Technical Field
[0001] The present disclosure relates to an air conditioner and an air conditioning control
method.
Background Art
[0002] A function of an air conditioner is widely known for adjusting flow of discharged
air to uniformly spread air-conditioned air in an air-conditioning target space. Due
to such function, a user can feel similar comfort regardless of whether the user is
near the air conditioner or not.
[0003] For example, Patent Literature 1 discloses changing a direction of Coanda airflow
by selecting an orientation of a Coanda vane based on a size of an air-conditioning
target space that is inputted by a user.
Citation List
Patent Literature
Summary of Invention
Technical Problem
[0005] However, although the technique disclosed in Patent Literature 1 can be used for
an air-conditioning target space with a uniform ceiling height, achieving a desired
effect by using this technique in an air-conditioning target space in which a ceiling
height varies by location is difficult.
[0006] For this reason, proposals are desired of a new technique that enables appropriate
air conditioning by an air conditioner even in the case in which a ceiling height
in an air-conditioning target area to be air-conditioned by this air conditioner varies
by location.
[0007] The present disclosure is made in view of the aforementioned circumstances, and an
objective of the present disclosure is to provide an air conditioner and the like
that can perform appropriate air conditioning even in an air-conditioning target area
in which the ceiling height varies by location.
Solution to Problem
[0008] To achieve the aforementioned objective, an air conditioner according to the present
disclosure includes setting reception means for receiving from a user a setting of
ceiling height information relating to a ceiling height for each section of predetermined
sections in an air-conditioning target area, and air-conditioning control means for
controlling air conditioning of the air-conditioning target area based on the ceiling
height information of each section.
Advantageous Effects of Invention
[0009] According to the present disclosure, appropriate air conditioning can be performed
even in an air-conditioning target area in which the ceiling height varies by location.
Brief Description of Drawings
[0010]
FIG. 1 illustrates overall configuration of an air conditioning system according to
an embodiment;
FIG. 2 is a block diagram illustrating hardware configuration of an indoor unit according
to the embodiment;
FIG. 3 is a block diagram illustrating hardware configuration of an outdoor unit according
to the embodiment;
FIG. 4 is a block diagram illustrating hardware configuration of a terminal device
according to the embodiment;
FIG. 5 is a block diagram illustrating functional configuration of an air conditioner
and the terminal device according to the embodiment;
FIG. 6 illustrates an example of a ceiling height information input screen according
to the embodiment;
FIG. 7 illustrates another example of a ceiling height information input screen according
to the embodiment;
FIG. 8 is a drawing for explanation of control of a vertical air deflection plate
during a cooling operation in a case of a normal ceiling height according to the embodiment;
FIG. 9 is a drawing for explanation of control of the vertical air deflection plate
during the cooling operation in a case of a high ceiling according to the embodiment;
FIG. 10 is a drawing for explanation of control of the vertical air deflection plate
during the cooling operation in a case of an open ceiling according to the embodiment;
FIG. 11 is a drawing for explanation of airflow in a case of a lowered ceiling;
FIG. 12 illustrates content of control in a room shape adapted mode during the cooling
operation according to the embodiment;
FIG. 13 is a drawing for explanation of control of the vertical air deflection plate
during a heating operation in the case of the normal ceiling height according to the
embodiment;
FIG. 14 is a drawing for explanation of control of the vertical air deflection plate
during the heating operation in the case of the high ceiling according to the embodiment;
FIG. 15 is a drawing for explanation of control of the vertical air deflection plate
during the heating operation in a case of the open ceiling according to the embodiment;
FIG. 16 is a drawing for explanation of control according to the embodiment, for avoiding
blowing air to a section with an open ceiling space during the heating operation;
FIG. 17 illustrates content of control in the room shape adapted mode during the heating
operation according to the embodiment;
FIG. 18 is a drawing for explanation of a wind-hitting mode during the heating operation
according to the embodiment;
FIG. 19 illustrates a display example of a notification screen according to the embodiment;
FIG. 20 is a flowchart illustrating a sequence of air-conditioning control processing
according to the embodiment; and
FIG. 21 illustrates content of control of underfloor air conditioning according to
a modified example of the embodiment.
Description of Embodiments
[0011] Hereinafter, an embodiment of the present disclosure is described in detail with
reference to the drawings.
