## (11) EP 4 230 928 A1

## (12)

## **DEMANDE DE BREVET EUROPEEN**

(43) Date de publication: 23.08.2023 Bulletin 2023/34

(21) Numéro de dépôt: 23157327.0

(22) Date de dépôt: 17.02.2023

(51) Classification Internationale des Brevets (IPC):

F25B 29/00 (2006.01) F25B 25/00 (2006.01) F25B 30/02 (2006.01) F25B 49/02 (2006.01) F24D 11/02 (2006.01) F24H 4/00 (2006.01)

(52) Classification Coopérative des Brevets (CPC):

F25B 29/00; F24D 3/18; F24D 11/0228; F24D 19/1072; F24D 19/1081; F24F 5/00; F24F 5/0003; F24F 5/0096; F24H 15/16; F24H 15/262; F24H 15/277; F24H 15/281; F24H 15/32; F24H 15/429; F25B 25/005; (Cont.)

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA

Etats de validation désignés:

KH MA MD TN

(30) Priorité: 21.02.2022 FR 2201512

(71) Demandeur: Commissariat à l'énergie atomique et aux énergies alternatives 75015 Paris (FR)

(72) Inventeurs:

- GAOUA, Yacine 38054 Grenoble (FR)
- VASSET, Nicolas 38054 Grenoble (FR)
- (74) Mandataire: Cabinet Nony 11 rue Saint-Georges 75009 Paris (FR)

# (54) PROCEDE DE COMMANDE DU FONCTIONNEMENT D'UN SYSTEME DE PRODUCTION DE FROID ET DE CHAUD

(57) Procédé de commande du fonctionnement d'un système de production de chaud et de froid Procédé de commande du fonctionnement d'un système de production de chaud et de froid pour satisfaire une demande énergétique en chaud et en froid, le système capable d'opérer selon au moins quatre configurations, dans lequel :

le débit d'au moins l'une des pompes hydrauliques dans

les première et troisième configurations est déterminé de manière à minimiser une première fonction de coût représentative d'au moins un coût de consommation énergétique associé au moins à la demande non équilibrée correspondante et d'une contrainte thermique sur la source thermique, et

les débits des pompes hydrauliques dans les deuxième et quatrième configurations sont prédéfinis.

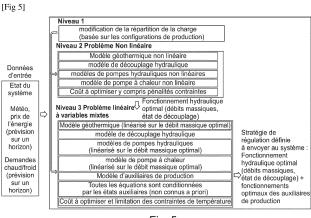



Fig. 5

(52) Classification Coopérative des Brevets (CPC): (Cont.)

**F25B 30/02; F25B 49/02;** F24F 2005/0025; F24F 2005/0057; F24F 2221/18; F24F 2221/54; F25B 2339/047

#### Description

15

20

30

35

45

50

55

#### Domaine de l'invention

[0001] La présente invention concerne le domaine des systèmes de production de chaud et de froid. Elle concerne en particulier un procédé de commande du fonctionnement d'un tel système.

#### Technique antérieure

[0002] Dans l'objectif de satisfaire une demande énergétique en chaleur et en froid pour un consommateur, il est connu de recourir à un système de production énergétique faisant intervenir un champ de sondes géothermiques, une pompe à chaleur comportant un condenseur et un évaporateur, des auxiliaires de production de chaud et de froid ainsi que des pompes hydrauliques permettant la circulation d'un fluide caloporteur dans les sondes géothermiques et dans les circuits de l'évaporateur et du condenseur.

[0003] Pour satisfaire les demandes de chaleur et de froid qui peuvent varier au cours du temps, le système opère selon différentes configurations de production en faisant notamment fonctionner la pompe à chaleur selon les modes suivants : (i) production de chaud pur, (ii) production de froid pur, et (iii) production combinée de chaud et de froid. Le passage dans ces différents modes de fonctionnement de la pompe à chaleur peut s'accompagner d'une commande de l'ouverture de vannes à trois voies présentes dans les circuits des sondes géothermiques, de l'évaporateur et du condenseur.

**[0004]** Lorsque la pompe à chaleur est en mode de production de chaud pur, le système puise des calories dans les sondes géothermiques pour réchauffer le fluide caloporteur en entrée de ce champ des sondes géothermiques. Il en résulte une diminution de la température dans le sol autour des sondes géothermiques.

**[0005]** De manière similaire, en mode de production de froid pur, le système injecte des calories dans le champ des sondes géothermiques pour permettre le refroidissement du fluide caloporteur. Il en résulte une hausse de la température dans le sol autour des sondes géothermiques.

En mode de production combiné, le champ de sondes est déconnecté et la pompe à chaleur permet à elle seule de satisfaire une demande équilibrée en chaud et en froid.

[0006] Afin d'éviter de soumettre le sol à des contraintes thermiques susceptibles d'être néfastes pour celui-ci et l'environnement, des contraintes thermiques réglementaires sont souvent imposées par les autorités et doivent donc être prises en considération lors du fonctionnement du système. Ces contraintes concernent en particulier la température du fluide caloporteur en entrée du champ des sondes géothermiques. Ces contraintes se traduisent notamment par des valeurs minimale et maximale imposées du fluide caloporteur en entrée des sondes géothermiques en provenance respectivement de l'évaporateur et du condenseur de la pompe à chaleur.

[0007] Dans ce contexte, les auxiliaires de production de chaud et de froid, tels qu'un groupe de froid ou une chaudière à gaz, présentent l'avantage de permettre au système de satisfaire le besoin des utilisateurs tout en respectant les contraintes réglementaires précitées. Le recours à ces auxiliaires présente l'inconvénient d'accroître la consommation d'énergie et de générer souvent des quantités non négligeables de gaz à effet de serre.

**[0008]** Pour satisfaire une demande énergétique donnée, l'opération du système de production est réalisée au moyen d'une pluralité de « variables » de contrôle permettant à ce dernier de changer de configuration. Ces variables de contrôle correspondent principalement aux taux d'ouverture des vannes à trois voies précitées, aux débits des pompes hydrauliques ainsi qu'à l'activation et la désactivation des auxiliaires de production.

**[0009]** Il est de plus en plus souhaitable de disposer d'un système de production présentant un coût d'exploitation limité et avec un bilan carbone intéressant. Pour cela, le recours à un contrôleur d'un tel système qui soit prédictif et adaptatif constitue une solution avantageuse.

**[0010]** Toutefois, le déploiement d'un tel contrôleur s'avère très complexe. En particulier, l'optimisation du fonctionnement du système suppose que le contrôleur soit capable :

- De modéliser le comportement non-linéaire des sources énergétiques et de l'action des pompes hydrauliques,
- de gérer les vannes à trois voies, et
  - de gérer les démarrages des auxiliaires de production de chaud et de froid.

[0011] L'optimisation du fonctionnement du système nécessite ainsi une optimisation conjointe du fonctionnement hydraulique et de la gestion de démarrage des auxiliaires. Cela conduit à la résolution d'un problème d'optimisation non linéaire en variables mixtes, ou «Mixed Integer Non Linear Programming» (MINLP) en anglais. Ce problème MINLP est par nature particulièrement complexe à résoudre et les méthodes de résolution actuelles, même celles intégrées dans les solveurs d'optimisation les plus performants, ne garantissent pas l'obtention d'une solution satisfaisante en un temps raisonnable.

[0012] Pour contourner cette problématique, deux approches dégradées approximées et non-optimales sont souvent utilisées

[0013] La première approche est basée sur les hypothèses simplificatrices suivantes :

- Une modélisation d'un comportement dégradé et approximatif des sources énergétiques, notamment un comportement linéaire du fonctionnement de celles-ci. Un tel comportement linéaire ne permet pas toutefois de refléter le fonctionnement réel de ces sources;
  - Un fonctionnement imposé de l'hydraulique du système : débits imposés et/ou ouvertures imposées des vannes à trois voies, ou
- Un fonctionnement imposé des auxiliaires de production de chaud et de froid.

[0014] La deuxième approche utilise un contrôleur basé sur des lois dites « lois expertes ». Ce contrôle non-adaptatif nécessite des mises à jour des lois expertes à chaque modification mineure sur le système ou évolution des prix de l'énergie ou de la demande énergétique. Cela peut conduire à un non-respect des contraintes réglementaires lorsque le système doit gérer une situation « limite », correspondant à une situation dimensionnante non préalablement identifiée.

[0015] De plus, l'utilisation de lois expertes nécessite souvent la mise en place de marges opérationnelles sur le contrôle qui peuvent mener à une opération bien plus coûteuse du système énergétique.

#### Exposé de l'invention

**[0016]** Il existe par conséquent un besoin pour améliorer le pilotage des systèmes de production de chaud et de froid de l'art antérieur afin d'en améliorer les performances, notamment l'efficacité énergétique, tout en respectant les contraintes imposées sur la source géothermique.

#### 25 Résumé de l'invention

**[0017]** L'invention répond à ce besoin grâce à un procédé de commande du fonctionnement d'un système de production de chaud et de froid pour satisfaire une demande énergétique en chaud et en froid, comportant au moins :

- Un circuit de source thermique,
  - une pompe à chaleur couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud,
  - des auxiliaires de production de froid et de chaud,
  - une pompe hydraulique dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur:
  - une pompe hydraulique dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur dans le circuit condenseur.
- 40 procédé dans lequel :

lorsque la demande en chaud est dominante par rapport à la demande en froid, le système opère selon au moins:

o une première configuration dans laquelle l'auxiliaire de production chaud est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de froid et de chaud pour satisfaire la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée », et en mode de production de chaud seul pour satisfaire la partie restante de la demande en chaud dite « demande en chaud non équilibrée », , ou

o une deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé pour satisfaire la demande en chaud et la pompe à chaleur fonctionne en mode de production de froid seul pour satisfaire la demande en froid,

lorsque la demande en froid est dominante par rapport à la demande en chaud, le système opère selon au moins:

o une troisième configuration dans laquelle l'auxiliaire froid est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de chaud et de froid pour satisfaire la demande en chaud et une partie de la demande en froid, dite « demande en froid équilibrée » et en mode de production de froid pur pour satisfaire la partie restante de la demande en froid, dite « demande en froid non équilibrée, , ou

20

15

5

45

35

50

55

o une quatrième configuration dans laquelle l'auxiliaire de production froid est allumé pour satisfaire la demande en froid et la pompe à chaleur fonctionne en mode de production de chaud pur pour satisfaire la demande en chaud ;

## 5 et dans lequel ;

10

15

25

30

35

50

55

le débit d'au moins l'une des pompes hydrauliques dans les première et troisième configurations est déterminé de manière à minimiser une première fonction de coût représentative d'au moins un coût de consommation énergétique associé au moins à la demande non équilibrée correspondante et d'une contrainte thermique sur la source thermique, et

les débits des pompes hydrauliques dans les deuxième et quatrième configurations sont prédéfinis.

**[0018]** Le procédé selon l'invention prévoit des configurations dans lesquelles le fonctionnement de l'hydraulique du système, notamment les valeurs des débits à appliquer comme consigne aux pompes hydrauliques, est optimisé pour satisfaire les demandes non-équilibrées sans solliciter les auxiliaires de production. Les demandes équilibrées sont assurées par la pompe à chaleur à elle seule via le mode combiné chaud et froid.

**[0019]** Le recours à ces auxiliaires quant à lui ne se fait de préférence que lorsque leur utilisation présente un avantage relatif au coût de consommation énergétique et/ou au respect des contraintes imposées sur la source thermique par rapport aux première et troisième configurations, comme détaillé par la suite.

**[0020]** On obtient alors des configurations de fonctionnement du système permettant de satisfaire la demande énergétique en chaud et en froid sans outrepasser les contraintes imposées sur la source thermique.

[0021] De préférence pour satisfaire la demande en chaud et en froid précitée, le procédé comporte :

- un premier niveau de calcul de répartition des demandes dans lequel les demandes en chaud et en froid équilibrées et la demande en chaud ou en froid non-équilibrée sont déterminées ;
- un deuxième niveau de calcul d'optimisation hydraulique dans lequel les auxiliaires de production sont désactivés et dans lequel la première fonction de coût est minimisée pour la demande non-équilibrée issue du premier niveau de calcul, par résolution d'un problème d'optimisation non linéaire de type NLP; et
- un troisième niveau de calcul de gestion des auxiliaires de production dans lequel la deuxième fonction de coût est minimisée par résolution d'un problème d'optimisation linéaire à variables mixtes de type MILP, le problème d'optimisation linéaire dépendant au moins du ou des débits déterminés au deuxième niveau de calcul.

[0022] Dans le deuxième niveau de calcul, en désactivant les auxiliaires de production, le système risque de violer les contraintes imposées sur la source thermique. Pour limiter cela, et au lieu de modéliser la possibilité d'engager les auxiliaires de production, une pénalité de violation de ces contraintes peut être imposée dans le problème d'optimisation à résoudre. Cette approche alternative permet de transformer le problème d'optimisation non linéaire en variables mixtes qui est par nature très difficile à résoudre à un problème d'optimisation non linéaire, relativement facile et rapide à résoudre. Aussi, la complexité du problème d'optimisation s'en trouve réduite.

