametern in einer Mehrzahl mathematischer Modelle für hydrodynamischen Situationen eingerichtet ist.

11

9. Hydraulische Prüfpumpe (1) nach einem der vorangehenden Ansprüche, wobei der Behälter (2) ein quaderförmiges Becken (2) ist, das von oben durch eine Armaturenplatte (3) teilweise abgedeckt ist und wobei insbesondere die handbetätigte Kolbenpumpe (13) in einem Durchbruch der Armaturenplatte (3) angeordnet ist.

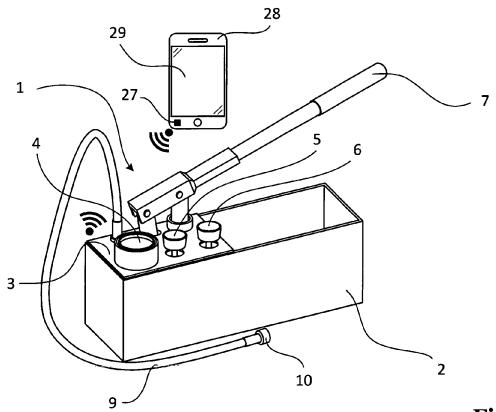
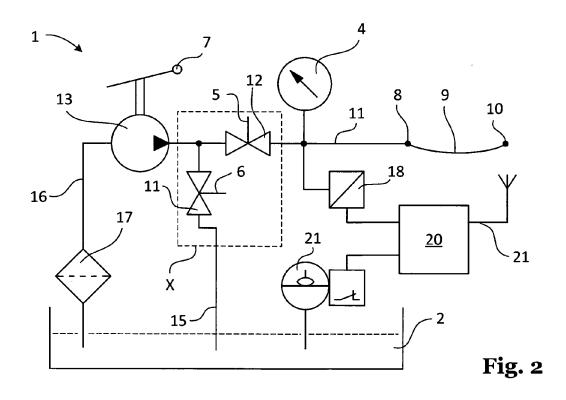
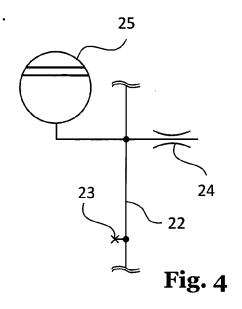
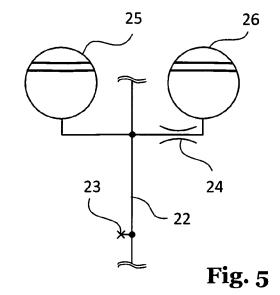
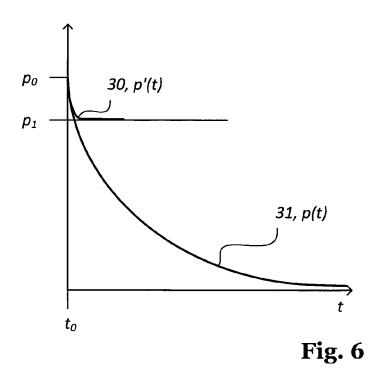
10. Hydraulische Prüfpumpe (1) nach einem der vorangehenden Ansprüche, wobei die Anschlusseinrichtung 10 am abstehenden Ende eines mit dem mechanischen Druckanzeigeinstrument (4) hydraulisch verbundenen flexiblen Druckschlauchs (9) angeordenet ist.

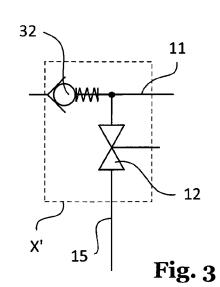
35

40

45

50


Fig. 1

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 23 00 0012

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	EINSCHLÄGIGE		of a scalar P. J.	D-1 ''''		
Kategorie	Kennzeichnung des Dokun der maßgeblich		rforderlich,	Betrifft Anspruch		SSIFIKATION DER ELDUNG (IPC)
x	CN 202 203 067 U (C CHEMICAL ET AL.) 25. April 2012 (201 * Abbildung 1 * * Absatz [0002] - A	.2-04-25)	. 1	-10	F04E	39/14 323/02 349/06 351/00
A	CN 202 228 290 U (TEQUIPMENT CO LTD) 23. Mai 2012 (2012- * Abbildungen 1-2 * * Absatz [0003] - A	-05–23)	SCUE 1	10		
A	EP 0 564 394 B1 (EM 2. August 1995 (199 * Abbildungen 1-7 * * Spalte 6, Zeile 3	95-08-02)		10		
A	CN 203 604 134 U (I 21. Mai 2014 (2014-	-05-21)	1	.–10	REC	CHERCHIERTE
	* Abbildungen 1-2 * * Absatz [0020] - A					HGEBIETE (IPC)
	- ADSacz [0020] - A				F041	3
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüch	e erstellt			
	Recherchenort	Abschlußdatum der	Recherche		Prüfe	PF
	München	23. Juni	2023	Ric	ci, S	Saverio
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kate- inologischer Hintergrund itschriftliche Offenbarung schenliteratur	tet na g mit einer D: in gorie L: au	eres Patentdokun ch dem Anmelded der Anmeldung a s anderen Gründe	nent, das jedoo datum veröffen ngeführtes Do en angeführtes	ch erst ai tlicht woi kument Dokume	rden ist ent

EPO FORM 1503 03.82 (P04C03)

55

1

EP 4 224 013 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

EP 23 00 0012

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

23-06-2023

10		Recherchenbericht ührtes Patentdokum	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	CN	202203067	U	25-04-2012	KEINE		,
15	CN	202228290	U	23-05-2012	KEINE		
	EP	056 4 39 4		02-08-1995	AU	3532793 A	07-10-1993
					CA	2089035 A1	01-10-1993
					DE	69300314 T2	25-01-1996
					EP	0564394 A1	06-10-1993
0					ES	2075769 ТЗ	01-10-1995
					JP	3387960 в2	17-03-2003
					JP	H0642447 A	15-02-1994
					us 	5221195 A	22-06-1993
5	CN	203604134	υ	21-05-2014	KEINE		
)							
5							
)							
5							
)							
1 P04							
EPO FORM P0461							
PO F							
ш ;							
•							

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82