[0012] FIG. 1 illustrates overall configuration of an air conditioning system 1 according
to an embodiment of the present disclosure. The air conditioning system 1 is a system
for air conditioning of a house H and includes an air conditioner 2 and a terminal
device 3.
Air Conditioner 2
[0013] The air conditioner 2 is an example of an air conditioner according to the present
disclosure. The air conditioner 2 is a domestic air conditioner and includes an indoor
unit 20 installed indoors and an outdoor unit 21 installed outdoors. The indoor unit
20 and the outdoor unit 21 are connected via a communication line 22 and refrigerant
piping 23 for circulation of refrigerant.
[0014] The indoor unit 20 is a wall-mounted type air conditioner that is installed by mounting
on a wall of a room. The indoor unit 20 includes, as illustrated in FIG. 2, a first
communication interface 200, a second communication interface 201, a main unit 202,
multiple sensors 203 and a control circuit 204.
[0015] The first communication interface 200 is hardware for communication with the outdoor
unit 21 via the communication line 22. The second communication interface 201 is hardware
for wireless communication with the terminal device 3. The second communication interface
201 performs, for example, communication with the terminal device 3 based on a widely-known
wireless communication standard such as Wi-Fi
® and Wi-SUN
®.
[0016] The main unit 202 is a component for achievement of fundamental functions of a general
indoor unit and includes, for example, a vertical air deflection plate, a lateral
air deflection plate, a fan, a heat exchanger, and the like. The vertical air deflection
plate is an air deflection plate for changing a wind direction of blown air in a vertical
direction, and the lateral air deflection plate is an air deflection plate for changing
the wind direction of the blown air in a lateral direction.
[0017] Each of the sensors 203 is, for example, an inlet temperature sensor for measuring
a temperature of air taken in by the fan, an inlet humidity sensor for measuring a
humidity of the air taken in by the fan, a thermal image sensor of a thermopile type,
diode type, bolometer type or the like for acquiring thermal image data of indoors,
or the like.
[0018] The control circuit 204 performs overall control of the air conditioner 2. Although
not illustrated, the control circuit 204 includes a central processing unit (CPU),
a read only memory (ROM), a read only memory (RAM) and an auxiliary storage device.
[0019] The auxiliary storage device includes a readable/rewritable nonvolatile semiconductor
memory. The readable/rewritable nonvolatile semiconductor memory is, for example,
an electrically erasable programmable read-only memory (EEPROM), a flash memory, or
the like. The auxiliary storage device stores (i) a program that is hereinafter called
the "control program" for overall control of operation of the air conditioner 2 and
(ii) data for use in execution of this control program.
[0020] The outdoor unit 21 includes, as illustrated in FIG. 3, a communication interface
210, a main unit 211, multiple sensors 212 and a control circuit 213. The communication
interface 210 is hardware for communication with the indoor unit 20 via the communication
line 22.
[0021] The main unit 211 is a component for achievement of fundamental functions of a general
outdoor unit and includes, for example, a compressor, a heat exchanger, an expansion
valve, a four-way valve, a fan, and the like.
[0022] Each of the sensors 212 is, for example, a current sensor for measuring an operating
current of the compressor, an outdoor temperature sensor for measuring an outdoor
temperature, or the like.
[0023] The control circuit 213 controls each element of the outdoor unit 21 in accordance
with an instruction from the indoor unit 20. Although not illustrated, the control
circuit 213 includes a CPU, a ROM, a RAM and an auxiliary storage device.
[0024] The auxiliary storage device includes a readable/rewritable nonvolatile semiconductor
memory and stores (i) a program for control of operation of the outdoor unit 21 and
(ii) data for use in execution of this control program. The readable/rewritable nonvolatile
semiconductor memory is, for example, an EEPROM, a flash memory, or the like.
Terminal Device 3
[0025] The terminal device 3 is an electronic device that serves in the air conditioning
system 1 as an interface with a user. The terminal device 3 is, for example, a smart
device such as a smartphone and a tablet terminal, an air conditioning remote controller,
or the like. The terminal device 3 includes, as illustrated in FIG. 4, a display 30,
an operation receiver 31, a communication interface 32, a CPU 33, a ROM 34, a RAM
35 and an auxiliary storage device 36. These structural elements are connected to
one another via a bus 37.