**[0023]** Pour une demande en chaud dominante, on minimise pour chacune de la première configuration dans laquelle l'auxiliaire de production chaud est éteint et de la deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé, la deuxième fonction de coût représentative d'un impact thermique sur la source thermique et l'on déclenche la configuration de fonctionnement pour laquelle celle-ci est la plus faible.

**[0024]** Pour une demande en froid dominante, on minimise pour chacune de la troisième configuration dans laquelle l'auxiliaire de production froid est éteint et de la quatrième configuration dans laquelle l'auxiliaire de production froid est allumé, la deuxième fonction de coût, et l'on déclenche la configuration pour laquelle celle-ci est la plus faible.

**[0025]** Aussi, la décision d'utiliser l'un des auxiliaires de production s'effectue avantageusement par l'optimisation d'un problème linéaire avec des variables entières.

**[0026]** Ainsi, le procédé selon l'invention permet de sélectionner la configuration la plus judicieuse à opérer par le système pour satisfaire à une demande énergétique en procédant à une optimisation du fonctionnement en deux étapes : une première étape de détermination de configurations optimisant le fonctionnement hydraulique du système sans les auxiliaires de production et une deuxième étape d'identification d'un fonctionnement optimal des auxiliaires de production par comparaison aux configurations déterminées à la première étape.

[0027] Dans les deuxième et quatrième configurations dans lesquelles les auxiliaires de production de chaud et de froid sont respectivement sollicités, les débits à appliquer aux pompes hydrauliques correspondent à des valeurs par défaut.

#### Source thermique

[0028] La source thermique est de préférence une source géothermique, correspondant notamment à un champ de sondes géothermiques.

**[0029]** Par « sondes géothermiques », on désigne des sondes disposées dans des forages du sous-sol, par exemple sous la forme de tubes coaxiaux ou en U insérés dans des forages et dans lesquels circule le fluide caloporteur. La profondeur des forages est généralement comprise entre 50 et 200 m.

## Pompe à chaleur

10

15

30

35

50

[0030] La pompe à chaleur est de préférence une pompe à chaleur de type eau/eau.

**[0031]** La pompe à chaleur comporte un circuit primaire dans lequel un liquide caloporteur circule. Selon le besoin à satisfaire, le fluide caloporteur alimente la pompe à chaleur en calories en provenance d'une source thermique ou à l'inverse transporte les calories depuis la pompe à chaleur vers la source thermique. Le liquide caloporteur est de préférence de l'eau glycolée.

**[0032]** De préférence, le système comporte une bouteille de découplage couplée de manière classique aux circuits de la source thermique, de l'évaporateur et du condenseur. La présence d'une telle bouteille de découplage permet la circulation de deux débits différents à ses bornes.

[0033] De préférence, au moins un des deux débits de circulation du fluide caloporteur aux bornes de ladite bouteille correspond à une variable du problème d'optimisation non linéaire du deuxième niveau de calcul. L'autre débit peut être fixé par une procédure de contrôle prédéterminée pour pompes hydrauliques de la pompe à chaleur.

**[0034]** Dans ce mode de réalisation, le système comporte une pompe hydraulique dans le circuit de la source thermique agencée pour faire circuler un fluide caloporteur dans le circuit de la source thermique. De préférence, le débit circulant dans le circuit de la source thermique correspondant à une variable du problème d'optimisation non linéaire du deuxième niveau de calcul.

**[0035]** De préférence, au moins un des deux débits de circulation du fluide caloporteur aux bornes de ladite bouteille, notamment celui correspondant au circuit de la source thermique peut correspondre à une variable du problème d'optimisation non linéaire du deuxième niveau de calcul et l'autre débit peut être fixé par une procédure de contrôle prédéterminée pour pompes hydrauliques de la pompe à chaleur.

[0036] Cela permet de disposer d'un degré de liberté additionnel permettant notamment d'avoir des débits différents circulant dans les différents circuits du système. La performance de pilotage du système peut s'en trouver améliorée.

## Demande énergétique

[0037] La demande énergétique comporte une demande en chaud, désignée par  $P^*_{HOT}$  et en une demande en froid  $P^*_{COLD}$ 

[0038] La demande en chaud correspond par exemple à une demande en eau chaude sanitaire et/ou à une demande de chauffage.

**[0039]** La demande en froid correspond par exemple à une demande de climatisation, de rafraichissement, et/ou à une demande en eau glacée, notamment dans le cadre de processus industriels, par exemple dans des laboratoires, ou encore pour des hôpitaux.

[0040] La demande énergétique en chaud et/ou en froid peut être une demande actuelle ou une demande future.

**[0041]** Le procédé permet un pilotage prédictif et adaptatif du système de production lui permettant d'anticiper le fonctionnement des différentes sources énergétiques en fonction des prévisions sur la demande énergétique en chaud et en froid et sur les coûts financiers d'énergie afin de minimiser les coûts liés aux opérations du système, voire minimiser les émissions de gaz à effet de serre.

**[0042]** La prévision sur la demande énergétique, sur les coûts financiers et/ou sur les conditions météorologiques peut être fournie pour un horizon temporel de prévision.

[0043] L'horizon de prévision peut être compris entre 2h et 48h, par exemple de l'ordre de 24h.

**[0044]** La commande du système au moyen du procédé selon l'invention peut être effectuée sur des pas de supervision prédéfinis. Le pas de supervision peut être compris entre 1 min et 2h, de préférence entre 10 min et 1h, par exemple de l'ordre de 30 min.

<sup>55</sup> **[0045]** Durant le pas de supervision, les débits à déterminer par le problème d'optimisation non linéaire au deuxième niveau de calcul sont de préférence constants.

[0046] Les différents modes de production de la pompe à chaleur sont mutuellement exclusifs à un instant t mais

potentiellement inclusive sur le pas de supervision.

#### Demande dominante

5

10

25

30

40

45

- [0047] De préférence, pour une demande énergétique de chaud et de froid, on détermine au premier niveau de calcul, laquelle des demandes en chaud et en froid est dominante. Cette détermination peut être réalisée en calculant un facteur
  - d'équilibre  $B_{eq}^*$  donné par la formule  $B_{eq}^* = P_{HOT}^* \left(1 \frac{1}{coP_{eq}^*}\right) P_{COLD}^*$  ; où  $P_{HOT}^*$  et  $P_{COLD}^*$  désignent

respectivement les demandes en chaud et en froid et  ${^*COP_{eq}^*}$  le coefficient de performance de la pompe à chaleur en mode de production combinée de chaud et de froid.

- [0048] On parle d'une demande en chaud dominante par rapport à la demande en froid lorsque  $B_{eq}^*>0$  et d'une demande en froid étant dominante par rapport à la demande en chaud lorsque  $B_{eq}^*<0$ .
- [0049] De préférence, le coefficient de performance  $COP_{eq}^*$  de la pompe à chaleur en mode équilibré dépend des températures de consigne de production de chaud ou de froid.

Demande équilibrée

**[0050]** Par « *demande équilibrée »* on entend une demande en chaud ou en froid pouvant être satisfaite par la pompe à chaleur lorsque celle-ci fonctionne en mode combiné.

[0051] Pour une demande en chaud dominante :

- la demande en chaud équilibrée correspond à  $P_{HOT,Eq}^* = P_{HOT}^* \left(1 - R_{hot,eq}^* \right)$  avec

$$R_{hot,eq}^* = \frac{B_{eq}^* / \left(1 - \frac{1}{coP_{eq}^*}\right)}{P_{HOT}^*}$$
, e

 $P_{COLD,Eq}^*=P_{COLD}^*$  - la demande en froid équilibrée correspond avantageusement à la demande en froid

[0052] Pour une demande en froid dominante :

- la demande en chaud équilibrée correspond avantageusement à la demande en chaud  $P^*_{HOT,Eq}=P^*_{HOT}$  , et
- la demande en froid équilibrée correspond à  $P^*_{COLD,Eq}=P^*_{COLD}\left(1-R^*_{COLD,eq}\right)$  avec  $R^*_{eq}=\frac{B^*_{eq}}{P^*_{COLD}}$  .

Demandes non-équilibrées

- [0053] Une « demande non équilibrée » désigne une demande en chaud ou en froid ne pouvant pas être satisfaite par le mode combiné de la pompe à chaleur.
- [0054] Pour une demande en chaud dominante, la demande en chaud non équilibrée désignée  $P^*_{HOT,A}$  correspond  $P^*_{HOT,A} = P^*_{HOT,A} = P^*_{hot,eq}$  à
- [0055] Pour une demande en froid dominante, la demande en froid non équilibrée, désignée  $P^*_{COLD,A}$  correspond  ${}^{55}_{\dot{a}} P^*_{COLD,A} = P^*_{COLD} R^*_{cold,eq}$

#### Contrainte sur la source thermique et impact thermique

**[0056]** De préférence, la contrainte thermique sur la source thermique à respecter correspond à une plage de températures admises en entrée ou en sortie du circuit de la source thermique. La plage de températures peut être imposée par les contraintes réglementaires et/ou environnementales.

[0057] Dans le cas d'une source géothermique, la plage de températures admise en entrée des sondes géothermiques peut être comprise entre -3°C et 40°C.

**[0058]** La prise en considération d'une telle contrainte dans le problème d'optimisation permet de limiter l'impact thermique sur la source thermique dû à une sollicitation excessive de cette dernière.

**[0059]** L'impact thermique sur la source thermique peut être caractérisé par une température de la source thermique. En particulier, lorsque la source thermique est une source géothermique, l'impact thermique est apprécié en évaluant la température du sol.

#### Première fonction de coût

10

15

30

45

50

**[0060]** Comme mentionné plus haut, le procédé met en oeuvre au deuxième niveau de calcul une minimisation d'une première fonction de coût représentative d'un coût de consommation lié au fonctionnement du système pour satisfaire les demandes non-équilibrées; c'est-à-dire la demande en chaud non-équilibrée ou la demande en froid non-équilibrée de façon à minimiser la violation des contraintes imposées sur la source thermique.

**[0061]** Ce coût de consommation peut correspondre à la consommation électrique des sources énergétiques mises en oeuvre dans les différentes configurations, par exemple, de la consommation électrique de la pompe à chaleur, en particulier celle de son compresseur et des pompes hydrauliques.

[0062] Le coût de consommation tient de préférence compte du coût financier de l'énergie.

**[0063]** La première fonction de coût peut être en outre représentative d'un coût environnemental associé à l'émission des gaz à effet de serre par le système. Une telle émission peut être liée à la consommation électrique des sources énergétiques précitées.

**[0064]** De préférence, la première fonction de coût dépend d'au moins une température du fluide caloporteur en entrée et/ou en sortie de la source thermique pour la pénalisation de la violation des contraintes thermique sur la source thermique.

[0065] Dans un mode particulièrement adapté à un champ des sondes géothermiques, la première fonction de coût tient compte de la température du sol, notamment du sol environnant les sondes géothermiques, de la température de sortie du fluide caloporteur de ces sondes, et/ou de la température d'entrée dans le champ des sondes géothermiques pour le fluide. Cette température correspond à celle du fluide sortant de la pompe à chaleur pour injection dans le circuit de la source thermique.

[0066] De préférence, la première fonction de coût tient compte de la consommation électrique d'au moins une pompe hydraulique. De préférence, ladite consommation électrique des pompes hydrauliques est de préférence liée à une différence de pression appliquée aux pompes hydrauliques et au débit dans ces pompes.

[0067] La consommation électrique de chacune des pompes hydrauliques peut être donnée par la formule suivante :

 $W_{pump} = \frac{m_{pump} \, \Delta P}{\eta \, \rho}$ , avec  $m_{pump}$  étant le débit passant dans la pompe hydraulique,  $\Delta P$  la différence de pression imposée par la pompe,  $\eta$  l'efficacité globale de pompe  $\eta$  c'est-à-dire le rendement isentropique multiplié par le rendement de conversion électrique, et  $\rho$  la masse volumique du liquide caloporteur, quantité supposée constante. Dans un mode de réalisation préféré, la différence de pression  $\Delta P$  est liée au débit via l'équation suivante :

 $\Delta P = A_{pump} + B_{pump} m_{pump} + C_{pump} m_{pimp}^{2}$ . Les paramètres  $A_{pump}$ ,  $B_{pump}$ ,  $C_{pump}$  sont de préférence calculés à partir d'une régression quadratique effectuée sur des données préexistantes.

[0068] De préférence, la première fonction de coût tient compte de la consommation électrique de la pompe à chaleur, notamment de sa consommation électrique instantanée.

**[0069]** Cette consommation électrique instantanée peut correspondre à la consommation électrique d'un unique étage du compresseur  $W_{IPAC}$  ou de deux étages de ce dernier 2  $W_{IPAC}$ .

**[0070]** De manière générale, la consommation électrique instantanée de la pompe à chaleur peut correspondre à  $W_{IPAC,tot} = N_c \times W_{IPAC}$ ;  $N_c$  étant une variable comprise entre 1 et 2.