[0026] The display 30 includes a display device such as a liquid crystal display and an
organic electro luminescence (EL) display. The display 30 displays, under control
by the CPU 33, various screens or the like according to operations by the user.
[0027] The operation receiver 31 includes one or more input devices, such as a push-button,
a touch panel and a touch pad, receives an input operation from the user, and sends
to the CPU 33 a signal according to the received operation.
[0028] The communication interface 32 is hardware for wireless communication, by use of
the aforementioned wireless communication standard, with the air conditioner 2. In
the case in which the terminal device 3 is an air conditioning remote controller,
communication between the terminal device 3 and the air conditioner 2 may be infrared
communication or may be wired communication via a non-illustrated signal line.
[0029] The CPU 33 performs overall control of the terminal device 3. The ROM 34 stores multiple
pieces of firmware and data for use in execution of the pieces of firmware. The RAM
35 is used by the CPU 33 as a work area.
[0030] The auxiliary storage device 36 includes a readable/rewritable nonvolatile semiconductor
memory. The readable/rewritable nonvolatile semiconductor memory is, for example,
an EEPROM, a flash memory, or the like. The auxiliary storage device 36 stores (i)
various programs including an application program according to an operation of the
air conditioner 2 that is hereinafter called the "air conditioning application" and
(ii) data for use in execution of these programs.
[0031] The air conditioning application and an update program for updating the air conditioning
application are downloadable onto the terminal device 3 from a server that is installed
and operated by a manufacturer, a vendor, or the like of the air conditioner 2, other
program distribution server, or the like. The air conditioning application and the
update program can be distributed by storage in a computer-readable recording medium,
such as a compact disc read only memory (CD-ROM), a digital versatile disc (DVD),
a magneto-optical disc, a universal serial bus (USB) memory, a memory card, a hard
disk drive (HDD) and a solid state drive (SSD).
[0032] Functional Configuration of the Air Conditioner 2 and the Terminal Device 3
[0033] FIG. 5 is a block diagram illustrating functional configuration of the air conditioner
2 and the terminal device 3. The air conditioner 2 includes, as illustrated in FIG.
5, a setting receiver 220, an instruction information acquirer 221, an air-conditioning
controller 222, a notification information generator 223 and a notification information
transmitter 224. These functional elements of the air conditioner 2 are achieved by
execution, by the CPU included in the control circuit 204 of the indoor unit 20, of
the aforementioned control program.
[0034] The terminal device 3 includes a setting information input receiver 300, a setting
information transmitter 301, an instruction information input receiver 302, an instruction
information transmitter 303, a notification information acquirer 304 and a notification
information display unit 305. These functional elements of the terminal device 3 are
achieved by execution, by the CPU 33, of the aforementioned air conditioning application.
[0035] The setting information input receiver 300 of the terminal device 3 receives, from
the user, input of information relating to a setting of air conditioning that is hereinafter
called the "setting information". Specifically, the setting information input receiver
300 displays a non-illustrated main setting screen on the display 30 and receives
from the user a selection as to whether to enable a room shape adapted mode. The room
shape adapted mode is described later in detail. In the case in which the user selects
to enable the room shape adapted mode, the setting information input receiver 300
displays on the display 30 a ceiling height information input screen as illustrated
in FIG. 6.
[0036] The ceiling height information input screen is a screen for receiving, from the user,
input of ceiling height information relating to a ceiling height for each of predetermined
multiple sections in an air-conditioning target area of the air conditioner 2. In
the present embodiment, the air-conditioning target area is divided into twelve sections
as illustrated in FIG. 6, and the setting information input receiver 300 receives,
from the user, input of ceiling height information of each section that is information
of the ceiling height expressed in meters. The setting information input receiver
300 may display on the display 30 a ceiling height information input screen as illustrated
in FIG. 7 and receive, from the user, as the ceiling height information of each section,
a selection of any one of "normal ceiling", "high ceiling" and "open ceiling".
[0037] The setting information transmitter 301 transmits, to the air conditioner 2, the
setting information inputted by the user, that is, information indicating whether
the room shape adapted mode is enabled and the ceiling height information.
[0038] The setting receiver 220 of the air conditioner 2 is an example of setting reception
means according to the present disclosure. The setting receiver 220 receives and accepts
the setting information transmitted from the terminal device 3 and saves the accepted
setting information in a setting information file 230. The setting information file
230 is a file for saving the setting information and is stored in the auxiliary storage
device included in the control circuit 204 of the indoor unit 20.
[0039] The instruction information input receiver 302 of the terminal device 3 receives,
from the user, input of instruction information that is information of an instruction
to the air conditioner 3. The instruction information includes, for example, (i) information
providing instruction to start or stop an operation among various operations including
a cooling operation, a heating operation, an air-blowing operation and a dehumidification
operation, (ii) information indicating whether to enable a wind-hitting mode or a
wind-avoiding mode, (iii) information providing instruction to change a temperature
setting, a volume of blown air, the wind direction, or the like. The wind-hitting
mode is a mode for adjusting the wind direction such that wind hits a human, and the
wind-avoiding mode is a mode for adjusting the wind direction such that wind does
not hit a human. Detection of a human in these modes is performed by analyzing the
thermal image data of the indoors that is acquired by the thermal image sensor included
in the indoor unit 20, that is, by the sensor 203.
[0040] The instruction information transmitter 303 transmits to the air conditioner 2 the
instruction information inputted by the user. The instruction information acquirer
221 of the air conditioner 2 receives and acquires the instruction information transmitted
from the terminal device 3 and supplies the acquired instruction information to the
air-conditioning controller 222.
[0041] The air-conditioning controller 222 is an example of air-conditioning control means
according to the present disclosure. The air-conditioning controller 222 controls
air conditioning of the air-conditioning target area in the house H based on the instruction
information supplied from the instruction information acquirer 221 and the setting
information saved in the setting information file 230. In the case in which the setting
information includes information indicating that the room shape adapted mode is enabled
and the instruction information indicates the starting of the cooling operation or
the heating operation, the air-conditioning controller 222 causes the starting of
the cooling operation or the heating operation, and additionally, based on the ceiling
height information included in the setting information, determines a control index
for use in estimation of a room temperature and adjusts flow of blown air. Hereinafter,
control by the air-conditioning controller 222 in the room shape adapted mode is described
specifically.
Control Index
[0042] Conventional techniques have a problem that performing appropriate air conditioning
by control using an inlet temperature as a control index is difficult in the case
in which an indoor unit is installed in an area with an open ceiling space, since
the indoor unit takes in a higher-temperature air of a space corresponding to the
open ceiling space. In view of above, in the air conditioner 2 of the present disclosure,
the air-conditioning controller 222 uses both an inlet temperature and a floor surface
temperature as control indexes in a case in which the indoor unit 20 is installed
in a section with an open ceiling space, that is, a section with a ceiling height
of 5,100 millimeters or higher, enabling a more accurate estimation of the room temperature
of the air-conditioning target area, that is, eliminating a large deviation from an
actual room temperature as compared to a case of using the inlet temperature as the
room temperature. The floor surface temperature is obtained by analyzing indoor thermal
image data acquired by the thermal image sensor included in the indoor unit 20, that
is, by the sensor 203.
[0043] In the case in which the terminal device 3 includes a temperature sensor for measuring
an air temperature, the air temperature measured by the terminal device 3 may be additionally
used as the control index.
[0044] In the case in which the indoor unit 20 is installed in a section with a normal ceiling
height (for example, 2,400 millimeters) or with a high ceiling (for example, 2,700
millimeters), the inlet temperature is used as the control index in the conventional
manner. Even in the case of the high ceiling, the control indexes used in the case
of the open ceiling are used when the ceiling height is "high". A boundary value for
determination of this "high" is a design matter. The boundary value is determined
during design by using a degree of deviation of the inlet temperature from the room
temperature.
Control of a Rotation Speed of the Fan and the Vertical Air Deflection Plate of the
Indoor Unit 20 during the Cooling Operation
[0045] During the cooling operation, a rotation speed of the fan of the indoor unit 20 (hereinafter
called the "fan rotation speed") and an angle of the vertical air deflection plate
are adjusted so as to form airflow along a ceiling. During the cooling operation,
since air with a higher temperature accumulates near the ceiling due to a difference
in air density, the airflow formed along the ceiling enables eliminating temperature
unevenness through mixing of the blown air and the high-temperature air, enabling
homogenization of the room temperature.