**[0071]** De préférence, par exemple dans le cas d'un ensemble de compresseurs à régime fixe, la puissance électrique instantanée d'un seul étage du compresseur est reliée à la température de sortie du fluide de l'évaporateur par la formule suivante  $W_{IPAC} = A_{WI} + B_{WI} T_{cond,out} + C_{WI} (T_{cond,out})^2$ .

[0072] La consommation électrique instantanée de la pompe à chaleur est de préférence reliée respectivement aux

puissances thermiques instantanées dans les circuits du condenseur et de l'évaporateur de la pompe à chaleur au moyen du coefficient de performance selon les formules suivantes :  $W_{IPAC,tot} = Q_{Icond}/COP$  et  $W_{IPAC,tot} = Q_{Ievap}/(COP - 1)$ , avec  $Q_{Icond}$  et  $Q_{Ievap}$ , les puissances thermiques instantanées au niveau du condenseur et de l'évaporateur, respectivement.

5 [0073] Le coefficient de performance de la pompe à chaleur peut être donné par la formule suivante :

$$COP = A_{COP} + B_{COP}(T_{cond,out} - T_{evan,out}) + C_{COP}(T_{cond,out} - T_{evan,out})^2$$
.

T<sub>cond,out</sub> et T<sub>evap,out</sub> correspondent respectivement aux températures de sortie du condenseur et de l'évaporateur.
 [0074] De préférence, les puissances thermiques instantanée précitées sont reliées aux débits hydrauliques aux bornes de l'évaporateur et du condenseur par les formules suivantes :

$$Q_{Ievap} = \dot{m_{evap}} (T_{evap,in} - T_{evap,out}) CP$$

$$Q_{Icond} = \dot{m_{cond}} (T_{cond,in} - T_{cond,out}) CP$$

 $m_{cond}$  et  $m_{evap}$  correspondent aux débits passant au niveau du condenseur et de l'évaporateur,  $T_{evap,out}$  et  $T_{evap,in}$  sont les températures de sortie et d'entrée dans le circuit évaporateur,  $T_{cond,out}$  et  $T_{condp,in}$  sont les températures de sortie et d'entrée dans le circuit condenseur , et CP la capacité thermique du fluide circulant.

Dans un mode de réalisation préféré, les différences en température ( $T_{evap,in}$  -  $T_{evap,out}$ ) et ( $T_{cond,in}$  -  $T_{cond,out}$ ) aux bornes de l'évaporateur et/ou du condenseur correspondent à des valeurs constantes prédéfinies.

[0075] Afin de minimiser la première fonction de coût, le problème d'optimisation non linéaire peut utiliser l'un au moins des modèles suivants :

- un modèle de la source thermique, notamment un modèle décrivant au moins une température du fluide caloporteur en entrée et/ ou en sortie de la source thermique, ce modèle reliant avantageusement l'une des températures précitées au débit hydraulique circulant dans le circuit de la source thermique;
- Optionnellement, un modèle relatif à la bouteille de découplage, renseignant notamment sur le comportement thermo-hydraulique de celle-ci, ledit modèle décrivant de préférence les débits et les échanges thermiques ;
- un modèle d'au moins une pompe hydraulique ; en particulier un modèle reliant le débit de la pompe à sa consommation électrique ;
- un modèle de la pompe à chaleur.

**[0076]** Afin de respecter la contrainte thermique imposée sur la source thermique, une pénalité de violation de ces contraintes est de préférence imposée dans le problème d'optimisation à résoudre.

## Deuxième fonction de coût

15

20

30

35

40

45

50

55

[0077] De préférence, la deuxième fonction de coût tient compte de la consommation électrique des auxiliaires de production.

[0078] De préférence, la deuxième fonction est en outre représentative d'un coût environnemental associé à l'émission des gaz à effet de serre par le système.

**[0079]** L'invention a encore pour objet un contrôleur configuré pour commander le fonctionnement d'un système de production de chaud et de froid pour satisfaire une demande énergétique en chaud et en froid, ce système comportant au moins :

- Un circuit de source thermique,
- une pompe à chaleur couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud,
- des auxiliaires de production de froid et de chaud,
  - une pompe hydraulique dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur;

- une pompe hydraulique dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur,

lorsque la demande en chaud est dominante par rapport à la demande en froid, le contrôleur étant configuré pour commander le système selon au moins:

5

10

o une première configuration dans laquelle l'auxiliaire de production chaud est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de froid et de chaud pour satisfaire la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée », et en mode de production de chaud seul pour satisfaire la partie restante de la demande en chaud dite « demande en chaud non équilibrée », ,

o une deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé pour satisfaire la demande en chaud et la pompe à chaleur fonctionne en mode de production de froid seul pour satisfaire la demande en froid,

15

lorsque la demande en froid est dominante par rapport à la demande en chaud, le contrôleur étant configuré pour commander le système opère selon au moins:

20

o une troisième configuration dans laquelle l'auxiliaire froid est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de chaud et de froid pour satisfaire la demande en chaud et une partie de la demande en froid, dite « demande en froid équilibrée » et en mode de production de froid pur pour satisfaire la partie restante de la demande en froid, dite « demande en froid non équilibrée », ou o une quatrième configuration dans laquelle l'auxiliaire de production froid est allumé pour satisfaire la demande en froid et la pompe à chaleur fonctionne en mode de production de chaud pur pour satisfaire la demande en chaud ;

25

le débit d'au moins l'une des pompes hydrauliques dans les première et troisième configurations est déterminé de manière à minimiser une première fonction de coût représentative d'au moins un coût de consommation énergétique associé au moins à la demande non équilibrée correspondante et d'une contrainte thermique sur la source thermique, et

et

les débits des pompes hydrauliques dans les deuxième et quatrième configurations sont prédéfinis.

35

45

50

55

30

**[0080]** Le contrôleur peut comporter un ou plusieurs processeurs et une mémoire dans laquelle est mémorisé un ensemble d'instructions à exécuter par le ou les processeurs de façon à mettre en oeuvre le procédé selon l'invention. Le contrôleur peut être équipé d'interfaces appropriées pour commander les éléments du système de production de froid et de chaud, notamment les vannes du système, et recevoir des données de divers capteurs et/ou serveurs.

**[0081]** Le contrôleur est de préférence apte à recevoir des prévisions sur les demandes énergétiques, sur le prix d'énergie ainsi que sur les conditions météorologiques sur un horizon de prévision prédéterminé. Le contrôleur peut recevoir également des prévisions sur les températures de consigne pour la production de chaud et de froid sur l'horizon précité.

[0082] Le contrôleur est de préférence apte à recevoir en outre au moins une information relative à l'état du système au moyen de capteurs du système.

[0083] Cette information peut correspondre à l'état de la source thermique,

**[0084]** Cette information peut correspondre à au moins une température caractéristique de la pompe à chaleur, cette température caractéristique pouvant être choisie suivant les configuration de production parmi : température d'entrée à l'évaporateur, température de sortie de l'évaporateur, température d'entrée au condenseur et/ou température de sortie du condenseur.

[0085] L'invention a encore pour objet un système de production de chaud et de froid comportant :

- Un circuit de source thermique,
- une pompe à chaleur couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud,
- des auxiliaires de production de froid et de chaud,
- une pompe hydraulique dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur :
- une pompe hydraulique dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur, et
- un contrôleur selon l'invention.

#### Brève description des dessins

[0086] L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'un exemple non limitatif de mise en oeuvre de celle-ci, et à l'examen du dessin annexé sur lequel :

[Fig 1] représente schématiquement et partiellement un exemple de système de production comportant une pompe à chaleur et un contrôleur pour la mise en oeuvre du procédé selon l'invention,

[Fig 2], [Fig 3] et [Fig 4] illustrent le fonctionnement de la pompe à chaleur en mode de production de chaleur pur, de froid pur et en mode de production combiné, respectivement,

[Fig 5] illustre un exemple de niveaux de contrôle opéré par le contrôleur,

[Fig 6] illustre un exemple de production sollicitant la pompe à chaleur quand la demande en chaud est dominante

[Fig 7] illustre un exemple de production sollicitant la pompe à chaleur quand la demande en froid est dominante,

[Fig 8] illustre un exemple de détermination de la configuration globale de fonctionnement du système sur un pas de temps de supervision en fonction de l'allumage des auxiliaires.

[Fig 9] à [Fig 11] sont des exemples du comportement du champ géothermique sur une période hivernale de deux semaines, et

[Fig 12] illustre un exemple de comportement du contrôleur selon l'invention.

#### Description détaillée

[0087] Le procédé selon l'invention permet de commander le fonctionnement d'un système 1 de production de chaud et de froid, par exemple un système de production d'eau chaude et d'eau froide, notamment d'eau glacée.

[0088] La figure 1 illustre un exemple d'un tel système de production 1.

[0089] L'eau chaude produite a par exemple une température supérieure à 40°C et peut être utilisée pour des besoins en eau chaude sanitaire et/ou de chauffage, ou toute autre température imposée par les besoins.

[0090] L'eau froide produite, notamment glacée, a par exemple une température inférieure à 20°C, notamment inférieure à 10°C, ou toute autre température imposée par les besoins. L'eau froide, notamment glacée, est par exemple utilisée pour répondre aux besoins en climatisation, et/ou de production d'eau glacée, notamment dans le cadre de processus industriels ou encore dans des hôpitaux.

[0091] Comme illustré à la figure 1, le système comporte une pompe à chaleur 10. Celle-ci est connue en elle-même, et comporte un condenseur 12 et un évaporateur 14.

[0092] Le système utilise une source thermique 30 qui est connectée à la pompe à chaleur via une bouteille de découplage hydraulique 32. Dans cet exemple, la source thermique est un champ géothermique comportant une pluralité de sondes géothermiques.

[0093] Le système comporte des pompes hydrauliques 26, 28 et 34 placées respectivement dans les circuits évaporateur, condenseur et de la source thermique 30, et permettant la circulation d'un fluide caloporteur dans ces circuits.

[0094] Le système comporte trois vannes à trois voies 23 ; 35 et 35 disposées les circuits précités et qui permettent de connecter la source thermique du côté évaporateur, du côté condenseur, ou encore de déconnecter la source thermique 30, selon le mode de fonctionnement opéré par la pompe à chaleur, comme sera décrit plus loin.

[0095] Le système comporte des auxiliaires de production de froid 62 et de chaud 65. Dans l'exemple illustré, les auxiliaires de production 62 et 64 correspondent à un groupe de froid et à une chaudière à gaz, respectivement.

[0096] Le système comporte également deux ballons tampons 22 et 24, correspondant à des volumes de stockage hydraulique, respectivement de chaud et de froid. Le contenu des ballons tampons 22 et 24 est utilisé pour la transmission de puissance thermique à travers des échangeurs à des circuits consommateurs à destination des utilisateurs. Leur utilisation a l'avantage de permettre d'ajouter une inertie thermique aux circuits de production et d'éviter un phénomène de court-cycle de la pompe à chaleur.

[0097] La pompe à chaleur 10 est capable d'opérer selon au moins un premier mode de production de chaud seul, un second de production de froid seul et un troisième mode de production combinée de froid et de chaud.

[0098] La figure 2 illustre le fonctionnement de la pompe à chaleur en mode de production combinée de chaud et de froid. Dans ce cas, la source thermique est déconnectée.

[0099] Ce mode de fonctionnement dite « mode combiné ou équilibré » est utilisé lorsque la demande chaud/froid est équilibrée au niveau de la pompe à chaleur, c'est-à-dire que la pompe à chaleur permet à elle seul de satisfaire simultanément la demande en chaud et en froid.

[0100] Dans ce mode de réalisation, la pompe à chaleur 10 est capable simultanément de chauffer un flux hydraulique sur une interface, au passage entre deux bornes du condenseur 12 de la pompe, et de refroidir un second flux hydraulique sur une deuxième interface, au passage entre deux bornes de l'évaporateur 14 de la pompe.

[0101] La figure 3 illustre le fonctionnement de la pompe à chaleur 10 en production de chaud pur. Dans ce mode de fonctionnement, le champ géothermique est connecté au côté évaporateur de la pompe à chaleur. Comme illustré, la

11

5

10

20

15

30

40

35

50

voie numéro 2 des vannes à trois voies est fermée.

10

15

20

35

40

45

50

55

**[0102]** Ce mode est utilisé lorsque la demande en froid est nulle, notamment dans le cas d'une demande en froid inexistante, ou d'une demande en froid pouvant être satisfaite via le mode combiné, ou encore dans le cas où cette demande en froid est satisfaite au moyen de l'auxiliaire de production correspondant. La pompe à chaleur 10 est alors sollicitée dans le but d'uniquement produire du chaud.

[0103] Dans ce mode de fonctionnement, la température du fluide caloporteur circulant dans les sondes géothermiques 30 est inférieure à la température du sol environnant ces sondes. Le fluide caloporteur est par conséquent chauffé par échange thermique avec le sol. La pompe à chaleur 10 prélève ensuite de la chaleur au fluide caloporteur au niveau de son évaporateur 14, ce qui cause le refroidissement du fluide caloporteur. Ce dernier ainsi refroidi circule à nouveau dans les sondes géothermiques afin d'échanger la chaleur avec le sol. La chaleur prélevée par la pompe à chaleur 10 est ensuite utilisée pour chauffer le flux hydraulique sur l'interface du condenseur 12 à destination des circuits consommateurs.

**[0104]** La figure 4 illustre le fonctionnement de la pompe à chaleur 10 en production de froid pur. Dans ce mode de fonctionnement, le champ géothermique est connecté au côté condenseur 12 de la pompe à chaleur 10. Une telle disposition est obtenue en fermant la voie numéro 3 des vannes à trois voies du système.

**[0105]** Ce mode est utilisé lorsque la demande en chaud est nulle, notamment dans le cas d'une demande en chaud inexistante, d'une demande en chaud pouvant être satisfaite via le mode combiné, ou encore dans le cas où cette demande en chaud est satisfaite au moyen de l'auxiliaire de production correspondant. La pompe à chaleur 10 est sollicitée dans le seul but de produire du froid.

[0106] Dans ce mode de fonctionnement, la température du fluide caloporteur circulant dans le champ de sondes géothermiques 30 est supérieure à la température du sol environnant les sondes. Par conséquent, le fluide caloporteur se refroidit en cédant des calories au sol.

**[0107]** La pompe à chaleur 10 prélève de la chaleur au niveau de son évaporateur 14. La chaleur prélevée par la pompe à chaleur 10 est ensuite fournie au fluide caloporteur au niveau du condenseur 12. Cela conduit au réchauffement du fluide caloporteur. Ce dernier ainsi réchauffé circule dans les sondes géothermiques 30 afin d'échanger la chaleur avec le sol.

**[0108]** Afin d'éviter le vieillissement précoce du sol en raison d'une extraction ou dissipation trop rapide des calories, et respecter les contraintes règlementaires et environnementales, le système a recours aux auxiliaires de production 62 et 64.

30 [0109] En fonction de la demande énergétique à satisfaire, le système peut alors fonctionner selon l'une des configurations suivantes :

- pour une demande en chaud dominante :

o une première configuration dans laquelle l'auxiliaire de production chaud est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de froid et de chaud pour satisfaire la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée », et en mode de production de chaud seul pour satisfaire la partie restante de la demande en chaud dite « demande en chaud non équilibrée », ou

o selon une deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé pour satisfaire la demande en chaud et la pompe à chaleur fonctionne en mode de production de froid seul pour satisfaire la demande en froid,

- lorsque la demande en froid est dominante par rapport à la demande en chaud, le système opère selon :

o une troisième configuration dans laquelle l'auxiliaire froid est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de chaud et de froid pour satisfaire la demande en chaud et une partie de la demande en froid, dite « demande en froid équilibrée » et en mode de production de froid pur pour satisfaire la partie restante de la demande en froid, dite « demande en froid non équilibrée, , ou

o selon une quatrième configuration dans laquelle l'auxiliaire de production froid est allumé pour satisfaire la demande en froid et la pompe à chaleur fonctionne en mode de production de chaud pur pour satisfaire la demande en chaud.

**[0110]** Afin de contrôler le déclenchement des configurations précitées, le système comporte un contrôleur 70. Ce dernier permet de commander les vannes à trois voies 23 ; 25 et 35 du système de production 1 en mode 'tout-ou-rien' pour activer l'un ou l'autre des modes souhaités pour la pompe à chaleur 10, comme décrit plus haut. Le contrôleur 70 permet également de commander les débits des pompes hydrauliques 26, 28 et 34 et l'allumage des auxiliaires de production en tout ou rien.

**[0111]** Comme illustré à la figure 5, le contrôleur 70 peut recevoir en entrée des prévisions sur les demandes énergétiques, sur le prix d'énergie ainsi que sur les conditions météorologiques sur un horizon de prévision prédéterminé. Le contrôleur reçoit en outre au moins une information relative à l'état du système. Cette information peut correspondre à l'état thermique du champ des sondes géothermiques. Le contrôleur peut recevoir également des prévisions sur les températures de consigne pour la production de chaud et de froid sur l'horizon précité.

[0112] L'horizon de prévision peut être compris entre 2h et 48h, par exemple de l'ordre de 24h.

**[0113]** La commande du système au moyen du contrôleur 70 peut être effectué sur des pas de supervision prédéfinis. Le pas de supervision peut être compris entre 1 min et 2h, de préférence entre 10 min et 1h, par exemple de l'ordre de 30 min.

**[0114]** Autrement dit, le contrôleur évaluera à chaque pas de temps de supervision la configuration la plus judicieuse à opérer par le système en fonction des prévisions sur l'horizon de prévision fournies en entrée et en tenant compte des retours sur l'état du système. Cela permet de corriger à chaque pas de supervision le pilotage du fonctionnement système afin de s'adapter au mieux aux besoins des utilisateurs.

**[0115]** On va maintenant décrire le fonctionnement du contrôleur 70. Comme illustré à la figure 5, le contrôleur présente trois niveaux de contrôle.

#### Niveau 1 : Répartition des demandes

10

15

20

25

30

35

40

45

50

55

**[0116]** A partir de la demande énergétique et des températures de consigne, le contrôleur détermine laquelle des demandes en chaud ou en froid est dominante.

[0117] A cette fin, un coefficient de performance  $COP_{eq}^*$  de la pompe à chaleur en mode équilibré est calculé à partir des températures de consigne de production de chaud ou de froid.

[0118] Ensuite un facteur d'équilibre  $B_{eq}^*$  donné par la formule  $B_{eq}^* = P_{HOT}^* \left(1 - \frac{1}{COP_{eq}^*}\right) - P_{COLD}^*$  es calculé.

[0119] Si  $B_{eq}^* > 0$ , alors la demande en chaud est dominante par rapporte à la demande en froid, les demandes de chaud et froid ne peuvent alors être équilibrées sur la pompe à chaleur 10 fonctionnant uniquement en mode combiné. Dans ce cas, une partie du fonctionnement de la pompe à chaleur consistera à fournir simultanément (en mode combiné) la totalité de la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée ». Une autre partie du fonctionnement de la pompe à chaleur 10 sur le pas de supervision assurera une production de chaleur uniquement, avec extraction d'énergie sur le champ géothermique (mode chaud pur) pour satisfaire la partie restante de la demande en chaud non produite par le mode combiné, dite « demande en chaud non équilibrée ».

- la demande en chaud équilibrée correspond à  $P^*_{HOT,Eq}=P^*_{HOT}\left(1-R^*_{hot,eq}
ight)$  avec

$$R_{hot,eq}^* = rac{B_{eq}^* / \left(1 - rac{1}{COP_{eq}^*}
ight)}{P_{HOT}^*}$$
 , e

- la demande en froid correspond à la totalité de la demande en froid  $P^*_{COLD,Eq} = P^*_{COLD}$ 

- La demande en chaud non équilibrée correspond à  $P^*_{HOT,A} = P^*_{HOT} \, R^*_{hot,eq}$ 

**[0120]** La figure 6 illustre un exemple de production sollicitant la pompe à chaleur et le champ géothermique sur une période de 30 min quand la demande en chaud est dominante.

[0121] Si  $^{B^*_{eq}} < 0$ , alors la demande en froid est dominante par rapport à la demande en chaud. Dans ce cas, une partie du fonctionnement de la pompe à chaleur consistera à fournir simultanément (en mode combiné) la totalité de la demande de chaud et une partie de la demande de froid, appelée « demande de froid équilibrée ». Une autre partie du fonctionnement sur la période concernée assurera une production de froid uniquement, avec dissipation d'énergie dans le champ géothermique (mode froid pur).

- la demande en chaud équilibrée correspond avantageusement à la demande en chaud  $P^*_{HOT,Eq}=P^*_{HOT}$  , et

- la demande en froid équilibrée peut correspondre à  $P^*_{COLD,Eq}=P^*_{COLD}\left(1-\qquad R^*_{COLD,eq}
ight)$  avec

$$R_{eq}^* = \frac{B_{eq}^*}{P_{COLD}^*}$$

5

10

15

20

30

35

40

45

50

55

- la demande en froid non équilibrée, désignée  $P^*_{COLD,A}$  peut correspondre à

$$P_{COLD,A}^* = P_{COLD}^* R_{cold,eq}^*$$

**[0122]** Un exemple de production sollicitant la pompe à chaleur et le champ géothermique sur une période de 30 min quand la demande en froid est dominante est donné à la figure 7.

[0123] Les séries temporelles calculées à ce niveau 1 de contrôle, à savoir  $P^*_{HOT}$ ,  $P^*_{COLD}$ 

 $P_{HOT,A}^*$ ,  $P_{COLD,A}^*$ ,  $P_{HOT,Eq}^*$ ,  $P_{COLD,Eq}^*$  permettent de décrire le comportement de base du système.

**[0124]** Comme mentionné plus haut, le système est capable d'opérer selon au moins quatre configurations pour répondre à une demande énergétique donnée.

**[0125]** Afin de permettre au système 1 de sélectionner parmi les différentes configurations possibles celle présentant un intérêt économique et environnemental tout en respectant les contraintes imposées sur la source thermique, le contrôleur doit traiter un problème d'optimisation dans lequel le comportement hydraulique du système de production 1 ainsi que la gestion des auxiliaires sont à gérer.

**[0126]** Comme mentionné précédemment, l'optimisation conjointe du fonctionnement hydraulique et de la gestion de démarrage des auxiliaires conduit à la résolution d'un problème d'optimisation non linéaire à variables mixtes (MINLP) qui est par nature très difficile à résoudre et coûteux en temps de calcul.

**[0127]** Pour contourner cette difficulté, le contrôleur 70 traite ce problème d'optimisation sur deux niveaux de contrôle. Tout d'abord, un niveau de calcul 2 dans lequel les auxiliaires de production sont supposés désactivés.

#### Niveau 2 : optimisation hydraulique

[0128] Dans ce qui suit, la demande énergétique est supposée pouvoir être satisfaite par la pompe à chaleur. Pour gérer les cas où la demande est surdimensionnée par rapport à la pompe à chaleur, un prétraitement de la demande est avantageusement mis en place, qui va par défaut solliciter les auxiliaires de production quand la demande dépasse un certain seuil de puissance moyenne sur une période donnée.

[0129] Ce niveau de calcul permet d'optimiser le fonctionnement hydraulique des demandes non-équilibrées, chaud

 $p_{HOT,A}^* \text{ ou froid pur } P_{COLD,A}^* \text{ , en considérant les auxiliaires de production désactivés. Les demandes équilibrées}$ 

 $P_{HOT,Eq}^*$  et  $P_{COLD,Eq}^*$  sont assurées par la pompe à chaleur à elle seule via le mode combiné.

**[0130]** En désactivant les auxiliaires de production, le système risque toutefois de violer constamment les contraintes sur la source thermique.

**[0131]** Pour limiter cela, et au lieu de modéliser la possibilité d'engager les auxiliaires de production, une pénalité de violation de ces contraintes est imposée. Cette approche alternative permet de réduire la complexité du problème d'optimisation à résoudre : passage d'un problème très difficile à résoudre MINLP à un problème d'optimisation non linéaire NLP facile et rapide.

[0132] Ce problème d'optimisation non linéaire fait intervenir une pluralité de modèles associés aux différents éléments du système de production 1.

**[0133]** Dans l'exemple illustré, le problème d'optimisation non linéaire dépend de la nature de la demande à satisfaire, ce point ayant été traité au niveau 1 de contrôle.

[0134] Le problème d'optimisation non linéaire dépend également d'un:

- modèle du champ des sondes géothermique, notamment un modèle décrivant la température du sol et la température de sortie du fluide colporteur du champ des sondes géothermiques ;
- modèle de la bouteille de découplage

- modèle des pompes hydrauliques ; en particulier un modèle caractérisant leur consommation électrique
- modèle de la pompe à chaleur

[0135] Des exemples de tels modèles sont détaillés ci-dessous :

#### a) Modèle du champ des sondes géothermiques

**[0136]** Le modèle du champ des sondes géothermiques peut être caractérisé par la température, notamment moyenne, du sol, des températures d'entrée et de sortie du fluide caloporteur.

#### Température du sol

**[0137]** Dans l'exemple illustré, le calcul de la température de sol Tsol est basé sur les équation de Lamarche (LAMARCHE, Louis. A fast algorithm for the hourly simulations of ground-source heat pumps using arbitrary response factors. Renewable Energy, 2009, vol. 34, no 10, p. 2252-2258.)

#### Température du fluide caloporteur

[0138] Deux formulations sont de préférence utilisées. Leur objectif est de garantir la linéarité de la formulation dans leur version simple, et de proposer une dépendance supplémentaire au débit du fluide caloporteur circulant dans le champ des sondes géothermiques.

[0139] La première formulation est purement résistive.