[0046] Specifically, for example, in the case in which the indoor unit 20 is installed in
a section with the normal ceiling height (for example, 2,400 millimeters) as illustrated
in FIG. 8, the angle of the vertical air deflection plate is adjusted horizontally
so as to be oriented along the ceiling, similarly to the convention techniques. In
the case in which the indoor unit 20 is installed in a section with the high ceiling
(for example, 2,700 millimeters) as illustrated in FIG. 9, the angle of the vertical
air deflection plate is adjusted to be an angle at which the vertical air deflection
plate is inclined upward in comparison to the case of the angle of the vertical air
deflection plate corresponding to the normal ceiling height (0° in FIG. 8), for example,
adjusted to 30°. In this case, the fan rotation speed, that is, a volume of air blown
from the indoor unit 20 is adjusted to a value that is larger than in the case of
the normal ceiling height as illustrated in FIG. 8.
[0047] In the case in which the indoor unit 20 is installed in a section with an open ceiling
space as illustrated in FIG. 10, that is, in the case of a section with a ceiling
height of 5,100 millimeters or higher, the angle of the vertical air deflection plate
is adjusted to be an angle at which the vertical air deflection plate is inclined
upward in comparison to the case of the angle of the vertical air deflection plate
corresponding to the high ceiling (30° in FIG. 9), for example, adjusted to 60°. In
this case, the fan rotation speed is adjusted to a value that is larger than in the
case of the high ceiling as illustrated in FIG. 9.
[0048] Furthermore, blowing wind so as to hit a lowered ceiling generates wind flowing below
the lowered ceiling. Thus, in the case in which a ceiling height of a ceiling on the
near side with respect to the indoor unit 20 is high and a ceiling height of a ceiling
on the far side is low, that is, in the case in which the ceiling on the far side
with respect to the indoor unit 20 is a lowered ceiling, the air-conditioning controller
222 adjusts, during cooling operation, the angle of the vertical air deflection plate
so as to be adapted to the ceiling height that is lower. This configuration can prevent
a human near a boundary of the different ceiling heights from being directly hit by
cold air, as illustrated in FIG. 11.
[0049] FIG. 12 schematically illustrates a summary of content of control in the room shape
adapted mode during the cooling operation. Note that, even in the case in which the
room shape adapted mode is enabled and the instruction information indicates the starting
of the cooling operation, the air-conditioning controller 222 adjusts, on condition
that the wind-hitting mode is enabled and a human is in the air-conditioning target
area, the angle of the vertical air deflection plate such that the human is hit by
cold air. Further, even after starting the cooling operation with the airflow adjusted
based on the ceiling height information, in response to an instruction from the user
via the terminal device 3 to change the volume of blown air or the angle of the vertical
air deflection plate, the air-conditioning controller 222 changes, in accordance with
the instruction, the fan rotation speed or the angle of the vertical air deflection
plate.
Control of the Fan Rotation Speed, the Vertical Air Deflection Plate and the Lateral
Air Deflection Plate During the Heating Operation
[0050] During the heating operation, with increase in ceiling height, the angle of the vertical
air deflection plate is adjusted for increasingly downward air direction, and the
fan rotation speed is increased.
[0051] Specifically, for example, in the case in which the indoor unit 20 is installed in
a section with the normal ceiling height (for example, 2,400 millimeters) as illustrated
in FIG. 13, the angle of the vertical air deflection plate is adjusted to be an angle
similar to that in the convention techniques for example, to -65°. In the case in
which the indoor unit 20 is installed in a section with the high ceiling (for example,
2,700 millimeters) as illustrated in FIG. 14, the angle of the vertical air deflection
plate is adjusted to be an angle at which the vertical air deflection plate is inclined
downward in comparison to the case of the angle of the vertical air deflection plate
corresponding to the normal ceiling height (-65° in FIG. 13), for example, adjusted
to -70°. In this case, the fan rotation speed, that is, the volume of air blown from
the indoor unit 20, is adjusted to a value that is larger than in the case of the
normal ceiling height as illustrated in FIG. 13.