**[0140]** Dans l'exemple illustré, la température  $T_{geo,out}$  du fluide sortant du champ géothermique présente trois dépendances :

25

5

10

15

20

- La température représentative du sol T<sub>sol</sub> considérée comme température d'échange. Celle-ci est identifiée à la température moyenne du champ de sonde associée à une g-fonction.
- La puissance thermique Q<sub>geo</sub> soutirée du champ géothermique ou injectée dans celui-ci dans une période proche.
   Cette période proche peut correspondre au pas de supervision précédent.

30

 $m_{geo}$  - Le débit  $m_{geo}$  du fluide caloporteur circulant dans le champ de sondes géothermique, ce débit influant sur l'efficacité de l'échange convectif.

[0141] La température  $T_{geo,out}$  est de préférence donnée par l'équation suivante :

35

40

$$T_{geo,out} = T_{sol} - Q_{geo}(R_1 + R_2 \dot{m}_{geo} + R_3 \dot{m}_{geo}^2) + C$$

**[0142]** Cette formulation présente quatre coefficients  $R_1$ ,  $R_2$ ,  $R_3$ , C à calibrer en fonction de données expérimentales présentes.

**[0143]** Cette équation présente l'avantage ne pas être directement reliée à une expression de la résistance thermique, contrairement aux modèles décrits dans la littérature.

**[0144]** La calibration permet une plus grande flexibilité dans la mise en place du problème d'optimisation. Elle est effectuée de manière séparée selon le mode de fonctionnement de la pompe à chaleur ; c'est-à-dire en extraction ou en dissipation de chaleur dans le champ de sondes géothermique.

**[0145]** En particulier, aucune dépendance directe ou indirecte à la température d'entrée du fluide n'est ici présente. Le lien entre la puissance thermique et les deux températures de sortie et d'entrée intervient de préférence dans le bilan de puissance du circuit hydraulique effectué au niveau de la bouteille de découplage.

#### b) Découplage hydraulique

**[0146]** La bouteille de découplage correspond à un élément neutre en termes de bilan de puissance, qui autorise la circulation de deux débits différents à ses bornes. De préférence, la bouteille de découplage est considérée comme idéale sans effets capacitifs ni pertes thermiques.

55

50

[0147] Dans ce qui suit,  $m_{geo}$ ,  $m_{HP}$  correspondent aux deux débits circulant à ses bornes et  $Q_{l,geo}$ ,  $Q_{l,HP}$  sont les puissances instantanées associées. L'indice « geo » se réfère au fluide circulant depuis et vers le champ de sondes

géothermique 30, et l'indice « HP » se réfère au fluide pouvant circuler au contact du condenseur ou de l'évaporateur de la pompe à chaleur 10, selon le mode de fonctionnement de celle-ci.

[0148] Dans l'exemple illustré, le mode de découplage privilégié est celui permettant un relevage supplémentaire sur la température par le champ géothermique.

[0149] De ce fait, les équations couplant les deux zones hydrauliques sont prises en compte dans la résolution du

problème d'optimisation : 
$$\dot{m_{geo}} \geq \dot{m_{HP}}_{\rm et}$$
 et  $_{\rm Q_{\it l,geo}}$  =  $_{\rm Q_{\it l,HP}}$ 

**[0150]** Les températures circulant aux bornes de la bouteille de découplage sont déduites de ces bilans de masse et puissance.

**[0151]** En particulier, la température  $T_{geo,out}$  de sortie du champ de sondes est égale à la température d'entrée de la pompe à chaleur du côté directement relié au champ géothermique.

**[0152]** Ainsi, en mode de production de chaleur :  $T_{geo,out} = T_{evap,in}$  et en mode de production froid :  $T_{geo,out} = T_{cond,in}$  avec  $T_{evap,in}$  et  $T_{cond,in}$  les températures fluides respectives d'entrée du condenseur et de l'évaporateur.

## c) Equation de consommation pour les pompes

5

10

15

20

25

30

35

40

50

55

[0153] Les pompes hydrauliques modélisées sont au nombre de trois :

- La pompe 34 du circulateur au niveau du condenseur de la pompe à chaleur
- La pompe 28 du circulateur au niveau de l'évaporateur de la pompe à chaleur
- La pompe 26 alimentant le champ de sondes dans une configuration de découplage

**[0154]** Ces pompes sont physiquement caractérisées par une propriété « régime/débit/perte de charge », associée à une efficacité variable.

**[0155]** Une efficacité globale de pompe  $\eta$  constante est par exemple considérée. Cette efficacité correspond à un rendement isentropique multiplié par un rendement de conversion électrique.

[0156] La consommation électrique  $W_{pump}$  d'une pompe hydraulique est donnée par la formule suivante :

$$W_{pump}=rac{m_{pump}\Delta P}{\eta~
ho}$$
; avec  $m_{pump}$  le débit passant dans la pompe,  $\Delta P$  la différence de pression imposée par la pompe et  $ho$  la masse volumique du liquide, quantité supposée constante.

**[0157]** En outre, une équation supplémentaire est associée aux pompes hydrauliques de manière fonctionnelle. Cette équation supplémentaire permet de décrire pour une pompe hydraulique la relation entre perte de charge et débit vus à ses bornes.

**[0158]** Cette équation est de préférence obtenue à partir des courbes d'opération du circuit hydraulique correspondant, c'est-à-dire le circuit évaporateur, condenseur ou celui de la source thermique. Cette équation est donc associée au circuit hydraulique en tant que tel. Par conséquent, celle-ci est utilisée pour le calcul de la quantité d'électricité consommée.

[0159] Dans l'exemple illustré, pour chacune des pompes hydrauliques du système, la différence de pression appliquée à celle-ci est donnée par l'équation suivante :

$$\Delta P = A_{pump} + B_{pump} m_{pump} + C_{pump} m_{pump}^{2}.$$

[0160] Les paramètres A<sub>pump</sub>, B<sub>pump</sub>, C<sub>pump</sub> sont de préférence calculés à partir d'une régression quadratique effectuée sur des données préexistantes.

#### d) Pompe à chaleur : bilan de puissances

[0161] Dans l'exemple illustré, deux échelles temporelles sont à considérer pour établir le bilan de puissances de la pompe à chaleur:

- Une première échelle sur laquelle on peut déterminer les équilibres énergétiques moyens, basés sur la répartition des charges définie au niveau de calcul 1. Cette échelle permet notamment d'estimer un coefficient de performance effectif en fonctionnement suivant la configuration considérée, et
- Une deuxième échelle plus réduite où l'on s'intéresse à la puissance instantanée fournie par la pompe à chaleur quand celle-ci est allumée. La puissance en jeu n'a pas de lien direct avec la demande énergétique. Celle-ci est

intrinsèque au contrôle de la pompe à chaleur. Ce point est abordé plus loin.

Première échelle- bilan de puissance moyenne

10

15

20

25

30

35

40

45

50

55

[0162] Au niveau de la première échelle, des puissances moyennes sont examinées. Ces quantités sont physiquement équivalentes à des volumes d'énergie échangés.

[0163] La première échelle peut être comprise entre 15 min et 2h.

**[0164]** En utilisant la formulation du coefficient de performance fournie sous forme de table par la société Celsius Energy, l'expression de ce dernier est réduite à une formule quadratique dépendant des deux températures de sortie fluide évaporateur et condenseur,  $T_{evap,out}$  et  $T_{cond,out}$ . Cette formule est de préférence applicable sur toute la gamme de températures accessible au fonctionnement :

$$COP = A_{COP} + B_{COP}(T_{cond.out} - T_{evap.out}) + C_{COP}(T_{cond.out} - T_{evap.out})^{2}$$
.

[0165] L'équilibre des puissances en jeu dans le système est ensuite décrit dans le cas d'une demande en chaud

dominante. Lorsqu'une puissance  $P^{\uparrow}_{HOT,A}$  non équilibrée doit être fournie par la pompe à chaleur dans le circuit de distribution de chaleur, les puissances thermiques  $Q_{cond}$  et  $Q_{evap}$  fournies aux bornes de la pompe à chaleur, ainsi que l'énergie électrique moyenne consommée, sont reliées par les équations suivantes :

$$W_{PAC}:Q_{cond} = -P_{HOT,A}^*$$

$$Q_{cond} + Q_{evap} + W_{PAC} = 0$$

$$Q_{cond} = -W_{PAC} * COP$$

$$Q_{evap} = Q_{geo}$$

[0166] Dans cet exemple, un signe négatif est utilisé pour la puissance chaude fournie, et une valeur positive pour la puissance froide. Q<sub>geo</sub> est la puissance moyenne extraite du champ géothermique pendant l'intervalle de temps considéré. Les pertes thermiques existant entre le champ de sondes et la pompe à chaleur sont considérées comme nulles. [0167] Ce bilan de puissance ainsi décrit, associé à la répartition des charges suivant les différentes configurations, est suffisant pour calculer une évolution de la température moyenne du sol mentionnée précédemment.

**[0168]** Afin de modéliser le comportement thermo-hydraulique du système, une modélisation du fonctionnement de la pompe à chaleur sur une échelle temporelle plus réduite est nécessaire.

Deuxième échelle- bilans de puissances instantanées

**[0169]** A cette échelle temporelle réduite, on s'intéresse aux points de fonctionnement 'instantanés' de la pompe à chaleur pour aborder les débits en fonctionnement et la puissance fournie. Cette échelle temporelle est inférieure à la minute.

[0170] Pour la modélisation du comportement thermo-hydraulique du système, deux éléments sont considérés : la différence en température à atteindre par la pompe à chaleur et la puissance électrique instantanée de son compresseur. [0171] En fonctionnement, la pompe à chaleur cherche à atteindre une différence en température donnée aux bornes

de l'évaporateur et/ou du condenseur. Ces valeurs, notées  $\Delta T_{cond}$  ou  $\Delta T_{evap}$ , sont considérées constantes dans l'exemple illustré.

$$\Delta T_{cond} = \Delta T_{evap} = 4K$$

**[0172]** La puissance électrique instantanée fournie par un compresseur de la pompe à chaleur est classiquement donnée sous la forme d'une cartographie dépendant des températures de fonctionnement instantanées  $T_{cond}$ ,  $T_{evap}$ .

Cette puissance correspond à un point de fonctionnement à température donnée pour le compresseur.

5

10

15

20

25

30

35

40

45

50

55

**[0173]** Dans l'exemple illustré, une réduction mathématique de cette cartographie a été opérée pour exprimer cette puissance électrique, notée  $W_{LPAC}$  sous la forme :

 $W_{IPAC} = A_{WI} + B_{WI} T_{cond,out} + C_{WI} (T_{cond,out})^2$ 

**[0174]** La puissance W<sub>IPAC</sub> correspond à un étage du compresseur. De manière dynamique, le système détermine à un instant donné si l'allumage du deuxième étage est nécessaire, basé sur un retour de température du circuit hydraulique. A un instant donné, la puissance électrique utilisée par la pompe à chaleur est donc égale à W<sub>IPAC</sub> ou à 2 W<sub>IPAC</sub>. Sur un intervalle de temps, les deux valeurs sont typiquement atteintes en proportions variables. Dans le cadre du problème d'optimisation, la puissance électrique d'opération W<sub>IPAC, Tot</sub> est exprimée comme suit :

 $W_{IPAC.tot} = N_c \times W_{IPAC}$ 

**[0175]** La quantité  $N_c$  est une variable comprise entre 1 et 2, de sorte que l'inégalité suivante est de préférence satisfaite à tout moment pour la cohérence du problème d'optimisation :

 $W_{IPAC,tot} \geq W_{PAC}$ 

**[0176]** L'égalité correspond à une opération de la pompe à chaleur modélisée en continu. La puissance instantanée électrique décrite ci-dessus permet de définir, *via* la valeur du coefficient de performance décrit plus haut, les puissances d'échange instantanées Q<sub>lcond</sub>, Qievap pour une configuration donnée :

$$W_{IPAC,tot} = Q_{Icond}/COP$$

 $W_{IPAC,tot} = Q_{Ievap}/(COP - 1)$ 

[0177] Dans l'exemple illustré, la valeur du COP est considérée comme étant constante pendant l'opération de la pompe à chaleur sur cette deuxième échelle.

**[0178]** Ces dernières équations ont aussi pour objectif de relier les températures de fonctionnement du fluide caloporteur aux débits atteints aux bornes de la pompe à chaleur. Aux bornes du condenseur et de l'évaporateur quand la pompe à chaleur est en fonctionnement :

$$Q_{levap} = \dot{m_{evap}} (T_{evap,in} - T_{evap,out}) CP$$

$$(T_{evap,in} - T_{evap,out}) = \Delta T_{evap}$$

 $Q_{lcond} = \dot{m_{cond}} (T_{cond,in} - T_{cond,out}) CP$ 

$$(T_{cond.out} - T_{cond.in}) = \Delta T_{cond}$$

avec  $m_{cond}$  et  $m_{evap}$  les débits passant au niveau du condenseur et de l'évaporateur,  $T_{evap \ out}$  et  $T_{evap \ in}$  les températures de sortie et d'entrée du fluide au niveau de l'évaporateur,  $T_{cond,out}$  et  $T_{cond,in}$  les températures de sortie et d'entrée du fluide au niveau du condenseur, et CP la capacité thermique du fluide circulant dans le circuit correspondant. [0179] Pour compléter le modèle thermo-hydraulique, l'équation suivante, liant la puissance instantanée circulant dans

le champ de sondes  $Q_{lgeo}$ , le débit dans le champ des sondes  $m_{geo}^{\dagger}$  et les températures d'entrée et sortie  $T_{geo,in}$ ,

 $T_{qeo,out}$  est considérée :

5

10

15

20

25

30

35

40

45

50

$$Q_{Igeo} = \dot{m_{geo}} (T_{geo,out} - T_{geo,in}) \text{ CP}.$$

**[0180]** Par ailleurs, du côté des circuits de consommation, notamment de la production d'eau chaude ou d'eau glacée, les températures de sortie sont identifiées à des température de consigne 'effectives'  $T_{cold,SP}$  et  $\Delta T_{cond,SP}$  pour la pompe à chaleur.

[0181] De plus, ces températures de consigne dépendent d'effets instantanés sur les circuits de production primaire.

$$T_{evap,out} = T_{cold,SP} - \Delta T_{evap,SP}$$

$$T_{cond.out} = T_{hot.SP} + \Delta T_{cond.SP}$$

**[0182]** Dans l'exemple illustré, les quantités  $\Delta T_{evap,SP}$  et  $\Delta T_{cond,SP}$  sont prédéfinies et correspondent à des valeurs constantes, par exemple de l'ordre de 2K.

**[0183]** Les différents modèles et leurs équations décrits ci-dessus sont mis en oeuvre résoudre le problème non linéaire d'optimisation NLP. La résolution de ce problème NLP permet d'identifier les consignes de débit à appliquer aux pompes hydrauliques, afin de satisfaire la demande en chaud ou en froid tout en minimisant les coûts d'opération hydrauliques et les émissions CO<sub>2</sub> et en respectant la contrainte thermique sur la source thermique.

#### Troisième niveau de calcul

[0184] A ce troisième niveau de calcul, la pertinence d'une activation d'un des auxiliaires est examinée.
 [0185] L'objectif de ce troisième niveau est double :

- Assurer à tout moment la satisfaction des contraintes en température pour le fluide circulant dans les sondes,
- Eviter le vieillissement du sol en permettant la relaxation thermique du sol, et ainsi garantir un fonctionnement du champ géothermique sur le long terme.

[0186] La décision d'activer ou non cet auxiliaire conduit à la résolution d'un problème d'optimisation linéaire. En effet, en utilisant les consignes optimales du fonctionnement hydraulique du système calculée au niveau 2, le problème MINLP est linéarisé autour des points de consigne, ce qui rend le problème linéaire plus facile à résoudre : passage d'un problème MINLP à un problème d'optimisation linéaire MILP.

**[0187]** La Figure 8 illustre un exemple de détermination de la configuration globale de fonctionnement du système sur un pas de temps de supervision en fonction de l'allumage des auxiliaires. Les demandes moyennes sur le pas de temps sont matérialisées par des graphiques à barres à échelle arbitraire.

[0188] Dans ce niveau de contrôle, l'optimisation parcourt, pour chaque pas de temps de supervision, les différentes configurations possibles en fonction des allumages des auxiliaires. Elle peut de manière efficace déterminer dans chaque cas, et dépendant des configurations aux autres pas de temps de supervision, la configuration qui fournit les meilleurs résultats en termes de performance et de satisfaction des contraintes sur la source thermique. Le résultat de l'optimisation correspond à une préconisation en termes d'allumage pour les auxiliaires de production.

[0189] Dans le problème d'optimisation linéaire, l'expression de la majorité des variables du problème dépend de la configuration utilisée. Aussi, le problème d'optimisation linéaire fait intervenir des équations conditionnelles s'exprimant sous la forme de produits d'une variable de décision binaire (configuration) et d'une variable continue (champ physique).
[0190] Il est à noter que les valeurs calculées par le niveau 2 de contrôle sont utilisées en tant qu'entrées fixées pour problème linéaire, dans le cas où la configuration d'origine est utilisée, c'est à dire celle où les auxiliaires de production sont désactivés. Si tel n'est pas le cas (allumage des auxiliaires de production), le modèle linéaire d'optimisation recourra à des valeurs de débit par défaut. Enfin, tous les débits sont saturés à une valeur maximale prédéfinie, reflétant le dimensionnement des pompes hydrauliques et leur fonctionnement réel.

**[0191]** Le tableau suivant résume les différentes configurations gérées par le contrôleur suivant les choix de pilotage faits au cours du temps.

55

#### [Tableau 1]

| 5  | Demande chaud<br>dominante par<br>rapport à la demande | Auxiliaire<br>production<br>chaud éteint | Mode combiné + mode chaud<br>pur (configuration utilisée par<br>le niveau 2 de calcul) | Hydraulique du système déterminé par<br>le niveau 2 de calcul                                                                           |
|----|--------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|    | froid                                                  | Auxiliaire<br>production<br>chaud allumé | Mode froid pur (configuration<br>supplémentaire pour le niveau<br>3 de calcul)         | Hydraulique du système par défaut<br>(configuration change, donc le débit<br>déterminé par le niveau 2 de calcul<br>n'est plus valable) |
| 10 | Demande froid<br>dominante par<br>rapport à la demande | Auxiliaire de production froid éteint    | Mode combiné + mode froid pur<br>(configuration utilisée par le<br>niveau 2 de calcul) | Hydraulique du système déterminé par<br>le niveau 2 de calcul                                                                           |
| 15 | chaud                                                  | Auxiliaire de production froid allumé    | Mode chaud pur (Configuration supplémentaire pour le niveau 3 de calcul)               | Hydraulique du système par défaut<br>(configuration change, donc le débit<br>déterminé par le niveau 2 de calcul<br>n'est plus valable) |

[0192] Les figures 9 à 11 illustrent la finesse et le comportement qualitatif du contrôleur décrit plus haut.

20

25

50

**[0193]** Le procédé selon l'invention a été mis en oeuvre sur un modèle numérique représentatif d'un système de production à travers d'une plateforme de co-simulation.

**[0194]** En fonction des données d'entrée à savoir la prévision sur la demande (demande en chaud et en froid, consignes de température chaud/froid) et la prévision sur les prix d'énergie (prix d'électricité et du gaz), le contrôleur 70 calcule les consignes en débit et démarrage des auxiliaires en tout ou rien en mettant en oeuvre le procédé selon l'invention, puis les transmet au système de simulation pour être appliquées.

**[0195]** Les figures 9 et 10 décrivent le comportement du champ géothermique sur une période hivernale de deux semaines.

**[0196]** La figure 9 décrit l'évolution de la température du sol à la fois en utilisant les modèles établis dans le cadre de la présente invention et les modèles d'un système de simulation fin complexe.

**[0197]** Concernant la température du sol : la courbe *a*) correspond à l'évolution de la température dans le simulateur physique fin et la courbe b) représente la température par le modèle établi dans la présente invention.

**[0198]** Concernant la température du fluide en entrée du champ géothermique, la courbe d) est celle du simulateur physique fin et la courbe e) correspond à celle obtenue dans le cadre de la présente invention.

**[0199]** Concernant la température du fluide en sortie du champ géothermique : la courbe f) correspond au simulateur physique fin et la courbe g) est celle obtenue en utilisant le modèle établi dans le cadre de la présente invention.

[0200] La figure 11 illustre l'évolution des températures du sol et de sortie du fluide sur une durée plus longue que celle de la figure 9.

**[0201]** En appliquant les consignes optimales calculées par le contrôleur (débit, découplage hydraulique et activation des auxiliaires de production) sur le système énergétique, on remarque que la prédiction optimale du comportement du champ géothermique par le contrôleur est très proche de celle du simulateur physique fin ('jumeau numérique') du système de production.

**[0202]** La figure 10 correspond à la puissance en W extraite du champ géothermique durant ladite période hivernale. La courbe a) correspond à l'évolution de la puissance modélisée à l'aide du simulateur physique fin et la courbe b) correspond à l'évolution de puissance prédite par le procédé selon l'invention.

**[0203]** Cette observation conforte le fait que le procédé de commande selon l'invention permet de modéliser le comportement attendu du système réel.

[0204] La figure 12 décrit le comportement du contrôleur selon l'invention au cours du deuxième mois de commande.

[0205] Le graphe du haut représente les consignes optimales d'allumage de l'auxiliaire chaud (chaudière à gaz).

**[0206]** Le graphe du milieu représente l'appel en puissance moyenne de chaud à satisfaire pour le bâtiment. La courbe a) représente les appels en puissance surdimensionnés détectés par le contrôleur, au-delà de la limite de la puissance maximale pour la pompe à chaleur, qui sont systématiquement pris en charge par l'auxiliaire de production, comme mentionné précédemment.

[0207] Le graphe du bas représente les consignes optimales sur le degré de liberté de découplage hydraulique. Comme cela est visible sur les graphes, les deux « leviers » d'action disponibles, allumage de l'auxiliaire chaud et découplage, sont utilisés dans le double objectif de réduire le coût et de satisfaire les contraintes sur la source thermique.

[0208] L'utilisation du découplage est relativement intensive, prouvant l'intérêt formel du degré de liberté. L'allumage

des auxiliaires ne se fait lui qu'en dernier recours : il permet la satisfaction exacte du critère en température par rapport

aux températures réglementaires sur le fluide dans le champ de sondes, quand l'utilisation du découplage n'est pas suffisante.

#### Exemple comparatif

5

10

15

20

25

30

35

40

45

50

55

**[0209]** Le tableau ci-dessous récapitule, dans le cas d'une production simultanée de chaud et de froid sur une année, les résultats obtenus en comparant les gains apportés par le contrôleur selon l'invention et par deux autres contrôleurs: Un contrôleur de référence et un contrôleur de lois expertes avancées.

**[0210]** Le contrôleur de référence: différence en témpérature aux bornes de la pompe à chaleur à une valeur constante, découplage hydraulique désactivé.

**[0211]** Le contrôleur de lois exprtes avancées: Limite haute en puissance thermique en chaud et en froid pour la pompe à chaleur fixées. Si la demande dépasse cette limite, la pompe à chaleur est désactivée et l'un des auxiliaires de production est activé. Le débit géothermique est fixé par le contrôleur de référence de la pompe à chaleur, et le découplage hydraulique désactivé.

#### [Tableau 2]

|                                                          | Référence       | lois expertes avancées   | Contrôleur optimisé selon<br>l'invention   |
|----------------------------------------------------------|-----------------|--------------------------|--------------------------------------------|
| Temps d'allumage des auxiliaires chaud (en heures)       | 52              | 251                      | 60 (-76%)                                  |
| Coût consolidé (Euros+100tCO2)                           | 8437.5          | 9031.6<br>Surcout :594.1 | 8475.4 (-6.1%)<br>Surcout : 37.89 (-93.6%) |
| violation des contraintes de températures réglementaires | Très<br>souvent | Moins souvent            | Jamais                                     |

**[0212]** On voit que l'invention peut permettre d'éviter la violation des contraintes règlementaires tout en étant de coût énergétique comparable au système de référence.

**[0213]** Bien entendu, l'invention n'est pas limitée à l'exemple qui vient d'être décrit. On peut notamment utiliser d'autres modèles thermiques que ceux donnés plus haut.

#### Revendications

- **1.** Procédé de commande du fonctionnement d'un système de production de chaud et de froid pour satisfaire une demande énergétique en chaud et en froid, comportant au moins :
  - Un circuit de source thermique,
  - une pompe à chaleur (10) couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud.
  - des auxiliaires (64 ; 62) de production de froid et de chaud,
  - une pompe hydraulique (28) dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur ;
  - une pompe hydraulique (26) dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur dans le circuit condenseur, procédé dans lequel :

lorsque la demande en chaud est dominante par rapport à la demande en froid, le système opère selon au moins:

o une première configuration dans laquelle l'auxiliaire de production chaud est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de froid et de chaud pour satisfaire la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée », et en mode de production de chaud seul pour satisfaire la partie restante de la demande en chaud dite

- « demande en chaud non équilibrée », ou
- o une deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé pour satisfaire la demande en chaud et la pompe à chaleur fonctionne en mode de production de froid seul pour satisfaire la demande en froid,

5

lorsque la demande en froid est dominante par rapport à la demande en chaud, le système opère selon au moins:

10

o une troisième configuration dans laquelle l'auxiliaire froid est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de chaud et de froid pour satisfaire la demande en chaud et une partie de la demande en froid, dite « demande en froid équilibrée » et en mode de production de froid pur pour satisfaire la partie restante de la demande en froid, dite « demande en froid non équilibrée, ou

15

o une quatrième configuration dans laquelle l'auxiliaire de production froid est allumé pour satisfaire la demande en froid et la pompe à chaleur fonctionne en mode de production de chaud pur pour satisfaire la demande en chaud;

et dans lequel;

20

le débit d'au moins l'une des pompes hydrauliques dans les première et troisième configurations est déterminé de manière à minimiser une première fonction de coût représentative d'au moins un coût de consommation énergétique associé au moins à la demande non équilibrée correspondante et d'une contrainte thermique sur la source thermique, et

les débits des pompes hydrauliques dans les deuxième et quatrième configurations sont prédéfinis.