[0052] In the case in which the indoor unit 20 is installed in a section with an open ceiling
space as illustrated in FIG. 15, that is, in the case of a section with a ceiling
height of 5,100 millimeters or higher, the angle of the vertical air deflection plate
is adjusted to be an angle at which the vertical air deflection plate is inclined
downward in comparison to the case of the angle of the vertical air deflection plate
corresponding to the high ceiling (-70° in FIG. 14), for example, adjusted to -75°.
In this case, the fan rotation speed is adjusted to a value that is larger than in
the case of the high ceiling as illustrated in FIG. 14.
[0053] During the heating operation, directing wind toward the section with an open ceiling
space is avoided unless otherwise particularly specified by the user. Since an open
ceiling space provides a space extended in the vertical direction, warm air is more
likely to move to a high location, that is, to a ceiling of the second floor, due
to a density difference. For this reason, directing wind toward an open ceiling space
in the case of heating the first floor in the heating operation can be said to be
wasteful air conditioning. Thus, during the heating operation, the air-conditioning
controller 222 adjusts the angle of the lateral air deflection plate so as to avoid
directing wind toward the section with an open ceiling space, as illustrated in FIG.
16.
[0054] FIG. 17 schematically illustrates a summary of content of control in the room shape
adapted mode during the heating operation. Note that, even in the case in which the
room shape adapted mode is enabled and the instruction information indicates the starting
of the heating operation, the air-conditioning controller 222 adjusts, on condition
that the wind-hitting mode is enabled and a human is in the area with an open ceiling
space, the angle of the vertical air deflection plate and/or the angle of the lateral
air deflection plate such that the human is hit by warm air, as illustrated in FIG.
18. Further, even after starting the heating operation with the airflow adjusted based
on the ceiling height information, in response to an instruction from the user via
the terminal device 3 to change the volume of blown air, the angle of the vertical
air deflection plate or the angle of the lateral air deflection plate, the air-conditioning
controller 222 changes, in accordance with the instruction, the volume of blown air,
the angle of the vertical air deflection plate or the angle of the lateral air deflection
plate.
[0055] Again with reference to FIG. 5, the notification information generator 223 generates,
when air conditioning in the room shape adapted mode is performed, notification information
for user notification to that effect. The notification information generator 223 supplies
the generated notification information to the notification information transmitter
224. The notification information transmitter 224 transmits to the terminal device
3 the notification information generated by the notification information generator
223. The notification information generator 223 and the notification information transmitter
224 are examples of notification means according to the present disclosure.
[0056] The notification information acquirer 304 of the terminal device 3 receives and acquires
the notification information transmitted from the air conditioner 2. The notification
information acquirer 304 supplies the acquired notification information to the notification
information display unit 305. The notification information display unit 305 displays
on the display 30 a screen that is hereinafter called the notification screen and
is based on content of the notification information. FIG. 19 illustrates an example
of the notification screen.
[0057] FIG. 20 is a flowchart illustrating a sequence of air-conditioning control processing
executed by the air conditioner 2. The air conditioner 2 executes the air-conditioning
control processing described below with each reception of the instruction information
transmitted from the terminal device 3.
[0058] The air conditioner 2 determines whether the received instruction information is
information providing the instruction to start cooling operation or heating operation
(step S101). When the instruction information is not the information providing the
instruction to start the cooling operation or the heating operation (NO in step S101),
the air conditioner 2 performs control according to the instruction information (step
S102). Thereafter, the air conditioner 2 ends the air-conditioning control processing.
[0059] Conversely, when the instruction information is the information providing the instruction
to start cooling operation or heating operation (YES in step S 101), the air conditioner
2 reads the setting information from the setting information file 230 and determines,
with referencing the read setting information, whether the room shape adapted mode
is enabled (step S103).
[0060] When the room shape adapted mode is not enabled (NO in step S 103), the air conditioner
2 starts cooling operation or heating operation in a conventional manner (step S104).
Thereafter, the air conditioner 2 ends the air-conditioning control processing.
[0061] Conversely, when the room shape adapted mode is enabled (YES in step S103), the air
conditioner 2 starts cooling operation or heating operation, and based on the ceiling
height information included in the setting information, determines a control index
and adjusts flow of blown air (step S105).
[0062] After step S105, the air conditioner 2 generates the notification information indicating
that the air conditioning is performed in the room shape adapted mode, and transmits
to the terminal device 3 the generated notification information (step S106). Thereafter,
the air conditioner 2 ends the air-conditioning control processing.