25

Procédé selon la revendication 1, dans lequel on détermine laquelle des demandes en chaud et en froid est dominante

30

en calculant un facteur d'équilibre  $B_{eq}^*$  donné par la formule  $B_{eq}^* = P_{HOT}^* \left(1 - \frac{1}{COP_{eq}^*}\right) - P_{COLD}^*$  ; où  $P_{HOT}^*$  et  $P_{COLD}^*$  désignent respectivement les demandes en chaud et en froid et  $COP_{eq}^*$  le coefficient de performance de la pompe à chaleur en mode équilibré ; la demande en chaud étant dominante par rapport à la

35

 $_{\rm lorsque}~B_{eq}^*<0$ Procédé selon la revendication 2, la demande en chaud non équilibrée  $P^*_{HOT,A}$  correspondant à

40

 $R_{hot,eq}^* = \frac{B_{eq}^* / \left(1 - \frac{1}{COP_{eq}^*}\right)}{P_{eq}^*}$  $P_{HOT,A}^* = P_{HOT}^* R_{hot,eq}^*$ , dans lequel

45

4. Procédé selon la revendication 2, la demande en froid non équilibrée

 $P_{COLD,A}^* = P_{COLD}^* R_{cold,eq}^*$   $R_{cold,eq}^* = \frac{B_{eq}^*}{P_{COLD}^*}$ 

50 5. Procédé selon l'une guelconque des revendications précédentes, dans lequel pour une demande en chaud dominante, on minimise pour chacune de la première configuration dans laquelle l'auxiliaire de production chaud est éteint et de la deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé, une deuxième fonction de coût représentative d'un impact thermique sur la source thermique et l'on déclenche la configuration pour laquelle la deuxième fonction de coût est la plus faible.

55

6. Procédé selon l'une quelconque des revendications précédentes, dans lequel pour une demande en froid dominante, on minimise pour chacune de la troisième configuration dans laquelle l'auxiliaire de production froid est éteint et de

la quatrième configuration dans laquelle l'auxiliaire de production froid est allumé, une deuxième fonction de coût et l'on déclenche la configuration pour laquelle la deuxième fonction de coût est la plus faible.

7. Procédé selon l'une des revendications 5 et 6, comportant :

5

10

20

25

30

40

45

55

- un premier niveau de calcul de répartition des demandes dans lequel les demandes en chaud et en froid équilibrées et la demande en chaud ou en froid non-équilibrée sont déterminées ;
- un deuxième niveau de calcul d'optimisation hydraulique dans lequel la première fonction de coût est minimisée pour la demande non-équilibrée issue du premier niveau de calcul, par résolution d'un problème d'optimisation non linéaire de type NLP; et
- un troisième niveau de calcul, de gestion des auxiliaires de production, dans lequel la deuxième fonction de coût est minimisée par résolution d'un problème d'optimisation linéaire à variables mixtes de type MILP, le problème d'optimisation linéaire dépendant au moins du ou des débits déterminés au deuxième niveau de calcul.
- **8.** Procédé selon la revendication 7, le système comportant une bouteille de découplage hydraulique (32) couplée aux circuits de la source thermique, de l'évaporateur et du condenseur, ladite bouteille de découplage permettant la circulation de deux débits différents à ses bornes, au moins un des débits de circulation du fluide caloporteur aux bornes de ladite bouteille correspondant à une variable du problème d'optimisation non linéaire du deuxième niveau de calcul.
  - 9. Procédé selon la revendication 8, le système comportant une pompe hydraulique (34) dans le circuit de la source thermique agencée pour faire circuler un fluide caloporteur dans le circuit de la source, le débit circulant dans le circuit de la source thermique correspondant de préférence à une variable du problème d'optimisation non linéaire du deuxième niveau de calcul.
  - **10.** Procédé selon l'une quelconque des revendications précédentes, la première fonction de coût dépendant d'au moins :
    - une température du fluide caloporteur en entrée et/ou en sortie du circuit de la source thermique,
    - une consommation électrique d'au moins une pompe hydraulique,
    - une consommation électrique de la pompe à chaleur, notamment une consommation électrique instantanée de celle-ci.
- **11.** Procédé selon l'une quelconque des revendications précédentes, la contrainte thermique sur la source thermique correspondant à une plage de températures admises en entrée ou en sortie du circuit de la source thermique.
  - **12.** Procédé selon la revendication 7 ou 8, dans lequel la résolution du problème d'optimisation non linéaire au deuxième niveau de calcul utilise l'un au moins des modèles suivants :
    - un modèle de la source thermique, notamment un modèle décrivant au moins une température du fluide caloporteur en entrée et/ ou en sortie de la source thermique, ce modèle reliant avantageusement ladite température au débit circulant dans le circuit de la source thermique ;
    - optionnellement, un modèle relatif à la bouteille de découplage, renseignant notamment sur le comportement thermo-hydraulique de celle-ci, ledit modèle décrivant préférence les débits et les échanges thermiques;
    - un modèle d'au moins une pompe hydraulique ; en particulier un modèle reliant le débit de la pompe hydraulique à une consommation électrique de celle-ci;
    - un modèle de la pompe à chaleur.
- **13.** Procédé selon la revendication précédente, dans lequel le problème d'optimisation non linéaire utilise l'une au moins des équations suivantes :
  - $W_{pump} = \frac{m_{pump}\Delta P}{\eta \, \rho} \, ; \, \text{avec} \, W_{pump} \, \text{la consommation \'electrique de la pompe hydraulique,} \, m_{pump}^* \, \text{le d\'ebit de la pompe hydraulique,} \, \Delta P \, \text{une diff\'erence de pression impos\'ee par la pompe,} \, \eta \, \text{une efficacit\'e globale de la pompe et } \rho \, \text{une masse volumique du liquide caloporteur } ; \, \text{ladite diff\'erence de pression } \Delta P \, \text{\'etant de}$

préférence donnée par la formule suivante  $\Delta P = A_{pump} + B_{pump} \dot{m}_{pump} + C_{pump} m_{pump}^{2}$  ; A,

B et C étant des constantes ;

5

10

15

20

25

30

35

40

45

50

55

 $- W_{IPAC,tot} = N_c * W_{IPAC}, \text{ avec } W_{IPAC,tot} \text{ la consommation électrique instantanée de la pompe à chaleur, } W_{IPAC} \text{ la consommation électrique instantanée d'un étage d'un compresseur de la pompe à chaleur et } N_c \text{ une variable comprise entre 1 et 2, avec } W_{IPAC} = A_{WI} + B_{WI} T_{cond,out} + C_{WI} (T_{cond,out})^2, A_{WI}, B_{WI} \text{ et } C_{WI} \text{ étant des constantes }; \\ - W_{IPAC,tot} = Q_{Icond}/COP \text{ et } W_{IPAC,tot} = Q_{Ievap}/(COP - 1), \text{ avec } Q_{Icond} \text{ et } Q_{Ievap}, \text{ des puissances thermiques instantanées au niveau du condenseur et de l'évaporateur, respectivement, et } COP = A_{COP} + B_{COP} (T_{cond,out} - T_{evap,out})^2; T_{cond,out} \text{ et } T_{evap,out} \text{ correspondant respectivement aux températures } \text{ du fluide caloporteur en sortie du condenseur et de l'évaporateur };$ 

$$Q_{levap} = m_{evap}(T_{evap,in} - T_{evap,out}) CP,$$

$$Q_{lcond} = m_{cond}(T_{cond,in} - T_{cond,out}) CP,$$

- $m_{cond}$  et  $m_{evap}$  correspondant respectivement aux débits circulant dans le circuit du condenseur et de l'évaporateur,  $T_{evap,out}$  et  $T_{evap,in}$  sont les températures de sortie et d'entrée dans le circuit évaporateur,  $T_{cond,out}$  et  $T_{cond,in}$  sont les températures de sortie et d'entrée dans le circuit condenseur, et CP la capacité thermique du fluide circulant :
- $(T_{evap,in}$   $T_{evap,out})$  et  $(T_{cond,in}$   $T_{cond,out})$  aux bornes de l'évaporateur et/ou du condenseur étant constants.
- **14.** Contrôleur (70) configuré pour commander le fonctionnement d'un système de production de chaud et de froid pour satisfaire une demande énergétique en chaud et en froid, ce système comportant au moins :
  - un circuit de source thermique,
  - une pompe à chaleur (10) couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud,
  - des auxiliaires (62 ; 64) de production de froid et de chaud,
  - une pompe hydraulique (28) dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur ;
  - une pompe hydraulique (26) dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur,
  - lorsque la demande en chaud est dominante par rapport à la demande en froid, le contrôleur étant configuré pour commander le système selon au moins:
    - o une première configuration dans laquelle l'auxiliaire de production chaud est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de froid et de chaud pour satisfaire la demande en froid et une partie de la demande en chaud, dite « demande en chaud équilibrée », et en mode de production de chaud seul pour satisfaire la partie restante de la demande en chaud dite « demande en chaud non équilibrée », ou
    - o Une deuxième configuration dans laquelle l'auxiliaire de production chaud est allumé pour satisfaire la demande en chaud et la pompe à chaleur fonctionne en mode de production de froid seul pour satisfaire la demande en froid.
  - lorsque la demande en froid est dominante par rapport à la demande en chaud, le contrôleur étant configuré pour commander le système opère selon au moins:
    - o une troisième configuration dans laquelle l'auxiliaire froid est éteint et dans laquelle la pompe à chaleur fonctionne en mode de production combinée de chaud et de froid pour satisfaire la demande en chaud et une partie de la demande en froid, dite « demande en froid équilibrée » et en mode de production de froid pur pour satisfaire la partie restante de la demande en froid, dite « demande en froid non équilibrée, ou o une quatrième configuration dans laquelle l'auxiliaire de production froid est allumé pour satisfaire la demande en froid et la pompe à chaleur fonctionne en mode de production de chaud pur pour satisfaire la demande en chaud :

le débit d'au moins l'une des pompes hydrauliques dans les première et troisième configurations est déterminé de manière à minimiser une première fonction de coût représentative d'au moins un coût de consommation

énergétique associé au moins à la demande non équilibrée correspondante et d'une contrainte thermique sur la source thermique, et

les débits des pompes hydrauliques dans les deuxième et quatrième configurations sont prédéfinis.

- 5 **15.** Système de production de chaud et de froid comportant :
  - Un circuit de source thermique,

10

15

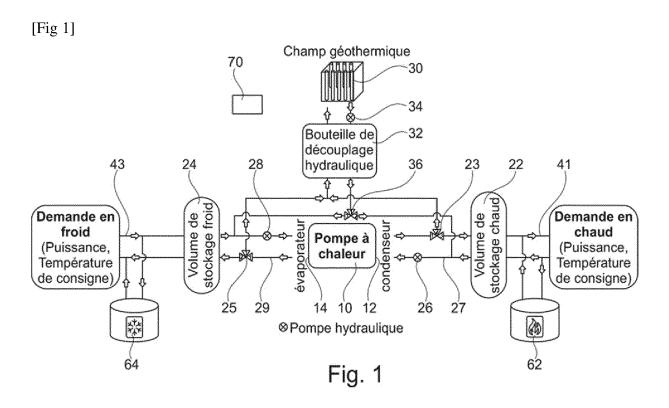
20

25

30

35

40


45

50

55

- une pompe à chaleur (10) couplée audit circuit de source thermique, la pompe à chaleur comportant un évaporateur et un condenseur, la pompe à chaleur étant capable d'opérer selon au moins un premier mode de production de chaud pur, un second de production de froid pur et un troisième de production combinée de froid et de chaud,
- des auxiliaires (62; 64) de production de froid et de chaud,
- une pompe hydraulique (28) dans un circuit évaporateur pour la circulation du fluide caloporteur dans le circuit évaporateur ;
- une pompe hydraulique (26) dans un circuit condenseur de la pompe à chaleur pour la circulation du fluide caloporteur, et
- un contrôleur (70) selon la revendication 14.