[0063] As described above, according to the air conditioning system 1 according to the present
embodiment, the air conditioner 2 receives from the user a setting of the ceiling
height information for each of the predetermined multiple sections in the air-conditioning
target area and controls air conditioning of the air conditioning target area based
on the ceiling height information of each section. This configuration enables, not
only achieving appropriate air conditioning based on a ceiling height of a section
in which the indoor unit 20 is installed, but also performing appropriate air conditioning
even in the case of sections with different ceiling heights.
[0064] Furthermore, when air conditioning in the room shape adapted mode is performed, notification
to that effect is sent to the user. This allows the user to figure out the reason
for unusual air conditioning and therefore to feel relieved.
[0065] The present disclosure is not limited to the above embodiment, and various modifications
and applications are of course possible without departing from the gist of the present
disclosure.
[0066] For example, a body of the indoor unit 20 may include an input interface for receiving
input of the setting information from the user.
[0067] Furthermore, although input of the ceiling height information is received from the
user for twelve sections into which the air-conditioning target area is divided in
the above embodiment, the number of sections may be any number larger than two.
[0068] Furthermore, configuration may be employed in which (i) the user can input an installation
height (in meters) of the indoor unit 20 via the terminal device 3 and (ii) the setting
information includes information indicating the inputted installation height. This
configuration allows the air conditioner 2 (i) to perform more accurate adjustment
of the angle of the vertical air deflection plate, the angle of the lateral air deflection
plate and the fan rotation speed in accordance with a distance from the indoor unit
20 to the ceiling, a distance from the indoor unit 20 to a floor surface, and the
like and therefore (ii) to generate more appropriate airflow.
[0069] Furthermore, the air conditioner 2 may determine the control index based on the ceiling
height information regardless of whether the room shape adapted mode is enabled.
[0070] Furthermore, various types of methods are usable for providing notification to the
user. For example, the terminal device 3 may output a sound based on the notification
information. As another example, the main body of the indoor unit 20 may include an
output interface for sending to the user a sound notification or a notification in
a visible manner using light, a screen, or the like.
[0071] Furthermore, the setting information received by the air conditioner 2 from the user
may indicate whether the indoor unit 20 is installed under the floor, that is, whether
an underfloor air conditioner is used. In the case of an underfloor air conditioner,
the air conditioner 2, both in performing the cooling operation and performing the
heating operation, performs air-conditioning control of content as illustrated in
FIG. 21.
[0072] Furthermore, the present disclosure can also be used in an air conditioner for air
conditioning of a building other than a house.
[0073] The technical concepts according to the above modified examples may be achieved separately
of one another or may be achieved in an appropriate combination.
[0074] The foregoing describes some example embodiments for explanatory purposes. Although
the foregoing discussion has presented specific embodiments, persons skilled in the
art will recognize that changes may be made in form and detail without departing from
the broader spirit and scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a restrictive sense. This
detailed description, therefore, is not to be taken in a limiting sense, and the scope
of the invention is defined only by the included claims, along with the full range
of equivalents to which such claims are entitled.
Industrial Applicability
[0075] The present disclosure can be suitably used for an air conditioner for air conditioning
of a building.
Reference Signs List
[0076]
- 1
- Air conditioning system
- 2
- Air conditioner
- 3
- Terminal device
- 20
- Indoor unit
- 21
- Outdoor unit
- 22
- Communication line
- 23
- Refrigerant piping
- 30
- Display
- 31
- Operation receiver
- 32, 210
- Communication interface
- 33
- CPU
- 34
- ROM
- 35
- RAM
- 36
- Auxiliary storage device
- 37
- Bus
- 200
- First communication interface
- 201
- Second communication interface
- 202, 211
- Main unit
- 203,212
- Sensor
- 204, 213
- Control circuit
- 220
- Setting receiver
- 221
- Instruction information acquirer
- 222
- Air-conditioning controller
- 223
- Notification information generator
- 224
- Notification information transmitter
- 230
- Setting information file
- 300
- Setting information input receiver
- 301
- Setting information transmitter
- 302
- Instruction information input receiver
- 303
- Instruction information transmitter
- 304
- Notification information acquirer
- 305
- Notification information display unit