25



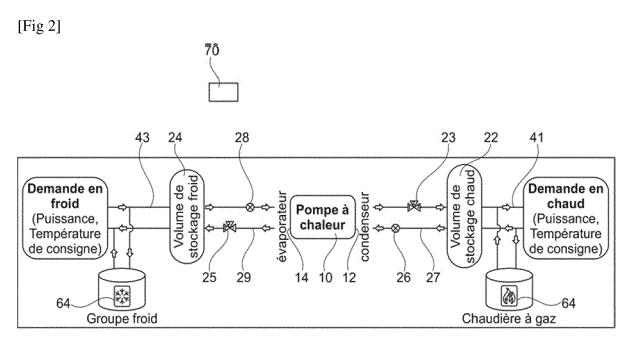



Fig. 2

[Fig 3]

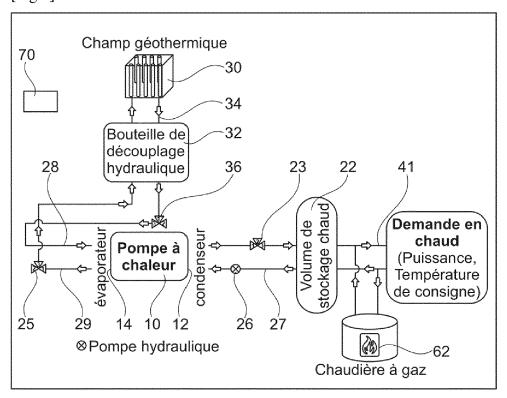



Fig. 3

[Fig 4]

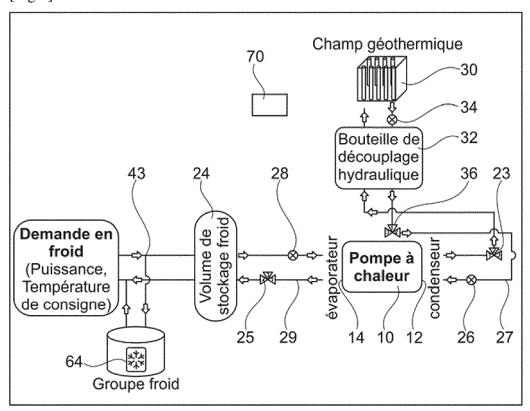



Fig. 4

[Fig 5]

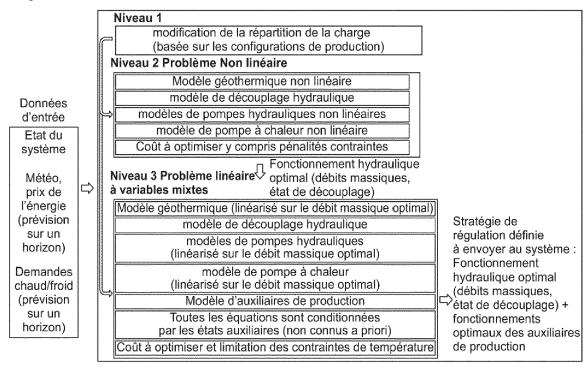



Fig. 5

[Fig 6]

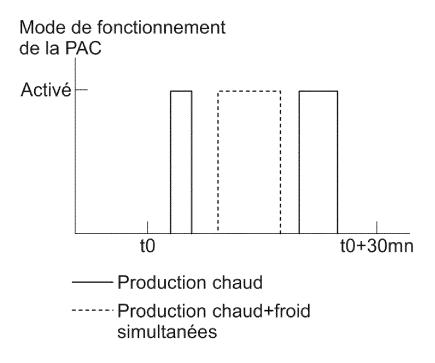



Fig. 6

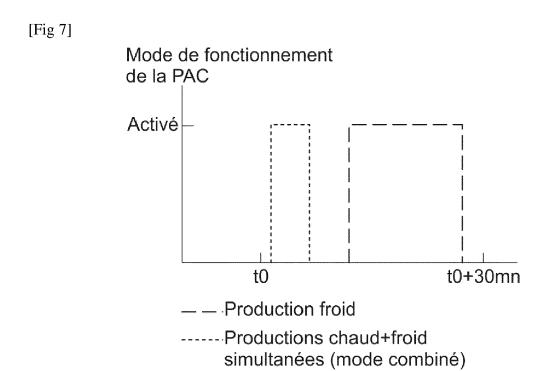
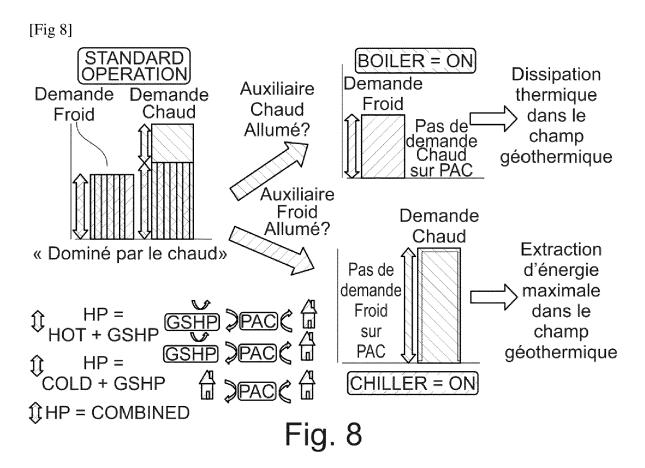




Fig. 7



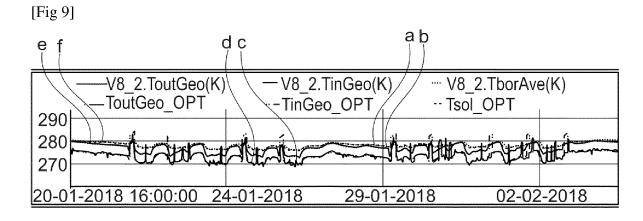



Fig. 9

[Fig 10]

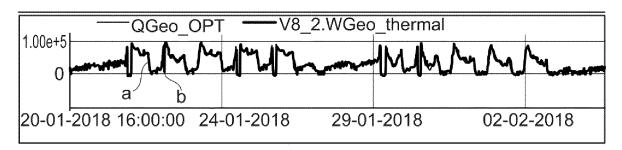



Fig. 10

[Fig 11]

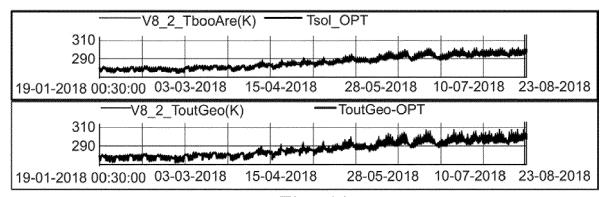



Fig. 11

[Fig 12]

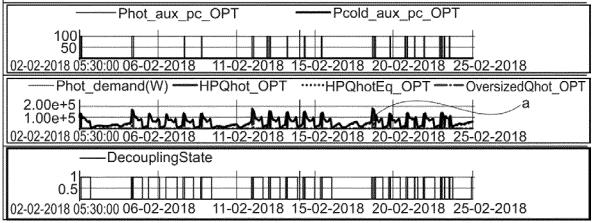



Fig. 12



## RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 23 15 7327

5

| 10 |
|----|
| 10 |
| 15 |
| 20 |
| 25 |
| 30 |
| 35 |
| 40 |
| 45 |
| 50 |

55

| Catégorie | Citation du document avec                                 |                         |                                                 | endication<br>cernée | CLASSEMENT DE LA<br>DEMANDE (IPC)       |
|-----------|-----------------------------------------------------------|-------------------------|-------------------------------------------------|----------------------|-----------------------------------------|
|           | des parties perti                                         | nentes                  | CON                                             | cerriee              | DEMANDE (IFC)                           |
| A         | US 2018/335219 A1 (                                       | CALLEMO DAVID           | [SE] ET 1-:                                     | 15                   | INV.                                    |
|           | AL) 22 novembre 201                                       | 8 (2018-11-22)          |                                                 | I                    | £25B29/00                               |
|           | * alinéa [0014] - a                                       | linéa [0095]; 1         | figure 1                                        | I                    | £25B25/00                               |
|           | *                                                         |                         |                                                 | I                    | F25B30/02                               |
|           |                                                           |                         |                                                 | I                    | F25B49/02                               |
| A         | EP 3 798 532 A1 (X                                        |                         | 1-3                                             |                      | F24D11/02                               |
|           | 31 mars 2021 (2021-                                       |                         |                                                 |                      | F24H15/00                               |
|           | * le document en en                                       | tier *                  |                                                 | I                    | F24H4/00                                |
| A         | WO 2014/024879 A1 (                                       | RINNAI KK [JP];         | SHARP 1-                                        | 15                   |                                         |
|           | KK [JP]) 13 février                                       | 2014 (2014-02-          | -13)                                            |                      |                                         |
|           | * le document en en                                       | tier *                  |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      | DOMAINES TECHNIQUES<br>RECHERCHES (IPC) |
|           |                                                           |                         |                                                 | I                    | £25B                                    |
|           |                                                           |                         |                                                 |                      | F24H                                    |
|           |                                                           |                         |                                                 | I                    | F24D                                    |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
|           |                                                           |                         |                                                 |                      |                                         |
| Lenn      | ésent rapport a été établi pour to                        | utes les revendications |                                                 |                      |                                         |
| ·         | Lieu de la recherche                                      |                         | Date d'achèvement de la recherche               |                      | Examinateur                             |
|           | Munich                                                    | 20 juin                 | 2023                                            | Lucio                | c, Anita                                |
| С         | ATEGORIE DES DOCUMENTS CITE                               |                         | théorie ou principe à la                        |                      |                                         |
| X · nart  | iculièrement pertinent à lui seul                         | E:                      | document de brevet an<br>date de dépôt ou après | térieur, mais p      |                                         |
| Y : part  | iculièrement pertinent en combinaisor                     | n avec un D:            | cité dans la demande                            |                      |                                         |
| A : arrië | e document de la même catégorie<br>ère-plan technologique |                         |                                                 |                      |                                         |
| O · diva  | ulgation non-écrité                                       | & ·                     | membre de la même fa                            | mille docume         | ent correspondent                       |

## ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

5

10

15

20

25

30

35

40

45

50

55

EP 23 15 7327

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

20-06-2023

|    | ocument brevet cité<br>rapport de recherche |           | Date de publication |            | Membre(s) de la famille de brevet( |           | Date de publication |
|----|---------------------------------------------|-----------|---------------------|------------|------------------------------------|-----------|---------------------|
| US | 2018335219                                  | A1        | 22-11-2018          | AU         | 2016354864                         | <b>A1</b> | 05-07-203           |
|    |                                             |           |                     | AU         | 2016356574                         | A1        | 05-07-203           |
|    |                                             |           |                     | CA         | 3005626                            | A1        | 26-05-203           |
|    |                                             |           |                     | CA         | 3005646                            | A1        | 26-05-203           |
|    |                                             |           |                     | CN         | 108885013                          | A         | 23-11-20            |
|    |                                             |           |                     | CN         | 109073242                          | A         | 21-12-203           |
|    |                                             |           |                     | DK         | 3377823                            | т3        | 02-11-202           |
|    |                                             |           |                     | DK         | 3377824                            | т3        | 02-11-202           |
|    |                                             |           |                     | EP         | 3377823                            | A1        | 26-09-20            |
|    |                                             |           |                     | EP         | 3377824                            | A1        | 26-09-20            |
|    |                                             |           |                     | ES         | 2828689                            | т3        | 27-05-202           |
|    |                                             |           |                     | ES         | 2828969                            | т3        | 28-05-20            |
|    |                                             |           |                     | JP         | 2018534524                         | A         | 22-11-20            |
|    |                                             |           |                     | JP         | 2018534525                         | A         | 22-11-20            |
|    |                                             |           |                     | NZ         | 743176                             | A         | 26-03-20            |
|    |                                             |           |                     | NZ         | 743184                             | A         | 26-03-20            |
|    |                                             |           |                     | $_{	t PL}$ | 3377823                            | т3        | 25-01-20            |
|    |                                             |           |                     | $_{	t PL}$ | 3377824                            | т3        | 25-01-20            |
|    |                                             |           |                     | SE         | 1551509                            | A1        | 21-05-20            |
|    |                                             |           |                     | US         | 2018335219                         |           | 22-11-20            |
|    |                                             |           |                     | US         | 2020263881                         |           | 20-08-20            |
|    |                                             |           |                     | WO         | 2017086869                         | A1        | 26-05-20            |
|    |                                             |           |                     | WO         | 2017086870                         | A1        | 26-05-20            |
| EP | 3798532                                     | A1        | 31-03-2021          | EP         | 3798532                            | A1        | 31-03-20            |
|    |                                             |           |                     | ES         | 2923624                            |           | 29-09-20            |
|    |                                             |           |                     | FR         | 3101134                            | A1        | 26-03-20:<br>       |
| WC | 2014024879                                  | <b>A1</b> | 13-02-2014          | CN         | 104428603                          |           | 18-03-20            |
|    |                                             |           |                     | JP         | 5475072                            |           | 16-04-20            |
|    |                                             |           |                     | JP         | 2014035160                         |           | 24-02-20            |
|    |                                             |           |                     | KR         | 20150042184                        |           | 20-04-20            |
|    |                                             |           |                     | WO         | 2014024879                         | Δ1        | 13-02-20            |

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

## RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

#### Littérature non-brevet citée dans la description

 LAMARCHE, LOUIS. A fast algorithm for the hourly simulations of ground-source heat pumps using arbitrary response factors. Renewable Energy, 2009, vol. 34 (10), 2252-2258 [0137]